xref: /freebsd/sys/dev/sound/pcm/feeder_mixer.c (revision ca2e4ecd7395ba655ab4bebe7262a06e634216ce)
1 /*-
2  * Copyright (c) 2008-2009 Ariff Abdullah <ariff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #ifdef _KERNEL
28 #ifdef HAVE_KERNEL_OPTION_HEADERS
29 #include "opt_snd.h"
30 #endif
31 #include <dev/sound/pcm/sound.h>
32 #include <dev/sound/pcm/pcm.h>
33 #include <dev/sound/pcm/vchan.h>
34 #include "feeder_if.h"
35 
36 #define SND_USE_FXDIV
37 #include "snd_fxdiv_gen.h"
38 
39 SND_DECLARE_FILE("$FreeBSD$");
40 #endif
41 
42 #undef SND_FEEDER_MULTIFORMAT
43 #define SND_FEEDER_MULTIFORMAT	1
44 
45 typedef void (*feed_mixer_t)(uint8_t *, uint8_t *, uint32_t);
46 
47 #define FEEDMIXER_DECLARE(SIGN, BIT, ENDIAN)				\
48 static void								\
49 feed_mixer_##SIGN##BIT##ENDIAN(uint8_t *src, uint8_t *dst,		\
50     uint32_t count)							\
51 {									\
52 	intpcm##BIT##_t z;						\
53 	intpcm_t x, y;							\
54 									\
55 	src += count;							\
56 	dst += count;							\
57 									\
58 	do {								\
59 		src -= PCM_##BIT##_BPS;					\
60 		dst -= PCM_##BIT##_BPS;					\
61 		count -= PCM_##BIT##_BPS;				\
62 		x = PCM_READ_##SIGN##BIT##_##ENDIAN(src);		\
63 		y = PCM_READ_##SIGN##BIT##_##ENDIAN(dst);		\
64 		z = INTPCM##BIT##_T(x) + y;				\
65 		x = PCM_CLAMP_##SIGN##BIT(z);				\
66 		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);		\
67 	} while (count != 0);						\
68 }
69 
70 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
71 FEEDMIXER_DECLARE(S, 16, LE)
72 FEEDMIXER_DECLARE(S, 32, LE)
73 #endif
74 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
75 FEEDMIXER_DECLARE(S, 16, BE)
76 FEEDMIXER_DECLARE(S, 32, BE)
77 #endif
78 #ifdef SND_FEEDER_MULTIFORMAT
79 FEEDMIXER_DECLARE(S,  8, NE)
80 FEEDMIXER_DECLARE(S, 24, LE)
81 FEEDMIXER_DECLARE(S, 24, BE)
82 FEEDMIXER_DECLARE(U,  8, NE)
83 FEEDMIXER_DECLARE(U, 16, LE)
84 FEEDMIXER_DECLARE(U, 24, LE)
85 FEEDMIXER_DECLARE(U, 32, LE)
86 FEEDMIXER_DECLARE(U, 16, BE)
87 FEEDMIXER_DECLARE(U, 24, BE)
88 FEEDMIXER_DECLARE(U, 32, BE)
89 #endif
90 
91 struct feed_mixer_info {
92 	uint32_t format;
93 	int bps;
94 	feed_mixer_t mix;
95 };
96 
97 #define FEEDMIXER_ENTRY(SIGN, BIT, ENDIAN)				\
98 	{								\
99 		AFMT_##SIGN##BIT##_##ENDIAN, PCM_##BIT##_BPS,		\
100 		feed_mixer_##SIGN##BIT##ENDIAN				\
101 	}
102 
103 static struct feed_mixer_info feed_mixer_info_tab[] = {
104 	FEEDMIXER_ENTRY(S,  8, NE),
105 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
106 	FEEDMIXER_ENTRY(S, 16, LE),
107 	FEEDMIXER_ENTRY(S, 32, LE),
108 #endif
109 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
110 	FEEDMIXER_ENTRY(S, 16, BE),
111 	FEEDMIXER_ENTRY(S, 32, BE),
112 #endif
113 #ifdef SND_FEEDER_MULTIFORMAT
114 	FEEDMIXER_ENTRY(S, 24, LE),
115 	FEEDMIXER_ENTRY(S, 24, BE),
116 	FEEDMIXER_ENTRY(U,  8, NE),
117 	FEEDMIXER_ENTRY(U, 16, LE),
118 	FEEDMIXER_ENTRY(U, 24, LE),
119 	FEEDMIXER_ENTRY(U, 32, LE),
120 	FEEDMIXER_ENTRY(U, 16, BE),
121 	FEEDMIXER_ENTRY(U, 24, BE),
122 	FEEDMIXER_ENTRY(U, 32, BE),
123 #endif
124 	{    AFMT_AC3, PCM_16_BPS, NULL },
125 	{ AFMT_MU_LAW,  PCM_8_BPS, feed_mixer_U8NE },	/* dummy */
126 	{  AFMT_A_LAW,  PCM_8_BPS, feed_mixer_U8NE }	/* dummy */
127 };
128 
129 #define FEEDMIXER_TAB_SIZE	((int32_t)				\
130 				 (sizeof(feed_mixer_info_tab) /		\
131 				  sizeof(feed_mixer_info_tab[0])))
132 
133 #define FEEDMIXER_DATA(i, c)	((void *)				\
134 				 ((uintptr_t)((((i) & 0x1f) << 5) |	\
135 				 ((c) & 0x1f))))
136 #define FEEDMIXER_INFOIDX(d)	((uint32_t)((uintptr_t)(d) >> 5) & 0x1f)
137 #define FEEDMIXER_CHANNELS(d)	((uint32_t)((uintptr_t)(d)) & 0x1f)
138 
139 static int
140 feed_mixer_init(struct pcm_feeder *f)
141 {
142 	int i;
143 
144 	if (f->desc->in != f->desc->out)
145 		return (EINVAL);
146 
147 	for (i = 0; i < FEEDMIXER_TAB_SIZE; i++) {
148 		if (AFMT_ENCODING(f->desc->in) ==
149 		    feed_mixer_info_tab[i].format) {
150 		    	f->data =
151 			    FEEDMIXER_DATA(i, AFMT_CHANNEL(f->desc->in));
152 			return (0);
153 		}
154 	}
155 
156 	return (EINVAL);
157 }
158 
159 static int
160 feed_mixer_set(struct pcm_feeder *f, int what, int value)
161 {
162 
163 	switch (what) {
164 	case FEEDMIXER_CHANNELS:
165 		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
166 			return (EINVAL);
167 		f->data = FEEDMIXER_DATA(FEEDMIXER_INFOIDX(f->data), value);
168 		break;
169 	default:
170 		return (EINVAL);
171 		break;
172 	}
173 
174 	return (0);
175 }
176 
177 static __inline int
178 feed_mixer_rec(struct pcm_channel *c)
179 {
180 	struct pcm_channel *ch;
181 	struct snd_dbuf *b, *bs;
182 	uint32_t cnt, maxfeed;
183 	int rdy;
184 
185 	/*
186 	 * Reset ready and moving pointer. We're not using bufsoft
187 	 * anywhere since its sole purpose is to become the primary
188 	 * distributor for the recorded buffer and also as an interrupt
189 	 * threshold progress indicator.
190 	 */
191 	b = c->bufsoft;
192 	b->rp = 0;
193 	b->rl = 0;
194 	cnt = sndbuf_getsize(b);
195 	maxfeed = SND_FXROUND(SND_FXDIV_MAX, sndbuf_getalign(b));
196 
197 	do {
198 		cnt = FEEDER_FEED(c->feeder->source, c, b->tmpbuf,
199 		    min(cnt, maxfeed), c->bufhard);
200 		if (cnt != 0) {
201 			sndbuf_acquire(b, b->tmpbuf, cnt);
202 			cnt = sndbuf_getfree(b);
203 		}
204 	} while (cnt != 0);
205 
206 	/* Not enough data */
207 	if (b->rl < sndbuf_getalign(b)) {
208 		b->rl = 0;
209 		return (0);
210 	}
211 
212 	/*
213 	 * Keep track of ready and moving pointer since we will use
214 	 * bufsoft over and over again, pretending nothing has happened.
215 	 */
216 	rdy = b->rl;
217 
218 	CHN_FOREACH(ch, c, children.busy) {
219 		CHN_LOCK(ch);
220 		if (CHN_STOPPED(ch) || (ch->flags & CHN_F_DIRTY)) {
221 			CHN_UNLOCK(ch);
222 			continue;
223 		}
224 #ifdef SND_DEBUG
225 		if ((c->flags & CHN_F_DIRTY) && VCHAN_SYNC_REQUIRED(ch)) {
226 			if (vchan_sync(ch) != 0) {
227 				CHN_UNLOCK(ch);
228 				continue;
229 			}
230 		}
231 #endif
232 		bs = ch->bufsoft;
233 		if (ch->flags & CHN_F_MMAP)
234 			sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
235 		cnt = sndbuf_getfree(bs);
236 		if (cnt < sndbuf_getalign(bs)) {
237 			CHN_UNLOCK(ch);
238 			continue;
239 		}
240 		maxfeed = SND_FXROUND(SND_FXDIV_MAX, sndbuf_getalign(bs));
241 		do {
242 			cnt = FEEDER_FEED(ch->feeder, ch, bs->tmpbuf,
243 			    min(cnt, maxfeed), b);
244 			if (cnt != 0) {
245 				sndbuf_acquire(bs, bs->tmpbuf, cnt);
246 				cnt = sndbuf_getfree(bs);
247 			}
248 		} while (cnt != 0);
249 		/*
250 		 * Not entirely flushed out...
251 		 */
252 		if (b->rl != 0)
253 			ch->xruns++;
254 		CHN_UNLOCK(ch);
255 		/*
256 		 * Rewind buffer position for next virtual channel.
257 		 */
258 		b->rp = 0;
259 		b->rl = rdy;
260 	}
261 
262 	/*
263 	 * Set ready pointer to indicate that our children are ready
264 	 * to be woken up, also as an interrupt threshold progress
265 	 * indicator.
266 	 */
267 	b->rl = 1;
268 
269 	c->flags &= ~CHN_F_DIRTY;
270 
271 	/*
272 	 * Return 0 to bail out early from sndbuf_feed() loop.
273 	 * No need to increase feedcount counter since part of this
274 	 * feeder chains already include feed_root().
275 	 */
276 	return (0);
277 }
278 
279 static int
280 feed_mixer_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
281     uint32_t count, void *source)
282 {
283 	struct feed_mixer_info *info;
284 	struct snd_dbuf *src = source;
285 	struct pcm_channel *ch;
286 	uint32_t cnt, mcnt, rcnt, sz;
287 	int passthrough;
288 	uint8_t *tmp;
289 
290 	if (c->direction == PCMDIR_REC)
291 		return (feed_mixer_rec(c));
292 
293 	sz = sndbuf_getsize(src);
294 	if (sz < count)
295 		count = sz;
296 
297 	info = &feed_mixer_info_tab[FEEDMIXER_INFOIDX(f->data)];
298 	sz = info->bps * FEEDMIXER_CHANNELS(f->data);
299 	count = SND_FXROUND(count, sz);
300 	if (count < sz)
301 		return (0);
302 
303 	/*
304 	 * We are going to use our source as a temporary buffer since it's
305 	 * got no other purpose.  We obtain our data by traversing the channel
306 	 * list of children and calling mixer function to mix count bytes from
307 	 * each into our destination buffer, b.
308 	 */
309 	tmp = sndbuf_getbuf(src);
310 	rcnt = 0;
311 	mcnt = 0;
312 	passthrough = 0;	/* 'passthrough' / 'exclusive' marker */
313 
314 	CHN_FOREACH(ch, c, children.busy) {
315 		CHN_LOCK(ch);
316 		if (CHN_STOPPED(ch) || (ch->flags & CHN_F_DIRTY)) {
317 			CHN_UNLOCK(ch);
318 			continue;
319 		}
320 #ifdef SND_DEBUG
321 		if ((c->flags & CHN_F_DIRTY) && VCHAN_SYNC_REQUIRED(ch)) {
322 			if (vchan_sync(ch) != 0) {
323 				CHN_UNLOCK(ch);
324 				continue;
325 			}
326 		}
327 #endif
328 		if ((ch->flags & CHN_F_MMAP) && !(ch->flags & CHN_F_CLOSING))
329 			sndbuf_acquire(ch->bufsoft, NULL,
330 			    sndbuf_getfree(ch->bufsoft));
331 		if (info->mix == NULL) {
332 			/*
333 			 * Passthrough. Dump the first digital/passthrough
334 			 * channel into destination buffer, and the rest into
335 			 * nothingness (mute effect).
336 			 */
337 			if (passthrough == 0 &&
338 			    (ch->format & AFMT_PASSTHROUGH)) {
339 				rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
340 				    b, count, ch->bufsoft), sz);
341 				passthrough = 1;
342 			} else
343 				FEEDER_FEED(ch->feeder, ch, tmp, count,
344 				    ch->bufsoft);
345 		} else if (c->flags & CHN_F_EXCLUSIVE) {
346 			/*
347 			 * Exclusive. Dump the first 'exclusive' channel into
348 			 * destination buffer, and the rest into nothingness
349 			 * (mute effect).
350 			 */
351 			if (passthrough == 0 && (ch->flags & CHN_F_EXCLUSIVE)) {
352 				rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
353 				    b, count, ch->bufsoft), sz);
354 				passthrough = 1;
355 			} else
356 				FEEDER_FEED(ch->feeder, ch, tmp, count,
357 				    ch->bufsoft);
358 		} else {
359 			if (rcnt == 0) {
360 				rcnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
361 				    b, count, ch->bufsoft), sz);
362 				mcnt = count - rcnt;
363 			} else {
364 				cnt = SND_FXROUND(FEEDER_FEED(ch->feeder, ch,
365 				    tmp, count, ch->bufsoft), sz);
366 				if (cnt != 0) {
367 					if (mcnt != 0) {
368 						memset(b + rcnt,
369 						    sndbuf_zerodata(
370 						    f->desc->out), mcnt);
371 						mcnt = 0;
372 					}
373 					info->mix(tmp, b, cnt);
374 					if (cnt > rcnt)
375 						rcnt = cnt;
376 				}
377 			}
378 		}
379 		CHN_UNLOCK(ch);
380 	}
381 
382 	if (++c->feedcount == 0)
383 		c->feedcount = 2;
384 
385 	c->flags &= ~CHN_F_DIRTY;
386 
387 	return (rcnt);
388 }
389 
390 static struct pcm_feederdesc feeder_mixer_desc[] = {
391 	{ FEEDER_MIXER, 0, 0, 0, 0 },
392 	{ 0, 0, 0, 0, 0 }
393 };
394 
395 static kobj_method_t feeder_mixer_methods[] = {
396 	KOBJMETHOD(feeder_init,		feed_mixer_init),
397 	KOBJMETHOD(feeder_set,		feed_mixer_set),
398 	KOBJMETHOD(feeder_feed,		feed_mixer_feed),
399 	KOBJMETHOD_END
400 };
401 
402 FEEDER_DECLARE(feeder_mixer, NULL);
403