1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006 6 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> 7 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_snd.h" 34 #endif 35 36 #include <dev/sound/pcm/sound.h> 37 #include <dev/sound/pcm/vchan.h> 38 39 #include "feeder_if.h" 40 41 int report_soft_formats = 1; 42 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, 43 &report_soft_formats, 0, "report software-emulated formats"); 44 45 int report_soft_matrix = 1; 46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, 47 &report_soft_matrix, 0, "report software-emulated channel matrixing"); 48 49 int chn_latency = CHN_LATENCY_DEFAULT; 50 51 static int 52 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) 53 { 54 int err, val; 55 56 val = chn_latency; 57 err = sysctl_handle_int(oidp, &val, 0, req); 58 if (err != 0 || req->newptr == NULL) 59 return err; 60 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) 61 err = EINVAL; 62 else 63 chn_latency = val; 64 65 return err; 66 } 67 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, 68 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 69 sysctl_hw_snd_latency, "I", 70 "buffering latency (0=low ... 10=high)"); 71 72 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; 73 74 static int 75 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) 76 { 77 int err, val; 78 79 val = chn_latency_profile; 80 err = sysctl_handle_int(oidp, &val, 0, req); 81 if (err != 0 || req->newptr == NULL) 82 return err; 83 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) 84 err = EINVAL; 85 else 86 chn_latency_profile = val; 87 88 return err; 89 } 90 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, 91 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 92 sysctl_hw_snd_latency_profile, "I", 93 "buffering latency profile (0=aggressive 1=safe)"); 94 95 static int chn_timeout = CHN_TIMEOUT; 96 97 static int 98 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) 99 { 100 int err, val; 101 102 val = chn_timeout; 103 err = sysctl_handle_int(oidp, &val, 0, req); 104 if (err != 0 || req->newptr == NULL) 105 return err; 106 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) 107 err = EINVAL; 108 else 109 chn_timeout = val; 110 111 return err; 112 } 113 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, 114 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 115 sysctl_hw_snd_timeout, "I", 116 "interrupt timeout (1 - 10) seconds"); 117 118 static int chn_vpc_autoreset = 1; 119 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN, 120 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); 121 122 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; 123 124 static void 125 chn_vpc_proc(int reset, int db) 126 { 127 struct snddev_info *d; 128 struct pcm_channel *c; 129 int i; 130 131 for (i = 0; pcm_devclass != NULL && 132 i < devclass_get_maxunit(pcm_devclass); i++) { 133 d = devclass_get_softc(pcm_devclass, i); 134 if (!PCM_REGISTERED(d)) 135 continue; 136 PCM_LOCK(d); 137 PCM_WAIT(d); 138 PCM_ACQUIRE(d); 139 CHN_FOREACH(c, d, channels.pcm) { 140 CHN_LOCK(c); 141 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); 142 if (reset != 0) 143 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 144 CHN_UNLOCK(c); 145 } 146 PCM_RELEASE(d); 147 PCM_UNLOCK(d); 148 } 149 } 150 151 static int 152 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) 153 { 154 int err, val; 155 156 val = chn_vol_0db_pcm; 157 err = sysctl_handle_int(oidp, &val, 0, req); 158 if (err != 0 || req->newptr == NULL) 159 return (err); 160 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) 161 return (EINVAL); 162 163 chn_vol_0db_pcm = val; 164 chn_vpc_proc(0, val); 165 166 return (0); 167 } 168 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, 169 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 170 sysctl_hw_snd_vpc_0db, "I", 171 "0db relative level"); 172 173 static int 174 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) 175 { 176 int err, val; 177 178 val = 0; 179 err = sysctl_handle_int(oidp, &val, 0, req); 180 if (err != 0 || req->newptr == NULL || val == 0) 181 return (err); 182 183 chn_vol_0db_pcm = SND_VOL_0DB_PCM; 184 chn_vpc_proc(1, SND_VOL_0DB_PCM); 185 186 return (0); 187 } 188 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, 189 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 190 sysctl_hw_snd_vpc_reset, "I", 191 "reset volume on all channels"); 192 193 static int chn_usefrags = 0; 194 static int chn_syncdelay = -1; 195 196 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN, 197 &chn_usefrags, 0, "prefer setfragments() over setblocksize()"); 198 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN, 199 &chn_syncdelay, 0, 200 "append (0-1000) millisecond trailing buffer delay on each sync"); 201 202 /** 203 * @brief Channel sync group lock 204 * 205 * Clients should acquire this lock @b without holding any channel locks 206 * before touching syncgroups or the main syncgroup list. 207 */ 208 struct mtx snd_pcm_syncgroups_mtx; 209 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); 210 /** 211 * @brief syncgroups' master list 212 * 213 * Each time a channel syncgroup is created, it's added to this list. This 214 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. 215 * 216 * See SNDCTL_DSP_SYNCGROUP for more information. 217 */ 218 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); 219 220 static void 221 chn_lockinit(struct pcm_channel *c, int dir) 222 { 223 switch (dir) { 224 case PCMDIR_PLAY: 225 c->lock = snd_mtxcreate(c->name, "pcm play channel"); 226 cv_init(&c->intr_cv, "pcmwr"); 227 break; 228 case PCMDIR_PLAY_VIRTUAL: 229 c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); 230 cv_init(&c->intr_cv, "pcmwrv"); 231 break; 232 case PCMDIR_REC: 233 c->lock = snd_mtxcreate(c->name, "pcm record channel"); 234 cv_init(&c->intr_cv, "pcmrd"); 235 break; 236 case PCMDIR_REC_VIRTUAL: 237 c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); 238 cv_init(&c->intr_cv, "pcmrdv"); 239 break; 240 default: 241 panic("%s(): Invalid direction=%d", __func__, dir); 242 break; 243 } 244 245 cv_init(&c->cv, "pcmchn"); 246 } 247 248 static void 249 chn_lockdestroy(struct pcm_channel *c) 250 { 251 CHN_LOCKASSERT(c); 252 253 CHN_BROADCAST(&c->cv); 254 CHN_BROADCAST(&c->intr_cv); 255 256 cv_destroy(&c->cv); 257 cv_destroy(&c->intr_cv); 258 259 snd_mtxfree(c->lock); 260 } 261 262 /** 263 * @brief Determine channel is ready for I/O 264 * 265 * @retval 1 = ready for I/O 266 * @retval 0 = not ready for I/O 267 */ 268 static int 269 chn_polltrigger(struct pcm_channel *c) 270 { 271 struct snd_dbuf *bs = c->bufsoft; 272 u_int delta; 273 274 CHN_LOCKASSERT(c); 275 276 if (c->flags & CHN_F_MMAP) { 277 if (sndbuf_getprevtotal(bs) < c->lw) 278 delta = c->lw; 279 else 280 delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); 281 } else { 282 if (c->direction == PCMDIR_PLAY) 283 delta = sndbuf_getfree(bs); 284 else 285 delta = sndbuf_getready(bs); 286 } 287 288 return ((delta < c->lw) ? 0 : 1); 289 } 290 291 static void 292 chn_pollreset(struct pcm_channel *c) 293 { 294 295 CHN_LOCKASSERT(c); 296 sndbuf_updateprevtotal(c->bufsoft); 297 } 298 299 static void 300 chn_wakeup(struct pcm_channel *c) 301 { 302 struct snd_dbuf *bs; 303 struct pcm_channel *ch; 304 305 CHN_LOCKASSERT(c); 306 307 bs = c->bufsoft; 308 309 if (CHN_EMPTY(c, children.busy)) { 310 if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) 311 selwakeuppri(sndbuf_getsel(bs), PRIBIO); 312 if (c->flags & CHN_F_SLEEPING) { 313 /* 314 * Ok, I can just panic it right here since it is 315 * quite obvious that we never allow multiple waiters 316 * from userland. I'm too generous... 317 */ 318 CHN_BROADCAST(&c->intr_cv); 319 } 320 } else { 321 CHN_FOREACH(ch, c, children.busy) { 322 CHN_LOCK(ch); 323 chn_wakeup(ch); 324 CHN_UNLOCK(ch); 325 } 326 } 327 } 328 329 static int 330 chn_sleep(struct pcm_channel *c, int timeout) 331 { 332 int ret; 333 334 CHN_LOCKASSERT(c); 335 KASSERT((c->flags & CHN_F_SLEEPING) == 0, 336 ("%s(): entered with CHN_F_SLEEPING", __func__)); 337 338 if (c->flags & CHN_F_DEAD) 339 return (EINVAL); 340 341 c->flags |= CHN_F_SLEEPING; 342 ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); 343 c->flags &= ~CHN_F_SLEEPING; 344 345 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); 346 } 347 348 /* 349 * chn_dmaupdate() tracks the status of a dma transfer, 350 * updating pointers. 351 */ 352 353 static unsigned int 354 chn_dmaupdate(struct pcm_channel *c) 355 { 356 struct snd_dbuf *b = c->bufhard; 357 unsigned int delta, old, hwptr, amt; 358 359 KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); 360 CHN_LOCKASSERT(c); 361 362 old = sndbuf_gethwptr(b); 363 hwptr = chn_getptr(c); 364 delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); 365 sndbuf_sethwptr(b, hwptr); 366 367 if (c->direction == PCMDIR_PLAY) { 368 amt = min(delta, sndbuf_getready(b)); 369 amt -= amt % sndbuf_getalign(b); 370 if (amt > 0) 371 sndbuf_dispose(b, NULL, amt); 372 } else { 373 amt = min(delta, sndbuf_getfree(b)); 374 amt -= amt % sndbuf_getalign(b); 375 if (amt > 0) 376 sndbuf_acquire(b, NULL, amt); 377 } 378 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { 379 device_printf(c->dev, "WARNING: %s DMA completion " 380 "too fast/slow ! hwptr=%u, old=%u " 381 "delta=%u amt=%u ready=%u free=%u\n", 382 CHN_DIRSTR(c), hwptr, old, delta, amt, 383 sndbuf_getready(b), sndbuf_getfree(b)); 384 } 385 386 return delta; 387 } 388 389 static void 390 chn_wrfeed(struct pcm_channel *c) 391 { 392 struct snd_dbuf *b = c->bufhard; 393 struct snd_dbuf *bs = c->bufsoft; 394 unsigned int amt, want, wasfree; 395 396 CHN_LOCKASSERT(c); 397 398 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) 399 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); 400 401 wasfree = sndbuf_getfree(b); 402 want = min(sndbuf_getsize(b), 403 imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - 404 sndbuf_getready(b))); 405 amt = min(wasfree, want); 406 if (amt > 0) 407 sndbuf_feed(bs, b, c, c->feeder, amt); 408 409 /* 410 * Possible xruns. There should be no empty space left in buffer. 411 */ 412 if (sndbuf_getready(b) < want) 413 c->xruns++; 414 415 if (sndbuf_getfree(b) < wasfree) 416 chn_wakeup(c); 417 } 418 419 #if 0 420 static void 421 chn_wrupdate(struct pcm_channel *c) 422 { 423 424 CHN_LOCKASSERT(c); 425 KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); 426 427 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 428 return; 429 chn_dmaupdate(c); 430 chn_wrfeed(c); 431 /* tell the driver we've updated the primary buffer */ 432 chn_trigger(c, PCMTRIG_EMLDMAWR); 433 } 434 #endif 435 436 static void 437 chn_wrintr(struct pcm_channel *c) 438 { 439 440 CHN_LOCKASSERT(c); 441 /* update pointers in primary buffer */ 442 chn_dmaupdate(c); 443 /* ...and feed from secondary to primary */ 444 chn_wrfeed(c); 445 /* tell the driver we've updated the primary buffer */ 446 chn_trigger(c, PCMTRIG_EMLDMAWR); 447 } 448 449 /* 450 * user write routine - uiomove data into secondary buffer, trigger if necessary 451 * if blocking, sleep, rinse and repeat. 452 * 453 * called externally, so must handle locking 454 */ 455 456 int 457 chn_write(struct pcm_channel *c, struct uio *buf) 458 { 459 struct snd_dbuf *bs = c->bufsoft; 460 void *off; 461 int ret, timeout, sz, t, p; 462 463 CHN_LOCKASSERT(c); 464 465 ret = 0; 466 timeout = chn_timeout * hz; 467 468 while (ret == 0 && buf->uio_resid > 0) { 469 sz = min(buf->uio_resid, sndbuf_getfree(bs)); 470 if (sz > 0) { 471 /* 472 * The following assumes that the free space in 473 * the buffer can never be less around the 474 * unlock-uiomove-lock sequence. 475 */ 476 while (ret == 0 && sz > 0) { 477 p = sndbuf_getfreeptr(bs); 478 t = min(sz, sndbuf_getsize(bs) - p); 479 off = sndbuf_getbufofs(bs, p); 480 CHN_UNLOCK(c); 481 ret = uiomove(off, t, buf); 482 CHN_LOCK(c); 483 sz -= t; 484 sndbuf_acquire(bs, NULL, t); 485 } 486 ret = 0; 487 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 488 ret = chn_start(c, 0); 489 if (ret != 0) 490 c->flags |= CHN_F_DEAD; 491 } 492 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { 493 /** 494 * @todo Evaluate whether EAGAIN is truly desirable. 495 * 4Front drivers behave like this, but I'm 496 * not sure if it at all violates the "write 497 * should be allowed to block" model. 498 * 499 * The idea is that, while set with CHN_F_NOTRIGGER, 500 * a channel isn't playing, *but* without this we 501 * end up with "interrupt timeout / channel dead". 502 */ 503 ret = EAGAIN; 504 } else { 505 ret = chn_sleep(c, timeout); 506 if (ret == EAGAIN) { 507 ret = EINVAL; 508 c->flags |= CHN_F_DEAD; 509 device_printf(c->dev, "%s(): %s: " 510 "play interrupt timeout, channel dead\n", 511 __func__, c->name); 512 } else if (ret == ERESTART || ret == EINTR) 513 c->flags |= CHN_F_ABORTING; 514 } 515 } 516 517 return (ret); 518 } 519 520 /* 521 * Feed new data from the read buffer. Can be called in the bottom half. 522 */ 523 static void 524 chn_rdfeed(struct pcm_channel *c) 525 { 526 struct snd_dbuf *b = c->bufhard; 527 struct snd_dbuf *bs = c->bufsoft; 528 unsigned int amt; 529 530 CHN_LOCKASSERT(c); 531 532 if (c->flags & CHN_F_MMAP) 533 sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); 534 535 amt = sndbuf_getfree(bs); 536 if (amt > 0) 537 sndbuf_feed(b, bs, c, c->feeder, amt); 538 539 amt = sndbuf_getready(b); 540 if (amt > 0) { 541 c->xruns++; 542 sndbuf_dispose(b, NULL, amt); 543 } 544 545 if (sndbuf_getready(bs) > 0) 546 chn_wakeup(c); 547 } 548 549 #if 0 550 static void 551 chn_rdupdate(struct pcm_channel *c) 552 { 553 554 CHN_LOCKASSERT(c); 555 KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); 556 557 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 558 return; 559 chn_trigger(c, PCMTRIG_EMLDMARD); 560 chn_dmaupdate(c); 561 chn_rdfeed(c); 562 } 563 #endif 564 565 /* read interrupt routine. Must be called with interrupts blocked. */ 566 static void 567 chn_rdintr(struct pcm_channel *c) 568 { 569 570 CHN_LOCKASSERT(c); 571 /* tell the driver to update the primary buffer if non-dma */ 572 chn_trigger(c, PCMTRIG_EMLDMARD); 573 /* update pointers in primary buffer */ 574 chn_dmaupdate(c); 575 /* ...and feed from primary to secondary */ 576 chn_rdfeed(c); 577 } 578 579 /* 580 * user read routine - trigger if necessary, uiomove data from secondary buffer 581 * if blocking, sleep, rinse and repeat. 582 * 583 * called externally, so must handle locking 584 */ 585 586 int 587 chn_read(struct pcm_channel *c, struct uio *buf) 588 { 589 struct snd_dbuf *bs = c->bufsoft; 590 void *off; 591 int ret, timeout, sz, t, p; 592 593 CHN_LOCKASSERT(c); 594 595 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 596 ret = chn_start(c, 0); 597 if (ret != 0) { 598 c->flags |= CHN_F_DEAD; 599 return (ret); 600 } 601 } 602 603 ret = 0; 604 timeout = chn_timeout * hz; 605 606 while (ret == 0 && buf->uio_resid > 0) { 607 sz = min(buf->uio_resid, sndbuf_getready(bs)); 608 if (sz > 0) { 609 /* 610 * The following assumes that the free space in 611 * the buffer can never be less around the 612 * unlock-uiomove-lock sequence. 613 */ 614 while (ret == 0 && sz > 0) { 615 p = sndbuf_getreadyptr(bs); 616 t = min(sz, sndbuf_getsize(bs) - p); 617 off = sndbuf_getbufofs(bs, p); 618 CHN_UNLOCK(c); 619 ret = uiomove(off, t, buf); 620 CHN_LOCK(c); 621 sz -= t; 622 sndbuf_dispose(bs, NULL, t); 623 } 624 ret = 0; 625 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) 626 ret = EAGAIN; 627 else { 628 ret = chn_sleep(c, timeout); 629 if (ret == EAGAIN) { 630 ret = EINVAL; 631 c->flags |= CHN_F_DEAD; 632 device_printf(c->dev, "%s(): %s: " 633 "record interrupt timeout, channel dead\n", 634 __func__, c->name); 635 } else if (ret == ERESTART || ret == EINTR) 636 c->flags |= CHN_F_ABORTING; 637 } 638 } 639 640 return (ret); 641 } 642 643 void 644 chn_intr_locked(struct pcm_channel *c) 645 { 646 647 CHN_LOCKASSERT(c); 648 649 c->interrupts++; 650 651 if (c->direction == PCMDIR_PLAY) 652 chn_wrintr(c); 653 else 654 chn_rdintr(c); 655 } 656 657 void 658 chn_intr(struct pcm_channel *c) 659 { 660 661 if (CHN_LOCKOWNED(c)) { 662 chn_intr_locked(c); 663 return; 664 } 665 666 CHN_LOCK(c); 667 chn_intr_locked(c); 668 CHN_UNLOCK(c); 669 } 670 671 u_int32_t 672 chn_start(struct pcm_channel *c, int force) 673 { 674 u_int32_t i, j; 675 struct snd_dbuf *b = c->bufhard; 676 struct snd_dbuf *bs = c->bufsoft; 677 int err; 678 679 CHN_LOCKASSERT(c); 680 /* if we're running, or if we're prevented from triggering, bail */ 681 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) 682 return (EINVAL); 683 684 err = 0; 685 686 if (force) { 687 i = 1; 688 j = 0; 689 } else { 690 if (c->direction == PCMDIR_REC) { 691 i = sndbuf_getfree(bs); 692 j = (i > 0) ? 1 : sndbuf_getready(b); 693 } else { 694 if (sndbuf_getfree(bs) == 0) { 695 i = 1; 696 j = 0; 697 } else { 698 struct snd_dbuf *pb; 699 700 pb = CHN_BUF_PARENT(c, b); 701 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); 702 j = sndbuf_getalign(pb); 703 } 704 } 705 if (snd_verbose > 3 && CHN_EMPTY(c, children)) 706 device_printf(c->dev, "%s(): %s (%s) threshold " 707 "i=%d j=%d\n", __func__, CHN_DIRSTR(c), 708 (c->flags & CHN_F_VIRTUAL) ? "virtual" : 709 "hardware", i, j); 710 } 711 712 if (i >= j) { 713 c->flags |= CHN_F_TRIGGERED; 714 sndbuf_setrun(b, 1); 715 if (c->flags & CHN_F_CLOSING) 716 c->feedcount = 2; 717 else { 718 c->feedcount = 0; 719 c->interrupts = 0; 720 c->xruns = 0; 721 } 722 if (c->parentchannel == NULL) { 723 if (c->direction == PCMDIR_PLAY) 724 sndbuf_fillsilence_rl(b, 725 sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); 726 if (snd_verbose > 3) 727 device_printf(c->dev, 728 "%s(): %s starting! (%s/%s) " 729 "(ready=%d force=%d i=%d j=%d " 730 "intrtimeout=%u latency=%dms)\n", 731 __func__, 732 (c->flags & CHN_F_HAS_VCHAN) ? 733 "VCHAN PARENT" : "HW", CHN_DIRSTR(c), 734 (c->flags & CHN_F_CLOSING) ? "closing" : 735 "running", 736 sndbuf_getready(b), 737 force, i, j, c->timeout, 738 (sndbuf_getsize(b) * 1000) / 739 (sndbuf_getalign(b) * sndbuf_getspd(b))); 740 } 741 err = chn_trigger(c, PCMTRIG_START); 742 } 743 744 return (err); 745 } 746 747 void 748 chn_resetbuf(struct pcm_channel *c) 749 { 750 struct snd_dbuf *b = c->bufhard; 751 struct snd_dbuf *bs = c->bufsoft; 752 753 c->blocks = 0; 754 sndbuf_reset(b); 755 sndbuf_reset(bs); 756 } 757 758 /* 759 * chn_sync waits until the space in the given channel goes above 760 * a threshold. The threshold is checked against fl or rl respectively. 761 * Assume that the condition can become true, do not check here... 762 */ 763 int 764 chn_sync(struct pcm_channel *c, int threshold) 765 { 766 struct snd_dbuf *b, *bs; 767 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; 768 u_int32_t cflag; 769 770 CHN_LOCKASSERT(c); 771 772 if (c->direction != PCMDIR_PLAY) 773 return (EINVAL); 774 775 bs = c->bufsoft; 776 777 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || 778 (threshold < 1 && sndbuf_getready(bs) < 1)) 779 return (0); 780 781 /* if we haven't yet started and nothing is buffered, else start*/ 782 if (CHN_STOPPED(c)) { 783 if (threshold > 0 || sndbuf_getready(bs) > 0) { 784 ret = chn_start(c, 1); 785 if (ret != 0) 786 return (ret); 787 } else 788 return (0); 789 } 790 791 b = CHN_BUF_PARENT(c, c->bufhard); 792 793 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); 794 795 syncdelay = chn_syncdelay; 796 797 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) 798 minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); 799 800 /* 801 * Append (0-1000) millisecond trailing buffer (if needed) 802 * for slower / high latency hardwares (notably USB audio) 803 * to avoid audible truncation. 804 */ 805 if (syncdelay > 0) 806 minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * 807 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; 808 809 minflush -= minflush % sndbuf_getalign(bs); 810 811 if (minflush > 0) { 812 threshold = min(minflush, sndbuf_getfree(bs)); 813 sndbuf_clear(bs, threshold); 814 sndbuf_acquire(bs, NULL, threshold); 815 minflush -= threshold; 816 } 817 818 resid = sndbuf_getready(bs); 819 residp = resid; 820 blksz = sndbuf_getblksz(b); 821 if (blksz < 1) { 822 device_printf(c->dev, 823 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", 824 __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), 825 sndbuf_getblksz(b), sndbuf_getblkcnt(b)); 826 if (sndbuf_getblkcnt(b) > 0) 827 blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); 828 if (blksz < 1) 829 blksz = 1; 830 } 831 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; 832 hcount = count; 833 ret = 0; 834 835 if (snd_verbose > 3) 836 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " 837 "minflush=%d resid=%d\n", __func__, c->timeout, count, 838 minflush, resid); 839 840 cflag = c->flags & CHN_F_CLOSING; 841 c->flags |= CHN_F_CLOSING; 842 while (count > 0 && (resid > 0 || minflush > 0)) { 843 ret = chn_sleep(c, c->timeout); 844 if (ret == ERESTART || ret == EINTR) { 845 c->flags |= CHN_F_ABORTING; 846 break; 847 } else if (ret == 0 || ret == EAGAIN) { 848 resid = sndbuf_getready(bs); 849 if (resid == residp) { 850 --count; 851 if (snd_verbose > 3) 852 device_printf(c->dev, 853 "%s(): [stalled] timeout=%d " 854 "count=%d hcount=%d " 855 "resid=%d minflush=%d\n", 856 __func__, c->timeout, count, 857 hcount, resid, minflush); 858 } else if (resid < residp && count < hcount) { 859 ++count; 860 if (snd_verbose > 3) 861 device_printf(c->dev, 862 "%s((): [resume] timeout=%d " 863 "count=%d hcount=%d " 864 "resid=%d minflush=%d\n", 865 __func__, c->timeout, count, 866 hcount, resid, minflush); 867 } 868 if (minflush > 0 && sndbuf_getfree(bs) > 0) { 869 threshold = min(minflush, 870 sndbuf_getfree(bs)); 871 sndbuf_clear(bs, threshold); 872 sndbuf_acquire(bs, NULL, threshold); 873 resid = sndbuf_getready(bs); 874 minflush -= threshold; 875 } 876 residp = resid; 877 } else 878 break; 879 } 880 c->flags &= ~CHN_F_CLOSING; 881 c->flags |= cflag; 882 883 if (snd_verbose > 3) 884 device_printf(c->dev, 885 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " 886 "minflush=%d ret=%d\n", 887 __func__, c->timeout, count, hcount, resid, residp, 888 minflush, ret); 889 890 return (0); 891 } 892 893 /* called externally, handle locking */ 894 int 895 chn_poll(struct pcm_channel *c, int ev, struct thread *td) 896 { 897 struct snd_dbuf *bs = c->bufsoft; 898 int ret; 899 900 CHN_LOCKASSERT(c); 901 902 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { 903 ret = chn_start(c, 1); 904 if (ret != 0) 905 return (0); 906 } 907 908 ret = 0; 909 if (chn_polltrigger(c)) { 910 chn_pollreset(c); 911 ret = ev; 912 } else 913 selrecord(td, sndbuf_getsel(bs)); 914 915 return (ret); 916 } 917 918 /* 919 * chn_abort terminates a running dma transfer. it may sleep up to 200ms. 920 * it returns the number of bytes that have not been transferred. 921 * 922 * called from: dsp_close, dsp_ioctl, with channel locked 923 */ 924 int 925 chn_abort(struct pcm_channel *c) 926 { 927 int missing = 0; 928 struct snd_dbuf *b = c->bufhard; 929 struct snd_dbuf *bs = c->bufsoft; 930 931 CHN_LOCKASSERT(c); 932 if (CHN_STOPPED(c)) 933 return 0; 934 c->flags |= CHN_F_ABORTING; 935 936 c->flags &= ~CHN_F_TRIGGERED; 937 /* kill the channel */ 938 chn_trigger(c, PCMTRIG_ABORT); 939 sndbuf_setrun(b, 0); 940 if (!(c->flags & CHN_F_VIRTUAL)) 941 chn_dmaupdate(c); 942 missing = sndbuf_getready(bs); 943 944 c->flags &= ~CHN_F_ABORTING; 945 return missing; 946 } 947 948 /* 949 * this routine tries to flush the dma transfer. It is called 950 * on a close of a playback channel. 951 * first, if there is data in the buffer, but the dma has not yet 952 * begun, we need to start it. 953 * next, we wait for the play buffer to drain 954 * finally, we stop the dma. 955 * 956 * called from: dsp_close, not valid for record channels. 957 */ 958 959 int 960 chn_flush(struct pcm_channel *c) 961 { 962 struct snd_dbuf *b = c->bufhard; 963 964 CHN_LOCKASSERT(c); 965 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); 966 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); 967 968 c->flags |= CHN_F_CLOSING; 969 chn_sync(c, 0); 970 c->flags &= ~CHN_F_TRIGGERED; 971 /* kill the channel */ 972 chn_trigger(c, PCMTRIG_ABORT); 973 sndbuf_setrun(b, 0); 974 975 c->flags &= ~CHN_F_CLOSING; 976 return 0; 977 } 978 979 int 980 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) 981 { 982 int i; 983 984 for (i = 0; fmtlist[i] != 0; i++) { 985 if (fmt == fmtlist[i] || 986 ((fmt & AFMT_PASSTHROUGH) && 987 (AFMT_ENCODING(fmt) & fmtlist[i]))) 988 return (1); 989 } 990 991 return (0); 992 } 993 994 static const struct { 995 char *name, *alias1, *alias2; 996 uint32_t afmt; 997 } afmt_tab[] = { 998 { "alaw", NULL, NULL, AFMT_A_LAW }, 999 { "mulaw", NULL, NULL, AFMT_MU_LAW }, 1000 { "u8", "8", NULL, AFMT_U8 }, 1001 { "s8", NULL, NULL, AFMT_S8 }, 1002 #if BYTE_ORDER == LITTLE_ENDIAN 1003 { "s16le", "s16", "16", AFMT_S16_LE }, 1004 { "s16be", NULL, NULL, AFMT_S16_BE }, 1005 #else 1006 { "s16le", NULL, NULL, AFMT_S16_LE }, 1007 { "s16be", "s16", "16", AFMT_S16_BE }, 1008 #endif 1009 { "u16le", NULL, NULL, AFMT_U16_LE }, 1010 { "u16be", NULL, NULL, AFMT_U16_BE }, 1011 { "s24le", NULL, NULL, AFMT_S24_LE }, 1012 { "s24be", NULL, NULL, AFMT_S24_BE }, 1013 { "u24le", NULL, NULL, AFMT_U24_LE }, 1014 { "u24be", NULL, NULL, AFMT_U24_BE }, 1015 #if BYTE_ORDER == LITTLE_ENDIAN 1016 { "s32le", "s32", "32", AFMT_S32_LE }, 1017 { "s32be", NULL, NULL, AFMT_S32_BE }, 1018 #else 1019 { "s32le", NULL, NULL, AFMT_S32_LE }, 1020 { "s32be", "s32", "32", AFMT_S32_BE }, 1021 #endif 1022 { "u32le", NULL, NULL, AFMT_U32_LE }, 1023 { "u32be", NULL, NULL, AFMT_U32_BE }, 1024 { "ac3", NULL, NULL, AFMT_AC3 }, 1025 { NULL, NULL, NULL, 0 } 1026 }; 1027 1028 uint32_t 1029 snd_str2afmt(const char *req) 1030 { 1031 int ext; 1032 int ch; 1033 int i; 1034 char b1[8]; 1035 char b2[8]; 1036 1037 memset(b1, 0, sizeof(b1)); 1038 memset(b2, 0, sizeof(b2)); 1039 1040 i = sscanf(req, "%5[^:]:%6s", b1, b2); 1041 1042 if (i == 1) { 1043 if (strlen(req) != strlen(b1)) 1044 return (0); 1045 strlcpy(b2, "2.0", sizeof(b2)); 1046 } else if (i == 2) { 1047 if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) 1048 return (0); 1049 } else 1050 return (0); 1051 1052 i = sscanf(b2, "%d.%d", &ch, &ext); 1053 1054 if (i == 0) { 1055 if (strcasecmp(b2, "mono") == 0) { 1056 ch = 1; 1057 ext = 0; 1058 } else if (strcasecmp(b2, "stereo") == 0) { 1059 ch = 2; 1060 ext = 0; 1061 } else if (strcasecmp(b2, "quad") == 0) { 1062 ch = 4; 1063 ext = 0; 1064 } else 1065 return (0); 1066 } else if (i == 1) { 1067 if (ch < 1 || ch > AFMT_CHANNEL_MAX) 1068 return (0); 1069 ext = 0; 1070 } else if (i == 2) { 1071 if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX) 1072 return (0); 1073 if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX) 1074 return (0); 1075 } else 1076 return (0); 1077 1078 for (i = 0; afmt_tab[i].name != NULL; i++) { 1079 if (strcasecmp(afmt_tab[i].name, b1) != 0) { 1080 if (afmt_tab[i].alias1 == NULL) 1081 continue; 1082 if (strcasecmp(afmt_tab[i].alias1, b1) != 0) { 1083 if (afmt_tab[i].alias2 == NULL) 1084 continue; 1085 if (strcasecmp(afmt_tab[i].alias2, b1) != 0) 1086 continue; 1087 } 1088 } 1089 /* found a match */ 1090 return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext)); 1091 } 1092 /* not a valid format */ 1093 return (0); 1094 } 1095 1096 uint32_t 1097 snd_afmt2str(uint32_t afmt, char *buf, size_t len) 1098 { 1099 uint32_t enc; 1100 uint32_t ext; 1101 uint32_t ch; 1102 int i; 1103 1104 if (buf == NULL || len < AFMTSTR_LEN) 1105 return (0); 1106 1107 memset(buf, 0, len); 1108 1109 enc = AFMT_ENCODING(afmt); 1110 ch = AFMT_CHANNEL(afmt); 1111 ext = AFMT_EXTCHANNEL(afmt); 1112 /* check there is at least one channel */ 1113 if (ch <= ext) 1114 return (0); 1115 for (i = 0; afmt_tab[i].name != NULL; i++) { 1116 if (enc != afmt_tab[i].afmt) 1117 continue; 1118 /* found a match */ 1119 snprintf(buf, len, "%s:%d.%d", 1120 afmt_tab[i].name, ch - ext, ext); 1121 return (SND_FORMAT(enc, ch, ext)); 1122 } 1123 return (0); 1124 } 1125 1126 int 1127 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) 1128 { 1129 int r; 1130 1131 CHN_LOCKASSERT(c); 1132 c->feedcount = 0; 1133 c->flags &= CHN_F_RESET; 1134 c->interrupts = 0; 1135 c->timeout = 1; 1136 c->xruns = 0; 1137 1138 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? 1139 CHN_F_BITPERFECT : 0; 1140 1141 r = CHANNEL_RESET(c->methods, c->devinfo); 1142 if (r == 0 && fmt != 0 && spd != 0) { 1143 r = chn_setparam(c, fmt, spd); 1144 fmt = 0; 1145 spd = 0; 1146 } 1147 if (r == 0 && fmt != 0) 1148 r = chn_setformat(c, fmt); 1149 if (r == 0 && spd != 0) 1150 r = chn_setspeed(c, spd); 1151 if (r == 0) 1152 r = chn_setlatency(c, chn_latency); 1153 if (r == 0) { 1154 chn_resetbuf(c); 1155 r = CHANNEL_RESETDONE(c->methods, c->devinfo); 1156 } 1157 return r; 1158 } 1159 1160 struct pcm_channel * 1161 chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls, 1162 int dir, void *devinfo) 1163 { 1164 struct pcm_channel *c; 1165 struct feeder_class *fc; 1166 struct snd_dbuf *b, *bs; 1167 char *dirs, *devname, buf[CHN_NAMELEN]; 1168 int i, ret, direction, rpnum, *pnum, max, type, unit; 1169 1170 PCM_BUSYASSERT(d); 1171 PCM_LOCKASSERT(d); 1172 1173 switch (dir) { 1174 case PCMDIR_PLAY: 1175 dirs = "play"; 1176 direction = PCMDIR_PLAY; 1177 pnum = &d->playcount; 1178 type = SND_DEV_DSPHW_PLAY; 1179 max = SND_MAXHWCHAN; 1180 break; 1181 case PCMDIR_PLAY_VIRTUAL: 1182 dirs = "virtual_play"; 1183 direction = PCMDIR_PLAY; 1184 pnum = &d->pvchancount; 1185 type = SND_DEV_DSPHW_VPLAY; 1186 max = SND_MAXVCHANS; 1187 break; 1188 case PCMDIR_REC: 1189 dirs = "record"; 1190 direction = PCMDIR_REC; 1191 pnum = &d->reccount; 1192 type = SND_DEV_DSPHW_REC; 1193 max = SND_MAXHWCHAN; 1194 break; 1195 case PCMDIR_REC_VIRTUAL: 1196 dirs = "virtual_record"; 1197 direction = PCMDIR_REC; 1198 pnum = &d->rvchancount; 1199 type = SND_DEV_DSPHW_VREC; 1200 max = SND_MAXVCHANS; 1201 break; 1202 default: 1203 device_printf(d->dev, 1204 "%s(): invalid channel direction: %d\n", 1205 __func__, dir); 1206 goto out1; 1207 } 1208 1209 unit = 0; 1210 1211 if (*pnum >= max || unit >= max) { 1212 device_printf(d->dev, "%s(): unit=%d or pnum=%d >= than " 1213 "max=%d\n", __func__, unit, *pnum, max); 1214 goto out1; 1215 } 1216 1217 rpnum = 0; 1218 1219 CHN_FOREACH(c, d, channels.pcm) { 1220 if (c->type != type) 1221 continue; 1222 unit++; 1223 if (unit >= max) { 1224 device_printf(d->dev, 1225 "%s(): chan=%d >= max=%d\n", __func__, unit, max); 1226 goto out1; 1227 } 1228 rpnum++; 1229 } 1230 1231 if (*pnum != rpnum) { 1232 device_printf(d->dev, 1233 "%s(): pnum screwed: dirs=%s pnum=%d rpnum=%d\n", 1234 __func__, dirs, *pnum, rpnum); 1235 goto out1; 1236 } 1237 1238 PCM_UNLOCK(d); 1239 b = NULL; 1240 bs = NULL; 1241 c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO); 1242 c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO); 1243 c->type = type; 1244 c->unit = unit; 1245 c->pid = -1; 1246 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); 1247 c->parentsnddev = d; 1248 c->parentchannel = parent; 1249 c->dev = d->dev; 1250 c->trigger = PCMTRIG_STOP; 1251 chn_lockinit(c, dir); 1252 devname = dsp_unit2name(buf, sizeof(buf), c); 1253 if (devname == NULL) { 1254 ret = EINVAL; 1255 device_printf(d->dev, "%s(): failed to create channel name", 1256 __func__); 1257 goto out2; 1258 } 1259 snprintf(c->name, sizeof(c->name), "%s:%s:%s", 1260 device_get_nameunit(c->dev), dirs, devname); 1261 1262 CHN_INIT(c, children); 1263 CHN_INIT(c, children.busy); 1264 c->latency = -1; 1265 c->timeout = 1; 1266 1267 ret = ENOMEM; 1268 b = sndbuf_create(c->dev, c->name, "primary", c); 1269 if (b == NULL) { 1270 device_printf(d->dev, "%s(): failed to create hardware buffer\n", 1271 __func__); 1272 goto out2; 1273 } 1274 bs = sndbuf_create(c->dev, c->name, "secondary", c); 1275 if (bs == NULL) { 1276 device_printf(d->dev, "%s(): failed to create software buffer\n", 1277 __func__); 1278 goto out2; 1279 } 1280 1281 CHN_LOCK(c); 1282 1283 ret = EINVAL; 1284 fc = feeder_getclass(NULL); 1285 if (fc == NULL) { 1286 device_printf(d->dev, "%s(): failed to get feeder class\n", 1287 __func__); 1288 goto out2; 1289 } 1290 if (chn_addfeeder(c, fc, NULL)) { 1291 device_printf(d->dev, "%s(): failed to add feeder\n", __func__); 1292 goto out2; 1293 } 1294 1295 /* 1296 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called 1297 * with the channel unlocked because they are also called 1298 * from driver methods that don't know about locking 1299 */ 1300 CHN_UNLOCK(c); 1301 sndbuf_setup(bs, NULL, 0); 1302 CHN_LOCK(c); 1303 c->bufhard = b; 1304 c->bufsoft = bs; 1305 c->flags = 0; 1306 c->feederflags = 0; 1307 c->sm = NULL; 1308 c->format = SND_FORMAT(AFMT_U8, 1, 0); 1309 c->speed = DSP_DEFAULT_SPEED; 1310 1311 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); 1312 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1313 1314 for (i = 0; i < SND_CHN_T_MAX; i++) { 1315 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; 1316 } 1317 1318 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; 1319 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; 1320 1321 memset(c->muted, 0, sizeof(c->muted)); 1322 1323 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 1324 1325 ret = ENODEV; 1326 CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */ 1327 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); 1328 CHN_LOCK(c); 1329 if (c->devinfo == NULL) { 1330 device_printf(d->dev, "%s(): NULL devinfo\n", __func__); 1331 goto out2; 1332 } 1333 1334 ret = ENOMEM; 1335 if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) { 1336 device_printf(d->dev, "%s(): hardware buffer's size is 0\n", 1337 __func__); 1338 goto out2; 1339 } 1340 1341 ret = 0; 1342 c->direction = direction; 1343 1344 sndbuf_setfmt(b, c->format); 1345 sndbuf_setspd(b, c->speed); 1346 sndbuf_setfmt(bs, c->format); 1347 sndbuf_setspd(bs, c->speed); 1348 1349 /** 1350 * @todo Should this be moved somewhere else? The primary buffer 1351 * is allocated by the driver or via DMA map setup, and tmpbuf 1352 * seems to only come into existence in sndbuf_resize(). 1353 */ 1354 if (c->direction == PCMDIR_PLAY) { 1355 bs->sl = sndbuf_getmaxsize(bs); 1356 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_NOWAIT); 1357 if (bs->shadbuf == NULL) { 1358 ret = ENOMEM; 1359 device_printf(d->dev, "%s(): failed to create shadow " 1360 "buffer\n", __func__); 1361 goto out2; 1362 } 1363 } 1364 out2: 1365 if (CHN_LOCKOWNED(c)) 1366 CHN_UNLOCK(c); 1367 if (ret) { 1368 if (c->devinfo) { 1369 if (CHANNEL_FREE(c->methods, c->devinfo)) 1370 sndbuf_free(b); 1371 } 1372 if (bs) 1373 sndbuf_destroy(bs); 1374 if (b) 1375 sndbuf_destroy(b); 1376 CHN_LOCK(c); 1377 c->flags |= CHN_F_DEAD; 1378 chn_lockdestroy(c); 1379 1380 PCM_LOCK(d); 1381 1382 kobj_delete(c->methods, M_DEVBUF); 1383 free(c, M_DEVBUF); 1384 1385 return (NULL); 1386 } 1387 1388 PCM_LOCK(d); 1389 1390 return (c); 1391 out1: 1392 return (NULL); 1393 } 1394 1395 void 1396 chn_kill(struct pcm_channel *c) 1397 { 1398 struct snd_dbuf *b = c->bufhard; 1399 struct snd_dbuf *bs = c->bufsoft; 1400 1401 PCM_BUSYASSERT(c->parentsnddev); 1402 1403 if (CHN_STARTED(c)) { 1404 CHN_LOCK(c); 1405 chn_trigger(c, PCMTRIG_ABORT); 1406 CHN_UNLOCK(c); 1407 } 1408 while (chn_removefeeder(c) == 0) 1409 ; 1410 if (CHANNEL_FREE(c->methods, c->devinfo)) 1411 sndbuf_free(b); 1412 sndbuf_destroy(bs); 1413 sndbuf_destroy(b); 1414 CHN_LOCK(c); 1415 c->flags |= CHN_F_DEAD; 1416 chn_lockdestroy(c); 1417 kobj_delete(c->methods, M_DEVBUF); 1418 free(c, M_DEVBUF); 1419 } 1420 1421 void 1422 chn_shutdown(struct pcm_channel *c) 1423 { 1424 CHN_LOCKASSERT(c); 1425 1426 chn_wakeup(c); 1427 c->flags |= CHN_F_DEAD; 1428 } 1429 1430 /* release a locked channel and unlock it */ 1431 int 1432 chn_release(struct pcm_channel *c) 1433 { 1434 PCM_BUSYASSERT(c->parentsnddev); 1435 CHN_LOCKASSERT(c); 1436 1437 c->flags &= ~CHN_F_BUSY; 1438 c->pid = -1; 1439 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); 1440 CHN_UNLOCK(c); 1441 1442 return (0); 1443 } 1444 1445 int 1446 chn_ref(struct pcm_channel *c, int ref) 1447 { 1448 PCM_BUSYASSERT(c->parentsnddev); 1449 CHN_LOCKASSERT(c); 1450 KASSERT((c->refcount + ref) >= 0, 1451 ("%s(): new refcount will be negative", __func__)); 1452 1453 c->refcount += ref; 1454 1455 return (c->refcount); 1456 } 1457 1458 int 1459 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, 1460 int center) 1461 { 1462 int i, ret; 1463 1464 ret = 0; 1465 1466 for (i = 0; i < SND_CHN_T_MAX; i++) { 1467 if ((1 << i) & SND_CHN_LEFT_MASK) 1468 ret |= chn_setvolume_matrix(c, vc, i, left); 1469 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1470 ret |= chn_setvolume_matrix(c, vc, i, right) << 8; 1471 else 1472 ret |= chn_setvolume_matrix(c, vc, i, center) << 16; 1473 } 1474 1475 return (ret); 1476 } 1477 1478 int 1479 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) 1480 { 1481 int i; 1482 1483 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1484 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1485 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && 1486 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || 1487 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), 1488 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", 1489 __func__, c, vc, vt, val)); 1490 CHN_LOCKASSERT(c); 1491 1492 if (val < 0) 1493 val = 0; 1494 if (val > 100) 1495 val = 100; 1496 1497 c->volume[vc][vt] = val; 1498 1499 /* 1500 * Do relative calculation here and store it into class + 1 1501 * to ease the job of feeder_volume. 1502 */ 1503 if (vc == SND_VOL_C_MASTER) { 1504 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1505 vc += SND_VOL_C_STEP) 1506 c->volume[SND_VOL_C_VAL(vc)][vt] = 1507 SND_VOL_CALC_VAL(c->volume, vc, vt); 1508 } else if (vc & 1) { 1509 if (vt == SND_CHN_T_VOL_0DB) 1510 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1511 i += SND_CHN_T_STEP) { 1512 c->volume[SND_VOL_C_VAL(vc)][i] = 1513 SND_VOL_CALC_VAL(c->volume, vc, i); 1514 } 1515 else 1516 c->volume[SND_VOL_C_VAL(vc)][vt] = 1517 SND_VOL_CALC_VAL(c->volume, vc, vt); 1518 } 1519 1520 return (val); 1521 } 1522 1523 int 1524 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) 1525 { 1526 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1527 (vt == SND_CHN_T_VOL_0DB || 1528 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1529 ("%s(): invalid volume matrix c=%p vc=%d vt=%d", 1530 __func__, c, vc, vt)); 1531 CHN_LOCKASSERT(c); 1532 1533 return (c->volume[vc][vt]); 1534 } 1535 1536 int 1537 chn_setmute_multi(struct pcm_channel *c, int vc, int mute) 1538 { 1539 int i, ret; 1540 1541 ret = 0; 1542 1543 for (i = 0; i < SND_CHN_T_MAX; i++) { 1544 if ((1 << i) & SND_CHN_LEFT_MASK) 1545 ret |= chn_setmute_matrix(c, vc, i, mute); 1546 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1547 ret |= chn_setmute_matrix(c, vc, i, mute) << 8; 1548 else 1549 ret |= chn_setmute_matrix(c, vc, i, mute) << 16; 1550 } 1551 return (ret); 1552 } 1553 1554 int 1555 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute) 1556 { 1557 int i; 1558 1559 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1560 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1561 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1562 ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d", 1563 __func__, c, vc, vt, mute)); 1564 1565 CHN_LOCKASSERT(c); 1566 1567 mute = (mute != 0); 1568 1569 c->muted[vc][vt] = mute; 1570 1571 /* 1572 * Do relative calculation here and store it into class + 1 1573 * to ease the job of feeder_volume. 1574 */ 1575 if (vc == SND_VOL_C_MASTER) { 1576 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1577 vc += SND_VOL_C_STEP) 1578 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1579 } else if (vc & 1) { 1580 if (vt == SND_CHN_T_VOL_0DB) { 1581 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1582 i += SND_CHN_T_STEP) { 1583 c->muted[SND_VOL_C_VAL(vc)][i] = mute; 1584 } 1585 } else { 1586 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1587 } 1588 } 1589 return (mute); 1590 } 1591 1592 int 1593 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt) 1594 { 1595 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1596 (vt == SND_CHN_T_VOL_0DB || 1597 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1598 ("%s(): invalid mute matrix c=%p vc=%d vt=%d", 1599 __func__, c, vc, vt)); 1600 CHN_LOCKASSERT(c); 1601 1602 return (c->muted[vc][vt]); 1603 } 1604 1605 struct pcmchan_matrix * 1606 chn_getmatrix(struct pcm_channel *c) 1607 { 1608 1609 KASSERT(c != NULL, ("%s(): NULL channel", __func__)); 1610 CHN_LOCKASSERT(c); 1611 1612 if (!(c->format & AFMT_CONVERTIBLE)) 1613 return (NULL); 1614 1615 return (&c->matrix); 1616 } 1617 1618 int 1619 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) 1620 { 1621 1622 KASSERT(c != NULL && m != NULL, 1623 ("%s(): NULL channel or matrix", __func__)); 1624 CHN_LOCKASSERT(c); 1625 1626 if (!(c->format & AFMT_CONVERTIBLE)) 1627 return (EINVAL); 1628 1629 c->matrix = *m; 1630 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1631 1632 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); 1633 } 1634 1635 /* 1636 * XXX chn_oss_* exists for the sake of compatibility. 1637 */ 1638 int 1639 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) 1640 { 1641 1642 KASSERT(c != NULL && map != NULL, 1643 ("%s(): NULL channel or map", __func__)); 1644 CHN_LOCKASSERT(c); 1645 1646 if (!(c->format & AFMT_CONVERTIBLE)) 1647 return (EINVAL); 1648 1649 return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); 1650 } 1651 1652 int 1653 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) 1654 { 1655 struct pcmchan_matrix m; 1656 int ret; 1657 1658 KASSERT(c != NULL && map != NULL, 1659 ("%s(): NULL channel or map", __func__)); 1660 CHN_LOCKASSERT(c); 1661 1662 if (!(c->format & AFMT_CONVERTIBLE)) 1663 return (EINVAL); 1664 1665 m = c->matrix; 1666 ret = feeder_matrix_oss_set_channel_order(&m, map); 1667 if (ret != 0) 1668 return (ret); 1669 1670 return (chn_setmatrix(c, &m)); 1671 } 1672 1673 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) 1674 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) 1675 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) 1676 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) 1677 1678 int 1679 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) 1680 { 1681 struct pcmchan_matrix *m; 1682 struct pcmchan_caps *caps; 1683 uint32_t i, format; 1684 1685 KASSERT(c != NULL && retmask != NULL, 1686 ("%s(): NULL channel or retmask", __func__)); 1687 CHN_LOCKASSERT(c); 1688 1689 caps = chn_getcaps(c); 1690 if (caps == NULL || caps->fmtlist == NULL) 1691 return (ENODEV); 1692 1693 for (i = 0; caps->fmtlist[i] != 0; i++) { 1694 format = caps->fmtlist[i]; 1695 if (!(format & AFMT_CONVERTIBLE)) { 1696 *retmask |= DSP_BIND_SPDIF; 1697 continue; 1698 } 1699 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); 1700 if (m == NULL) 1701 continue; 1702 if (m->mask & SND_CHN_OSS_FRONT) 1703 *retmask |= DSP_BIND_FRONT; 1704 if (m->mask & SND_CHN_OSS_SURR) 1705 *retmask |= DSP_BIND_SURR; 1706 if (m->mask & SND_CHN_OSS_CENTER_LFE) 1707 *retmask |= DSP_BIND_CENTER_LFE; 1708 if (m->mask & SND_CHN_OSS_REAR) 1709 *retmask |= DSP_BIND_REAR; 1710 } 1711 1712 /* report software-supported binding mask */ 1713 if (!CHN_BITPERFECT(c) && report_soft_matrix) 1714 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | 1715 DSP_BIND_CENTER_LFE | DSP_BIND_REAR; 1716 1717 return (0); 1718 } 1719 1720 void 1721 chn_vpc_reset(struct pcm_channel *c, int vc, int force) 1722 { 1723 int i; 1724 1725 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, 1726 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); 1727 CHN_LOCKASSERT(c); 1728 1729 if (force == 0 && chn_vpc_autoreset == 0) 1730 return; 1731 1732 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) 1733 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); 1734 } 1735 1736 static u_int32_t 1737 round_pow2(u_int32_t v) 1738 { 1739 u_int32_t ret; 1740 1741 if (v < 2) 1742 v = 2; 1743 ret = 0; 1744 while (v >> ret) 1745 ret++; 1746 ret = 1 << (ret - 1); 1747 while (ret < v) 1748 ret <<= 1; 1749 return ret; 1750 } 1751 1752 static u_int32_t 1753 round_blksz(u_int32_t v, int round) 1754 { 1755 u_int32_t ret, tmp; 1756 1757 if (round < 1) 1758 round = 1; 1759 1760 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); 1761 1762 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) 1763 ret >>= 1; 1764 1765 tmp = ret - (ret % round); 1766 while (tmp < 16 || tmp < round) { 1767 ret <<= 1; 1768 tmp = ret - (ret % round); 1769 } 1770 1771 return ret; 1772 } 1773 1774 /* 1775 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea 1776 * is to keep 2nd buffer short so that it doesn't cause long queue during 1777 * buffer transfer. 1778 * 1779 * Latency reference table for 48khz stereo 16bit: (PLAY) 1780 * 1781 * +---------+------------+-----------+------------+ 1782 * | Latency | Blockcount | Blocksize | Buffersize | 1783 * +---------+------------+-----------+------------+ 1784 * | 0 | 2 | 64 | 128 | 1785 * +---------+------------+-----------+------------+ 1786 * | 1 | 4 | 128 | 512 | 1787 * +---------+------------+-----------+------------+ 1788 * | 2 | 8 | 512 | 4096 | 1789 * +---------+------------+-----------+------------+ 1790 * | 3 | 16 | 512 | 8192 | 1791 * +---------+------------+-----------+------------+ 1792 * | 4 | 32 | 512 | 16384 | 1793 * +---------+------------+-----------+------------+ 1794 * | 5 | 32 | 1024 | 32768 | 1795 * +---------+------------+-----------+------------+ 1796 * | 6 | 16 | 2048 | 32768 | 1797 * +---------+------------+-----------+------------+ 1798 * | 7 | 8 | 4096 | 32768 | 1799 * +---------+------------+-----------+------------+ 1800 * | 8 | 4 | 8192 | 32768 | 1801 * +---------+------------+-----------+------------+ 1802 * | 9 | 2 | 16384 | 32768 | 1803 * +---------+------------+-----------+------------+ 1804 * | 10 | 2 | 32768 | 65536 | 1805 * +---------+------------+-----------+------------+ 1806 * 1807 * Recording need a different reference table. All we care is 1808 * gobbling up everything within reasonable buffering threshold. 1809 * 1810 * Latency reference table for 48khz stereo 16bit: (REC) 1811 * 1812 * +---------+------------+-----------+------------+ 1813 * | Latency | Blockcount | Blocksize | Buffersize | 1814 * +---------+------------+-----------+------------+ 1815 * | 0 | 512 | 32 | 16384 | 1816 * +---------+------------+-----------+------------+ 1817 * | 1 | 256 | 64 | 16384 | 1818 * +---------+------------+-----------+------------+ 1819 * | 2 | 128 | 128 | 16384 | 1820 * +---------+------------+-----------+------------+ 1821 * | 3 | 64 | 256 | 16384 | 1822 * +---------+------------+-----------+------------+ 1823 * | 4 | 32 | 512 | 16384 | 1824 * +---------+------------+-----------+------------+ 1825 * | 5 | 32 | 1024 | 32768 | 1826 * +---------+------------+-----------+------------+ 1827 * | 6 | 16 | 2048 | 32768 | 1828 * +---------+------------+-----------+------------+ 1829 * | 7 | 8 | 4096 | 32768 | 1830 * +---------+------------+-----------+------------+ 1831 * | 8 | 4 | 8192 | 32768 | 1832 * +---------+------------+-----------+------------+ 1833 * | 9 | 2 | 16384 | 32768 | 1834 * +---------+------------+-----------+------------+ 1835 * | 10 | 2 | 32768 | 65536 | 1836 * +---------+------------+-----------+------------+ 1837 * 1838 * Calculations for other data rate are entirely based on these reference 1839 * tables. For normal operation, Latency 5 seems give the best, well 1840 * balanced performance for typical workload. Anything below 5 will 1841 * eat up CPU to keep up with increasing context switches because of 1842 * shorter buffer space and usually require the application to handle it 1843 * aggressively through possibly real time programming technique. 1844 * 1845 */ 1846 #define CHN_LATENCY_PBLKCNT_REF \ 1847 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ 1848 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} 1849 #define CHN_LATENCY_PBUFSZ_REF \ 1850 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ 1851 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} 1852 1853 #define CHN_LATENCY_RBLKCNT_REF \ 1854 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ 1855 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} 1856 #define CHN_LATENCY_RBUFSZ_REF \ 1857 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ 1858 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} 1859 1860 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ 1861 1862 static int 1863 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, 1864 u_int32_t max, int *rblksz, int *rblkcnt) 1865 { 1866 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1867 CHN_LATENCY_PBLKCNT_REF; 1868 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1869 CHN_LATENCY_PBUFSZ_REF; 1870 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1871 CHN_LATENCY_RBLKCNT_REF; 1872 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1873 CHN_LATENCY_RBUFSZ_REF; 1874 u_int32_t bufsz; 1875 int lprofile, blksz, blkcnt; 1876 1877 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || 1878 bps < 1 || datarate < 1 || 1879 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { 1880 if (rblksz != NULL) 1881 *rblksz = CHN_2NDBUFMAXSIZE >> 1; 1882 if (rblkcnt != NULL) 1883 *rblkcnt = 2; 1884 printf("%s(): FAILED dir=%d latency=%d bps=%d " 1885 "datarate=%u max=%u\n", 1886 __func__, dir, latency, bps, datarate, max); 1887 return CHN_2NDBUFMAXSIZE; 1888 } 1889 1890 lprofile = chn_latency_profile; 1891 1892 if (dir == PCMDIR_PLAY) { 1893 blkcnt = pblkcnts[lprofile][latency]; 1894 bufsz = pbufszs[lprofile][latency]; 1895 } else { 1896 blkcnt = rblkcnts[lprofile][latency]; 1897 bufsz = rbufszs[lprofile][latency]; 1898 } 1899 1900 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, 1901 datarate)); 1902 if (bufsz > max) 1903 bufsz = max; 1904 blksz = round_blksz(bufsz >> blkcnt, bps); 1905 1906 if (rblksz != NULL) 1907 *rblksz = blksz; 1908 if (rblkcnt != NULL) 1909 *rblkcnt = 1 << blkcnt; 1910 1911 return blksz << blkcnt; 1912 } 1913 1914 static int 1915 chn_resizebuf(struct pcm_channel *c, int latency, 1916 int blkcnt, int blksz) 1917 { 1918 struct snd_dbuf *b, *bs, *pb; 1919 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; 1920 int ret; 1921 1922 CHN_LOCKASSERT(c); 1923 1924 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || 1925 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) 1926 return EINVAL; 1927 1928 if (latency == -1) { 1929 c->latency = -1; 1930 latency = chn_latency; 1931 } else if (latency == -2) { 1932 latency = c->latency; 1933 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1934 latency = chn_latency; 1935 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1936 return EINVAL; 1937 else { 1938 c->latency = latency; 1939 } 1940 1941 bs = c->bufsoft; 1942 b = c->bufhard; 1943 1944 if (!(blksz == 0 || blkcnt == -1) && 1945 (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || 1946 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) 1947 return EINVAL; 1948 1949 chn_calclatency(c->direction, latency, sndbuf_getalign(bs), 1950 sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, 1951 &sblksz, &sblkcnt); 1952 1953 if (blksz == 0 || blkcnt == -1) { 1954 if (blkcnt == -1) 1955 c->flags &= ~CHN_F_HAS_SIZE; 1956 if (c->flags & CHN_F_HAS_SIZE) { 1957 blksz = sndbuf_getblksz(bs); 1958 blkcnt = sndbuf_getblkcnt(bs); 1959 } 1960 } else 1961 c->flags |= CHN_F_HAS_SIZE; 1962 1963 if (c->flags & CHN_F_HAS_SIZE) { 1964 /* 1965 * The application has requested their own blksz/blkcnt. 1966 * Just obey with it, and let them toast alone. We can 1967 * clamp it to the nearest latency profile, but that would 1968 * defeat the purpose of having custom control. The least 1969 * we can do is round it to the nearest ^2 and align it. 1970 */ 1971 sblksz = round_blksz(blksz, sndbuf_getalign(bs)); 1972 sblkcnt = round_pow2(blkcnt); 1973 } 1974 1975 if (c->parentchannel != NULL) { 1976 pb = c->parentchannel->bufsoft; 1977 CHN_UNLOCK(c); 1978 CHN_LOCK(c->parentchannel); 1979 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); 1980 CHN_UNLOCK(c->parentchannel); 1981 CHN_LOCK(c); 1982 if (c->direction == PCMDIR_PLAY) { 1983 limit = (pb != NULL) ? 1984 sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; 1985 } else { 1986 limit = (pb != NULL) ? 1987 sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; 1988 } 1989 } else { 1990 hblkcnt = 2; 1991 if (c->flags & CHN_F_HAS_SIZE) { 1992 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), 1993 sndbuf_getalign(b)); 1994 hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); 1995 } else 1996 chn_calclatency(c->direction, latency, 1997 sndbuf_getalign(b), 1998 sndbuf_getalign(b) * sndbuf_getspd(b), 1999 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); 2000 2001 if ((hblksz << 1) > sndbuf_getmaxsize(b)) 2002 hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, 2003 sndbuf_getalign(b)); 2004 2005 while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { 2006 if (hblkcnt < 4) 2007 hblksz >>= 1; 2008 else 2009 hblkcnt >>= 1; 2010 } 2011 2012 hblksz -= hblksz % sndbuf_getalign(b); 2013 2014 #if 0 2015 hblksz = sndbuf_getmaxsize(b) >> 1; 2016 hblksz -= hblksz % sndbuf_getalign(b); 2017 hblkcnt = 2; 2018 #endif 2019 2020 CHN_UNLOCK(c); 2021 if (chn_usefrags == 0 || 2022 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, 2023 hblksz, hblkcnt) != 0) 2024 sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, 2025 c->devinfo, hblksz)); 2026 CHN_LOCK(c); 2027 2028 if (!CHN_EMPTY(c, children)) { 2029 nsblksz = round_blksz( 2030 sndbuf_xbytes(sndbuf_getblksz(b), b, bs), 2031 sndbuf_getalign(bs)); 2032 nsblkcnt = sndbuf_getblkcnt(b); 2033 if (c->direction == PCMDIR_PLAY) { 2034 do { 2035 nsblkcnt--; 2036 } while (nsblkcnt >= 2 && 2037 nsblksz * nsblkcnt >= sblksz * sblkcnt); 2038 nsblkcnt++; 2039 } 2040 sblksz = nsblksz; 2041 sblkcnt = nsblkcnt; 2042 limit = 0; 2043 } else 2044 limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; 2045 } 2046 2047 if (limit > CHN_2NDBUFMAXSIZE) 2048 limit = CHN_2NDBUFMAXSIZE; 2049 2050 #if 0 2051 while (limit > 0 && (sblksz * sblkcnt) > limit) { 2052 if (sblkcnt < 4) 2053 break; 2054 sblkcnt >>= 1; 2055 } 2056 #endif 2057 2058 while ((sblksz * sblkcnt) < limit) 2059 sblkcnt <<= 1; 2060 2061 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { 2062 if (sblkcnt < 4) 2063 sblksz >>= 1; 2064 else 2065 sblkcnt >>= 1; 2066 } 2067 2068 sblksz -= sblksz % sndbuf_getalign(bs); 2069 2070 if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || 2071 sndbuf_getsize(bs) != (sblkcnt * sblksz)) { 2072 ret = sndbuf_remalloc(bs, sblkcnt, sblksz); 2073 if (ret != 0) { 2074 device_printf(c->dev, "%s(): Failed: %d %d\n", 2075 __func__, sblkcnt, sblksz); 2076 return ret; 2077 } 2078 } 2079 2080 /* 2081 * Interrupt timeout 2082 */ 2083 c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / 2084 ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); 2085 if (c->parentchannel != NULL) 2086 c->timeout = min(c->timeout, c->parentchannel->timeout); 2087 if (c->timeout < 1) 2088 c->timeout = 1; 2089 2090 /* 2091 * OSSv4 docs: "By default OSS will set the low water level equal 2092 * to the fragment size which is optimal in most cases." 2093 */ 2094 c->lw = sndbuf_getblksz(bs); 2095 chn_resetbuf(c); 2096 2097 if (snd_verbose > 3) 2098 device_printf(c->dev, "%s(): %s (%s) timeout=%u " 2099 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", 2100 __func__, CHN_DIRSTR(c), 2101 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", 2102 c->timeout, 2103 sndbuf_getsize(b), sndbuf_getblksz(b), 2104 sndbuf_getblkcnt(b), 2105 sndbuf_getsize(bs), sndbuf_getblksz(bs), 2106 sndbuf_getblkcnt(bs), limit); 2107 2108 return 0; 2109 } 2110 2111 int 2112 chn_setlatency(struct pcm_channel *c, int latency) 2113 { 2114 CHN_LOCKASSERT(c); 2115 /* Destroy blksz/blkcnt, enforce latency profile. */ 2116 return chn_resizebuf(c, latency, -1, 0); 2117 } 2118 2119 int 2120 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) 2121 { 2122 CHN_LOCKASSERT(c); 2123 /* Destroy latency profile, enforce blksz/blkcnt */ 2124 return chn_resizebuf(c, -1, blkcnt, blksz); 2125 } 2126 2127 int 2128 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) 2129 { 2130 struct pcmchan_caps *caps; 2131 uint32_t hwspeed, delta; 2132 int ret; 2133 2134 CHN_LOCKASSERT(c); 2135 2136 if (speed < 1 || format == 0 || CHN_STARTED(c)) 2137 return (EINVAL); 2138 2139 c->format = format; 2140 c->speed = speed; 2141 2142 caps = chn_getcaps(c); 2143 2144 hwspeed = speed; 2145 RANGE(hwspeed, caps->minspeed, caps->maxspeed); 2146 2147 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, 2148 hwspeed)); 2149 hwspeed = sndbuf_getspd(c->bufhard); 2150 2151 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); 2152 2153 if (delta <= feeder_rate_round) 2154 c->speed = hwspeed; 2155 2156 ret = feeder_chain(c); 2157 2158 if (ret == 0) 2159 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, 2160 sndbuf_getfmt(c->bufhard)); 2161 2162 if (ret == 0) 2163 ret = chn_resizebuf(c, -2, 0, 0); 2164 2165 return (ret); 2166 } 2167 2168 int 2169 chn_setspeed(struct pcm_channel *c, uint32_t speed) 2170 { 2171 uint32_t oldformat, oldspeed, format; 2172 int ret; 2173 2174 #if 0 2175 /* XXX force 48k */ 2176 if (c->format & AFMT_PASSTHROUGH) 2177 speed = AFMT_PASSTHROUGH_RATE; 2178 #endif 2179 2180 oldformat = c->format; 2181 oldspeed = c->speed; 2182 format = oldformat; 2183 2184 ret = chn_setparam(c, format, speed); 2185 if (ret != 0) { 2186 if (snd_verbose > 3) 2187 device_printf(c->dev, 2188 "%s(): Setting speed %d failed, " 2189 "falling back to %d\n", 2190 __func__, speed, oldspeed); 2191 chn_setparam(c, c->format, oldspeed); 2192 } 2193 2194 return (ret); 2195 } 2196 2197 int 2198 chn_setformat(struct pcm_channel *c, uint32_t format) 2199 { 2200 uint32_t oldformat, oldspeed, speed; 2201 int ret; 2202 2203 /* XXX force stereo */ 2204 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { 2205 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, 2206 AFMT_PASSTHROUGH_EXTCHANNEL); 2207 } 2208 2209 oldformat = c->format; 2210 oldspeed = c->speed; 2211 speed = oldspeed; 2212 2213 ret = chn_setparam(c, format, speed); 2214 if (ret != 0) { 2215 if (snd_verbose > 3) 2216 device_printf(c->dev, 2217 "%s(): Format change 0x%08x failed, " 2218 "falling back to 0x%08x\n", 2219 __func__, format, oldformat); 2220 chn_setparam(c, oldformat, oldspeed); 2221 } 2222 2223 return (ret); 2224 } 2225 2226 void 2227 chn_syncstate(struct pcm_channel *c) 2228 { 2229 struct snddev_info *d; 2230 struct snd_mixer *m; 2231 2232 d = (c != NULL) ? c->parentsnddev : NULL; 2233 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : 2234 NULL; 2235 2236 if (d == NULL || m == NULL) 2237 return; 2238 2239 CHN_LOCKASSERT(c); 2240 2241 if (c->feederflags & (1 << FEEDER_VOLUME)) { 2242 uint32_t parent; 2243 int vol, pvol, left, right, center; 2244 2245 if (c->direction == PCMDIR_PLAY && 2246 (d->flags & SD_F_SOFTPCMVOL)) { 2247 /* CHN_UNLOCK(c); */ 2248 vol = mix_get(m, SOUND_MIXER_PCM); 2249 parent = mix_getparent(m, SOUND_MIXER_PCM); 2250 if (parent != SOUND_MIXER_NONE) 2251 pvol = mix_get(m, parent); 2252 else 2253 pvol = 100 | (100 << 8); 2254 /* CHN_LOCK(c); */ 2255 } else { 2256 vol = 100 | (100 << 8); 2257 pvol = vol; 2258 } 2259 2260 if (vol == -1) { 2261 device_printf(c->dev, 2262 "Soft PCM Volume: Failed to read pcm " 2263 "default value\n"); 2264 vol = 100 | (100 << 8); 2265 } 2266 2267 if (pvol == -1) { 2268 device_printf(c->dev, 2269 "Soft PCM Volume: Failed to read parent " 2270 "default value\n"); 2271 pvol = 100 | (100 << 8); 2272 } 2273 2274 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; 2275 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; 2276 center = (left + right) >> 1; 2277 2278 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); 2279 } 2280 2281 if (c->feederflags & (1 << FEEDER_EQ)) { 2282 struct pcm_feeder *f; 2283 int treble, bass, state; 2284 2285 /* CHN_UNLOCK(c); */ 2286 treble = mix_get(m, SOUND_MIXER_TREBLE); 2287 bass = mix_get(m, SOUND_MIXER_BASS); 2288 /* CHN_LOCK(c); */ 2289 2290 if (treble == -1) 2291 treble = 50; 2292 else 2293 treble = ((treble & 0x7f) + 2294 ((treble >> 8) & 0x7f)) >> 1; 2295 2296 if (bass == -1) 2297 bass = 50; 2298 else 2299 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; 2300 2301 f = chn_findfeeder(c, FEEDER_EQ); 2302 if (f != NULL) { 2303 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) 2304 device_printf(c->dev, 2305 "EQ: Failed to set treble -- %d\n", 2306 treble); 2307 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) 2308 device_printf(c->dev, 2309 "EQ: Failed to set bass -- %d\n", 2310 bass); 2311 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) 2312 device_printf(c->dev, 2313 "EQ: Failed to set preamp -- %d\n", 2314 d->eqpreamp); 2315 if (d->flags & SD_F_EQ_BYPASSED) 2316 state = FEEDEQ_BYPASS; 2317 else if (d->flags & SD_F_EQ_ENABLED) 2318 state = FEEDEQ_ENABLE; 2319 else 2320 state = FEEDEQ_DISABLE; 2321 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) 2322 device_printf(c->dev, 2323 "EQ: Failed to set state -- %d\n", state); 2324 } 2325 } 2326 } 2327 2328 int 2329 chn_trigger(struct pcm_channel *c, int go) 2330 { 2331 struct snddev_info *d = c->parentsnddev; 2332 int ret; 2333 2334 CHN_LOCKASSERT(c); 2335 if (!PCMTRIG_COMMON(go)) 2336 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); 2337 2338 if (go == c->trigger) 2339 return (0); 2340 2341 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); 2342 if (ret != 0) 2343 return (ret); 2344 2345 switch (go) { 2346 case PCMTRIG_START: 2347 if (snd_verbose > 3) 2348 device_printf(c->dev, 2349 "%s() %s: calling go=0x%08x , " 2350 "prev=0x%08x\n", __func__, c->name, go, 2351 c->trigger); 2352 if (c->trigger != PCMTRIG_START) { 2353 c->trigger = go; 2354 CHN_UNLOCK(c); 2355 PCM_LOCK(d); 2356 CHN_INSERT_HEAD(d, c, channels.pcm.busy); 2357 PCM_UNLOCK(d); 2358 CHN_LOCK(c); 2359 chn_syncstate(c); 2360 } 2361 break; 2362 case PCMTRIG_STOP: 2363 case PCMTRIG_ABORT: 2364 if (snd_verbose > 3) 2365 device_printf(c->dev, 2366 "%s() %s: calling go=0x%08x , " 2367 "prev=0x%08x\n", __func__, c->name, go, 2368 c->trigger); 2369 if (c->trigger == PCMTRIG_START) { 2370 c->trigger = go; 2371 CHN_UNLOCK(c); 2372 PCM_LOCK(d); 2373 CHN_REMOVE(d, c, channels.pcm.busy); 2374 PCM_UNLOCK(d); 2375 CHN_LOCK(c); 2376 } 2377 break; 2378 default: 2379 break; 2380 } 2381 2382 return (0); 2383 } 2384 2385 /** 2386 * @brief Queries sound driver for sample-aligned hardware buffer pointer index 2387 * 2388 * This function obtains the hardware pointer location, then aligns it to 2389 * the current bytes-per-sample value before returning. (E.g., a channel 2390 * running in 16 bit stereo mode would require 4 bytes per sample, so a 2391 * hwptr value ranging from 32-35 would be returned as 32.) 2392 * 2393 * @param c PCM channel context 2394 * @returns sample-aligned hardware buffer pointer index 2395 */ 2396 int 2397 chn_getptr(struct pcm_channel *c) 2398 { 2399 int hwptr; 2400 2401 CHN_LOCKASSERT(c); 2402 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; 2403 return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); 2404 } 2405 2406 struct pcmchan_caps * 2407 chn_getcaps(struct pcm_channel *c) 2408 { 2409 CHN_LOCKASSERT(c); 2410 return CHANNEL_GETCAPS(c->methods, c->devinfo); 2411 } 2412 2413 u_int32_t 2414 chn_getformats(struct pcm_channel *c) 2415 { 2416 u_int32_t *fmtlist, fmts; 2417 int i; 2418 2419 fmtlist = chn_getcaps(c)->fmtlist; 2420 fmts = 0; 2421 for (i = 0; fmtlist[i]; i++) 2422 fmts |= fmtlist[i]; 2423 2424 /* report software-supported formats */ 2425 if (!CHN_BITPERFECT(c) && report_soft_formats) 2426 fmts |= AFMT_CONVERTIBLE; 2427 2428 return (AFMT_ENCODING(fmts)); 2429 } 2430 2431 int 2432 chn_notify(struct pcm_channel *c, u_int32_t flags) 2433 { 2434 struct pcm_channel *ch; 2435 struct pcmchan_caps *caps; 2436 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; 2437 uint32_t vpflags; 2438 int dirty, err, run, nrun; 2439 2440 CHN_LOCKASSERT(c); 2441 2442 if (CHN_EMPTY(c, children)) 2443 return (ENODEV); 2444 2445 err = 0; 2446 2447 /* 2448 * If the hwchan is running, we can't change its rate, format or 2449 * blocksize 2450 */ 2451 run = (CHN_STARTED(c)) ? 1 : 0; 2452 if (run) 2453 flags &= CHN_N_VOLUME | CHN_N_TRIGGER; 2454 2455 if (flags & CHN_N_RATE) { 2456 /* 2457 * XXX I'll make good use of this someday. 2458 * However this is currently being superseded by 2459 * the availability of CHN_F_VCHAN_DYNAMIC. 2460 */ 2461 } 2462 2463 if (flags & CHN_N_FORMAT) { 2464 /* 2465 * XXX I'll make good use of this someday. 2466 * However this is currently being superseded by 2467 * the availability of CHN_F_VCHAN_DYNAMIC. 2468 */ 2469 } 2470 2471 if (flags & CHN_N_VOLUME) { 2472 /* 2473 * XXX I'll make good use of this someday, though 2474 * soft volume control is currently pretty much 2475 * integrated. 2476 */ 2477 } 2478 2479 if (flags & CHN_N_BLOCKSIZE) { 2480 /* 2481 * Set to default latency profile 2482 */ 2483 chn_setlatency(c, chn_latency); 2484 } 2485 2486 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { 2487 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; 2488 if (nrun && !run) 2489 err = chn_start(c, 1); 2490 if (!nrun && run) 2491 chn_abort(c); 2492 flags &= ~CHN_N_TRIGGER; 2493 } 2494 2495 if (flags & CHN_N_TRIGGER) { 2496 if (c->direction == PCMDIR_PLAY) { 2497 vchanformat = &c->parentsnddev->pvchanformat; 2498 vchanrate = &c->parentsnddev->pvchanrate; 2499 } else { 2500 vchanformat = &c->parentsnddev->rvchanformat; 2501 vchanrate = &c->parentsnddev->rvchanrate; 2502 } 2503 2504 /* Dynamic Virtual Channel */ 2505 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { 2506 bestformat = *vchanformat; 2507 bestspeed = *vchanrate; 2508 } else { 2509 bestformat = 0; 2510 bestspeed = 0; 2511 } 2512 2513 besthwformat = 0; 2514 nrun = 0; 2515 caps = chn_getcaps(c); 2516 dirty = 0; 2517 vpflags = 0; 2518 2519 CHN_FOREACH(ch, c, children.busy) { 2520 CHN_LOCK(ch); 2521 if ((ch->format & AFMT_PASSTHROUGH) && 2522 snd_fmtvalid(ch->format, caps->fmtlist)) { 2523 bestformat = ch->format; 2524 bestspeed = ch->speed; 2525 CHN_UNLOCK(ch); 2526 vpflags = CHN_F_PASSTHROUGH; 2527 nrun++; 2528 break; 2529 } 2530 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { 2531 if (c->flags & CHN_F_VCHAN_ADAPTIVE) { 2532 bestspeed = ch->speed; 2533 RANGE(bestspeed, caps->minspeed, 2534 caps->maxspeed); 2535 besthwformat = snd_fmtbest(ch->format, 2536 caps->fmtlist); 2537 if (besthwformat != 0) 2538 bestformat = besthwformat; 2539 } 2540 CHN_UNLOCK(ch); 2541 vpflags = CHN_F_EXCLUSIVE; 2542 nrun++; 2543 continue; 2544 } 2545 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || 2546 vpflags != 0) { 2547 CHN_UNLOCK(ch); 2548 nrun++; 2549 continue; 2550 } 2551 if (ch->speed > bestspeed) { 2552 bestspeed = ch->speed; 2553 RANGE(bestspeed, caps->minspeed, 2554 caps->maxspeed); 2555 } 2556 besthwformat = snd_fmtbest(ch->format, caps->fmtlist); 2557 if (!(besthwformat & AFMT_VCHAN)) { 2558 CHN_UNLOCK(ch); 2559 nrun++; 2560 continue; 2561 } 2562 if (AFMT_CHANNEL(besthwformat) > 2563 AFMT_CHANNEL(bestformat)) 2564 bestformat = besthwformat; 2565 else if (AFMT_CHANNEL(besthwformat) == 2566 AFMT_CHANNEL(bestformat) && 2567 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) 2568 bestformat = besthwformat; 2569 CHN_UNLOCK(ch); 2570 nrun++; 2571 } 2572 2573 if (bestformat == 0) 2574 bestformat = c->format; 2575 if (bestspeed == 0) 2576 bestspeed = c->speed; 2577 2578 if (bestformat != c->format || bestspeed != c->speed) 2579 dirty = 1; 2580 2581 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2582 c->flags |= vpflags; 2583 2584 if (nrun && !run) { 2585 if (dirty) { 2586 bestspeed = CHANNEL_SETSPEED(c->methods, 2587 c->devinfo, bestspeed); 2588 err = chn_reset(c, bestformat, bestspeed); 2589 } 2590 if (err == 0 && dirty) { 2591 CHN_FOREACH(ch, c, children.busy) { 2592 CHN_LOCK(ch); 2593 if (VCHAN_SYNC_REQUIRED(ch)) 2594 vchan_sync(ch); 2595 CHN_UNLOCK(ch); 2596 } 2597 } 2598 if (err == 0) { 2599 if (dirty) 2600 c->flags |= CHN_F_DIRTY; 2601 err = chn_start(c, 1); 2602 } 2603 } 2604 2605 if (nrun && run && dirty) { 2606 chn_abort(c); 2607 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, 2608 bestspeed); 2609 err = chn_reset(c, bestformat, bestspeed); 2610 if (err == 0) { 2611 CHN_FOREACH(ch, c, children.busy) { 2612 CHN_LOCK(ch); 2613 if (VCHAN_SYNC_REQUIRED(ch)) 2614 vchan_sync(ch); 2615 CHN_UNLOCK(ch); 2616 } 2617 } 2618 if (err == 0) { 2619 c->flags |= CHN_F_DIRTY; 2620 err = chn_start(c, 1); 2621 } 2622 } 2623 2624 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && 2625 (bestformat & AFMT_VCHAN)) { 2626 *vchanformat = bestformat; 2627 *vchanrate = bestspeed; 2628 } 2629 2630 if (!nrun && run) { 2631 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2632 bestformat = *vchanformat; 2633 bestspeed = *vchanrate; 2634 chn_abort(c); 2635 if (c->format != bestformat || c->speed != bestspeed) 2636 chn_reset(c, bestformat, bestspeed); 2637 } 2638 } 2639 2640 return (err); 2641 } 2642 2643 /** 2644 * @brief Fetch array of supported discrete sample rates 2645 * 2646 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for 2647 * detailed information. 2648 * 2649 * @note If the operation isn't supported, this function will just return 0 2650 * (no rates in the array), and *rates will be set to NULL. Callers 2651 * should examine rates @b only if this function returns non-zero. 2652 * 2653 * @param c pcm channel to examine 2654 * @param rates pointer to array of integers; rate table will be recorded here 2655 * 2656 * @return number of rates in the array pointed to be @c rates 2657 */ 2658 int 2659 chn_getrates(struct pcm_channel *c, int **rates) 2660 { 2661 KASSERT(rates != NULL, ("rates is null")); 2662 CHN_LOCKASSERT(c); 2663 return CHANNEL_GETRATES(c->methods, c->devinfo, rates); 2664 } 2665 2666 /** 2667 * @brief Remove channel from a sync group, if there is one. 2668 * 2669 * This function is initially intended for the following conditions: 2670 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) 2671 * - Closing a device. (A channel can't be destroyed if it's still in use.) 2672 * 2673 * @note Before calling this function, the syncgroup list mutex must be 2674 * held. (Consider pcm_channel::sm protected by the SG list mutex 2675 * whether @c c is locked or not.) 2676 * 2677 * @param c channel device to be started or closed 2678 * @returns If this channel was the only member of a group, the group ID 2679 * is returned to the caller so that the caller can release it 2680 * via free_unr() after giving up the syncgroup lock. Else it 2681 * returns 0. 2682 */ 2683 int 2684 chn_syncdestroy(struct pcm_channel *c) 2685 { 2686 struct pcmchan_syncmember *sm; 2687 struct pcmchan_syncgroup *sg; 2688 int sg_id; 2689 2690 sg_id = 0; 2691 2692 PCM_SG_LOCKASSERT(MA_OWNED); 2693 2694 if (c->sm != NULL) { 2695 sm = c->sm; 2696 sg = sm->parent; 2697 c->sm = NULL; 2698 2699 KASSERT(sg != NULL, ("syncmember has null parent")); 2700 2701 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); 2702 free(sm, M_DEVBUF); 2703 2704 if (SLIST_EMPTY(&sg->members)) { 2705 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); 2706 sg_id = sg->id; 2707 free(sg, M_DEVBUF); 2708 } 2709 } 2710 2711 return sg_id; 2712 } 2713 2714 #ifdef OSSV4_EXPERIMENT 2715 int 2716 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) 2717 { 2718 CHN_LOCKASSERT(c); 2719 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); 2720 } 2721 #endif 2722