1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006 6 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> 7 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_snd.h" 34 #endif 35 36 #include <dev/sound/pcm/sound.h> 37 #include <dev/sound/pcm/vchan.h> 38 39 #include "feeder_if.h" 40 41 SND_DECLARE_FILE("$FreeBSD$"); 42 43 int report_soft_formats = 1; 44 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, 45 &report_soft_formats, 0, "report software-emulated formats"); 46 47 int report_soft_matrix = 1; 48 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, 49 &report_soft_matrix, 0, "report software-emulated channel matrixing"); 50 51 int chn_latency = CHN_LATENCY_DEFAULT; 52 53 static int 54 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) 55 { 56 int err, val; 57 58 val = chn_latency; 59 err = sysctl_handle_int(oidp, &val, 0, req); 60 if (err != 0 || req->newptr == NULL) 61 return err; 62 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) 63 err = EINVAL; 64 else 65 chn_latency = val; 66 67 return err; 68 } 69 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, 70 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 71 sysctl_hw_snd_latency, "I", 72 "buffering latency (0=low ... 10=high)"); 73 74 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; 75 76 static int 77 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) 78 { 79 int err, val; 80 81 val = chn_latency_profile; 82 err = sysctl_handle_int(oidp, &val, 0, req); 83 if (err != 0 || req->newptr == NULL) 84 return err; 85 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) 86 err = EINVAL; 87 else 88 chn_latency_profile = val; 89 90 return err; 91 } 92 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, 93 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 94 sysctl_hw_snd_latency_profile, "I", 95 "buffering latency profile (0=aggressive 1=safe)"); 96 97 static int chn_timeout = CHN_TIMEOUT; 98 99 static int 100 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) 101 { 102 int err, val; 103 104 val = chn_timeout; 105 err = sysctl_handle_int(oidp, &val, 0, req); 106 if (err != 0 || req->newptr == NULL) 107 return err; 108 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) 109 err = EINVAL; 110 else 111 chn_timeout = val; 112 113 return err; 114 } 115 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, 116 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 117 sysctl_hw_snd_timeout, "I", 118 "interrupt timeout (1 - 10) seconds"); 119 120 static int chn_vpc_autoreset = 1; 121 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN, 122 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); 123 124 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; 125 126 static void 127 chn_vpc_proc(int reset, int db) 128 { 129 struct snddev_info *d; 130 struct pcm_channel *c; 131 int i; 132 133 for (i = 0; pcm_devclass != NULL && 134 i < devclass_get_maxunit(pcm_devclass); i++) { 135 d = devclass_get_softc(pcm_devclass, i); 136 if (!PCM_REGISTERED(d)) 137 continue; 138 PCM_LOCK(d); 139 PCM_WAIT(d); 140 PCM_ACQUIRE(d); 141 CHN_FOREACH(c, d, channels.pcm) { 142 CHN_LOCK(c); 143 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); 144 if (reset != 0) 145 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 146 CHN_UNLOCK(c); 147 } 148 PCM_RELEASE(d); 149 PCM_UNLOCK(d); 150 } 151 } 152 153 static int 154 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) 155 { 156 int err, val; 157 158 val = chn_vol_0db_pcm; 159 err = sysctl_handle_int(oidp, &val, 0, req); 160 if (err != 0 || req->newptr == NULL) 161 return (err); 162 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) 163 return (EINVAL); 164 165 chn_vol_0db_pcm = val; 166 chn_vpc_proc(0, val); 167 168 return (0); 169 } 170 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, 171 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 172 sysctl_hw_snd_vpc_0db, "I", 173 "0db relative level"); 174 175 static int 176 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) 177 { 178 int err, val; 179 180 val = 0; 181 err = sysctl_handle_int(oidp, &val, 0, req); 182 if (err != 0 || req->newptr == NULL || val == 0) 183 return (err); 184 185 chn_vol_0db_pcm = SND_VOL_0DB_PCM; 186 chn_vpc_proc(1, SND_VOL_0DB_PCM); 187 188 return (0); 189 } 190 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, 191 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 192 sysctl_hw_snd_vpc_reset, "I", 193 "reset volume on all channels"); 194 195 static int chn_usefrags = 0; 196 static int chn_syncdelay = -1; 197 198 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN, 199 &chn_usefrags, 0, "prefer setfragments() over setblocksize()"); 200 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN, 201 &chn_syncdelay, 0, 202 "append (0-1000) millisecond trailing buffer delay on each sync"); 203 204 /** 205 * @brief Channel sync group lock 206 * 207 * Clients should acquire this lock @b without holding any channel locks 208 * before touching syncgroups or the main syncgroup list. 209 */ 210 struct mtx snd_pcm_syncgroups_mtx; 211 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); 212 /** 213 * @brief syncgroups' master list 214 * 215 * Each time a channel syncgroup is created, it's added to this list. This 216 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. 217 * 218 * See SNDCTL_DSP_SYNCGROUP for more information. 219 */ 220 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); 221 222 static void 223 chn_lockinit(struct pcm_channel *c, int dir) 224 { 225 switch (dir) { 226 case PCMDIR_PLAY: 227 c->lock = snd_mtxcreate(c->name, "pcm play channel"); 228 cv_init(&c->intr_cv, "pcmwr"); 229 break; 230 case PCMDIR_PLAY_VIRTUAL: 231 c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); 232 cv_init(&c->intr_cv, "pcmwrv"); 233 break; 234 case PCMDIR_REC: 235 c->lock = snd_mtxcreate(c->name, "pcm record channel"); 236 cv_init(&c->intr_cv, "pcmrd"); 237 break; 238 case PCMDIR_REC_VIRTUAL: 239 c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); 240 cv_init(&c->intr_cv, "pcmrdv"); 241 break; 242 default: 243 panic("%s(): Invalid direction=%d", __func__, dir); 244 break; 245 } 246 247 cv_init(&c->cv, "pcmchn"); 248 } 249 250 static void 251 chn_lockdestroy(struct pcm_channel *c) 252 { 253 CHN_LOCKASSERT(c); 254 255 CHN_BROADCAST(&c->cv); 256 CHN_BROADCAST(&c->intr_cv); 257 258 cv_destroy(&c->cv); 259 cv_destroy(&c->intr_cv); 260 261 snd_mtxfree(c->lock); 262 } 263 264 /** 265 * @brief Determine channel is ready for I/O 266 * 267 * @retval 1 = ready for I/O 268 * @retval 0 = not ready for I/O 269 */ 270 static int 271 chn_polltrigger(struct pcm_channel *c) 272 { 273 struct snd_dbuf *bs = c->bufsoft; 274 u_int delta; 275 276 CHN_LOCKASSERT(c); 277 278 if (c->flags & CHN_F_MMAP) { 279 if (sndbuf_getprevtotal(bs) < c->lw) 280 delta = c->lw; 281 else 282 delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); 283 } else { 284 if (c->direction == PCMDIR_PLAY) 285 delta = sndbuf_getfree(bs); 286 else 287 delta = sndbuf_getready(bs); 288 } 289 290 return ((delta < c->lw) ? 0 : 1); 291 } 292 293 static void 294 chn_pollreset(struct pcm_channel *c) 295 { 296 297 CHN_LOCKASSERT(c); 298 sndbuf_updateprevtotal(c->bufsoft); 299 } 300 301 static void 302 chn_wakeup(struct pcm_channel *c) 303 { 304 struct snd_dbuf *bs; 305 struct pcm_channel *ch; 306 307 CHN_LOCKASSERT(c); 308 309 bs = c->bufsoft; 310 311 if (CHN_EMPTY(c, children.busy)) { 312 if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) 313 selwakeuppri(sndbuf_getsel(bs), PRIBIO); 314 if (c->flags & CHN_F_SLEEPING) { 315 /* 316 * Ok, I can just panic it right here since it is 317 * quite obvious that we never allow multiple waiters 318 * from userland. I'm too generous... 319 */ 320 CHN_BROADCAST(&c->intr_cv); 321 } 322 } else { 323 CHN_FOREACH(ch, c, children.busy) { 324 CHN_LOCK(ch); 325 chn_wakeup(ch); 326 CHN_UNLOCK(ch); 327 } 328 } 329 } 330 331 static int 332 chn_sleep(struct pcm_channel *c, int timeout) 333 { 334 int ret; 335 336 CHN_LOCKASSERT(c); 337 338 if (c->flags & CHN_F_DEAD) 339 return (EINVAL); 340 341 c->flags |= CHN_F_SLEEPING; 342 ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); 343 c->flags &= ~CHN_F_SLEEPING; 344 345 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); 346 } 347 348 /* 349 * chn_dmaupdate() tracks the status of a dma transfer, 350 * updating pointers. 351 */ 352 353 static unsigned int 354 chn_dmaupdate(struct pcm_channel *c) 355 { 356 struct snd_dbuf *b = c->bufhard; 357 unsigned int delta, old, hwptr, amt; 358 359 KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); 360 CHN_LOCKASSERT(c); 361 362 old = sndbuf_gethwptr(b); 363 hwptr = chn_getptr(c); 364 delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); 365 sndbuf_sethwptr(b, hwptr); 366 367 if (c->direction == PCMDIR_PLAY) { 368 amt = min(delta, sndbuf_getready(b)); 369 amt -= amt % sndbuf_getalign(b); 370 if (amt > 0) 371 sndbuf_dispose(b, NULL, amt); 372 } else { 373 amt = min(delta, sndbuf_getfree(b)); 374 amt -= amt % sndbuf_getalign(b); 375 if (amt > 0) 376 sndbuf_acquire(b, NULL, amt); 377 } 378 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { 379 device_printf(c->dev, "WARNING: %s DMA completion " 380 "too fast/slow ! hwptr=%u, old=%u " 381 "delta=%u amt=%u ready=%u free=%u\n", 382 CHN_DIRSTR(c), hwptr, old, delta, amt, 383 sndbuf_getready(b), sndbuf_getfree(b)); 384 } 385 386 return delta; 387 } 388 389 static void 390 chn_wrfeed(struct pcm_channel *c) 391 { 392 struct snd_dbuf *b = c->bufhard; 393 struct snd_dbuf *bs = c->bufsoft; 394 unsigned int amt, want, wasfree; 395 396 CHN_LOCKASSERT(c); 397 398 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) 399 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); 400 401 wasfree = sndbuf_getfree(b); 402 want = min(sndbuf_getsize(b), 403 imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - 404 sndbuf_getready(b))); 405 amt = min(wasfree, want); 406 if (amt > 0) 407 sndbuf_feed(bs, b, c, c->feeder, amt); 408 409 /* 410 * Possible xruns. There should be no empty space left in buffer. 411 */ 412 if (sndbuf_getready(b) < want) 413 c->xruns++; 414 415 if (sndbuf_getfree(b) < wasfree) 416 chn_wakeup(c); 417 } 418 419 #if 0 420 static void 421 chn_wrupdate(struct pcm_channel *c) 422 { 423 424 CHN_LOCKASSERT(c); 425 KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); 426 427 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 428 return; 429 chn_dmaupdate(c); 430 chn_wrfeed(c); 431 /* tell the driver we've updated the primary buffer */ 432 chn_trigger(c, PCMTRIG_EMLDMAWR); 433 } 434 #endif 435 436 static void 437 chn_wrintr(struct pcm_channel *c) 438 { 439 440 CHN_LOCKASSERT(c); 441 /* update pointers in primary buffer */ 442 chn_dmaupdate(c); 443 /* ...and feed from secondary to primary */ 444 chn_wrfeed(c); 445 /* tell the driver we've updated the primary buffer */ 446 chn_trigger(c, PCMTRIG_EMLDMAWR); 447 } 448 449 /* 450 * user write routine - uiomove data into secondary buffer, trigger if necessary 451 * if blocking, sleep, rinse and repeat. 452 * 453 * called externally, so must handle locking 454 */ 455 456 int 457 chn_write(struct pcm_channel *c, struct uio *buf) 458 { 459 struct snd_dbuf *bs = c->bufsoft; 460 void *off; 461 int ret, timeout, sz, t, p; 462 463 CHN_LOCKASSERT(c); 464 465 ret = 0; 466 timeout = chn_timeout * hz; 467 468 while (ret == 0 && buf->uio_resid > 0) { 469 sz = min(buf->uio_resid, sndbuf_getfree(bs)); 470 if (sz > 0) { 471 /* 472 * The following assumes that the free space in 473 * the buffer can never be less around the 474 * unlock-uiomove-lock sequence. 475 */ 476 while (ret == 0 && sz > 0) { 477 p = sndbuf_getfreeptr(bs); 478 t = min(sz, sndbuf_getsize(bs) - p); 479 off = sndbuf_getbufofs(bs, p); 480 CHN_UNLOCK(c); 481 ret = uiomove(off, t, buf); 482 CHN_LOCK(c); 483 sz -= t; 484 sndbuf_acquire(bs, NULL, t); 485 } 486 ret = 0; 487 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 488 ret = chn_start(c, 0); 489 if (ret != 0) 490 c->flags |= CHN_F_DEAD; 491 } 492 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { 493 /** 494 * @todo Evaluate whether EAGAIN is truly desirable. 495 * 4Front drivers behave like this, but I'm 496 * not sure if it at all violates the "write 497 * should be allowed to block" model. 498 * 499 * The idea is that, while set with CHN_F_NOTRIGGER, 500 * a channel isn't playing, *but* without this we 501 * end up with "interrupt timeout / channel dead". 502 */ 503 ret = EAGAIN; 504 } else { 505 ret = chn_sleep(c, timeout); 506 if (ret == EAGAIN) { 507 ret = EINVAL; 508 c->flags |= CHN_F_DEAD; 509 device_printf(c->dev, "%s(): %s: " 510 "play interrupt timeout, channel dead\n", 511 __func__, c->name); 512 } else if (ret == ERESTART || ret == EINTR) 513 c->flags |= CHN_F_ABORTING; 514 } 515 } 516 517 return (ret); 518 } 519 520 /* 521 * Feed new data from the read buffer. Can be called in the bottom half. 522 */ 523 static void 524 chn_rdfeed(struct pcm_channel *c) 525 { 526 struct snd_dbuf *b = c->bufhard; 527 struct snd_dbuf *bs = c->bufsoft; 528 unsigned int amt; 529 530 CHN_LOCKASSERT(c); 531 532 if (c->flags & CHN_F_MMAP) 533 sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); 534 535 amt = sndbuf_getfree(bs); 536 if (amt > 0) 537 sndbuf_feed(b, bs, c, c->feeder, amt); 538 539 amt = sndbuf_getready(b); 540 if (amt > 0) { 541 c->xruns++; 542 sndbuf_dispose(b, NULL, amt); 543 } 544 545 if (sndbuf_getready(bs) > 0) 546 chn_wakeup(c); 547 } 548 549 #if 0 550 static void 551 chn_rdupdate(struct pcm_channel *c) 552 { 553 554 CHN_LOCKASSERT(c); 555 KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); 556 557 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 558 return; 559 chn_trigger(c, PCMTRIG_EMLDMARD); 560 chn_dmaupdate(c); 561 chn_rdfeed(c); 562 } 563 #endif 564 565 /* read interrupt routine. Must be called with interrupts blocked. */ 566 static void 567 chn_rdintr(struct pcm_channel *c) 568 { 569 570 CHN_LOCKASSERT(c); 571 /* tell the driver to update the primary buffer if non-dma */ 572 chn_trigger(c, PCMTRIG_EMLDMARD); 573 /* update pointers in primary buffer */ 574 chn_dmaupdate(c); 575 /* ...and feed from primary to secondary */ 576 chn_rdfeed(c); 577 } 578 579 /* 580 * user read routine - trigger if necessary, uiomove data from secondary buffer 581 * if blocking, sleep, rinse and repeat. 582 * 583 * called externally, so must handle locking 584 */ 585 586 int 587 chn_read(struct pcm_channel *c, struct uio *buf) 588 { 589 struct snd_dbuf *bs = c->bufsoft; 590 void *off; 591 int ret, timeout, sz, t, p; 592 593 CHN_LOCKASSERT(c); 594 595 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 596 ret = chn_start(c, 0); 597 if (ret != 0) { 598 c->flags |= CHN_F_DEAD; 599 return (ret); 600 } 601 } 602 603 ret = 0; 604 timeout = chn_timeout * hz; 605 606 while (ret == 0 && buf->uio_resid > 0) { 607 sz = min(buf->uio_resid, sndbuf_getready(bs)); 608 if (sz > 0) { 609 /* 610 * The following assumes that the free space in 611 * the buffer can never be less around the 612 * unlock-uiomove-lock sequence. 613 */ 614 while (ret == 0 && sz > 0) { 615 p = sndbuf_getreadyptr(bs); 616 t = min(sz, sndbuf_getsize(bs) - p); 617 off = sndbuf_getbufofs(bs, p); 618 CHN_UNLOCK(c); 619 ret = uiomove(off, t, buf); 620 CHN_LOCK(c); 621 sz -= t; 622 sndbuf_dispose(bs, NULL, t); 623 } 624 ret = 0; 625 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) 626 ret = EAGAIN; 627 else { 628 ret = chn_sleep(c, timeout); 629 if (ret == EAGAIN) { 630 ret = EINVAL; 631 c->flags |= CHN_F_DEAD; 632 device_printf(c->dev, "%s(): %s: " 633 "record interrupt timeout, channel dead\n", 634 __func__, c->name); 635 } else if (ret == ERESTART || ret == EINTR) 636 c->flags |= CHN_F_ABORTING; 637 } 638 } 639 640 return (ret); 641 } 642 643 void 644 chn_intr_locked(struct pcm_channel *c) 645 { 646 647 CHN_LOCKASSERT(c); 648 649 c->interrupts++; 650 651 if (c->direction == PCMDIR_PLAY) 652 chn_wrintr(c); 653 else 654 chn_rdintr(c); 655 } 656 657 void 658 chn_intr(struct pcm_channel *c) 659 { 660 661 if (CHN_LOCKOWNED(c)) { 662 chn_intr_locked(c); 663 return; 664 } 665 666 CHN_LOCK(c); 667 chn_intr_locked(c); 668 CHN_UNLOCK(c); 669 } 670 671 u_int32_t 672 chn_start(struct pcm_channel *c, int force) 673 { 674 u_int32_t i, j; 675 struct snd_dbuf *b = c->bufhard; 676 struct snd_dbuf *bs = c->bufsoft; 677 int err; 678 679 CHN_LOCKASSERT(c); 680 /* if we're running, or if we're prevented from triggering, bail */ 681 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) 682 return (EINVAL); 683 684 err = 0; 685 686 if (force) { 687 i = 1; 688 j = 0; 689 } else { 690 if (c->direction == PCMDIR_REC) { 691 i = sndbuf_getfree(bs); 692 j = (i > 0) ? 1 : sndbuf_getready(b); 693 } else { 694 if (sndbuf_getfree(bs) == 0) { 695 i = 1; 696 j = 0; 697 } else { 698 struct snd_dbuf *pb; 699 700 pb = CHN_BUF_PARENT(c, b); 701 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); 702 j = sndbuf_getalign(pb); 703 } 704 } 705 if (snd_verbose > 3 && CHN_EMPTY(c, children)) 706 device_printf(c->dev, "%s(): %s (%s) threshold " 707 "i=%d j=%d\n", __func__, CHN_DIRSTR(c), 708 (c->flags & CHN_F_VIRTUAL) ? "virtual" : 709 "hardware", i, j); 710 } 711 712 if (i >= j) { 713 c->flags |= CHN_F_TRIGGERED; 714 sndbuf_setrun(b, 1); 715 if (c->flags & CHN_F_CLOSING) 716 c->feedcount = 2; 717 else { 718 c->feedcount = 0; 719 c->interrupts = 0; 720 c->xruns = 0; 721 } 722 if (c->parentchannel == NULL) { 723 if (c->direction == PCMDIR_PLAY) 724 sndbuf_fillsilence_rl(b, 725 sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); 726 if (snd_verbose > 3) 727 device_printf(c->dev, 728 "%s(): %s starting! (%s/%s) " 729 "(ready=%d force=%d i=%d j=%d " 730 "intrtimeout=%u latency=%dms)\n", 731 __func__, 732 (c->flags & CHN_F_HAS_VCHAN) ? 733 "VCHAN PARENT" : "HW", CHN_DIRSTR(c), 734 (c->flags & CHN_F_CLOSING) ? "closing" : 735 "running", 736 sndbuf_getready(b), 737 force, i, j, c->timeout, 738 (sndbuf_getsize(b) * 1000) / 739 (sndbuf_getalign(b) * sndbuf_getspd(b))); 740 } 741 err = chn_trigger(c, PCMTRIG_START); 742 } 743 744 return (err); 745 } 746 747 void 748 chn_resetbuf(struct pcm_channel *c) 749 { 750 struct snd_dbuf *b = c->bufhard; 751 struct snd_dbuf *bs = c->bufsoft; 752 753 c->blocks = 0; 754 sndbuf_reset(b); 755 sndbuf_reset(bs); 756 } 757 758 /* 759 * chn_sync waits until the space in the given channel goes above 760 * a threshold. The threshold is checked against fl or rl respectively. 761 * Assume that the condition can become true, do not check here... 762 */ 763 int 764 chn_sync(struct pcm_channel *c, int threshold) 765 { 766 struct snd_dbuf *b, *bs; 767 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; 768 u_int32_t cflag; 769 770 CHN_LOCKASSERT(c); 771 772 if (c->direction != PCMDIR_PLAY) 773 return (EINVAL); 774 775 bs = c->bufsoft; 776 777 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || 778 (threshold < 1 && sndbuf_getready(bs) < 1)) 779 return (0); 780 781 /* if we haven't yet started and nothing is buffered, else start*/ 782 if (CHN_STOPPED(c)) { 783 if (threshold > 0 || sndbuf_getready(bs) > 0) { 784 ret = chn_start(c, 1); 785 if (ret != 0) 786 return (ret); 787 } else 788 return (0); 789 } 790 791 b = CHN_BUF_PARENT(c, c->bufhard); 792 793 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); 794 795 syncdelay = chn_syncdelay; 796 797 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) 798 minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); 799 800 /* 801 * Append (0-1000) millisecond trailing buffer (if needed) 802 * for slower / high latency hardwares (notably USB audio) 803 * to avoid audible truncation. 804 */ 805 if (syncdelay > 0) 806 minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * 807 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; 808 809 minflush -= minflush % sndbuf_getalign(bs); 810 811 if (minflush > 0) { 812 threshold = min(minflush, sndbuf_getfree(bs)); 813 sndbuf_clear(bs, threshold); 814 sndbuf_acquire(bs, NULL, threshold); 815 minflush -= threshold; 816 } 817 818 resid = sndbuf_getready(bs); 819 residp = resid; 820 blksz = sndbuf_getblksz(b); 821 if (blksz < 1) { 822 device_printf(c->dev, 823 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", 824 __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), 825 sndbuf_getblksz(b), sndbuf_getblkcnt(b)); 826 if (sndbuf_getblkcnt(b) > 0) 827 blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); 828 if (blksz < 1) 829 blksz = 1; 830 } 831 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; 832 hcount = count; 833 ret = 0; 834 835 if (snd_verbose > 3) 836 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " 837 "minflush=%d resid=%d\n", __func__, c->timeout, count, 838 minflush, resid); 839 840 cflag = c->flags & CHN_F_CLOSING; 841 c->flags |= CHN_F_CLOSING; 842 while (count > 0 && (resid > 0 || minflush > 0)) { 843 ret = chn_sleep(c, c->timeout); 844 if (ret == ERESTART || ret == EINTR) { 845 c->flags |= CHN_F_ABORTING; 846 break; 847 } else if (ret == 0 || ret == EAGAIN) { 848 resid = sndbuf_getready(bs); 849 if (resid == residp) { 850 --count; 851 if (snd_verbose > 3) 852 device_printf(c->dev, 853 "%s(): [stalled] timeout=%d " 854 "count=%d hcount=%d " 855 "resid=%d minflush=%d\n", 856 __func__, c->timeout, count, 857 hcount, resid, minflush); 858 } else if (resid < residp && count < hcount) { 859 ++count; 860 if (snd_verbose > 3) 861 device_printf(c->dev, 862 "%s((): [resume] timeout=%d " 863 "count=%d hcount=%d " 864 "resid=%d minflush=%d\n", 865 __func__, c->timeout, count, 866 hcount, resid, minflush); 867 } 868 if (minflush > 0 && sndbuf_getfree(bs) > 0) { 869 threshold = min(minflush, 870 sndbuf_getfree(bs)); 871 sndbuf_clear(bs, threshold); 872 sndbuf_acquire(bs, NULL, threshold); 873 resid = sndbuf_getready(bs); 874 minflush -= threshold; 875 } 876 residp = resid; 877 } else 878 break; 879 } 880 c->flags &= ~CHN_F_CLOSING; 881 c->flags |= cflag; 882 883 if (snd_verbose > 3) 884 device_printf(c->dev, 885 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " 886 "minflush=%d ret=%d\n", 887 __func__, c->timeout, count, hcount, resid, residp, 888 minflush, ret); 889 890 return (0); 891 } 892 893 /* called externally, handle locking */ 894 int 895 chn_poll(struct pcm_channel *c, int ev, struct thread *td) 896 { 897 struct snd_dbuf *bs = c->bufsoft; 898 int ret; 899 900 CHN_LOCKASSERT(c); 901 902 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { 903 ret = chn_start(c, 1); 904 if (ret != 0) 905 return (0); 906 } 907 908 ret = 0; 909 if (chn_polltrigger(c)) { 910 chn_pollreset(c); 911 ret = ev; 912 } else 913 selrecord(td, sndbuf_getsel(bs)); 914 915 return (ret); 916 } 917 918 /* 919 * chn_abort terminates a running dma transfer. it may sleep up to 200ms. 920 * it returns the number of bytes that have not been transferred. 921 * 922 * called from: dsp_close, dsp_ioctl, with channel locked 923 */ 924 int 925 chn_abort(struct pcm_channel *c) 926 { 927 int missing = 0; 928 struct snd_dbuf *b = c->bufhard; 929 struct snd_dbuf *bs = c->bufsoft; 930 931 CHN_LOCKASSERT(c); 932 if (CHN_STOPPED(c)) 933 return 0; 934 c->flags |= CHN_F_ABORTING; 935 936 c->flags &= ~CHN_F_TRIGGERED; 937 /* kill the channel */ 938 chn_trigger(c, PCMTRIG_ABORT); 939 sndbuf_setrun(b, 0); 940 if (!(c->flags & CHN_F_VIRTUAL)) 941 chn_dmaupdate(c); 942 missing = sndbuf_getready(bs); 943 944 c->flags &= ~CHN_F_ABORTING; 945 return missing; 946 } 947 948 /* 949 * this routine tries to flush the dma transfer. It is called 950 * on a close of a playback channel. 951 * first, if there is data in the buffer, but the dma has not yet 952 * begun, we need to start it. 953 * next, we wait for the play buffer to drain 954 * finally, we stop the dma. 955 * 956 * called from: dsp_close, not valid for record channels. 957 */ 958 959 int 960 chn_flush(struct pcm_channel *c) 961 { 962 struct snd_dbuf *b = c->bufhard; 963 964 CHN_LOCKASSERT(c); 965 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); 966 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); 967 968 c->flags |= CHN_F_CLOSING; 969 chn_sync(c, 0); 970 c->flags &= ~CHN_F_TRIGGERED; 971 /* kill the channel */ 972 chn_trigger(c, PCMTRIG_ABORT); 973 sndbuf_setrun(b, 0); 974 975 c->flags &= ~CHN_F_CLOSING; 976 return 0; 977 } 978 979 int 980 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) 981 { 982 int i; 983 984 for (i = 0; fmtlist[i] != 0; i++) { 985 if (fmt == fmtlist[i] || 986 ((fmt & AFMT_PASSTHROUGH) && 987 (AFMT_ENCODING(fmt) & fmtlist[i]))) 988 return (1); 989 } 990 991 return (0); 992 } 993 994 static const struct { 995 char *name, *alias1, *alias2; 996 uint32_t afmt; 997 } afmt_tab[] = { 998 { "alaw", NULL, NULL, AFMT_A_LAW }, 999 { "mulaw", NULL, NULL, AFMT_MU_LAW }, 1000 { "u8", "8", NULL, AFMT_U8 }, 1001 { "s8", NULL, NULL, AFMT_S8 }, 1002 #if BYTE_ORDER == LITTLE_ENDIAN 1003 { "s16le", "s16", "16", AFMT_S16_LE }, 1004 { "s16be", NULL, NULL, AFMT_S16_BE }, 1005 #else 1006 { "s16le", NULL, NULL, AFMT_S16_LE }, 1007 { "s16be", "s16", "16", AFMT_S16_BE }, 1008 #endif 1009 { "u16le", NULL, NULL, AFMT_U16_LE }, 1010 { "u16be", NULL, NULL, AFMT_U16_BE }, 1011 { "s24le", NULL, NULL, AFMT_S24_LE }, 1012 { "s24be", NULL, NULL, AFMT_S24_BE }, 1013 { "u24le", NULL, NULL, AFMT_U24_LE }, 1014 { "u24be", NULL, NULL, AFMT_U24_BE }, 1015 #if BYTE_ORDER == LITTLE_ENDIAN 1016 { "s32le", "s32", "32", AFMT_S32_LE }, 1017 { "s32be", NULL, NULL, AFMT_S32_BE }, 1018 #else 1019 { "s32le", NULL, NULL, AFMT_S32_LE }, 1020 { "s32be", "s32", "32", AFMT_S32_BE }, 1021 #endif 1022 { "u32le", NULL, NULL, AFMT_U32_LE }, 1023 { "u32be", NULL, NULL, AFMT_U32_BE }, 1024 { "ac3", NULL, NULL, AFMT_AC3 }, 1025 { NULL, NULL, NULL, 0 } 1026 }; 1027 1028 uint32_t 1029 snd_str2afmt(const char *req) 1030 { 1031 int ext; 1032 int ch; 1033 int i; 1034 char b1[8]; 1035 char b2[8]; 1036 1037 memset(b1, 0, sizeof(b1)); 1038 memset(b2, 0, sizeof(b2)); 1039 1040 i = sscanf(req, "%5[^:]:%6s", b1, b2); 1041 1042 if (i == 1) { 1043 if (strlen(req) != strlen(b1)) 1044 return (0); 1045 strlcpy(b2, "2.0", sizeof(b2)); 1046 } else if (i == 2) { 1047 if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) 1048 return (0); 1049 } else 1050 return (0); 1051 1052 i = sscanf(b2, "%d.%d", &ch, &ext); 1053 1054 if (i == 0) { 1055 if (strcasecmp(b2, "mono") == 0) { 1056 ch = 1; 1057 ext = 0; 1058 } else if (strcasecmp(b2, "stereo") == 0) { 1059 ch = 2; 1060 ext = 0; 1061 } else if (strcasecmp(b2, "quad") == 0) { 1062 ch = 4; 1063 ext = 0; 1064 } else 1065 return (0); 1066 } else if (i == 1) { 1067 if (ch < 1 || ch > AFMT_CHANNEL_MAX) 1068 return (0); 1069 ext = 0; 1070 } else if (i == 2) { 1071 if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX) 1072 return (0); 1073 if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX) 1074 return (0); 1075 } else 1076 return (0); 1077 1078 for (i = 0; afmt_tab[i].name != NULL; i++) { 1079 if (strcasecmp(afmt_tab[i].name, b1) != 0) { 1080 if (afmt_tab[i].alias1 == NULL) 1081 continue; 1082 if (strcasecmp(afmt_tab[i].alias1, b1) != 0) { 1083 if (afmt_tab[i].alias2 == NULL) 1084 continue; 1085 if (strcasecmp(afmt_tab[i].alias2, b1) != 0) 1086 continue; 1087 } 1088 } 1089 /* found a match */ 1090 return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext)); 1091 } 1092 /* not a valid format */ 1093 return (0); 1094 } 1095 1096 uint32_t 1097 snd_afmt2str(uint32_t afmt, char *buf, size_t len) 1098 { 1099 uint32_t enc; 1100 uint32_t ext; 1101 uint32_t ch; 1102 int i; 1103 1104 if (buf == NULL || len < AFMTSTR_LEN) 1105 return (0); 1106 1107 memset(buf, 0, len); 1108 1109 enc = AFMT_ENCODING(afmt); 1110 ch = AFMT_CHANNEL(afmt); 1111 ext = AFMT_EXTCHANNEL(afmt); 1112 /* check there is at least one channel */ 1113 if (ch <= ext) 1114 return (0); 1115 for (i = 0; afmt_tab[i].name != NULL; i++) { 1116 if (enc != afmt_tab[i].afmt) 1117 continue; 1118 /* found a match */ 1119 snprintf(buf, len, "%s:%d.%d", 1120 afmt_tab[i].name, ch - ext, ext); 1121 return (SND_FORMAT(enc, ch, ext)); 1122 } 1123 return (0); 1124 } 1125 1126 int 1127 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) 1128 { 1129 int r; 1130 1131 CHN_LOCKASSERT(c); 1132 c->feedcount = 0; 1133 c->flags &= CHN_F_RESET; 1134 c->interrupts = 0; 1135 c->timeout = 1; 1136 c->xruns = 0; 1137 1138 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? 1139 CHN_F_BITPERFECT : 0; 1140 1141 r = CHANNEL_RESET(c->methods, c->devinfo); 1142 if (r == 0 && fmt != 0 && spd != 0) { 1143 r = chn_setparam(c, fmt, spd); 1144 fmt = 0; 1145 spd = 0; 1146 } 1147 if (r == 0 && fmt != 0) 1148 r = chn_setformat(c, fmt); 1149 if (r == 0 && spd != 0) 1150 r = chn_setspeed(c, spd); 1151 if (r == 0) 1152 r = chn_setlatency(c, chn_latency); 1153 if (r == 0) { 1154 chn_resetbuf(c); 1155 r = CHANNEL_RESETDONE(c->methods, c->devinfo); 1156 } 1157 return r; 1158 } 1159 1160 int 1161 chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction) 1162 { 1163 struct feeder_class *fc; 1164 struct snd_dbuf *b, *bs; 1165 int i, ret; 1166 1167 if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX) 1168 chn_timeout = CHN_TIMEOUT; 1169 1170 chn_lockinit(c, dir); 1171 1172 b = NULL; 1173 bs = NULL; 1174 CHN_INIT(c, children); 1175 CHN_INIT(c, children.busy); 1176 c->devinfo = NULL; 1177 c->feeder = NULL; 1178 c->latency = -1; 1179 c->timeout = 1; 1180 1181 ret = ENOMEM; 1182 b = sndbuf_create(c->dev, c->name, "primary", c); 1183 if (b == NULL) 1184 goto out; 1185 bs = sndbuf_create(c->dev, c->name, "secondary", c); 1186 if (bs == NULL) 1187 goto out; 1188 1189 CHN_LOCK(c); 1190 1191 ret = EINVAL; 1192 fc = feeder_getclass(NULL); 1193 if (fc == NULL) 1194 goto out; 1195 if (chn_addfeeder(c, fc, NULL)) 1196 goto out; 1197 1198 /* 1199 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called 1200 * with the channel unlocked because they are also called 1201 * from driver methods that don't know about locking 1202 */ 1203 CHN_UNLOCK(c); 1204 sndbuf_setup(bs, NULL, 0); 1205 CHN_LOCK(c); 1206 c->bufhard = b; 1207 c->bufsoft = bs; 1208 c->flags = 0; 1209 c->feederflags = 0; 1210 c->sm = NULL; 1211 c->format = SND_FORMAT(AFMT_U8, 1, 0); 1212 c->speed = DSP_DEFAULT_SPEED; 1213 1214 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); 1215 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1216 1217 for (i = 0; i < SND_CHN_T_MAX; i++) { 1218 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; 1219 } 1220 1221 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; 1222 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; 1223 1224 memset(c->muted, 0, sizeof(c->muted)); 1225 1226 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 1227 1228 ret = ENODEV; 1229 CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */ 1230 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); 1231 CHN_LOCK(c); 1232 if (c->devinfo == NULL) 1233 goto out; 1234 1235 ret = ENOMEM; 1236 if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) 1237 goto out; 1238 1239 ret = 0; 1240 c->direction = direction; 1241 1242 sndbuf_setfmt(b, c->format); 1243 sndbuf_setspd(b, c->speed); 1244 sndbuf_setfmt(bs, c->format); 1245 sndbuf_setspd(bs, c->speed); 1246 1247 /** 1248 * @todo Should this be moved somewhere else? The primary buffer 1249 * is allocated by the driver or via DMA map setup, and tmpbuf 1250 * seems to only come into existence in sndbuf_resize(). 1251 */ 1252 if (c->direction == PCMDIR_PLAY) { 1253 bs->sl = sndbuf_getmaxsize(bs); 1254 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_NOWAIT); 1255 if (bs->shadbuf == NULL) { 1256 ret = ENOMEM; 1257 goto out; 1258 } 1259 } 1260 1261 out: 1262 CHN_UNLOCK(c); 1263 if (ret) { 1264 if (c->devinfo) { 1265 if (CHANNEL_FREE(c->methods, c->devinfo)) 1266 sndbuf_free(b); 1267 } 1268 if (bs) 1269 sndbuf_destroy(bs); 1270 if (b) 1271 sndbuf_destroy(b); 1272 CHN_LOCK(c); 1273 c->flags |= CHN_F_DEAD; 1274 chn_lockdestroy(c); 1275 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 1282 int 1283 chn_kill(struct pcm_channel *c) 1284 { 1285 struct snd_dbuf *b = c->bufhard; 1286 struct snd_dbuf *bs = c->bufsoft; 1287 1288 if (CHN_STARTED(c)) { 1289 CHN_LOCK(c); 1290 chn_trigger(c, PCMTRIG_ABORT); 1291 CHN_UNLOCK(c); 1292 } 1293 while (chn_removefeeder(c) == 0) 1294 ; 1295 if (CHANNEL_FREE(c->methods, c->devinfo)) 1296 sndbuf_free(b); 1297 sndbuf_destroy(bs); 1298 sndbuf_destroy(b); 1299 CHN_LOCK(c); 1300 c->flags |= CHN_F_DEAD; 1301 chn_lockdestroy(c); 1302 1303 return (0); 1304 } 1305 1306 /* XXX Obsolete. Use *_matrix() variant instead. */ 1307 int 1308 chn_setvolume(struct pcm_channel *c, int left, int right) 1309 { 1310 int ret; 1311 1312 ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left); 1313 ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR, 1314 right) << 8; 1315 1316 return (ret); 1317 } 1318 1319 int 1320 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, 1321 int center) 1322 { 1323 int i, ret; 1324 1325 ret = 0; 1326 1327 for (i = 0; i < SND_CHN_T_MAX; i++) { 1328 if ((1 << i) & SND_CHN_LEFT_MASK) 1329 ret |= chn_setvolume_matrix(c, vc, i, left); 1330 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1331 ret |= chn_setvolume_matrix(c, vc, i, right) << 8; 1332 else 1333 ret |= chn_setvolume_matrix(c, vc, i, center) << 16; 1334 } 1335 1336 return (ret); 1337 } 1338 1339 int 1340 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) 1341 { 1342 int i; 1343 1344 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1345 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1346 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && 1347 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || 1348 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), 1349 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", 1350 __func__, c, vc, vt, val)); 1351 CHN_LOCKASSERT(c); 1352 1353 if (val < 0) 1354 val = 0; 1355 if (val > 100) 1356 val = 100; 1357 1358 c->volume[vc][vt] = val; 1359 1360 /* 1361 * Do relative calculation here and store it into class + 1 1362 * to ease the job of feeder_volume. 1363 */ 1364 if (vc == SND_VOL_C_MASTER) { 1365 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1366 vc += SND_VOL_C_STEP) 1367 c->volume[SND_VOL_C_VAL(vc)][vt] = 1368 SND_VOL_CALC_VAL(c->volume, vc, vt); 1369 } else if (vc & 1) { 1370 if (vt == SND_CHN_T_VOL_0DB) 1371 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1372 i += SND_CHN_T_STEP) { 1373 c->volume[SND_VOL_C_VAL(vc)][i] = 1374 SND_VOL_CALC_VAL(c->volume, vc, i); 1375 } 1376 else 1377 c->volume[SND_VOL_C_VAL(vc)][vt] = 1378 SND_VOL_CALC_VAL(c->volume, vc, vt); 1379 } 1380 1381 return (val); 1382 } 1383 1384 int 1385 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) 1386 { 1387 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1388 (vt == SND_CHN_T_VOL_0DB || 1389 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1390 ("%s(): invalid volume matrix c=%p vc=%d vt=%d", 1391 __func__, c, vc, vt)); 1392 CHN_LOCKASSERT(c); 1393 1394 return (c->volume[vc][vt]); 1395 } 1396 1397 int 1398 chn_setmute_multi(struct pcm_channel *c, int vc, int mute) 1399 { 1400 int i, ret; 1401 1402 ret = 0; 1403 1404 for (i = 0; i < SND_CHN_T_MAX; i++) { 1405 if ((1 << i) & SND_CHN_LEFT_MASK) 1406 ret |= chn_setmute_matrix(c, vc, i, mute); 1407 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1408 ret |= chn_setmute_matrix(c, vc, i, mute) << 8; 1409 else 1410 ret |= chn_setmute_matrix(c, vc, i, mute) << 16; 1411 } 1412 return (ret); 1413 } 1414 1415 int 1416 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute) 1417 { 1418 int i; 1419 1420 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1421 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1422 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1423 ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d", 1424 __func__, c, vc, vt, mute)); 1425 1426 CHN_LOCKASSERT(c); 1427 1428 mute = (mute != 0); 1429 1430 c->muted[vc][vt] = mute; 1431 1432 /* 1433 * Do relative calculation here and store it into class + 1 1434 * to ease the job of feeder_volume. 1435 */ 1436 if (vc == SND_VOL_C_MASTER) { 1437 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1438 vc += SND_VOL_C_STEP) 1439 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1440 } else if (vc & 1) { 1441 if (vt == SND_CHN_T_VOL_0DB) { 1442 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1443 i += SND_CHN_T_STEP) { 1444 c->muted[SND_VOL_C_VAL(vc)][i] = mute; 1445 } 1446 } else { 1447 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1448 } 1449 } 1450 return (mute); 1451 } 1452 1453 int 1454 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt) 1455 { 1456 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1457 (vt == SND_CHN_T_VOL_0DB || 1458 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1459 ("%s(): invalid mute matrix c=%p vc=%d vt=%d", 1460 __func__, c, vc, vt)); 1461 CHN_LOCKASSERT(c); 1462 1463 return (c->muted[vc][vt]); 1464 } 1465 1466 struct pcmchan_matrix * 1467 chn_getmatrix(struct pcm_channel *c) 1468 { 1469 1470 KASSERT(c != NULL, ("%s(): NULL channel", __func__)); 1471 CHN_LOCKASSERT(c); 1472 1473 if (!(c->format & AFMT_CONVERTIBLE)) 1474 return (NULL); 1475 1476 return (&c->matrix); 1477 } 1478 1479 int 1480 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) 1481 { 1482 1483 KASSERT(c != NULL && m != NULL, 1484 ("%s(): NULL channel or matrix", __func__)); 1485 CHN_LOCKASSERT(c); 1486 1487 if (!(c->format & AFMT_CONVERTIBLE)) 1488 return (EINVAL); 1489 1490 c->matrix = *m; 1491 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1492 1493 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); 1494 } 1495 1496 /* 1497 * XXX chn_oss_* exists for the sake of compatibility. 1498 */ 1499 int 1500 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) 1501 { 1502 1503 KASSERT(c != NULL && map != NULL, 1504 ("%s(): NULL channel or map", __func__)); 1505 CHN_LOCKASSERT(c); 1506 1507 if (!(c->format & AFMT_CONVERTIBLE)) 1508 return (EINVAL); 1509 1510 return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); 1511 } 1512 1513 int 1514 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) 1515 { 1516 struct pcmchan_matrix m; 1517 int ret; 1518 1519 KASSERT(c != NULL && map != NULL, 1520 ("%s(): NULL channel or map", __func__)); 1521 CHN_LOCKASSERT(c); 1522 1523 if (!(c->format & AFMT_CONVERTIBLE)) 1524 return (EINVAL); 1525 1526 m = c->matrix; 1527 ret = feeder_matrix_oss_set_channel_order(&m, map); 1528 if (ret != 0) 1529 return (ret); 1530 1531 return (chn_setmatrix(c, &m)); 1532 } 1533 1534 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) 1535 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) 1536 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) 1537 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) 1538 1539 int 1540 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) 1541 { 1542 struct pcmchan_matrix *m; 1543 struct pcmchan_caps *caps; 1544 uint32_t i, format; 1545 1546 KASSERT(c != NULL && retmask != NULL, 1547 ("%s(): NULL channel or retmask", __func__)); 1548 CHN_LOCKASSERT(c); 1549 1550 caps = chn_getcaps(c); 1551 if (caps == NULL || caps->fmtlist == NULL) 1552 return (ENODEV); 1553 1554 for (i = 0; caps->fmtlist[i] != 0; i++) { 1555 format = caps->fmtlist[i]; 1556 if (!(format & AFMT_CONVERTIBLE)) { 1557 *retmask |= DSP_BIND_SPDIF; 1558 continue; 1559 } 1560 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); 1561 if (m == NULL) 1562 continue; 1563 if (m->mask & SND_CHN_OSS_FRONT) 1564 *retmask |= DSP_BIND_FRONT; 1565 if (m->mask & SND_CHN_OSS_SURR) 1566 *retmask |= DSP_BIND_SURR; 1567 if (m->mask & SND_CHN_OSS_CENTER_LFE) 1568 *retmask |= DSP_BIND_CENTER_LFE; 1569 if (m->mask & SND_CHN_OSS_REAR) 1570 *retmask |= DSP_BIND_REAR; 1571 } 1572 1573 /* report software-supported binding mask */ 1574 if (!CHN_BITPERFECT(c) && report_soft_matrix) 1575 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | 1576 DSP_BIND_CENTER_LFE | DSP_BIND_REAR; 1577 1578 return (0); 1579 } 1580 1581 void 1582 chn_vpc_reset(struct pcm_channel *c, int vc, int force) 1583 { 1584 int i; 1585 1586 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, 1587 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); 1588 CHN_LOCKASSERT(c); 1589 1590 if (force == 0 && chn_vpc_autoreset == 0) 1591 return; 1592 1593 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) 1594 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); 1595 } 1596 1597 static u_int32_t 1598 round_pow2(u_int32_t v) 1599 { 1600 u_int32_t ret; 1601 1602 if (v < 2) 1603 v = 2; 1604 ret = 0; 1605 while (v >> ret) 1606 ret++; 1607 ret = 1 << (ret - 1); 1608 while (ret < v) 1609 ret <<= 1; 1610 return ret; 1611 } 1612 1613 static u_int32_t 1614 round_blksz(u_int32_t v, int round) 1615 { 1616 u_int32_t ret, tmp; 1617 1618 if (round < 1) 1619 round = 1; 1620 1621 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); 1622 1623 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) 1624 ret >>= 1; 1625 1626 tmp = ret - (ret % round); 1627 while (tmp < 16 || tmp < round) { 1628 ret <<= 1; 1629 tmp = ret - (ret % round); 1630 } 1631 1632 return ret; 1633 } 1634 1635 /* 1636 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea 1637 * is to keep 2nd buffer short so that it doesn't cause long queue during 1638 * buffer transfer. 1639 * 1640 * Latency reference table for 48khz stereo 16bit: (PLAY) 1641 * 1642 * +---------+------------+-----------+------------+ 1643 * | Latency | Blockcount | Blocksize | Buffersize | 1644 * +---------+------------+-----------+------------+ 1645 * | 0 | 2 | 64 | 128 | 1646 * +---------+------------+-----------+------------+ 1647 * | 1 | 4 | 128 | 512 | 1648 * +---------+------------+-----------+------------+ 1649 * | 2 | 8 | 512 | 4096 | 1650 * +---------+------------+-----------+------------+ 1651 * | 3 | 16 | 512 | 8192 | 1652 * +---------+------------+-----------+------------+ 1653 * | 4 | 32 | 512 | 16384 | 1654 * +---------+------------+-----------+------------+ 1655 * | 5 | 32 | 1024 | 32768 | 1656 * +---------+------------+-----------+------------+ 1657 * | 6 | 16 | 2048 | 32768 | 1658 * +---------+------------+-----------+------------+ 1659 * | 7 | 8 | 4096 | 32768 | 1660 * +---------+------------+-----------+------------+ 1661 * | 8 | 4 | 8192 | 32768 | 1662 * +---------+------------+-----------+------------+ 1663 * | 9 | 2 | 16384 | 32768 | 1664 * +---------+------------+-----------+------------+ 1665 * | 10 | 2 | 32768 | 65536 | 1666 * +---------+------------+-----------+------------+ 1667 * 1668 * Recording need a different reference table. All we care is 1669 * gobbling up everything within reasonable buffering threshold. 1670 * 1671 * Latency reference table for 48khz stereo 16bit: (REC) 1672 * 1673 * +---------+------------+-----------+------------+ 1674 * | Latency | Blockcount | Blocksize | Buffersize | 1675 * +---------+------------+-----------+------------+ 1676 * | 0 | 512 | 32 | 16384 | 1677 * +---------+------------+-----------+------------+ 1678 * | 1 | 256 | 64 | 16384 | 1679 * +---------+------------+-----------+------------+ 1680 * | 2 | 128 | 128 | 16384 | 1681 * +---------+------------+-----------+------------+ 1682 * | 3 | 64 | 256 | 16384 | 1683 * +---------+------------+-----------+------------+ 1684 * | 4 | 32 | 512 | 16384 | 1685 * +---------+------------+-----------+------------+ 1686 * | 5 | 32 | 1024 | 32768 | 1687 * +---------+------------+-----------+------------+ 1688 * | 6 | 16 | 2048 | 32768 | 1689 * +---------+------------+-----------+------------+ 1690 * | 7 | 8 | 4096 | 32768 | 1691 * +---------+------------+-----------+------------+ 1692 * | 8 | 4 | 8192 | 32768 | 1693 * +---------+------------+-----------+------------+ 1694 * | 9 | 2 | 16384 | 32768 | 1695 * +---------+------------+-----------+------------+ 1696 * | 10 | 2 | 32768 | 65536 | 1697 * +---------+------------+-----------+------------+ 1698 * 1699 * Calculations for other data rate are entirely based on these reference 1700 * tables. For normal operation, Latency 5 seems give the best, well 1701 * balanced performance for typical workload. Anything below 5 will 1702 * eat up CPU to keep up with increasing context switches because of 1703 * shorter buffer space and usually require the application to handle it 1704 * aggressively through possibly real time programming technique. 1705 * 1706 */ 1707 #define CHN_LATENCY_PBLKCNT_REF \ 1708 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ 1709 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} 1710 #define CHN_LATENCY_PBUFSZ_REF \ 1711 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ 1712 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} 1713 1714 #define CHN_LATENCY_RBLKCNT_REF \ 1715 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ 1716 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} 1717 #define CHN_LATENCY_RBUFSZ_REF \ 1718 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ 1719 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} 1720 1721 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ 1722 1723 static int 1724 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, 1725 u_int32_t max, int *rblksz, int *rblkcnt) 1726 { 1727 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1728 CHN_LATENCY_PBLKCNT_REF; 1729 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1730 CHN_LATENCY_PBUFSZ_REF; 1731 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1732 CHN_LATENCY_RBLKCNT_REF; 1733 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1734 CHN_LATENCY_RBUFSZ_REF; 1735 u_int32_t bufsz; 1736 int lprofile, blksz, blkcnt; 1737 1738 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || 1739 bps < 1 || datarate < 1 || 1740 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { 1741 if (rblksz != NULL) 1742 *rblksz = CHN_2NDBUFMAXSIZE >> 1; 1743 if (rblkcnt != NULL) 1744 *rblkcnt = 2; 1745 printf("%s(): FAILED dir=%d latency=%d bps=%d " 1746 "datarate=%u max=%u\n", 1747 __func__, dir, latency, bps, datarate, max); 1748 return CHN_2NDBUFMAXSIZE; 1749 } 1750 1751 lprofile = chn_latency_profile; 1752 1753 if (dir == PCMDIR_PLAY) { 1754 blkcnt = pblkcnts[lprofile][latency]; 1755 bufsz = pbufszs[lprofile][latency]; 1756 } else { 1757 blkcnt = rblkcnts[lprofile][latency]; 1758 bufsz = rbufszs[lprofile][latency]; 1759 } 1760 1761 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, 1762 datarate)); 1763 if (bufsz > max) 1764 bufsz = max; 1765 blksz = round_blksz(bufsz >> blkcnt, bps); 1766 1767 if (rblksz != NULL) 1768 *rblksz = blksz; 1769 if (rblkcnt != NULL) 1770 *rblkcnt = 1 << blkcnt; 1771 1772 return blksz << blkcnt; 1773 } 1774 1775 static int 1776 chn_resizebuf(struct pcm_channel *c, int latency, 1777 int blkcnt, int blksz) 1778 { 1779 struct snd_dbuf *b, *bs, *pb; 1780 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; 1781 int ret; 1782 1783 CHN_LOCKASSERT(c); 1784 1785 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || 1786 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) 1787 return EINVAL; 1788 1789 if (latency == -1) { 1790 c->latency = -1; 1791 latency = chn_latency; 1792 } else if (latency == -2) { 1793 latency = c->latency; 1794 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1795 latency = chn_latency; 1796 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1797 return EINVAL; 1798 else { 1799 c->latency = latency; 1800 } 1801 1802 bs = c->bufsoft; 1803 b = c->bufhard; 1804 1805 if (!(blksz == 0 || blkcnt == -1) && 1806 (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || 1807 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) 1808 return EINVAL; 1809 1810 chn_calclatency(c->direction, latency, sndbuf_getalign(bs), 1811 sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, 1812 &sblksz, &sblkcnt); 1813 1814 if (blksz == 0 || blkcnt == -1) { 1815 if (blkcnt == -1) 1816 c->flags &= ~CHN_F_HAS_SIZE; 1817 if (c->flags & CHN_F_HAS_SIZE) { 1818 blksz = sndbuf_getblksz(bs); 1819 blkcnt = sndbuf_getblkcnt(bs); 1820 } 1821 } else 1822 c->flags |= CHN_F_HAS_SIZE; 1823 1824 if (c->flags & CHN_F_HAS_SIZE) { 1825 /* 1826 * The application has requested their own blksz/blkcnt. 1827 * Just obey with it, and let them toast alone. We can 1828 * clamp it to the nearest latency profile, but that would 1829 * defeat the purpose of having custom control. The least 1830 * we can do is round it to the nearest ^2 and align it. 1831 */ 1832 sblksz = round_blksz(blksz, sndbuf_getalign(bs)); 1833 sblkcnt = round_pow2(blkcnt); 1834 } 1835 1836 if (c->parentchannel != NULL) { 1837 pb = c->parentchannel->bufsoft; 1838 CHN_UNLOCK(c); 1839 CHN_LOCK(c->parentchannel); 1840 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); 1841 CHN_UNLOCK(c->parentchannel); 1842 CHN_LOCK(c); 1843 if (c->direction == PCMDIR_PLAY) { 1844 limit = (pb != NULL) ? 1845 sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; 1846 } else { 1847 limit = (pb != NULL) ? 1848 sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; 1849 } 1850 } else { 1851 hblkcnt = 2; 1852 if (c->flags & CHN_F_HAS_SIZE) { 1853 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), 1854 sndbuf_getalign(b)); 1855 hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); 1856 } else 1857 chn_calclatency(c->direction, latency, 1858 sndbuf_getalign(b), 1859 sndbuf_getalign(b) * sndbuf_getspd(b), 1860 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); 1861 1862 if ((hblksz << 1) > sndbuf_getmaxsize(b)) 1863 hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, 1864 sndbuf_getalign(b)); 1865 1866 while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { 1867 if (hblkcnt < 4) 1868 hblksz >>= 1; 1869 else 1870 hblkcnt >>= 1; 1871 } 1872 1873 hblksz -= hblksz % sndbuf_getalign(b); 1874 1875 #if 0 1876 hblksz = sndbuf_getmaxsize(b) >> 1; 1877 hblksz -= hblksz % sndbuf_getalign(b); 1878 hblkcnt = 2; 1879 #endif 1880 1881 CHN_UNLOCK(c); 1882 if (chn_usefrags == 0 || 1883 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, 1884 hblksz, hblkcnt) != 0) 1885 sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, 1886 c->devinfo, hblksz)); 1887 CHN_LOCK(c); 1888 1889 if (!CHN_EMPTY(c, children)) { 1890 nsblksz = round_blksz( 1891 sndbuf_xbytes(sndbuf_getblksz(b), b, bs), 1892 sndbuf_getalign(bs)); 1893 nsblkcnt = sndbuf_getblkcnt(b); 1894 if (c->direction == PCMDIR_PLAY) { 1895 do { 1896 nsblkcnt--; 1897 } while (nsblkcnt >= 2 && 1898 nsblksz * nsblkcnt >= sblksz * sblkcnt); 1899 nsblkcnt++; 1900 } 1901 sblksz = nsblksz; 1902 sblkcnt = nsblkcnt; 1903 limit = 0; 1904 } else 1905 limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; 1906 } 1907 1908 if (limit > CHN_2NDBUFMAXSIZE) 1909 limit = CHN_2NDBUFMAXSIZE; 1910 1911 #if 0 1912 while (limit > 0 && (sblksz * sblkcnt) > limit) { 1913 if (sblkcnt < 4) 1914 break; 1915 sblkcnt >>= 1; 1916 } 1917 #endif 1918 1919 while ((sblksz * sblkcnt) < limit) 1920 sblkcnt <<= 1; 1921 1922 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { 1923 if (sblkcnt < 4) 1924 sblksz >>= 1; 1925 else 1926 sblkcnt >>= 1; 1927 } 1928 1929 sblksz -= sblksz % sndbuf_getalign(bs); 1930 1931 if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || 1932 sndbuf_getsize(bs) != (sblkcnt * sblksz)) { 1933 ret = sndbuf_remalloc(bs, sblkcnt, sblksz); 1934 if (ret != 0) { 1935 device_printf(c->dev, "%s(): Failed: %d %d\n", 1936 __func__, sblkcnt, sblksz); 1937 return ret; 1938 } 1939 } 1940 1941 /* 1942 * Interrupt timeout 1943 */ 1944 c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / 1945 ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); 1946 if (c->parentchannel != NULL) 1947 c->timeout = min(c->timeout, c->parentchannel->timeout); 1948 if (c->timeout < 1) 1949 c->timeout = 1; 1950 1951 /* 1952 * OSSv4 docs: "By default OSS will set the low water level equal 1953 * to the fragment size which is optimal in most cases." 1954 */ 1955 c->lw = sndbuf_getblksz(bs); 1956 chn_resetbuf(c); 1957 1958 if (snd_verbose > 3) 1959 device_printf(c->dev, "%s(): %s (%s) timeout=%u " 1960 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", 1961 __func__, CHN_DIRSTR(c), 1962 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", 1963 c->timeout, 1964 sndbuf_getsize(b), sndbuf_getblksz(b), 1965 sndbuf_getblkcnt(b), 1966 sndbuf_getsize(bs), sndbuf_getblksz(bs), 1967 sndbuf_getblkcnt(bs), limit); 1968 1969 return 0; 1970 } 1971 1972 int 1973 chn_setlatency(struct pcm_channel *c, int latency) 1974 { 1975 CHN_LOCKASSERT(c); 1976 /* Destroy blksz/blkcnt, enforce latency profile. */ 1977 return chn_resizebuf(c, latency, -1, 0); 1978 } 1979 1980 int 1981 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) 1982 { 1983 CHN_LOCKASSERT(c); 1984 /* Destroy latency profile, enforce blksz/blkcnt */ 1985 return chn_resizebuf(c, -1, blkcnt, blksz); 1986 } 1987 1988 int 1989 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) 1990 { 1991 struct pcmchan_caps *caps; 1992 uint32_t hwspeed, delta; 1993 int ret; 1994 1995 CHN_LOCKASSERT(c); 1996 1997 if (speed < 1 || format == 0 || CHN_STARTED(c)) 1998 return (EINVAL); 1999 2000 c->format = format; 2001 c->speed = speed; 2002 2003 caps = chn_getcaps(c); 2004 2005 hwspeed = speed; 2006 RANGE(hwspeed, caps->minspeed, caps->maxspeed); 2007 2008 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, 2009 hwspeed)); 2010 hwspeed = sndbuf_getspd(c->bufhard); 2011 2012 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); 2013 2014 if (delta <= feeder_rate_round) 2015 c->speed = hwspeed; 2016 2017 ret = feeder_chain(c); 2018 2019 if (ret == 0) 2020 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, 2021 sndbuf_getfmt(c->bufhard)); 2022 2023 if (ret == 0) 2024 ret = chn_resizebuf(c, -2, 0, 0); 2025 2026 return (ret); 2027 } 2028 2029 int 2030 chn_setspeed(struct pcm_channel *c, uint32_t speed) 2031 { 2032 uint32_t oldformat, oldspeed, format; 2033 int ret; 2034 2035 #if 0 2036 /* XXX force 48k */ 2037 if (c->format & AFMT_PASSTHROUGH) 2038 speed = AFMT_PASSTHROUGH_RATE; 2039 #endif 2040 2041 oldformat = c->format; 2042 oldspeed = c->speed; 2043 format = oldformat; 2044 2045 ret = chn_setparam(c, format, speed); 2046 if (ret != 0) { 2047 if (snd_verbose > 3) 2048 device_printf(c->dev, 2049 "%s(): Setting speed %d failed, " 2050 "falling back to %d\n", 2051 __func__, speed, oldspeed); 2052 chn_setparam(c, c->format, oldspeed); 2053 } 2054 2055 return (ret); 2056 } 2057 2058 int 2059 chn_setformat(struct pcm_channel *c, uint32_t format) 2060 { 2061 uint32_t oldformat, oldspeed, speed; 2062 int ret; 2063 2064 /* XXX force stereo */ 2065 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { 2066 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, 2067 AFMT_PASSTHROUGH_EXTCHANNEL); 2068 } 2069 2070 oldformat = c->format; 2071 oldspeed = c->speed; 2072 speed = oldspeed; 2073 2074 ret = chn_setparam(c, format, speed); 2075 if (ret != 0) { 2076 if (snd_verbose > 3) 2077 device_printf(c->dev, 2078 "%s(): Format change 0x%08x failed, " 2079 "falling back to 0x%08x\n", 2080 __func__, format, oldformat); 2081 chn_setparam(c, oldformat, oldspeed); 2082 } 2083 2084 return (ret); 2085 } 2086 2087 void 2088 chn_syncstate(struct pcm_channel *c) 2089 { 2090 struct snddev_info *d; 2091 struct snd_mixer *m; 2092 2093 d = (c != NULL) ? c->parentsnddev : NULL; 2094 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : 2095 NULL; 2096 2097 if (d == NULL || m == NULL) 2098 return; 2099 2100 CHN_LOCKASSERT(c); 2101 2102 if (c->feederflags & (1 << FEEDER_VOLUME)) { 2103 uint32_t parent; 2104 int vol, pvol, left, right, center; 2105 2106 if (c->direction == PCMDIR_PLAY && 2107 (d->flags & SD_F_SOFTPCMVOL)) { 2108 /* CHN_UNLOCK(c); */ 2109 vol = mix_get(m, SOUND_MIXER_PCM); 2110 parent = mix_getparent(m, SOUND_MIXER_PCM); 2111 if (parent != SOUND_MIXER_NONE) 2112 pvol = mix_get(m, parent); 2113 else 2114 pvol = 100 | (100 << 8); 2115 /* CHN_LOCK(c); */ 2116 } else { 2117 vol = 100 | (100 << 8); 2118 pvol = vol; 2119 } 2120 2121 if (vol == -1) { 2122 device_printf(c->dev, 2123 "Soft PCM Volume: Failed to read pcm " 2124 "default value\n"); 2125 vol = 100 | (100 << 8); 2126 } 2127 2128 if (pvol == -1) { 2129 device_printf(c->dev, 2130 "Soft PCM Volume: Failed to read parent " 2131 "default value\n"); 2132 pvol = 100 | (100 << 8); 2133 } 2134 2135 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; 2136 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; 2137 center = (left + right) >> 1; 2138 2139 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); 2140 } 2141 2142 if (c->feederflags & (1 << FEEDER_EQ)) { 2143 struct pcm_feeder *f; 2144 int treble, bass, state; 2145 2146 /* CHN_UNLOCK(c); */ 2147 treble = mix_get(m, SOUND_MIXER_TREBLE); 2148 bass = mix_get(m, SOUND_MIXER_BASS); 2149 /* CHN_LOCK(c); */ 2150 2151 if (treble == -1) 2152 treble = 50; 2153 else 2154 treble = ((treble & 0x7f) + 2155 ((treble >> 8) & 0x7f)) >> 1; 2156 2157 if (bass == -1) 2158 bass = 50; 2159 else 2160 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; 2161 2162 f = chn_findfeeder(c, FEEDER_EQ); 2163 if (f != NULL) { 2164 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) 2165 device_printf(c->dev, 2166 "EQ: Failed to set treble -- %d\n", 2167 treble); 2168 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) 2169 device_printf(c->dev, 2170 "EQ: Failed to set bass -- %d\n", 2171 bass); 2172 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) 2173 device_printf(c->dev, 2174 "EQ: Failed to set preamp -- %d\n", 2175 d->eqpreamp); 2176 if (d->flags & SD_F_EQ_BYPASSED) 2177 state = FEEDEQ_BYPASS; 2178 else if (d->flags & SD_F_EQ_ENABLED) 2179 state = FEEDEQ_ENABLE; 2180 else 2181 state = FEEDEQ_DISABLE; 2182 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) 2183 device_printf(c->dev, 2184 "EQ: Failed to set state -- %d\n", state); 2185 } 2186 } 2187 } 2188 2189 int 2190 chn_trigger(struct pcm_channel *c, int go) 2191 { 2192 struct snddev_info *d = c->parentsnddev; 2193 int ret; 2194 2195 CHN_LOCKASSERT(c); 2196 if (!PCMTRIG_COMMON(go)) 2197 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); 2198 2199 if (go == c->trigger) 2200 return (0); 2201 2202 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); 2203 if (ret != 0) 2204 return (ret); 2205 2206 switch (go) { 2207 case PCMTRIG_START: 2208 if (snd_verbose > 3) 2209 device_printf(c->dev, 2210 "%s() %s: calling go=0x%08x , " 2211 "prev=0x%08x\n", __func__, c->name, go, 2212 c->trigger); 2213 if (c->trigger != PCMTRIG_START) { 2214 c->trigger = go; 2215 CHN_UNLOCK(c); 2216 PCM_LOCK(d); 2217 CHN_INSERT_HEAD(d, c, channels.pcm.busy); 2218 PCM_UNLOCK(d); 2219 CHN_LOCK(c); 2220 chn_syncstate(c); 2221 } 2222 break; 2223 case PCMTRIG_STOP: 2224 case PCMTRIG_ABORT: 2225 if (snd_verbose > 3) 2226 device_printf(c->dev, 2227 "%s() %s: calling go=0x%08x , " 2228 "prev=0x%08x\n", __func__, c->name, go, 2229 c->trigger); 2230 if (c->trigger == PCMTRIG_START) { 2231 c->trigger = go; 2232 CHN_UNLOCK(c); 2233 PCM_LOCK(d); 2234 CHN_REMOVE(d, c, channels.pcm.busy); 2235 PCM_UNLOCK(d); 2236 CHN_LOCK(c); 2237 } 2238 break; 2239 default: 2240 break; 2241 } 2242 2243 return (0); 2244 } 2245 2246 /** 2247 * @brief Queries sound driver for sample-aligned hardware buffer pointer index 2248 * 2249 * This function obtains the hardware pointer location, then aligns it to 2250 * the current bytes-per-sample value before returning. (E.g., a channel 2251 * running in 16 bit stereo mode would require 4 bytes per sample, so a 2252 * hwptr value ranging from 32-35 would be returned as 32.) 2253 * 2254 * @param c PCM channel context 2255 * @returns sample-aligned hardware buffer pointer index 2256 */ 2257 int 2258 chn_getptr(struct pcm_channel *c) 2259 { 2260 int hwptr; 2261 2262 CHN_LOCKASSERT(c); 2263 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; 2264 return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); 2265 } 2266 2267 struct pcmchan_caps * 2268 chn_getcaps(struct pcm_channel *c) 2269 { 2270 CHN_LOCKASSERT(c); 2271 return CHANNEL_GETCAPS(c->methods, c->devinfo); 2272 } 2273 2274 u_int32_t 2275 chn_getformats(struct pcm_channel *c) 2276 { 2277 u_int32_t *fmtlist, fmts; 2278 int i; 2279 2280 fmtlist = chn_getcaps(c)->fmtlist; 2281 fmts = 0; 2282 for (i = 0; fmtlist[i]; i++) 2283 fmts |= fmtlist[i]; 2284 2285 /* report software-supported formats */ 2286 if (!CHN_BITPERFECT(c) && report_soft_formats) 2287 fmts |= AFMT_CONVERTIBLE; 2288 2289 return (AFMT_ENCODING(fmts)); 2290 } 2291 2292 int 2293 chn_notify(struct pcm_channel *c, u_int32_t flags) 2294 { 2295 struct pcm_channel *ch; 2296 struct pcmchan_caps *caps; 2297 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; 2298 uint32_t vpflags; 2299 int dirty, err, run, nrun; 2300 2301 CHN_LOCKASSERT(c); 2302 2303 if (CHN_EMPTY(c, children)) 2304 return (ENODEV); 2305 2306 err = 0; 2307 2308 /* 2309 * If the hwchan is running, we can't change its rate, format or 2310 * blocksize 2311 */ 2312 run = (CHN_STARTED(c)) ? 1 : 0; 2313 if (run) 2314 flags &= CHN_N_VOLUME | CHN_N_TRIGGER; 2315 2316 if (flags & CHN_N_RATE) { 2317 /* 2318 * XXX I'll make good use of this someday. 2319 * However this is currently being superseded by 2320 * the availability of CHN_F_VCHAN_DYNAMIC. 2321 */ 2322 } 2323 2324 if (flags & CHN_N_FORMAT) { 2325 /* 2326 * XXX I'll make good use of this someday. 2327 * However this is currently being superseded by 2328 * the availability of CHN_F_VCHAN_DYNAMIC. 2329 */ 2330 } 2331 2332 if (flags & CHN_N_VOLUME) { 2333 /* 2334 * XXX I'll make good use of this someday, though 2335 * soft volume control is currently pretty much 2336 * integrated. 2337 */ 2338 } 2339 2340 if (flags & CHN_N_BLOCKSIZE) { 2341 /* 2342 * Set to default latency profile 2343 */ 2344 chn_setlatency(c, chn_latency); 2345 } 2346 2347 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { 2348 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; 2349 if (nrun && !run) 2350 err = chn_start(c, 1); 2351 if (!nrun && run) 2352 chn_abort(c); 2353 flags &= ~CHN_N_TRIGGER; 2354 } 2355 2356 if (flags & CHN_N_TRIGGER) { 2357 if (c->direction == PCMDIR_PLAY) { 2358 vchanformat = &c->parentsnddev->pvchanformat; 2359 vchanrate = &c->parentsnddev->pvchanrate; 2360 } else { 2361 vchanformat = &c->parentsnddev->rvchanformat; 2362 vchanrate = &c->parentsnddev->rvchanrate; 2363 } 2364 2365 /* Dynamic Virtual Channel */ 2366 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { 2367 bestformat = *vchanformat; 2368 bestspeed = *vchanrate; 2369 } else { 2370 bestformat = 0; 2371 bestspeed = 0; 2372 } 2373 2374 besthwformat = 0; 2375 nrun = 0; 2376 caps = chn_getcaps(c); 2377 dirty = 0; 2378 vpflags = 0; 2379 2380 CHN_FOREACH(ch, c, children.busy) { 2381 CHN_LOCK(ch); 2382 if ((ch->format & AFMT_PASSTHROUGH) && 2383 snd_fmtvalid(ch->format, caps->fmtlist)) { 2384 bestformat = ch->format; 2385 bestspeed = ch->speed; 2386 CHN_UNLOCK(ch); 2387 vpflags = CHN_F_PASSTHROUGH; 2388 nrun++; 2389 break; 2390 } 2391 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { 2392 if (c->flags & CHN_F_VCHAN_ADAPTIVE) { 2393 bestspeed = ch->speed; 2394 RANGE(bestspeed, caps->minspeed, 2395 caps->maxspeed); 2396 besthwformat = snd_fmtbest(ch->format, 2397 caps->fmtlist); 2398 if (besthwformat != 0) 2399 bestformat = besthwformat; 2400 } 2401 CHN_UNLOCK(ch); 2402 vpflags = CHN_F_EXCLUSIVE; 2403 nrun++; 2404 continue; 2405 } 2406 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || 2407 vpflags != 0) { 2408 CHN_UNLOCK(ch); 2409 nrun++; 2410 continue; 2411 } 2412 if (ch->speed > bestspeed) { 2413 bestspeed = ch->speed; 2414 RANGE(bestspeed, caps->minspeed, 2415 caps->maxspeed); 2416 } 2417 besthwformat = snd_fmtbest(ch->format, caps->fmtlist); 2418 if (!(besthwformat & AFMT_VCHAN)) { 2419 CHN_UNLOCK(ch); 2420 nrun++; 2421 continue; 2422 } 2423 if (AFMT_CHANNEL(besthwformat) > 2424 AFMT_CHANNEL(bestformat)) 2425 bestformat = besthwformat; 2426 else if (AFMT_CHANNEL(besthwformat) == 2427 AFMT_CHANNEL(bestformat) && 2428 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) 2429 bestformat = besthwformat; 2430 CHN_UNLOCK(ch); 2431 nrun++; 2432 } 2433 2434 if (bestformat == 0) 2435 bestformat = c->format; 2436 if (bestspeed == 0) 2437 bestspeed = c->speed; 2438 2439 if (bestformat != c->format || bestspeed != c->speed) 2440 dirty = 1; 2441 2442 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2443 c->flags |= vpflags; 2444 2445 if (nrun && !run) { 2446 if (dirty) { 2447 bestspeed = CHANNEL_SETSPEED(c->methods, 2448 c->devinfo, bestspeed); 2449 err = chn_reset(c, bestformat, bestspeed); 2450 } 2451 if (err == 0 && dirty) { 2452 CHN_FOREACH(ch, c, children.busy) { 2453 CHN_LOCK(ch); 2454 if (VCHAN_SYNC_REQUIRED(ch)) 2455 vchan_sync(ch); 2456 CHN_UNLOCK(ch); 2457 } 2458 } 2459 if (err == 0) { 2460 if (dirty) 2461 c->flags |= CHN_F_DIRTY; 2462 err = chn_start(c, 1); 2463 } 2464 } 2465 2466 if (nrun && run && dirty) { 2467 chn_abort(c); 2468 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, 2469 bestspeed); 2470 err = chn_reset(c, bestformat, bestspeed); 2471 if (err == 0) { 2472 CHN_FOREACH(ch, c, children.busy) { 2473 CHN_LOCK(ch); 2474 if (VCHAN_SYNC_REQUIRED(ch)) 2475 vchan_sync(ch); 2476 CHN_UNLOCK(ch); 2477 } 2478 } 2479 if (err == 0) { 2480 c->flags |= CHN_F_DIRTY; 2481 err = chn_start(c, 1); 2482 } 2483 } 2484 2485 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && 2486 (bestformat & AFMT_VCHAN)) { 2487 *vchanformat = bestformat; 2488 *vchanrate = bestspeed; 2489 } 2490 2491 if (!nrun && run) { 2492 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2493 bestformat = *vchanformat; 2494 bestspeed = *vchanrate; 2495 chn_abort(c); 2496 if (c->format != bestformat || c->speed != bestspeed) 2497 chn_reset(c, bestformat, bestspeed); 2498 } 2499 } 2500 2501 return (err); 2502 } 2503 2504 /** 2505 * @brief Fetch array of supported discrete sample rates 2506 * 2507 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for 2508 * detailed information. 2509 * 2510 * @note If the operation isn't supported, this function will just return 0 2511 * (no rates in the array), and *rates will be set to NULL. Callers 2512 * should examine rates @b only if this function returns non-zero. 2513 * 2514 * @param c pcm channel to examine 2515 * @param rates pointer to array of integers; rate table will be recorded here 2516 * 2517 * @return number of rates in the array pointed to be @c rates 2518 */ 2519 int 2520 chn_getrates(struct pcm_channel *c, int **rates) 2521 { 2522 KASSERT(rates != NULL, ("rates is null")); 2523 CHN_LOCKASSERT(c); 2524 return CHANNEL_GETRATES(c->methods, c->devinfo, rates); 2525 } 2526 2527 /** 2528 * @brief Remove channel from a sync group, if there is one. 2529 * 2530 * This function is initially intended for the following conditions: 2531 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) 2532 * - Closing a device. (A channel can't be destroyed if it's still in use.) 2533 * 2534 * @note Before calling this function, the syncgroup list mutex must be 2535 * held. (Consider pcm_channel::sm protected by the SG list mutex 2536 * whether @c c is locked or not.) 2537 * 2538 * @param c channel device to be started or closed 2539 * @returns If this channel was the only member of a group, the group ID 2540 * is returned to the caller so that the caller can release it 2541 * via free_unr() after giving up the syncgroup lock. Else it 2542 * returns 0. 2543 */ 2544 int 2545 chn_syncdestroy(struct pcm_channel *c) 2546 { 2547 struct pcmchan_syncmember *sm; 2548 struct pcmchan_syncgroup *sg; 2549 int sg_id; 2550 2551 sg_id = 0; 2552 2553 PCM_SG_LOCKASSERT(MA_OWNED); 2554 2555 if (c->sm != NULL) { 2556 sm = c->sm; 2557 sg = sm->parent; 2558 c->sm = NULL; 2559 2560 KASSERT(sg != NULL, ("syncmember has null parent")); 2561 2562 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); 2563 free(sm, M_DEVBUF); 2564 2565 if (SLIST_EMPTY(&sg->members)) { 2566 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); 2567 sg_id = sg->id; 2568 free(sg, M_DEVBUF); 2569 } 2570 } 2571 2572 return sg_id; 2573 } 2574 2575 #ifdef OSSV4_EXPERIMENT 2576 int 2577 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) 2578 { 2579 CHN_LOCKASSERT(c); 2580 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); 2581 } 2582 #endif 2583