1 /*- 2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 3 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006 4 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> 5 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_isa.h" 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_snd.h" 34 #endif 35 36 #include <dev/sound/pcm/sound.h> 37 #include <dev/sound/pcm/vchan.h> 38 39 #include "feeder_if.h" 40 41 SND_DECLARE_FILE("$FreeBSD$"); 42 43 int report_soft_formats = 1; 44 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, 45 &report_soft_formats, 1, "report software-emulated formats"); 46 47 int report_soft_matrix = 1; 48 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, 49 &report_soft_matrix, 1, "report software-emulated channel matrixing"); 50 51 int chn_latency = CHN_LATENCY_DEFAULT; 52 TUNABLE_INT("hw.snd.latency", &chn_latency); 53 54 static int 55 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) 56 { 57 int err, val; 58 59 val = chn_latency; 60 err = sysctl_handle_int(oidp, &val, 0, req); 61 if (err != 0 || req->newptr == NULL) 62 return err; 63 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) 64 err = EINVAL; 65 else 66 chn_latency = val; 67 68 return err; 69 } 70 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RW, 71 0, sizeof(int), sysctl_hw_snd_latency, "I", 72 "buffering latency (0=low ... 10=high)"); 73 74 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; 75 TUNABLE_INT("hw.snd.latency_profile", &chn_latency_profile); 76 77 static int 78 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) 79 { 80 int err, val; 81 82 val = chn_latency_profile; 83 err = sysctl_handle_int(oidp, &val, 0, req); 84 if (err != 0 || req->newptr == NULL) 85 return err; 86 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) 87 err = EINVAL; 88 else 89 chn_latency_profile = val; 90 91 return err; 92 } 93 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RW, 94 0, sizeof(int), sysctl_hw_snd_latency_profile, "I", 95 "buffering latency profile (0=aggresive 1=safe)"); 96 97 static int chn_timeout = CHN_TIMEOUT; 98 TUNABLE_INT("hw.snd.timeout", &chn_timeout); 99 #ifdef SND_DEBUG 100 static int 101 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) 102 { 103 int err, val; 104 105 val = chn_timeout; 106 err = sysctl_handle_int(oidp, &val, 0, req); 107 if (err != 0 || req->newptr == NULL) 108 return err; 109 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) 110 err = EINVAL; 111 else 112 chn_timeout = val; 113 114 return err; 115 } 116 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RW, 117 0, sizeof(int), sysctl_hw_snd_timeout, "I", 118 "interrupt timeout (1 - 10) seconds"); 119 #endif 120 121 static int chn_vpc_autoreset = 1; 122 TUNABLE_INT("hw.snd.vpc_autoreset", &chn_vpc_autoreset); 123 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RW, 124 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); 125 126 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; 127 TUNABLE_INT("hw.snd.vpc_0db", &chn_vol_0db_pcm); 128 129 static void 130 chn_vpc_proc(int reset, int db) 131 { 132 struct snddev_info *d; 133 struct pcm_channel *c; 134 int i; 135 136 for (i = 0; pcm_devclass != NULL && 137 i < devclass_get_maxunit(pcm_devclass); i++) { 138 d = devclass_get_softc(pcm_devclass, i); 139 if (!PCM_REGISTERED(d)) 140 continue; 141 PCM_LOCK(d); 142 PCM_WAIT(d); 143 PCM_ACQUIRE(d); 144 CHN_FOREACH(c, d, channels.pcm) { 145 CHN_LOCK(c); 146 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); 147 if (reset != 0) 148 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 149 CHN_UNLOCK(c); 150 } 151 PCM_RELEASE(d); 152 PCM_UNLOCK(d); 153 } 154 } 155 156 static int 157 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) 158 { 159 int err, val; 160 161 val = chn_vol_0db_pcm; 162 err = sysctl_handle_int(oidp, &val, 0, req); 163 if (err != 0 || req->newptr == NULL) 164 return (err); 165 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) 166 return (EINVAL); 167 168 chn_vol_0db_pcm = val; 169 chn_vpc_proc(0, val); 170 171 return (0); 172 } 173 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RW, 174 0, sizeof(int), sysctl_hw_snd_vpc_0db, "I", 175 "0db relative level"); 176 177 static int 178 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) 179 { 180 int err, val; 181 182 val = 0; 183 err = sysctl_handle_int(oidp, &val, 0, req); 184 if (err != 0 || req->newptr == NULL || val == 0) 185 return (err); 186 187 chn_vol_0db_pcm = SND_VOL_0DB_PCM; 188 chn_vpc_proc(1, SND_VOL_0DB_PCM); 189 190 return (0); 191 } 192 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW, 193 0, sizeof(int), sysctl_hw_snd_vpc_reset, "I", 194 "reset volume on all channels"); 195 196 static int chn_usefrags = 0; 197 TUNABLE_INT("hw.snd.usefrags", &chn_usefrags); 198 static int chn_syncdelay = -1; 199 TUNABLE_INT("hw.snd.syncdelay", &chn_syncdelay); 200 #ifdef SND_DEBUG 201 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RW, 202 &chn_usefrags, 1, "prefer setfragments() over setblocksize()"); 203 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RW, 204 &chn_syncdelay, 1, 205 "append (0-1000) millisecond trailing buffer delay on each sync"); 206 #endif 207 208 /** 209 * @brief Channel sync group lock 210 * 211 * Clients should acquire this lock @b without holding any channel locks 212 * before touching syncgroups or the main syncgroup list. 213 */ 214 struct mtx snd_pcm_syncgroups_mtx; 215 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); 216 /** 217 * @brief syncgroups' master list 218 * 219 * Each time a channel syncgroup is created, it's added to this list. This 220 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. 221 * 222 * See SNDCTL_DSP_SYNCGROUP for more information. 223 */ 224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); 225 226 static void 227 chn_lockinit(struct pcm_channel *c, int dir) 228 { 229 switch (dir) { 230 case PCMDIR_PLAY: 231 c->lock = snd_mtxcreate(c->name, "pcm play channel"); 232 cv_init(&c->intr_cv, "pcmwr"); 233 break; 234 case PCMDIR_PLAY_VIRTUAL: 235 c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); 236 cv_init(&c->intr_cv, "pcmwrv"); 237 break; 238 case PCMDIR_REC: 239 c->lock = snd_mtxcreate(c->name, "pcm record channel"); 240 cv_init(&c->intr_cv, "pcmrd"); 241 break; 242 case PCMDIR_REC_VIRTUAL: 243 c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); 244 cv_init(&c->intr_cv, "pcmrdv"); 245 break; 246 default: 247 panic("%s(): Invalid direction=%d", __func__, dir); 248 break; 249 } 250 251 cv_init(&c->cv, "pcmchn"); 252 } 253 254 static void 255 chn_lockdestroy(struct pcm_channel *c) 256 { 257 CHN_LOCKASSERT(c); 258 259 CHN_BROADCAST(&c->cv); 260 CHN_BROADCAST(&c->intr_cv); 261 262 cv_destroy(&c->cv); 263 cv_destroy(&c->intr_cv); 264 265 snd_mtxfree(c->lock); 266 } 267 268 /** 269 * @brief Determine channel is ready for I/O 270 * 271 * @retval 1 = ready for I/O 272 * @retval 0 = not ready for I/O 273 */ 274 static int 275 chn_polltrigger(struct pcm_channel *c) 276 { 277 struct snd_dbuf *bs = c->bufsoft; 278 u_int delta; 279 280 CHN_LOCKASSERT(c); 281 282 if (c->flags & CHN_F_MMAP) { 283 if (sndbuf_getprevtotal(bs) < c->lw) 284 delta = c->lw; 285 else 286 delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); 287 } else { 288 if (c->direction == PCMDIR_PLAY) 289 delta = sndbuf_getfree(bs); 290 else 291 delta = sndbuf_getready(bs); 292 } 293 294 return ((delta < c->lw) ? 0 : 1); 295 } 296 297 static void 298 chn_pollreset(struct pcm_channel *c) 299 { 300 301 CHN_LOCKASSERT(c); 302 sndbuf_updateprevtotal(c->bufsoft); 303 } 304 305 static void 306 chn_wakeup(struct pcm_channel *c) 307 { 308 struct snd_dbuf *bs; 309 struct pcm_channel *ch; 310 311 CHN_LOCKASSERT(c); 312 313 bs = c->bufsoft; 314 315 if (CHN_EMPTY(c, children.busy)) { 316 if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) 317 selwakeuppri(sndbuf_getsel(bs), PRIBIO); 318 if (c->flags & CHN_F_SLEEPING) { 319 /* 320 * Ok, I can just panic it right here since it is 321 * quite obvious that we never allow multiple waiters 322 * from userland. I'm too generous... 323 */ 324 CHN_BROADCAST(&c->intr_cv); 325 } 326 } else { 327 CHN_FOREACH(ch, c, children.busy) { 328 CHN_LOCK(ch); 329 chn_wakeup(ch); 330 CHN_UNLOCK(ch); 331 } 332 } 333 } 334 335 static int 336 chn_sleep(struct pcm_channel *c, int timeout) 337 { 338 int ret; 339 340 CHN_LOCKASSERT(c); 341 342 if (c->flags & CHN_F_DEAD) 343 return (EINVAL); 344 345 c->flags |= CHN_F_SLEEPING; 346 ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); 347 c->flags &= ~CHN_F_SLEEPING; 348 349 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); 350 } 351 352 /* 353 * chn_dmaupdate() tracks the status of a dma transfer, 354 * updating pointers. 355 */ 356 357 static unsigned int 358 chn_dmaupdate(struct pcm_channel *c) 359 { 360 struct snd_dbuf *b = c->bufhard; 361 unsigned int delta, old, hwptr, amt; 362 363 KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); 364 CHN_LOCKASSERT(c); 365 366 old = sndbuf_gethwptr(b); 367 hwptr = chn_getptr(c); 368 delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); 369 sndbuf_sethwptr(b, hwptr); 370 371 if (c->direction == PCMDIR_PLAY) { 372 amt = min(delta, sndbuf_getready(b)); 373 amt -= amt % sndbuf_getalign(b); 374 if (amt > 0) 375 sndbuf_dispose(b, NULL, amt); 376 } else { 377 amt = min(delta, sndbuf_getfree(b)); 378 amt -= amt % sndbuf_getalign(b); 379 if (amt > 0) 380 sndbuf_acquire(b, NULL, amt); 381 } 382 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { 383 device_printf(c->dev, "WARNING: %s DMA completion " 384 "too fast/slow ! hwptr=%u, old=%u " 385 "delta=%u amt=%u ready=%u free=%u\n", 386 CHN_DIRSTR(c), hwptr, old, delta, amt, 387 sndbuf_getready(b), sndbuf_getfree(b)); 388 } 389 390 return delta; 391 } 392 393 static void 394 chn_wrfeed(struct pcm_channel *c) 395 { 396 struct snd_dbuf *b = c->bufhard; 397 struct snd_dbuf *bs = c->bufsoft; 398 unsigned int amt, want, wasfree; 399 400 CHN_LOCKASSERT(c); 401 402 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) 403 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); 404 405 wasfree = sndbuf_getfree(b); 406 want = min(sndbuf_getsize(b), 407 imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - 408 sndbuf_getready(b))); 409 amt = min(wasfree, want); 410 if (amt > 0) 411 sndbuf_feed(bs, b, c, c->feeder, amt); 412 413 /* 414 * Possible xruns. There should be no empty space left in buffer. 415 */ 416 if (sndbuf_getready(b) < want) 417 c->xruns++; 418 419 if (sndbuf_getfree(b) < wasfree) 420 chn_wakeup(c); 421 } 422 423 #if 0 424 static void 425 chn_wrupdate(struct pcm_channel *c) 426 { 427 428 CHN_LOCKASSERT(c); 429 KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); 430 431 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 432 return; 433 chn_dmaupdate(c); 434 chn_wrfeed(c); 435 /* tell the driver we've updated the primary buffer */ 436 chn_trigger(c, PCMTRIG_EMLDMAWR); 437 } 438 #endif 439 440 static void 441 chn_wrintr(struct pcm_channel *c) 442 { 443 444 CHN_LOCKASSERT(c); 445 /* update pointers in primary buffer */ 446 chn_dmaupdate(c); 447 /* ...and feed from secondary to primary */ 448 chn_wrfeed(c); 449 /* tell the driver we've updated the primary buffer */ 450 chn_trigger(c, PCMTRIG_EMLDMAWR); 451 } 452 453 /* 454 * user write routine - uiomove data into secondary buffer, trigger if necessary 455 * if blocking, sleep, rinse and repeat. 456 * 457 * called externally, so must handle locking 458 */ 459 460 int 461 chn_write(struct pcm_channel *c, struct uio *buf) 462 { 463 struct snd_dbuf *bs = c->bufsoft; 464 void *off; 465 int ret, timeout, sz, t, p; 466 467 CHN_LOCKASSERT(c); 468 469 ret = 0; 470 timeout = chn_timeout * hz; 471 472 while (ret == 0 && buf->uio_resid > 0) { 473 sz = min(buf->uio_resid, sndbuf_getfree(bs)); 474 if (sz > 0) { 475 /* 476 * The following assumes that the free space in 477 * the buffer can never be less around the 478 * unlock-uiomove-lock sequence. 479 */ 480 while (ret == 0 && sz > 0) { 481 p = sndbuf_getfreeptr(bs); 482 t = min(sz, sndbuf_getsize(bs) - p); 483 off = sndbuf_getbufofs(bs, p); 484 CHN_UNLOCK(c); 485 ret = uiomove(off, t, buf); 486 CHN_LOCK(c); 487 sz -= t; 488 sndbuf_acquire(bs, NULL, t); 489 } 490 ret = 0; 491 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 492 ret = chn_start(c, 0); 493 if (ret != 0) 494 c->flags |= CHN_F_DEAD; 495 } 496 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { 497 /** 498 * @todo Evaluate whether EAGAIN is truly desirable. 499 * 4Front drivers behave like this, but I'm 500 * not sure if it at all violates the "write 501 * should be allowed to block" model. 502 * 503 * The idea is that, while set with CHN_F_NOTRIGGER, 504 * a channel isn't playing, *but* without this we 505 * end up with "interrupt timeout / channel dead". 506 */ 507 ret = EAGAIN; 508 } else { 509 ret = chn_sleep(c, timeout); 510 if (ret == EAGAIN) { 511 ret = EINVAL; 512 c->flags |= CHN_F_DEAD; 513 device_printf(c->dev, "%s(): %s: " 514 "play interrupt timeout, channel dead\n", 515 __func__, c->name); 516 } else if (ret == ERESTART || ret == EINTR) 517 c->flags |= CHN_F_ABORTING; 518 } 519 } 520 521 return (ret); 522 } 523 524 /* 525 * Feed new data from the read buffer. Can be called in the bottom half. 526 */ 527 static void 528 chn_rdfeed(struct pcm_channel *c) 529 { 530 struct snd_dbuf *b = c->bufhard; 531 struct snd_dbuf *bs = c->bufsoft; 532 unsigned int amt; 533 534 CHN_LOCKASSERT(c); 535 536 if (c->flags & CHN_F_MMAP) 537 sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); 538 539 amt = sndbuf_getfree(bs); 540 if (amt > 0) 541 sndbuf_feed(b, bs, c, c->feeder, amt); 542 543 amt = sndbuf_getready(b); 544 if (amt > 0) { 545 c->xruns++; 546 sndbuf_dispose(b, NULL, amt); 547 } 548 549 if (sndbuf_getready(bs) > 0) 550 chn_wakeup(c); 551 } 552 553 #if 0 554 static void 555 chn_rdupdate(struct pcm_channel *c) 556 { 557 558 CHN_LOCKASSERT(c); 559 KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); 560 561 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 562 return; 563 chn_trigger(c, PCMTRIG_EMLDMARD); 564 chn_dmaupdate(c); 565 chn_rdfeed(c); 566 } 567 #endif 568 569 /* read interrupt routine. Must be called with interrupts blocked. */ 570 static void 571 chn_rdintr(struct pcm_channel *c) 572 { 573 574 CHN_LOCKASSERT(c); 575 /* tell the driver to update the primary buffer if non-dma */ 576 chn_trigger(c, PCMTRIG_EMLDMARD); 577 /* update pointers in primary buffer */ 578 chn_dmaupdate(c); 579 /* ...and feed from primary to secondary */ 580 chn_rdfeed(c); 581 } 582 583 /* 584 * user read routine - trigger if necessary, uiomove data from secondary buffer 585 * if blocking, sleep, rinse and repeat. 586 * 587 * called externally, so must handle locking 588 */ 589 590 int 591 chn_read(struct pcm_channel *c, struct uio *buf) 592 { 593 struct snd_dbuf *bs = c->bufsoft; 594 void *off; 595 int ret, timeout, sz, t, p; 596 597 CHN_LOCKASSERT(c); 598 599 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 600 ret = chn_start(c, 0); 601 if (ret != 0) { 602 c->flags |= CHN_F_DEAD; 603 return (ret); 604 } 605 } 606 607 ret = 0; 608 timeout = chn_timeout * hz; 609 610 while (ret == 0 && buf->uio_resid > 0) { 611 sz = min(buf->uio_resid, sndbuf_getready(bs)); 612 if (sz > 0) { 613 /* 614 * The following assumes that the free space in 615 * the buffer can never be less around the 616 * unlock-uiomove-lock sequence. 617 */ 618 while (ret == 0 && sz > 0) { 619 p = sndbuf_getreadyptr(bs); 620 t = min(sz, sndbuf_getsize(bs) - p); 621 off = sndbuf_getbufofs(bs, p); 622 CHN_UNLOCK(c); 623 ret = uiomove(off, t, buf); 624 CHN_LOCK(c); 625 sz -= t; 626 sndbuf_dispose(bs, NULL, t); 627 } 628 ret = 0; 629 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) 630 ret = EAGAIN; 631 else { 632 ret = chn_sleep(c, timeout); 633 if (ret == EAGAIN) { 634 ret = EINVAL; 635 c->flags |= CHN_F_DEAD; 636 device_printf(c->dev, "%s(): %s: " 637 "record interrupt timeout, channel dead\n", 638 __func__, c->name); 639 } else if (ret == ERESTART || ret == EINTR) 640 c->flags |= CHN_F_ABORTING; 641 } 642 } 643 644 return (ret); 645 } 646 647 void 648 chn_intr_locked(struct pcm_channel *c) 649 { 650 651 CHN_LOCKASSERT(c); 652 653 c->interrupts++; 654 655 if (c->direction == PCMDIR_PLAY) 656 chn_wrintr(c); 657 else 658 chn_rdintr(c); 659 } 660 661 void 662 chn_intr(struct pcm_channel *c) 663 { 664 665 if (CHN_LOCKOWNED(c)) { 666 chn_intr_locked(c); 667 return; 668 } 669 670 CHN_LOCK(c); 671 chn_intr_locked(c); 672 CHN_UNLOCK(c); 673 } 674 675 u_int32_t 676 chn_start(struct pcm_channel *c, int force) 677 { 678 u_int32_t i, j; 679 struct snd_dbuf *b = c->bufhard; 680 struct snd_dbuf *bs = c->bufsoft; 681 int err; 682 683 CHN_LOCKASSERT(c); 684 /* if we're running, or if we're prevented from triggering, bail */ 685 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) 686 return (EINVAL); 687 688 err = 0; 689 690 if (force) { 691 i = 1; 692 j = 0; 693 } else { 694 if (c->direction == PCMDIR_REC) { 695 i = sndbuf_getfree(bs); 696 j = (i > 0) ? 1 : sndbuf_getready(b); 697 } else { 698 if (sndbuf_getfree(bs) == 0) { 699 i = 1; 700 j = 0; 701 } else { 702 struct snd_dbuf *pb; 703 704 pb = CHN_BUF_PARENT(c, b); 705 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); 706 j = sndbuf_getalign(pb); 707 } 708 } 709 if (snd_verbose > 3 && CHN_EMPTY(c, children)) 710 device_printf(c->dev, "%s(): %s (%s) threshold " 711 "i=%d j=%d\n", __func__, CHN_DIRSTR(c), 712 (c->flags & CHN_F_VIRTUAL) ? "virtual" : 713 "hardware", i, j); 714 } 715 716 if (i >= j) { 717 c->flags |= CHN_F_TRIGGERED; 718 sndbuf_setrun(b, 1); 719 if (c->flags & CHN_F_CLOSING) 720 c->feedcount = 2; 721 else { 722 c->feedcount = 0; 723 c->interrupts = 0; 724 c->xruns = 0; 725 } 726 if (c->parentchannel == NULL) { 727 if (c->direction == PCMDIR_PLAY) 728 sndbuf_fillsilence_rl(b, 729 sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); 730 if (snd_verbose > 3) 731 device_printf(c->dev, 732 "%s(): %s starting! (%s/%s) " 733 "(ready=%d force=%d i=%d j=%d " 734 "intrtimeout=%u latency=%dms)\n", 735 __func__, 736 (c->flags & CHN_F_HAS_VCHAN) ? 737 "VCHAN PARENT" : "HW", CHN_DIRSTR(c), 738 (c->flags & CHN_F_CLOSING) ? "closing" : 739 "running", 740 sndbuf_getready(b), 741 force, i, j, c->timeout, 742 (sndbuf_getsize(b) * 1000) / 743 (sndbuf_getalign(b) * sndbuf_getspd(b))); 744 } 745 err = chn_trigger(c, PCMTRIG_START); 746 } 747 748 return (err); 749 } 750 751 void 752 chn_resetbuf(struct pcm_channel *c) 753 { 754 struct snd_dbuf *b = c->bufhard; 755 struct snd_dbuf *bs = c->bufsoft; 756 757 c->blocks = 0; 758 sndbuf_reset(b); 759 sndbuf_reset(bs); 760 } 761 762 /* 763 * chn_sync waits until the space in the given channel goes above 764 * a threshold. The threshold is checked against fl or rl respectively. 765 * Assume that the condition can become true, do not check here... 766 */ 767 int 768 chn_sync(struct pcm_channel *c, int threshold) 769 { 770 struct snd_dbuf *b, *bs; 771 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; 772 u_int32_t cflag; 773 774 CHN_LOCKASSERT(c); 775 776 if (c->direction != PCMDIR_PLAY) 777 return (EINVAL); 778 779 bs = c->bufsoft; 780 781 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || 782 (threshold < 1 && sndbuf_getready(bs) < 1)) 783 return (0); 784 785 /* if we haven't yet started and nothing is buffered, else start*/ 786 if (CHN_STOPPED(c)) { 787 if (threshold > 0 || sndbuf_getready(bs) > 0) { 788 ret = chn_start(c, 1); 789 if (ret != 0) 790 return (ret); 791 } else 792 return (0); 793 } 794 795 b = CHN_BUF_PARENT(c, c->bufhard); 796 797 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); 798 799 syncdelay = chn_syncdelay; 800 801 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) 802 minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); 803 804 /* 805 * Append (0-1000) millisecond trailing buffer (if needed) 806 * for slower / high latency hardwares (notably USB audio) 807 * to avoid audible truncation. 808 */ 809 if (syncdelay > 0) 810 minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * 811 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; 812 813 minflush -= minflush % sndbuf_getalign(bs); 814 815 if (minflush > 0) { 816 threshold = min(minflush, sndbuf_getfree(bs)); 817 sndbuf_clear(bs, threshold); 818 sndbuf_acquire(bs, NULL, threshold); 819 minflush -= threshold; 820 } 821 822 resid = sndbuf_getready(bs); 823 residp = resid; 824 blksz = sndbuf_getblksz(b); 825 if (blksz < 1) { 826 device_printf(c->dev, 827 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", 828 __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), 829 sndbuf_getblksz(b), sndbuf_getblkcnt(b)); 830 if (sndbuf_getblkcnt(b) > 0) 831 blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); 832 if (blksz < 1) 833 blksz = 1; 834 } 835 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; 836 hcount = count; 837 ret = 0; 838 839 if (snd_verbose > 3) 840 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " 841 "minflush=%d resid=%d\n", __func__, c->timeout, count, 842 minflush, resid); 843 844 cflag = c->flags & CHN_F_CLOSING; 845 c->flags |= CHN_F_CLOSING; 846 while (count > 0 && (resid > 0 || minflush > 0)) { 847 ret = chn_sleep(c, c->timeout); 848 if (ret == ERESTART || ret == EINTR) { 849 c->flags |= CHN_F_ABORTING; 850 break; 851 } else if (ret == 0 || ret == EAGAIN) { 852 resid = sndbuf_getready(bs); 853 if (resid == residp) { 854 --count; 855 if (snd_verbose > 3) 856 device_printf(c->dev, 857 "%s(): [stalled] timeout=%d " 858 "count=%d hcount=%d " 859 "resid=%d minflush=%d\n", 860 __func__, c->timeout, count, 861 hcount, resid, minflush); 862 } else if (resid < residp && count < hcount) { 863 ++count; 864 if (snd_verbose > 3) 865 device_printf(c->dev, 866 "%s((): [resume] timeout=%d " 867 "count=%d hcount=%d " 868 "resid=%d minflush=%d\n", 869 __func__, c->timeout, count, 870 hcount, resid, minflush); 871 } 872 if (minflush > 0 && sndbuf_getfree(bs) > 0) { 873 threshold = min(minflush, 874 sndbuf_getfree(bs)); 875 sndbuf_clear(bs, threshold); 876 sndbuf_acquire(bs, NULL, threshold); 877 resid = sndbuf_getready(bs); 878 minflush -= threshold; 879 } 880 residp = resid; 881 } else 882 break; 883 } 884 c->flags &= ~CHN_F_CLOSING; 885 c->flags |= cflag; 886 887 if (snd_verbose > 3) 888 device_printf(c->dev, 889 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " 890 "minflush=%d ret=%d\n", 891 __func__, c->timeout, count, hcount, resid, residp, 892 minflush, ret); 893 894 return (0); 895 } 896 897 /* called externally, handle locking */ 898 int 899 chn_poll(struct pcm_channel *c, int ev, struct thread *td) 900 { 901 struct snd_dbuf *bs = c->bufsoft; 902 int ret; 903 904 CHN_LOCKASSERT(c); 905 906 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { 907 ret = chn_start(c, 1); 908 if (ret != 0) 909 return (0); 910 } 911 912 ret = 0; 913 if (chn_polltrigger(c)) { 914 chn_pollreset(c); 915 ret = ev; 916 } else 917 selrecord(td, sndbuf_getsel(bs)); 918 919 return (ret); 920 } 921 922 /* 923 * chn_abort terminates a running dma transfer. it may sleep up to 200ms. 924 * it returns the number of bytes that have not been transferred. 925 * 926 * called from: dsp_close, dsp_ioctl, with channel locked 927 */ 928 int 929 chn_abort(struct pcm_channel *c) 930 { 931 int missing = 0; 932 struct snd_dbuf *b = c->bufhard; 933 struct snd_dbuf *bs = c->bufsoft; 934 935 CHN_LOCKASSERT(c); 936 if (CHN_STOPPED(c)) 937 return 0; 938 c->flags |= CHN_F_ABORTING; 939 940 c->flags &= ~CHN_F_TRIGGERED; 941 /* kill the channel */ 942 chn_trigger(c, PCMTRIG_ABORT); 943 sndbuf_setrun(b, 0); 944 if (!(c->flags & CHN_F_VIRTUAL)) 945 chn_dmaupdate(c); 946 missing = sndbuf_getready(bs); 947 948 c->flags &= ~CHN_F_ABORTING; 949 return missing; 950 } 951 952 /* 953 * this routine tries to flush the dma transfer. It is called 954 * on a close of a playback channel. 955 * first, if there is data in the buffer, but the dma has not yet 956 * begun, we need to start it. 957 * next, we wait for the play buffer to drain 958 * finally, we stop the dma. 959 * 960 * called from: dsp_close, not valid for record channels. 961 */ 962 963 int 964 chn_flush(struct pcm_channel *c) 965 { 966 struct snd_dbuf *b = c->bufhard; 967 968 CHN_LOCKASSERT(c); 969 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); 970 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); 971 972 c->flags |= CHN_F_CLOSING; 973 chn_sync(c, 0); 974 c->flags &= ~CHN_F_TRIGGERED; 975 /* kill the channel */ 976 chn_trigger(c, PCMTRIG_ABORT); 977 sndbuf_setrun(b, 0); 978 979 c->flags &= ~CHN_F_CLOSING; 980 return 0; 981 } 982 983 int 984 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) 985 { 986 int i; 987 988 for (i = 0; fmtlist[i] != 0; i++) { 989 if (fmt == fmtlist[i] || 990 ((fmt & AFMT_PASSTHROUGH) && 991 (AFMT_ENCODING(fmt) & fmtlist[i]))) 992 return (1); 993 } 994 995 return (0); 996 } 997 998 static const struct { 999 char *name, *alias1, *alias2; 1000 uint32_t afmt; 1001 } afmt_tab[] = { 1002 { "alaw", NULL, NULL, AFMT_A_LAW }, 1003 { "mulaw", NULL, NULL, AFMT_MU_LAW }, 1004 { "u8", "8", NULL, AFMT_U8 }, 1005 { "s8", NULL, NULL, AFMT_S8 }, 1006 #if BYTE_ORDER == LITTLE_ENDIAN 1007 { "s16le", "s16", "16", AFMT_S16_LE }, 1008 { "s16be", NULL, NULL, AFMT_S16_BE }, 1009 #else 1010 { "s16le", NULL, NULL, AFMT_S16_LE }, 1011 { "s16be", "s16", "16", AFMT_S16_BE }, 1012 #endif 1013 { "u16le", NULL, NULL, AFMT_U16_LE }, 1014 { "u16be", NULL, NULL, AFMT_U16_BE }, 1015 { "s24le", NULL, NULL, AFMT_S24_LE }, 1016 { "s24be", NULL, NULL, AFMT_S24_BE }, 1017 { "u24le", NULL, NULL, AFMT_U24_LE }, 1018 { "u24be", NULL, NULL, AFMT_U24_BE }, 1019 #if BYTE_ORDER == LITTLE_ENDIAN 1020 { "s32le", "s32", "32", AFMT_S32_LE }, 1021 { "s32be", NULL, NULL, AFMT_S32_BE }, 1022 #else 1023 { "s32le", NULL, NULL, AFMT_S32_LE }, 1024 { "s32be", "s32", "32", AFMT_S32_BE }, 1025 #endif 1026 { "u32le", NULL, NULL, AFMT_U32_LE }, 1027 { "u32be", NULL, NULL, AFMT_U32_BE }, 1028 { "ac3", NULL, NULL, AFMT_AC3 }, 1029 { NULL, NULL, NULL, 0 } 1030 }; 1031 1032 static const struct { 1033 char *name, *alias1, *alias2; 1034 int matrix_id; 1035 } matrix_id_tab[] = { 1036 { "1.0", "1", "mono", SND_CHN_MATRIX_1_0 }, 1037 { "2.0", "2", "stereo", SND_CHN_MATRIX_2_0 }, 1038 { "2.1", NULL, NULL, SND_CHN_MATRIX_2_1 }, 1039 { "3.0", "3", NULL, SND_CHN_MATRIX_3_0 }, 1040 { "3.1", NULL, NULL, SND_CHN_MATRIX_3_1 }, 1041 { "4.0", "4", "quad", SND_CHN_MATRIX_4_0 }, 1042 { "4.1", NULL, NULL, SND_CHN_MATRIX_4_1 }, 1043 { "5.0", "5", NULL, SND_CHN_MATRIX_5_0 }, 1044 { "5.1", "6", NULL, SND_CHN_MATRIX_5_1 }, 1045 { "6.0", NULL, NULL, SND_CHN_MATRIX_6_0 }, 1046 { "6.1", "7", NULL, SND_CHN_MATRIX_6_1 }, 1047 { "7.0", NULL, NULL, SND_CHN_MATRIX_7_0 }, 1048 { "7.1", "8", NULL, SND_CHN_MATRIX_7_1 }, 1049 { NULL, NULL, NULL, SND_CHN_MATRIX_UNKNOWN } 1050 }; 1051 1052 uint32_t 1053 snd_str2afmt(const char *req) 1054 { 1055 uint32_t i, afmt; 1056 int matrix_id; 1057 char b1[8], b2[8]; 1058 1059 i = sscanf(req, "%5[^:]:%6s", b1, b2); 1060 1061 if (i == 1) { 1062 if (strlen(req) != strlen(b1)) 1063 return (0); 1064 strlcpy(b2, "2.0", sizeof(b2)); 1065 } else if (i == 2) { 1066 if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) 1067 return (0); 1068 } else 1069 return (0); 1070 1071 afmt = 0; 1072 matrix_id = SND_CHN_MATRIX_UNKNOWN; 1073 1074 for (i = 0; afmt == 0 && afmt_tab[i].name != NULL; i++) { 1075 if (strcasecmp(afmt_tab[i].name, b1) == 0 || 1076 (afmt_tab[i].alias1 != NULL && 1077 strcasecmp(afmt_tab[i].alias1, b1) == 0) || 1078 (afmt_tab[i].alias2 != NULL && 1079 strcasecmp(afmt_tab[i].alias2, b1) == 0)) { 1080 afmt = afmt_tab[i].afmt; 1081 strlcpy(b1, afmt_tab[i].name, sizeof(b1)); 1082 } 1083 } 1084 1085 if (afmt == 0) 1086 return (0); 1087 1088 for (i = 0; matrix_id == SND_CHN_MATRIX_UNKNOWN && 1089 matrix_id_tab[i].name != NULL; i++) { 1090 if (strcmp(matrix_id_tab[i].name, b2) == 0 || 1091 (matrix_id_tab[i].alias1 != NULL && 1092 strcmp(matrix_id_tab[i].alias1, b2) == 0) || 1093 (matrix_id_tab[i].alias2 != NULL && 1094 strcasecmp(matrix_id_tab[i].alias2, b2) == 0)) { 1095 matrix_id = matrix_id_tab[i].matrix_id; 1096 strlcpy(b2, matrix_id_tab[i].name, sizeof(b2)); 1097 } 1098 } 1099 1100 if (matrix_id == SND_CHN_MATRIX_UNKNOWN) 1101 return (0); 1102 1103 #ifndef _KERNEL 1104 printf("Parse OK: '%s' -> '%s:%s' %d\n", req, b1, b2, 1105 (int)(b2[0]) - '0' + (int)(b2[2]) - '0'); 1106 #endif 1107 1108 return (SND_FORMAT(afmt, b2[0] - '0' + b2[2] - '0', b2[2] - '0')); 1109 } 1110 1111 uint32_t 1112 snd_afmt2str(uint32_t afmt, char *buf, size_t len) 1113 { 1114 uint32_t i, enc, ch, ext; 1115 char tmp[AFMTSTR_LEN]; 1116 1117 if (buf == NULL || len < AFMTSTR_LEN) 1118 return (0); 1119 1120 1121 bzero(tmp, sizeof(tmp)); 1122 1123 enc = AFMT_ENCODING(afmt); 1124 ch = AFMT_CHANNEL(afmt); 1125 ext = AFMT_EXTCHANNEL(afmt); 1126 1127 for (i = 0; afmt_tab[i].name != NULL; i++) { 1128 if (enc == afmt_tab[i].afmt) { 1129 strlcpy(tmp, afmt_tab[i].name, sizeof(tmp)); 1130 strlcat(tmp, ":", sizeof(tmp)); 1131 break; 1132 } 1133 } 1134 1135 if (strlen(tmp) == 0) 1136 return (0); 1137 1138 for (i = 0; matrix_id_tab[i].name != NULL; i++) { 1139 if (ch == (matrix_id_tab[i].name[0] - '0' + 1140 matrix_id_tab[i].name[2] - '0') && 1141 ext == (matrix_id_tab[i].name[2] - '0')) { 1142 strlcat(tmp, matrix_id_tab[i].name, sizeof(tmp)); 1143 break; 1144 } 1145 } 1146 1147 if (strlen(tmp) == 0) 1148 return (0); 1149 1150 strlcpy(buf, tmp, len); 1151 1152 return (snd_str2afmt(buf)); 1153 } 1154 1155 int 1156 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) 1157 { 1158 int r; 1159 1160 CHN_LOCKASSERT(c); 1161 c->feedcount = 0; 1162 c->flags &= CHN_F_RESET; 1163 c->interrupts = 0; 1164 c->timeout = 1; 1165 c->xruns = 0; 1166 1167 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? 1168 CHN_F_BITPERFECT : 0; 1169 1170 r = CHANNEL_RESET(c->methods, c->devinfo); 1171 if (r == 0 && fmt != 0 && spd != 0) { 1172 r = chn_setparam(c, fmt, spd); 1173 fmt = 0; 1174 spd = 0; 1175 } 1176 if (r == 0 && fmt != 0) 1177 r = chn_setformat(c, fmt); 1178 if (r == 0 && spd != 0) 1179 r = chn_setspeed(c, spd); 1180 if (r == 0) 1181 r = chn_setlatency(c, chn_latency); 1182 if (r == 0) { 1183 chn_resetbuf(c); 1184 r = CHANNEL_RESETDONE(c->methods, c->devinfo); 1185 } 1186 return r; 1187 } 1188 1189 int 1190 chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction) 1191 { 1192 struct feeder_class *fc; 1193 struct snd_dbuf *b, *bs; 1194 int i, ret; 1195 1196 if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX) 1197 chn_timeout = CHN_TIMEOUT; 1198 1199 chn_lockinit(c, dir); 1200 1201 b = NULL; 1202 bs = NULL; 1203 CHN_INIT(c, children); 1204 CHN_INIT(c, children.busy); 1205 c->devinfo = NULL; 1206 c->feeder = NULL; 1207 c->latency = -1; 1208 c->timeout = 1; 1209 1210 ret = ENOMEM; 1211 b = sndbuf_create(c->dev, c->name, "primary", c); 1212 if (b == NULL) 1213 goto out; 1214 bs = sndbuf_create(c->dev, c->name, "secondary", c); 1215 if (bs == NULL) 1216 goto out; 1217 1218 CHN_LOCK(c); 1219 1220 ret = EINVAL; 1221 fc = feeder_getclass(NULL); 1222 if (fc == NULL) 1223 goto out; 1224 if (chn_addfeeder(c, fc, NULL)) 1225 goto out; 1226 1227 /* 1228 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called 1229 * with the channel unlocked because they are also called 1230 * from driver methods that don't know about locking 1231 */ 1232 CHN_UNLOCK(c); 1233 sndbuf_setup(bs, NULL, 0); 1234 CHN_LOCK(c); 1235 c->bufhard = b; 1236 c->bufsoft = bs; 1237 c->flags = 0; 1238 c->feederflags = 0; 1239 c->sm = NULL; 1240 c->format = SND_FORMAT(AFMT_U8, 1, 0); 1241 c->speed = DSP_DEFAULT_SPEED; 1242 1243 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); 1244 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1245 1246 for (i = 0; i < SND_CHN_T_MAX; i++) { 1247 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; 1248 } 1249 1250 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; 1251 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; 1252 1253 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 1254 1255 ret = ENODEV; 1256 CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */ 1257 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); 1258 CHN_LOCK(c); 1259 if (c->devinfo == NULL) 1260 goto out; 1261 1262 ret = ENOMEM; 1263 if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) 1264 goto out; 1265 1266 ret = 0; 1267 c->direction = direction; 1268 1269 sndbuf_setfmt(b, c->format); 1270 sndbuf_setspd(b, c->speed); 1271 sndbuf_setfmt(bs, c->format); 1272 sndbuf_setspd(bs, c->speed); 1273 1274 /** 1275 * @todo Should this be moved somewhere else? The primary buffer 1276 * is allocated by the driver or via DMA map setup, and tmpbuf 1277 * seems to only come into existence in sndbuf_resize(). 1278 */ 1279 if (c->direction == PCMDIR_PLAY) { 1280 bs->sl = sndbuf_getmaxsize(bs); 1281 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_NOWAIT); 1282 if (bs->shadbuf == NULL) { 1283 ret = ENOMEM; 1284 goto out; 1285 } 1286 } 1287 1288 out: 1289 CHN_UNLOCK(c); 1290 if (ret) { 1291 if (c->devinfo) { 1292 if (CHANNEL_FREE(c->methods, c->devinfo)) 1293 sndbuf_free(b); 1294 } 1295 if (bs) 1296 sndbuf_destroy(bs); 1297 if (b) 1298 sndbuf_destroy(b); 1299 CHN_LOCK(c); 1300 c->flags |= CHN_F_DEAD; 1301 chn_lockdestroy(c); 1302 1303 return ret; 1304 } 1305 1306 return 0; 1307 } 1308 1309 int 1310 chn_kill(struct pcm_channel *c) 1311 { 1312 struct snd_dbuf *b = c->bufhard; 1313 struct snd_dbuf *bs = c->bufsoft; 1314 1315 if (CHN_STARTED(c)) { 1316 CHN_LOCK(c); 1317 chn_trigger(c, PCMTRIG_ABORT); 1318 CHN_UNLOCK(c); 1319 } 1320 while (chn_removefeeder(c) == 0) 1321 ; 1322 if (CHANNEL_FREE(c->methods, c->devinfo)) 1323 sndbuf_free(b); 1324 sndbuf_destroy(bs); 1325 sndbuf_destroy(b); 1326 CHN_LOCK(c); 1327 c->flags |= CHN_F_DEAD; 1328 chn_lockdestroy(c); 1329 1330 return (0); 1331 } 1332 1333 /* XXX Obsolete. Use *_matrix() variant instead. */ 1334 int 1335 chn_setvolume(struct pcm_channel *c, int left, int right) 1336 { 1337 int ret; 1338 1339 ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left); 1340 ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR, 1341 right) << 8; 1342 1343 return (ret); 1344 } 1345 1346 int 1347 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, 1348 int center) 1349 { 1350 int i, ret; 1351 1352 ret = 0; 1353 1354 for (i = 0; i < SND_CHN_T_MAX; i++) { 1355 if ((1 << i) & SND_CHN_LEFT_MASK) 1356 ret |= chn_setvolume_matrix(c, vc, i, left); 1357 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1358 ret |= chn_setvolume_matrix(c, vc, i, right) << 8; 1359 else 1360 ret |= chn_setvolume_matrix(c, vc, i, center) << 16; 1361 } 1362 1363 return (ret); 1364 } 1365 1366 int 1367 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) 1368 { 1369 int i; 1370 1371 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1372 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1373 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && 1374 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || 1375 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), 1376 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", 1377 __func__, c, vc, vt, val)); 1378 CHN_LOCKASSERT(c); 1379 1380 if (val < 0) 1381 val = 0; 1382 if (val > 100) 1383 val = 100; 1384 1385 c->volume[vc][vt] = val; 1386 1387 /* 1388 * Do relative calculation here and store it into class + 1 1389 * to ease the job of feeder_volume. 1390 */ 1391 if (vc == SND_VOL_C_MASTER) { 1392 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1393 vc += SND_VOL_C_STEP) 1394 c->volume[SND_VOL_C_VAL(vc)][vt] = 1395 SND_VOL_CALC_VAL(c->volume, vc, vt); 1396 } else if (vc & 1) { 1397 if (vt == SND_CHN_T_VOL_0DB) 1398 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1399 i += SND_CHN_T_STEP) { 1400 c->volume[SND_VOL_C_VAL(vc)][i] = 1401 SND_VOL_CALC_VAL(c->volume, vc, i); 1402 } 1403 else 1404 c->volume[SND_VOL_C_VAL(vc)][vt] = 1405 SND_VOL_CALC_VAL(c->volume, vc, vt); 1406 } 1407 1408 return (val); 1409 } 1410 1411 int 1412 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) 1413 { 1414 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1415 (vt == SND_CHN_T_VOL_0DB || 1416 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1417 ("%s(): invalid volume matrix c=%p vc=%d vt=%d", 1418 __func__, c, vc, vt)); 1419 CHN_LOCKASSERT(c); 1420 1421 return (c->volume[vc][vt]); 1422 } 1423 1424 struct pcmchan_matrix * 1425 chn_getmatrix(struct pcm_channel *c) 1426 { 1427 1428 KASSERT(c != NULL, ("%s(): NULL channel", __func__)); 1429 CHN_LOCKASSERT(c); 1430 1431 if (!(c->format & AFMT_CONVERTIBLE)) 1432 return (NULL); 1433 1434 return (&c->matrix); 1435 } 1436 1437 int 1438 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) 1439 { 1440 1441 KASSERT(c != NULL && m != NULL, 1442 ("%s(): NULL channel or matrix", __func__)); 1443 CHN_LOCKASSERT(c); 1444 1445 if (!(c->format & AFMT_CONVERTIBLE)) 1446 return (EINVAL); 1447 1448 c->matrix = *m; 1449 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1450 1451 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); 1452 } 1453 1454 /* 1455 * XXX chn_oss_* exists for the sake of compatibility. 1456 */ 1457 int 1458 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) 1459 { 1460 1461 KASSERT(c != NULL && map != NULL, 1462 ("%s(): NULL channel or map", __func__)); 1463 CHN_LOCKASSERT(c); 1464 1465 if (!(c->format & AFMT_CONVERTIBLE)) 1466 return (EINVAL); 1467 1468 return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); 1469 } 1470 1471 int 1472 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) 1473 { 1474 struct pcmchan_matrix m; 1475 int ret; 1476 1477 KASSERT(c != NULL && map != NULL, 1478 ("%s(): NULL channel or map", __func__)); 1479 CHN_LOCKASSERT(c); 1480 1481 if (!(c->format & AFMT_CONVERTIBLE)) 1482 return (EINVAL); 1483 1484 m = c->matrix; 1485 ret = feeder_matrix_oss_set_channel_order(&m, map); 1486 if (ret != 0) 1487 return (ret); 1488 1489 return (chn_setmatrix(c, &m)); 1490 } 1491 1492 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) 1493 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) 1494 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) 1495 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) 1496 1497 int 1498 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) 1499 { 1500 struct pcmchan_matrix *m; 1501 struct pcmchan_caps *caps; 1502 uint32_t i, format; 1503 1504 KASSERT(c != NULL && retmask != NULL, 1505 ("%s(): NULL channel or retmask", __func__)); 1506 CHN_LOCKASSERT(c); 1507 1508 caps = chn_getcaps(c); 1509 if (caps == NULL || caps->fmtlist == NULL) 1510 return (ENODEV); 1511 1512 for (i = 0; caps->fmtlist[i] != 0; i++) { 1513 format = caps->fmtlist[i]; 1514 if (!(format & AFMT_CONVERTIBLE)) { 1515 *retmask |= DSP_BIND_SPDIF; 1516 continue; 1517 } 1518 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); 1519 if (m == NULL) 1520 continue; 1521 if (m->mask & SND_CHN_OSS_FRONT) 1522 *retmask |= DSP_BIND_FRONT; 1523 if (m->mask & SND_CHN_OSS_SURR) 1524 *retmask |= DSP_BIND_SURR; 1525 if (m->mask & SND_CHN_OSS_CENTER_LFE) 1526 *retmask |= DSP_BIND_CENTER_LFE; 1527 if (m->mask & SND_CHN_OSS_REAR) 1528 *retmask |= DSP_BIND_REAR; 1529 } 1530 1531 /* report software-supported binding mask */ 1532 if (!CHN_BITPERFECT(c) && report_soft_matrix) 1533 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | 1534 DSP_BIND_CENTER_LFE | DSP_BIND_REAR; 1535 1536 return (0); 1537 } 1538 1539 void 1540 chn_vpc_reset(struct pcm_channel *c, int vc, int force) 1541 { 1542 int i; 1543 1544 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, 1545 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); 1546 CHN_LOCKASSERT(c); 1547 1548 if (force == 0 && chn_vpc_autoreset == 0) 1549 return; 1550 1551 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) 1552 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); 1553 } 1554 1555 static u_int32_t 1556 round_pow2(u_int32_t v) 1557 { 1558 u_int32_t ret; 1559 1560 if (v < 2) 1561 v = 2; 1562 ret = 0; 1563 while (v >> ret) 1564 ret++; 1565 ret = 1 << (ret - 1); 1566 while (ret < v) 1567 ret <<= 1; 1568 return ret; 1569 } 1570 1571 static u_int32_t 1572 round_blksz(u_int32_t v, int round) 1573 { 1574 u_int32_t ret, tmp; 1575 1576 if (round < 1) 1577 round = 1; 1578 1579 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); 1580 1581 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) 1582 ret >>= 1; 1583 1584 tmp = ret - (ret % round); 1585 while (tmp < 16 || tmp < round) { 1586 ret <<= 1; 1587 tmp = ret - (ret % round); 1588 } 1589 1590 return ret; 1591 } 1592 1593 /* 1594 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea 1595 * is to keep 2nd buffer short so that it doesn't cause long queue during 1596 * buffer transfer. 1597 * 1598 * Latency reference table for 48khz stereo 16bit: (PLAY) 1599 * 1600 * +---------+------------+-----------+------------+ 1601 * | Latency | Blockcount | Blocksize | Buffersize | 1602 * +---------+------------+-----------+------------+ 1603 * | 0 | 2 | 64 | 128 | 1604 * +---------+------------+-----------+------------+ 1605 * | 1 | 4 | 128 | 512 | 1606 * +---------+------------+-----------+------------+ 1607 * | 2 | 8 | 512 | 4096 | 1608 * +---------+------------+-----------+------------+ 1609 * | 3 | 16 | 512 | 8192 | 1610 * +---------+------------+-----------+------------+ 1611 * | 4 | 32 | 512 | 16384 | 1612 * +---------+------------+-----------+------------+ 1613 * | 5 | 32 | 1024 | 32768 | 1614 * +---------+------------+-----------+------------+ 1615 * | 6 | 16 | 2048 | 32768 | 1616 * +---------+------------+-----------+------------+ 1617 * | 7 | 8 | 4096 | 32768 | 1618 * +---------+------------+-----------+------------+ 1619 * | 8 | 4 | 8192 | 32768 | 1620 * +---------+------------+-----------+------------+ 1621 * | 9 | 2 | 16384 | 32768 | 1622 * +---------+------------+-----------+------------+ 1623 * | 10 | 2 | 32768 | 65536 | 1624 * +---------+------------+-----------+------------+ 1625 * 1626 * Recording need a different reference table. All we care is 1627 * gobbling up everything within reasonable buffering threshold. 1628 * 1629 * Latency reference table for 48khz stereo 16bit: (REC) 1630 * 1631 * +---------+------------+-----------+------------+ 1632 * | Latency | Blockcount | Blocksize | Buffersize | 1633 * +---------+------------+-----------+------------+ 1634 * | 0 | 512 | 32 | 16384 | 1635 * +---------+------------+-----------+------------+ 1636 * | 1 | 256 | 64 | 16384 | 1637 * +---------+------------+-----------+------------+ 1638 * | 2 | 128 | 128 | 16384 | 1639 * +---------+------------+-----------+------------+ 1640 * | 3 | 64 | 256 | 16384 | 1641 * +---------+------------+-----------+------------+ 1642 * | 4 | 32 | 512 | 16384 | 1643 * +---------+------------+-----------+------------+ 1644 * | 5 | 32 | 1024 | 32768 | 1645 * +---------+------------+-----------+------------+ 1646 * | 6 | 16 | 2048 | 32768 | 1647 * +---------+------------+-----------+------------+ 1648 * | 7 | 8 | 4096 | 32768 | 1649 * +---------+------------+-----------+------------+ 1650 * | 8 | 4 | 8192 | 32768 | 1651 * +---------+------------+-----------+------------+ 1652 * | 9 | 2 | 16384 | 32768 | 1653 * +---------+------------+-----------+------------+ 1654 * | 10 | 2 | 32768 | 65536 | 1655 * +---------+------------+-----------+------------+ 1656 * 1657 * Calculations for other data rate are entirely based on these reference 1658 * tables. For normal operation, Latency 5 seems give the best, well 1659 * balanced performance for typical workload. Anything below 5 will 1660 * eat up CPU to keep up with increasing context switches because of 1661 * shorter buffer space and usually require the application to handle it 1662 * aggresively through possibly real time programming technique. 1663 * 1664 */ 1665 #define CHN_LATENCY_PBLKCNT_REF \ 1666 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ 1667 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} 1668 #define CHN_LATENCY_PBUFSZ_REF \ 1669 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ 1670 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} 1671 1672 #define CHN_LATENCY_RBLKCNT_REF \ 1673 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ 1674 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} 1675 #define CHN_LATENCY_RBUFSZ_REF \ 1676 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ 1677 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} 1678 1679 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ 1680 1681 static int 1682 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, 1683 u_int32_t max, int *rblksz, int *rblkcnt) 1684 { 1685 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1686 CHN_LATENCY_PBLKCNT_REF; 1687 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1688 CHN_LATENCY_PBUFSZ_REF; 1689 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1690 CHN_LATENCY_RBLKCNT_REF; 1691 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1692 CHN_LATENCY_RBUFSZ_REF; 1693 u_int32_t bufsz; 1694 int lprofile, blksz, blkcnt; 1695 1696 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || 1697 bps < 1 || datarate < 1 || 1698 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { 1699 if (rblksz != NULL) 1700 *rblksz = CHN_2NDBUFMAXSIZE >> 1; 1701 if (rblkcnt != NULL) 1702 *rblkcnt = 2; 1703 printf("%s(): FAILED dir=%d latency=%d bps=%d " 1704 "datarate=%u max=%u\n", 1705 __func__, dir, latency, bps, datarate, max); 1706 return CHN_2NDBUFMAXSIZE; 1707 } 1708 1709 lprofile = chn_latency_profile; 1710 1711 if (dir == PCMDIR_PLAY) { 1712 blkcnt = pblkcnts[lprofile][latency]; 1713 bufsz = pbufszs[lprofile][latency]; 1714 } else { 1715 blkcnt = rblkcnts[lprofile][latency]; 1716 bufsz = rbufszs[lprofile][latency]; 1717 } 1718 1719 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, 1720 datarate)); 1721 if (bufsz > max) 1722 bufsz = max; 1723 blksz = round_blksz(bufsz >> blkcnt, bps); 1724 1725 if (rblksz != NULL) 1726 *rblksz = blksz; 1727 if (rblkcnt != NULL) 1728 *rblkcnt = 1 << blkcnt; 1729 1730 return blksz << blkcnt; 1731 } 1732 1733 static int 1734 chn_resizebuf(struct pcm_channel *c, int latency, 1735 int blkcnt, int blksz) 1736 { 1737 struct snd_dbuf *b, *bs, *pb; 1738 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; 1739 int ret; 1740 1741 CHN_LOCKASSERT(c); 1742 1743 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || 1744 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) 1745 return EINVAL; 1746 1747 if (latency == -1) { 1748 c->latency = -1; 1749 latency = chn_latency; 1750 } else if (latency == -2) { 1751 latency = c->latency; 1752 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1753 latency = chn_latency; 1754 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1755 return EINVAL; 1756 else { 1757 c->latency = latency; 1758 } 1759 1760 bs = c->bufsoft; 1761 b = c->bufhard; 1762 1763 if (!(blksz == 0 || blkcnt == -1) && 1764 (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || 1765 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) 1766 return EINVAL; 1767 1768 chn_calclatency(c->direction, latency, sndbuf_getalign(bs), 1769 sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, 1770 &sblksz, &sblkcnt); 1771 1772 if (blksz == 0 || blkcnt == -1) { 1773 if (blkcnt == -1) 1774 c->flags &= ~CHN_F_HAS_SIZE; 1775 if (c->flags & CHN_F_HAS_SIZE) { 1776 blksz = sndbuf_getblksz(bs); 1777 blkcnt = sndbuf_getblkcnt(bs); 1778 } 1779 } else 1780 c->flags |= CHN_F_HAS_SIZE; 1781 1782 if (c->flags & CHN_F_HAS_SIZE) { 1783 /* 1784 * The application has requested their own blksz/blkcnt. 1785 * Just obey with it, and let them toast alone. We can 1786 * clamp it to the nearest latency profile, but that would 1787 * defeat the purpose of having custom control. The least 1788 * we can do is round it to the nearest ^2 and align it. 1789 */ 1790 sblksz = round_blksz(blksz, sndbuf_getalign(bs)); 1791 sblkcnt = round_pow2(blkcnt); 1792 } 1793 1794 if (c->parentchannel != NULL) { 1795 pb = c->parentchannel->bufsoft; 1796 CHN_UNLOCK(c); 1797 CHN_LOCK(c->parentchannel); 1798 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); 1799 CHN_UNLOCK(c->parentchannel); 1800 CHN_LOCK(c); 1801 if (c->direction == PCMDIR_PLAY) { 1802 limit = (pb != NULL) ? 1803 sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; 1804 } else { 1805 limit = (pb != NULL) ? 1806 sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; 1807 } 1808 } else { 1809 hblkcnt = 2; 1810 if (c->flags & CHN_F_HAS_SIZE) { 1811 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), 1812 sndbuf_getalign(b)); 1813 hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); 1814 } else 1815 chn_calclatency(c->direction, latency, 1816 sndbuf_getalign(b), 1817 sndbuf_getalign(b) * sndbuf_getspd(b), 1818 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); 1819 1820 if ((hblksz << 1) > sndbuf_getmaxsize(b)) 1821 hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, 1822 sndbuf_getalign(b)); 1823 1824 while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { 1825 if (hblkcnt < 4) 1826 hblksz >>= 1; 1827 else 1828 hblkcnt >>= 1; 1829 } 1830 1831 hblksz -= hblksz % sndbuf_getalign(b); 1832 1833 #if 0 1834 hblksz = sndbuf_getmaxsize(b) >> 1; 1835 hblksz -= hblksz % sndbuf_getalign(b); 1836 hblkcnt = 2; 1837 #endif 1838 1839 CHN_UNLOCK(c); 1840 if (chn_usefrags == 0 || 1841 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, 1842 hblksz, hblkcnt) != 0) 1843 sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, 1844 c->devinfo, hblksz)); 1845 CHN_LOCK(c); 1846 1847 if (!CHN_EMPTY(c, children)) { 1848 nsblksz = round_blksz( 1849 sndbuf_xbytes(sndbuf_getblksz(b), b, bs), 1850 sndbuf_getalign(bs)); 1851 nsblkcnt = sndbuf_getblkcnt(b); 1852 if (c->direction == PCMDIR_PLAY) { 1853 do { 1854 nsblkcnt--; 1855 } while (nsblkcnt >= 2 && 1856 nsblksz * nsblkcnt >= sblksz * sblkcnt); 1857 nsblkcnt++; 1858 } 1859 sblksz = nsblksz; 1860 sblkcnt = nsblkcnt; 1861 limit = 0; 1862 } else 1863 limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; 1864 } 1865 1866 if (limit > CHN_2NDBUFMAXSIZE) 1867 limit = CHN_2NDBUFMAXSIZE; 1868 1869 #if 0 1870 while (limit > 0 && (sblksz * sblkcnt) > limit) { 1871 if (sblkcnt < 4) 1872 break; 1873 sblkcnt >>= 1; 1874 } 1875 #endif 1876 1877 while ((sblksz * sblkcnt) < limit) 1878 sblkcnt <<= 1; 1879 1880 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { 1881 if (sblkcnt < 4) 1882 sblksz >>= 1; 1883 else 1884 sblkcnt >>= 1; 1885 } 1886 1887 sblksz -= sblksz % sndbuf_getalign(bs); 1888 1889 if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || 1890 sndbuf_getsize(bs) != (sblkcnt * sblksz)) { 1891 ret = sndbuf_remalloc(bs, sblkcnt, sblksz); 1892 if (ret != 0) { 1893 device_printf(c->dev, "%s(): Failed: %d %d\n", 1894 __func__, sblkcnt, sblksz); 1895 return ret; 1896 } 1897 } 1898 1899 /* 1900 * Interrupt timeout 1901 */ 1902 c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / 1903 ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); 1904 if (c->parentchannel != NULL) 1905 c->timeout = min(c->timeout, c->parentchannel->timeout); 1906 if (c->timeout < 1) 1907 c->timeout = 1; 1908 1909 /* 1910 * OSSv4 docs: "By default OSS will set the low water level equal 1911 * to the fragment size which is optimal in most cases." 1912 */ 1913 c->lw = sndbuf_getblksz(bs); 1914 chn_resetbuf(c); 1915 1916 if (snd_verbose > 3) 1917 device_printf(c->dev, "%s(): %s (%s) timeout=%u " 1918 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", 1919 __func__, CHN_DIRSTR(c), 1920 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", 1921 c->timeout, 1922 sndbuf_getsize(b), sndbuf_getblksz(b), 1923 sndbuf_getblkcnt(b), 1924 sndbuf_getsize(bs), sndbuf_getblksz(bs), 1925 sndbuf_getblkcnt(bs), limit); 1926 1927 return 0; 1928 } 1929 1930 int 1931 chn_setlatency(struct pcm_channel *c, int latency) 1932 { 1933 CHN_LOCKASSERT(c); 1934 /* Destroy blksz/blkcnt, enforce latency profile. */ 1935 return chn_resizebuf(c, latency, -1, 0); 1936 } 1937 1938 int 1939 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) 1940 { 1941 CHN_LOCKASSERT(c); 1942 /* Destroy latency profile, enforce blksz/blkcnt */ 1943 return chn_resizebuf(c, -1, blkcnt, blksz); 1944 } 1945 1946 int 1947 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) 1948 { 1949 struct pcmchan_caps *caps; 1950 uint32_t hwspeed, delta; 1951 int ret; 1952 1953 CHN_LOCKASSERT(c); 1954 1955 if (speed < 1 || format == 0 || CHN_STARTED(c)) 1956 return (EINVAL); 1957 1958 c->format = format; 1959 c->speed = speed; 1960 1961 caps = chn_getcaps(c); 1962 1963 hwspeed = speed; 1964 RANGE(hwspeed, caps->minspeed, caps->maxspeed); 1965 1966 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, 1967 hwspeed)); 1968 hwspeed = sndbuf_getspd(c->bufhard); 1969 1970 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); 1971 1972 if (delta <= feeder_rate_round) 1973 c->speed = hwspeed; 1974 1975 ret = feeder_chain(c); 1976 1977 if (ret == 0) 1978 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, 1979 sndbuf_getfmt(c->bufhard)); 1980 1981 if (ret == 0) 1982 ret = chn_resizebuf(c, -2, 0, 0); 1983 1984 return (ret); 1985 } 1986 1987 int 1988 chn_setspeed(struct pcm_channel *c, uint32_t speed) 1989 { 1990 uint32_t oldformat, oldspeed, format; 1991 int ret; 1992 1993 #if 0 1994 /* XXX force 48k */ 1995 if (c->format & AFMT_PASSTHROUGH) 1996 speed = AFMT_PASSTHROUGH_RATE; 1997 #endif 1998 1999 oldformat = c->format; 2000 oldspeed = c->speed; 2001 format = oldformat; 2002 2003 ret = chn_setparam(c, format, speed); 2004 if (ret != 0) { 2005 if (snd_verbose > 3) 2006 device_printf(c->dev, 2007 "%s(): Setting speed %d failed, " 2008 "falling back to %d\n", 2009 __func__, speed, oldspeed); 2010 chn_setparam(c, c->format, oldspeed); 2011 } 2012 2013 return (ret); 2014 } 2015 2016 int 2017 chn_setformat(struct pcm_channel *c, uint32_t format) 2018 { 2019 uint32_t oldformat, oldspeed, speed; 2020 int ret; 2021 2022 /* XXX force stereo */ 2023 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { 2024 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, 2025 AFMT_PASSTHROUGH_EXTCHANNEL); 2026 } 2027 2028 oldformat = c->format; 2029 oldspeed = c->speed; 2030 speed = oldspeed; 2031 2032 ret = chn_setparam(c, format, speed); 2033 if (ret != 0) { 2034 if (snd_verbose > 3) 2035 device_printf(c->dev, 2036 "%s(): Format change 0x%08x failed, " 2037 "falling back to 0x%08x\n", 2038 __func__, format, oldformat); 2039 chn_setparam(c, oldformat, oldspeed); 2040 } 2041 2042 return (ret); 2043 } 2044 2045 void 2046 chn_syncstate(struct pcm_channel *c) 2047 { 2048 struct snddev_info *d; 2049 struct snd_mixer *m; 2050 2051 d = (c != NULL) ? c->parentsnddev : NULL; 2052 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : 2053 NULL; 2054 2055 if (d == NULL || m == NULL) 2056 return; 2057 2058 CHN_LOCKASSERT(c); 2059 2060 if (c->feederflags & (1 << FEEDER_VOLUME)) { 2061 uint32_t parent; 2062 int vol, pvol, left, right, center; 2063 2064 if (c->direction == PCMDIR_PLAY && 2065 (d->flags & SD_F_SOFTPCMVOL)) { 2066 /* CHN_UNLOCK(c); */ 2067 vol = mix_get(m, SOUND_MIXER_PCM); 2068 parent = mix_getparent(m, SOUND_MIXER_PCM); 2069 if (parent != SOUND_MIXER_NONE) 2070 pvol = mix_get(m, parent); 2071 else 2072 pvol = 100 | (100 << 8); 2073 /* CHN_LOCK(c); */ 2074 } else { 2075 vol = 100 | (100 << 8); 2076 pvol = vol; 2077 } 2078 2079 if (vol == -1) { 2080 device_printf(c->dev, 2081 "Soft PCM Volume: Failed to read pcm " 2082 "default value\n"); 2083 vol = 100 | (100 << 8); 2084 } 2085 2086 if (pvol == -1) { 2087 device_printf(c->dev, 2088 "Soft PCM Volume: Failed to read parent " 2089 "default value\n"); 2090 pvol = 100 | (100 << 8); 2091 } 2092 2093 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; 2094 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; 2095 center = (left + right) >> 1; 2096 2097 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); 2098 } 2099 2100 if (c->feederflags & (1 << FEEDER_EQ)) { 2101 struct pcm_feeder *f; 2102 int treble, bass, state; 2103 2104 /* CHN_UNLOCK(c); */ 2105 treble = mix_get(m, SOUND_MIXER_TREBLE); 2106 bass = mix_get(m, SOUND_MIXER_BASS); 2107 /* CHN_LOCK(c); */ 2108 2109 if (treble == -1) 2110 treble = 50; 2111 else 2112 treble = ((treble & 0x7f) + 2113 ((treble >> 8) & 0x7f)) >> 1; 2114 2115 if (bass == -1) 2116 bass = 50; 2117 else 2118 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; 2119 2120 f = chn_findfeeder(c, FEEDER_EQ); 2121 if (f != NULL) { 2122 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) 2123 device_printf(c->dev, 2124 "EQ: Failed to set treble -- %d\n", 2125 treble); 2126 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) 2127 device_printf(c->dev, 2128 "EQ: Failed to set bass -- %d\n", 2129 bass); 2130 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) 2131 device_printf(c->dev, 2132 "EQ: Failed to set preamp -- %d\n", 2133 d->eqpreamp); 2134 if (d->flags & SD_F_EQ_BYPASSED) 2135 state = FEEDEQ_BYPASS; 2136 else if (d->flags & SD_F_EQ_ENABLED) 2137 state = FEEDEQ_ENABLE; 2138 else 2139 state = FEEDEQ_DISABLE; 2140 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) 2141 device_printf(c->dev, 2142 "EQ: Failed to set state -- %d\n", state); 2143 } 2144 } 2145 } 2146 2147 int 2148 chn_trigger(struct pcm_channel *c, int go) 2149 { 2150 #ifdef DEV_ISA 2151 struct snd_dbuf *b = c->bufhard; 2152 #endif 2153 struct snddev_info *d = c->parentsnddev; 2154 int ret; 2155 2156 CHN_LOCKASSERT(c); 2157 #ifdef DEV_ISA 2158 if (SND_DMA(b) && (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD)) 2159 sndbuf_dmabounce(b); 2160 #endif 2161 if (!PCMTRIG_COMMON(go)) 2162 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); 2163 2164 if (go == c->trigger) 2165 return (0); 2166 2167 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); 2168 if (ret != 0) 2169 return (ret); 2170 2171 switch (go) { 2172 case PCMTRIG_START: 2173 if (snd_verbose > 3) 2174 device_printf(c->dev, 2175 "%s() %s: calling go=0x%08x , " 2176 "prev=0x%08x\n", __func__, c->name, go, 2177 c->trigger); 2178 if (c->trigger != PCMTRIG_START) { 2179 c->trigger = go; 2180 CHN_UNLOCK(c); 2181 PCM_LOCK(d); 2182 CHN_INSERT_HEAD(d, c, channels.pcm.busy); 2183 PCM_UNLOCK(d); 2184 CHN_LOCK(c); 2185 chn_syncstate(c); 2186 } 2187 break; 2188 case PCMTRIG_STOP: 2189 case PCMTRIG_ABORT: 2190 if (snd_verbose > 3) 2191 device_printf(c->dev, 2192 "%s() %s: calling go=0x%08x , " 2193 "prev=0x%08x\n", __func__, c->name, go, 2194 c->trigger); 2195 if (c->trigger == PCMTRIG_START) { 2196 c->trigger = go; 2197 CHN_UNLOCK(c); 2198 PCM_LOCK(d); 2199 CHN_REMOVE(d, c, channels.pcm.busy); 2200 PCM_UNLOCK(d); 2201 CHN_LOCK(c); 2202 } 2203 break; 2204 default: 2205 break; 2206 } 2207 2208 return (0); 2209 } 2210 2211 /** 2212 * @brief Queries sound driver for sample-aligned hardware buffer pointer index 2213 * 2214 * This function obtains the hardware pointer location, then aligns it to 2215 * the current bytes-per-sample value before returning. (E.g., a channel 2216 * running in 16 bit stereo mode would require 4 bytes per sample, so a 2217 * hwptr value ranging from 32-35 would be returned as 32.) 2218 * 2219 * @param c PCM channel context 2220 * @returns sample-aligned hardware buffer pointer index 2221 */ 2222 int 2223 chn_getptr(struct pcm_channel *c) 2224 { 2225 int hwptr; 2226 2227 CHN_LOCKASSERT(c); 2228 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; 2229 return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); 2230 } 2231 2232 struct pcmchan_caps * 2233 chn_getcaps(struct pcm_channel *c) 2234 { 2235 CHN_LOCKASSERT(c); 2236 return CHANNEL_GETCAPS(c->methods, c->devinfo); 2237 } 2238 2239 u_int32_t 2240 chn_getformats(struct pcm_channel *c) 2241 { 2242 u_int32_t *fmtlist, fmts; 2243 int i; 2244 2245 fmtlist = chn_getcaps(c)->fmtlist; 2246 fmts = 0; 2247 for (i = 0; fmtlist[i]; i++) 2248 fmts |= fmtlist[i]; 2249 2250 /* report software-supported formats */ 2251 if (!CHN_BITPERFECT(c) && report_soft_formats) 2252 fmts |= AFMT_CONVERTIBLE; 2253 2254 return (AFMT_ENCODING(fmts)); 2255 } 2256 2257 int 2258 chn_notify(struct pcm_channel *c, u_int32_t flags) 2259 { 2260 struct pcm_channel *ch; 2261 struct pcmchan_caps *caps; 2262 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; 2263 uint32_t vpflags; 2264 int dirty, err, run, nrun; 2265 2266 CHN_LOCKASSERT(c); 2267 2268 if (CHN_EMPTY(c, children)) 2269 return (ENODEV); 2270 2271 err = 0; 2272 2273 /* 2274 * If the hwchan is running, we can't change its rate, format or 2275 * blocksize 2276 */ 2277 run = (CHN_STARTED(c)) ? 1 : 0; 2278 if (run) 2279 flags &= CHN_N_VOLUME | CHN_N_TRIGGER; 2280 2281 if (flags & CHN_N_RATE) { 2282 /* 2283 * XXX I'll make good use of this someday. 2284 * However this is currently being superseded by 2285 * the availability of CHN_F_VCHAN_DYNAMIC. 2286 */ 2287 } 2288 2289 if (flags & CHN_N_FORMAT) { 2290 /* 2291 * XXX I'll make good use of this someday. 2292 * However this is currently being superseded by 2293 * the availability of CHN_F_VCHAN_DYNAMIC. 2294 */ 2295 } 2296 2297 if (flags & CHN_N_VOLUME) { 2298 /* 2299 * XXX I'll make good use of this someday, though 2300 * soft volume control is currently pretty much 2301 * integrated. 2302 */ 2303 } 2304 2305 if (flags & CHN_N_BLOCKSIZE) { 2306 /* 2307 * Set to default latency profile 2308 */ 2309 chn_setlatency(c, chn_latency); 2310 } 2311 2312 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { 2313 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; 2314 if (nrun && !run) 2315 err = chn_start(c, 1); 2316 if (!nrun && run) 2317 chn_abort(c); 2318 flags &= ~CHN_N_TRIGGER; 2319 } 2320 2321 if (flags & CHN_N_TRIGGER) { 2322 if (c->direction == PCMDIR_PLAY) { 2323 vchanformat = &c->parentsnddev->pvchanformat; 2324 vchanrate = &c->parentsnddev->pvchanrate; 2325 } else { 2326 vchanformat = &c->parentsnddev->rvchanformat; 2327 vchanrate = &c->parentsnddev->rvchanrate; 2328 } 2329 2330 /* Dynamic Virtual Channel */ 2331 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { 2332 bestformat = *vchanformat; 2333 bestspeed = *vchanrate; 2334 } else { 2335 bestformat = 0; 2336 bestspeed = 0; 2337 } 2338 2339 besthwformat = 0; 2340 nrun = 0; 2341 caps = chn_getcaps(c); 2342 dirty = 0; 2343 vpflags = 0; 2344 2345 CHN_FOREACH(ch, c, children.busy) { 2346 CHN_LOCK(ch); 2347 if ((ch->format & AFMT_PASSTHROUGH) && 2348 snd_fmtvalid(ch->format, caps->fmtlist)) { 2349 bestformat = ch->format; 2350 bestspeed = ch->speed; 2351 CHN_UNLOCK(ch); 2352 vpflags = CHN_F_PASSTHROUGH; 2353 nrun++; 2354 break; 2355 } 2356 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { 2357 if (c->flags & CHN_F_VCHAN_ADAPTIVE) { 2358 bestspeed = ch->speed; 2359 RANGE(bestspeed, caps->minspeed, 2360 caps->maxspeed); 2361 besthwformat = snd_fmtbest(ch->format, 2362 caps->fmtlist); 2363 if (besthwformat != 0) 2364 bestformat = besthwformat; 2365 } 2366 CHN_UNLOCK(ch); 2367 vpflags = CHN_F_EXCLUSIVE; 2368 nrun++; 2369 continue; 2370 } 2371 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || 2372 vpflags != 0) { 2373 CHN_UNLOCK(ch); 2374 nrun++; 2375 continue; 2376 } 2377 if (ch->speed > bestspeed) { 2378 bestspeed = ch->speed; 2379 RANGE(bestspeed, caps->minspeed, 2380 caps->maxspeed); 2381 } 2382 besthwformat = snd_fmtbest(ch->format, caps->fmtlist); 2383 if (!(besthwformat & AFMT_VCHAN)) { 2384 CHN_UNLOCK(ch); 2385 nrun++; 2386 continue; 2387 } 2388 if (AFMT_CHANNEL(besthwformat) > 2389 AFMT_CHANNEL(bestformat)) 2390 bestformat = besthwformat; 2391 else if (AFMT_CHANNEL(besthwformat) == 2392 AFMT_CHANNEL(bestformat) && 2393 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) 2394 bestformat = besthwformat; 2395 CHN_UNLOCK(ch); 2396 nrun++; 2397 } 2398 2399 if (bestformat == 0) 2400 bestformat = c->format; 2401 if (bestspeed == 0) 2402 bestspeed = c->speed; 2403 2404 if (bestformat != c->format || bestspeed != c->speed) 2405 dirty = 1; 2406 2407 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2408 c->flags |= vpflags; 2409 2410 if (nrun && !run) { 2411 if (dirty) { 2412 bestspeed = CHANNEL_SETSPEED(c->methods, 2413 c->devinfo, bestspeed); 2414 err = chn_reset(c, bestformat, bestspeed); 2415 } 2416 if (err == 0 && dirty) { 2417 CHN_FOREACH(ch, c, children.busy) { 2418 CHN_LOCK(ch); 2419 if (VCHAN_SYNC_REQUIRED(ch)) 2420 vchan_sync(ch); 2421 CHN_UNLOCK(ch); 2422 } 2423 } 2424 if (err == 0) { 2425 if (dirty) 2426 c->flags |= CHN_F_DIRTY; 2427 err = chn_start(c, 1); 2428 } 2429 } 2430 2431 if (nrun && run && dirty) { 2432 chn_abort(c); 2433 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, 2434 bestspeed); 2435 err = chn_reset(c, bestformat, bestspeed); 2436 if (err == 0) { 2437 CHN_FOREACH(ch, c, children.busy) { 2438 CHN_LOCK(ch); 2439 if (VCHAN_SYNC_REQUIRED(ch)) 2440 vchan_sync(ch); 2441 CHN_UNLOCK(ch); 2442 } 2443 } 2444 if (err == 0) { 2445 c->flags |= CHN_F_DIRTY; 2446 err = chn_start(c, 1); 2447 } 2448 } 2449 2450 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && 2451 (bestformat & AFMT_VCHAN)) { 2452 *vchanformat = bestformat; 2453 *vchanrate = bestspeed; 2454 } 2455 2456 if (!nrun && run) { 2457 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2458 bestformat = *vchanformat; 2459 bestspeed = *vchanrate; 2460 chn_abort(c); 2461 if (c->format != bestformat || c->speed != bestspeed) 2462 chn_reset(c, bestformat, bestspeed); 2463 } 2464 } 2465 2466 return (err); 2467 } 2468 2469 /** 2470 * @brief Fetch array of supported discrete sample rates 2471 * 2472 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for 2473 * detailed information. 2474 * 2475 * @note If the operation isn't supported, this function will just return 0 2476 * (no rates in the array), and *rates will be set to NULL. Callers 2477 * should examine rates @b only if this function returns non-zero. 2478 * 2479 * @param c pcm channel to examine 2480 * @param rates pointer to array of integers; rate table will be recorded here 2481 * 2482 * @return number of rates in the array pointed to be @c rates 2483 */ 2484 int 2485 chn_getrates(struct pcm_channel *c, int **rates) 2486 { 2487 KASSERT(rates != NULL, ("rates is null")); 2488 CHN_LOCKASSERT(c); 2489 return CHANNEL_GETRATES(c->methods, c->devinfo, rates); 2490 } 2491 2492 /** 2493 * @brief Remove channel from a sync group, if there is one. 2494 * 2495 * This function is initially intended for the following conditions: 2496 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) 2497 * - Closing a device. (A channel can't be destroyed if it's still in use.) 2498 * 2499 * @note Before calling this function, the syncgroup list mutex must be 2500 * held. (Consider pcm_channel::sm protected by the SG list mutex 2501 * whether @c c is locked or not.) 2502 * 2503 * @param c channel device to be started or closed 2504 * @returns If this channel was the only member of a group, the group ID 2505 * is returned to the caller so that the caller can release it 2506 * via free_unr() after giving up the syncgroup lock. Else it 2507 * returns 0. 2508 */ 2509 int 2510 chn_syncdestroy(struct pcm_channel *c) 2511 { 2512 struct pcmchan_syncmember *sm; 2513 struct pcmchan_syncgroup *sg; 2514 int sg_id; 2515 2516 sg_id = 0; 2517 2518 PCM_SG_LOCKASSERT(MA_OWNED); 2519 2520 if (c->sm != NULL) { 2521 sm = c->sm; 2522 sg = sm->parent; 2523 c->sm = NULL; 2524 2525 KASSERT(sg != NULL, ("syncmember has null parent")); 2526 2527 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); 2528 free(sm, M_DEVBUF); 2529 2530 if (SLIST_EMPTY(&sg->members)) { 2531 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); 2532 sg_id = sg->id; 2533 free(sg, M_DEVBUF); 2534 } 2535 } 2536 2537 return sg_id; 2538 } 2539 2540 #ifdef OSSV4_EXPERIMENT 2541 int 2542 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) 2543 { 2544 CHN_LOCKASSERT(c); 2545 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); 2546 } 2547 #endif 2548