1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006 6 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> 7 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99 8 * All rights reserved. 9 * Copyright (c) 2024-2025 The FreeBSD Foundation 10 * 11 * Portions of this software were developed by Christos Margiolis 12 * <christos@FreeBSD.org> under sponsorship from the FreeBSD Foundation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #ifdef HAVE_KERNEL_OPTION_HEADERS 37 #include "opt_snd.h" 38 #endif 39 40 #include <dev/sound/pcm/sound.h> 41 #include <dev/sound/pcm/vchan.h> 42 43 #include "feeder_if.h" 44 45 int report_soft_formats = 1; 46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, 47 &report_soft_formats, 0, "report software-emulated formats"); 48 49 int report_soft_matrix = 1; 50 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, 51 &report_soft_matrix, 0, "report software-emulated channel matrixing"); 52 53 int chn_latency = CHN_LATENCY_DEFAULT; 54 55 static int 56 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) 57 { 58 int err, val; 59 60 val = chn_latency; 61 err = sysctl_handle_int(oidp, &val, 0, req); 62 if (err != 0 || req->newptr == NULL) 63 return err; 64 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) 65 err = EINVAL; 66 else 67 chn_latency = val; 68 69 return err; 70 } 71 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, 72 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 73 sysctl_hw_snd_latency, "I", 74 "buffering latency (0=low ... 10=high)"); 75 76 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; 77 78 static int 79 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) 80 { 81 int err, val; 82 83 val = chn_latency_profile; 84 err = sysctl_handle_int(oidp, &val, 0, req); 85 if (err != 0 || req->newptr == NULL) 86 return err; 87 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) 88 err = EINVAL; 89 else 90 chn_latency_profile = val; 91 92 return err; 93 } 94 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, 95 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 96 sysctl_hw_snd_latency_profile, "I", 97 "buffering latency profile (0=aggressive 1=safe)"); 98 99 static int chn_timeout = CHN_TIMEOUT; 100 101 static int 102 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) 103 { 104 int err, val; 105 106 val = chn_timeout; 107 err = sysctl_handle_int(oidp, &val, 0, req); 108 if (err != 0 || req->newptr == NULL) 109 return err; 110 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) 111 err = EINVAL; 112 else 113 chn_timeout = val; 114 115 return err; 116 } 117 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, 118 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 119 sysctl_hw_snd_timeout, "I", 120 "interrupt timeout (1 - 10) seconds"); 121 122 static int chn_vpc_autoreset = 1; 123 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN, 124 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); 125 126 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; 127 128 static void 129 chn_vpc_proc(int reset, int db) 130 { 131 struct snddev_info *d; 132 struct pcm_channel *c; 133 int i; 134 135 bus_topo_lock(); 136 for (i = 0; pcm_devclass != NULL && 137 i < devclass_get_maxunit(pcm_devclass); i++) { 138 d = devclass_get_softc(pcm_devclass, i); 139 if (!PCM_REGISTERED(d)) 140 continue; 141 PCM_LOCK(d); 142 PCM_WAIT(d); 143 PCM_ACQUIRE(d); 144 CHN_FOREACH(c, d, channels.pcm) { 145 CHN_LOCK(c); 146 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); 147 if (reset != 0) 148 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 149 CHN_UNLOCK(c); 150 } 151 PCM_RELEASE(d); 152 PCM_UNLOCK(d); 153 } 154 bus_topo_unlock(); 155 } 156 157 static int 158 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) 159 { 160 int err, val; 161 162 val = chn_vol_0db_pcm; 163 err = sysctl_handle_int(oidp, &val, 0, req); 164 if (err != 0 || req->newptr == NULL) 165 return (err); 166 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) 167 return (EINVAL); 168 169 chn_vol_0db_pcm = val; 170 chn_vpc_proc(0, val); 171 172 return (0); 173 } 174 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, 175 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 176 sysctl_hw_snd_vpc_0db, "I", 177 "0db relative level"); 178 179 static int 180 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) 181 { 182 int err, val; 183 184 val = 0; 185 err = sysctl_handle_int(oidp, &val, 0, req); 186 if (err != 0 || req->newptr == NULL || val == 0) 187 return (err); 188 189 chn_vol_0db_pcm = SND_VOL_0DB_PCM; 190 chn_vpc_proc(1, SND_VOL_0DB_PCM); 191 192 return (0); 193 } 194 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, 195 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 196 sysctl_hw_snd_vpc_reset, "I", 197 "reset volume on all channels"); 198 199 static int chn_usefrags = 0; 200 static int chn_syncdelay = -1; 201 202 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN, 203 &chn_usefrags, 0, "prefer setfragments() over setblocksize()"); 204 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN, 205 &chn_syncdelay, 0, 206 "append (0-1000) millisecond trailing buffer delay on each sync"); 207 208 /** 209 * @brief Channel sync group lock 210 * 211 * Clients should acquire this lock @b without holding any channel locks 212 * before touching syncgroups or the main syncgroup list. 213 */ 214 struct mtx snd_pcm_syncgroups_mtx; 215 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); 216 /** 217 * @brief syncgroups' master list 218 * 219 * Each time a channel syncgroup is created, it's added to this list. This 220 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. 221 * 222 * See SNDCTL_DSP_SYNCGROUP for more information. 223 */ 224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); 225 226 static void 227 chn_lockinit(struct pcm_channel *c, int dir) 228 { 229 switch (dir) { 230 case PCMDIR_PLAY: 231 mtx_init(&c->lock, c->name, "pcm play channel", MTX_DEF); 232 cv_init(&c->intr_cv, "pcmwr"); 233 break; 234 case PCMDIR_PLAY_VIRTUAL: 235 mtx_init(&c->lock, c->name, "pcm virtual play channel", 236 MTX_DEF); 237 cv_init(&c->intr_cv, "pcmwrv"); 238 break; 239 case PCMDIR_REC: 240 mtx_init(&c->lock, c->name, "pcm record channel", MTX_DEF); 241 cv_init(&c->intr_cv, "pcmrd"); 242 break; 243 case PCMDIR_REC_VIRTUAL: 244 mtx_init(&c->lock, c->name, "pcm virtual record channel", 245 MTX_DEF); 246 cv_init(&c->intr_cv, "pcmrdv"); 247 break; 248 default: 249 panic("%s(): Invalid direction=%d", __func__, dir); 250 break; 251 } 252 253 cv_init(&c->cv, "pcmchn"); 254 } 255 256 static void 257 chn_lockdestroy(struct pcm_channel *c) 258 { 259 CHN_LOCKASSERT(c); 260 261 CHN_BROADCAST(&c->cv); 262 CHN_BROADCAST(&c->intr_cv); 263 264 cv_destroy(&c->cv); 265 cv_destroy(&c->intr_cv); 266 267 mtx_destroy(&c->lock); 268 } 269 270 /** 271 * @brief Determine channel is ready for I/O 272 * 273 * @retval 1 = ready for I/O 274 * @retval 0 = not ready for I/O 275 */ 276 int 277 chn_polltrigger(struct pcm_channel *c) 278 { 279 struct snd_dbuf *bs = c->bufsoft; 280 u_int delta; 281 282 CHN_LOCKASSERT(c); 283 284 if (c->flags & CHN_F_MMAP) { 285 if (bs->prev_total < c->lw) 286 delta = c->lw; 287 else 288 delta = bs->total - bs->prev_total; 289 } else { 290 if (c->direction == PCMDIR_PLAY) 291 delta = sndbuf_getfree(bs); 292 else 293 delta = sndbuf_getready(bs); 294 } 295 296 return ((delta < c->lw) ? 0 : 1); 297 } 298 299 static void 300 chn_pollreset(struct pcm_channel *c) 301 { 302 303 CHN_LOCKASSERT(c); 304 c->bufsoft->prev_total = c->bufsoft->total; 305 } 306 307 static void 308 chn_wakeup(struct pcm_channel *c) 309 { 310 struct snd_dbuf *bs; 311 struct pcm_channel *ch; 312 313 CHN_LOCKASSERT(c); 314 315 bs = c->bufsoft; 316 317 if (CHN_EMPTY(c, children.busy)) { 318 KNOTE_LOCKED(&bs->sel.si_note, 0); 319 if (SEL_WAITING(&bs->sel) && chn_polltrigger(c)) 320 selwakeuppri(&bs->sel, PRIBIO); 321 CHN_BROADCAST(&c->intr_cv); 322 } else { 323 CHN_FOREACH(ch, c, children.busy) { 324 CHN_LOCK(ch); 325 chn_wakeup(ch); 326 CHN_UNLOCK(ch); 327 } 328 } 329 } 330 331 static int 332 chn_sleep(struct pcm_channel *c, int timeout) 333 { 334 int ret; 335 336 CHN_LOCKASSERT(c); 337 338 if (c->flags & CHN_F_DEAD) 339 return (EINVAL); 340 341 c->sleeping++; 342 ret = cv_timedwait_sig(&c->intr_cv, &c->lock, timeout); 343 c->sleeping--; 344 345 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); 346 } 347 348 /* 349 * chn_dmaupdate() tracks the status of a dma transfer, 350 * updating pointers. 351 */ 352 353 static unsigned int 354 chn_dmaupdate(struct pcm_channel *c) 355 { 356 struct snd_dbuf *b = c->bufhard; 357 unsigned int delta, old, hwptr, amt; 358 359 KASSERT(b->bufsize > 0, ("bufsize == 0")); 360 CHN_LOCKASSERT(c); 361 362 old = b->hp; 363 hwptr = chn_getptr(c); 364 delta = (b->bufsize + hwptr - old) % b->bufsize; 365 b->hp = hwptr; 366 367 if (c->direction == PCMDIR_PLAY) { 368 amt = min(delta, sndbuf_getready(b)); 369 amt -= amt % b->align; 370 if (amt > 0) 371 sndbuf_dispose(b, NULL, amt); 372 } else { 373 amt = min(delta, sndbuf_getfree(b)); 374 amt -= amt % b->align; 375 if (amt > 0) 376 sndbuf_acquire(b, NULL, amt); 377 } 378 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { 379 device_printf(c->dev, "WARNING: %s DMA completion " 380 "too fast/slow ! hwptr=%u, old=%u " 381 "delta=%u amt=%u ready=%u free=%u\n", 382 CHN_DIRSTR(c), hwptr, old, delta, amt, 383 sndbuf_getready(b), sndbuf_getfree(b)); 384 } 385 386 return delta; 387 } 388 389 static void 390 chn_wrfeed(struct pcm_channel *c) 391 { 392 struct snd_dbuf *b = c->bufhard; 393 struct snd_dbuf *bs = c->bufsoft; 394 unsigned int amt, want, wasfree; 395 396 CHN_LOCKASSERT(c); 397 398 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) 399 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); 400 401 wasfree = sndbuf_getfree(b); 402 want = min(b->bufsize, imax(0, sndbuf_xbytes(bs->bufsize, bs, b) - 403 sndbuf_getready(b))); 404 amt = min(wasfree, want); 405 if (amt > 0) 406 sndbuf_feed(bs, b, c, c->feeder, amt); 407 408 /* 409 * Possible xruns. There should be no empty space left in buffer. 410 */ 411 if (sndbuf_getready(b) < want) 412 c->xruns++; 413 414 if (sndbuf_getfree(b) < wasfree) 415 chn_wakeup(c); 416 } 417 418 static void 419 chn_wrintr(struct pcm_channel *c) 420 { 421 422 CHN_LOCKASSERT(c); 423 /* update pointers in primary buffer */ 424 chn_dmaupdate(c); 425 /* ...and feed from secondary to primary */ 426 chn_wrfeed(c); 427 /* tell the driver we've updated the primary buffer */ 428 chn_trigger(c, PCMTRIG_EMLDMAWR); 429 } 430 431 /* 432 * user write routine - uiomove data into secondary buffer, trigger if necessary 433 * if blocking, sleep, rinse and repeat. 434 * 435 * called externally, so must handle locking 436 */ 437 438 int 439 chn_write(struct pcm_channel *c, struct uio *buf) 440 { 441 struct snd_dbuf *bs = c->bufsoft; 442 void *off; 443 int ret, timeout, sz, p; 444 445 CHN_LOCKASSERT(c); 446 447 ret = 0; 448 timeout = chn_timeout * hz; 449 450 while (ret == 0 && buf->uio_resid > 0) { 451 p = sndbuf_getfreeptr(bs); 452 sz = min(buf->uio_resid, sndbuf_getfree(bs)); 453 sz = min(sz, bs->bufsize - p); 454 if (sz > 0) { 455 off = sndbuf_getbufofs(bs, p); 456 sndbuf_acquire(bs, NULL, sz); 457 CHN_UNLOCK(c); 458 ret = uiomove(off, sz, buf); 459 CHN_LOCK(c); 460 if (ret != 0) 461 break; 462 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 463 ret = chn_start(c, 0); 464 if (ret != 0) 465 c->flags |= CHN_F_DEAD; 466 } 467 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { 468 /** 469 * @todo Evaluate whether EAGAIN is truly desirable. 470 * 4Front drivers behave like this, but I'm 471 * not sure if it at all violates the "write 472 * should be allowed to block" model. 473 * 474 * The idea is that, while set with CHN_F_NOTRIGGER, 475 * a channel isn't playing, *but* without this we 476 * end up with "interrupt timeout / channel dead". 477 */ 478 ret = EAGAIN; 479 } else { 480 ret = chn_sleep(c, timeout); 481 if (ret == ERESTART || ret == EINTR) 482 c->flags |= CHN_F_ABORTING; 483 } 484 } 485 486 return (ret); 487 } 488 489 /* 490 * Feed new data from the read buffer. Can be called in the bottom half. 491 */ 492 static void 493 chn_rdfeed(struct pcm_channel *c) 494 { 495 struct snd_dbuf *b = c->bufhard; 496 struct snd_dbuf *bs = c->bufsoft; 497 unsigned int amt; 498 499 CHN_LOCKASSERT(c); 500 501 if (c->flags & CHN_F_MMAP) 502 sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); 503 504 amt = sndbuf_getfree(bs); 505 if (amt > 0) 506 sndbuf_feed(b, bs, c, c->feeder, amt); 507 508 amt = sndbuf_getready(b); 509 if (amt > 0) { 510 c->xruns++; 511 sndbuf_dispose(b, NULL, amt); 512 } 513 514 if (sndbuf_getready(bs) > 0) 515 chn_wakeup(c); 516 } 517 518 /* read interrupt routine. Must be called with interrupts blocked. */ 519 static void 520 chn_rdintr(struct pcm_channel *c) 521 { 522 523 CHN_LOCKASSERT(c); 524 /* tell the driver to update the primary buffer if non-dma */ 525 chn_trigger(c, PCMTRIG_EMLDMARD); 526 /* update pointers in primary buffer */ 527 chn_dmaupdate(c); 528 /* ...and feed from primary to secondary */ 529 chn_rdfeed(c); 530 } 531 532 /* 533 * user read routine - trigger if necessary, uiomove data from secondary buffer 534 * if blocking, sleep, rinse and repeat. 535 * 536 * called externally, so must handle locking 537 */ 538 539 int 540 chn_read(struct pcm_channel *c, struct uio *buf) 541 { 542 struct snd_dbuf *bs = c->bufsoft; 543 void *off; 544 int ret, timeout, sz, p; 545 546 CHN_LOCKASSERT(c); 547 548 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 549 ret = chn_start(c, 0); 550 if (ret != 0) { 551 c->flags |= CHN_F_DEAD; 552 return (ret); 553 } 554 } 555 556 ret = 0; 557 timeout = chn_timeout * hz; 558 559 while (ret == 0 && buf->uio_resid > 0) { 560 p = sndbuf_getreadyptr(bs); 561 sz = min(buf->uio_resid, sndbuf_getready(bs)); 562 sz = min(sz, bs->bufsize - p); 563 if (sz > 0) { 564 off = sndbuf_getbufofs(bs, p); 565 sndbuf_dispose(bs, NULL, sz); 566 CHN_UNLOCK(c); 567 ret = uiomove(off, sz, buf); 568 CHN_LOCK(c); 569 if (ret != 0) 570 break; 571 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) 572 ret = EAGAIN; 573 else { 574 ret = chn_sleep(c, timeout); 575 if (ret == ERESTART || ret == EINTR) 576 c->flags |= CHN_F_ABORTING; 577 } 578 } 579 580 return (ret); 581 } 582 583 void 584 chn_intr(struct pcm_channel *c) 585 { 586 CHN_LOCK(c); 587 c->interrupts++; 588 if (c->direction == PCMDIR_PLAY) 589 chn_wrintr(c); 590 else 591 chn_rdintr(c); 592 CHN_UNLOCK(c); 593 } 594 595 u_int32_t 596 chn_start(struct pcm_channel *c, int force) 597 { 598 u_int32_t i, j; 599 struct snd_dbuf *b = c->bufhard; 600 struct snd_dbuf *bs = c->bufsoft; 601 int err; 602 603 CHN_LOCKASSERT(c); 604 /* if we're running, or if we're prevented from triggering, bail */ 605 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) 606 return (EINVAL); 607 608 err = 0; 609 610 if (force) { 611 i = 1; 612 j = 0; 613 } else { 614 if (c->direction == PCMDIR_REC) { 615 i = sndbuf_getfree(bs); 616 j = (i > 0) ? 1 : sndbuf_getready(b); 617 } else { 618 if (sndbuf_getfree(bs) == 0) { 619 i = 1; 620 j = 0; 621 } else { 622 struct snd_dbuf *pb; 623 624 pb = CHN_BUF_PARENT(c, b); 625 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); 626 j = pb->align; 627 } 628 } 629 if (snd_verbose > 3 && CHN_EMPTY(c, children)) 630 device_printf(c->dev, "%s(): %s (%s) threshold " 631 "i=%d j=%d\n", __func__, CHN_DIRSTR(c), 632 (c->flags & CHN_F_VIRTUAL) ? "virtual" : 633 "hardware", i, j); 634 } 635 636 if (i >= j) { 637 c->flags |= CHN_F_TRIGGERED; 638 sndbuf_setrun(b, 1); 639 if (c->flags & CHN_F_CLOSING) 640 c->feedcount = 2; 641 else { 642 c->feedcount = 0; 643 c->interrupts = 0; 644 c->xruns = 0; 645 } 646 if (c->parentchannel == NULL) { 647 if (c->direction == PCMDIR_PLAY) 648 sndbuf_fillsilence_rl(b, 649 sndbuf_xbytes(bs->bufsize, bs, b)); 650 if (snd_verbose > 3) 651 device_printf(c->dev, 652 "%s(): %s starting! (%s/%s) " 653 "(ready=%d force=%d i=%d j=%d " 654 "intrtimeout=%u latency=%dms)\n", 655 __func__, 656 (c->flags & CHN_F_HAS_VCHAN) ? 657 "VCHAN PARENT" : "HW", CHN_DIRSTR(c), 658 (c->flags & CHN_F_CLOSING) ? "closing" : 659 "running", 660 sndbuf_getready(b), 661 force, i, j, c->timeout, 662 (b->bufsize * 1000) / 663 (b->align * b->spd)); 664 } 665 err = chn_trigger(c, PCMTRIG_START); 666 } 667 668 return (err); 669 } 670 671 void 672 chn_resetbuf(struct pcm_channel *c) 673 { 674 struct snd_dbuf *b = c->bufhard; 675 struct snd_dbuf *bs = c->bufsoft; 676 677 c->blocks = 0; 678 sndbuf_reset(b); 679 sndbuf_reset(bs); 680 } 681 682 /* 683 * chn_sync waits until the space in the given channel goes above 684 * a threshold. The threshold is checked against fl or rl respectively. 685 * Assume that the condition can become true, do not check here... 686 */ 687 int 688 chn_sync(struct pcm_channel *c, int threshold) 689 { 690 struct snd_dbuf *b, *bs; 691 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; 692 u_int32_t cflag; 693 694 CHN_LOCKASSERT(c); 695 696 if (c->direction != PCMDIR_PLAY) 697 return (EINVAL); 698 699 bs = c->bufsoft; 700 701 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || 702 (threshold < 1 && sndbuf_getready(bs) < 1)) 703 return (0); 704 705 /* if we haven't yet started and nothing is buffered, else start*/ 706 if (CHN_STOPPED(c)) { 707 if (threshold > 0 || sndbuf_getready(bs) > 0) { 708 ret = chn_start(c, 1); 709 if (ret != 0) 710 return (ret); 711 } else 712 return (0); 713 } 714 715 b = CHN_BUF_PARENT(c, c->bufhard); 716 717 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); 718 719 syncdelay = chn_syncdelay; 720 721 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) 722 minflush += sndbuf_xbytes(b->bufsize, b, bs); 723 724 /* 725 * Append (0-1000) millisecond trailing buffer (if needed) 726 * for slower / high latency hardwares (notably USB audio) 727 * to avoid audible truncation. 728 */ 729 if (syncdelay > 0) 730 minflush += (bs->align * bs->spd * 731 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; 732 733 minflush -= minflush % bs->align; 734 735 if (minflush > 0) { 736 threshold = min(minflush, sndbuf_getfree(bs)); 737 sndbuf_clear(bs, threshold); 738 sndbuf_acquire(bs, NULL, threshold); 739 minflush -= threshold; 740 } 741 742 resid = sndbuf_getready(bs); 743 residp = resid; 744 blksz = b->blksz; 745 if (blksz < 1) { 746 device_printf(c->dev, 747 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", 748 __func__, b->maxsize, b->bufsize, 749 b->blksz, b->blkcnt); 750 if (b->blkcnt > 0) 751 blksz = b->bufsize / b->blkcnt; 752 if (blksz < 1) 753 blksz = 1; 754 } 755 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; 756 hcount = count; 757 ret = 0; 758 759 if (snd_verbose > 3) 760 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " 761 "minflush=%d resid=%d\n", __func__, c->timeout, count, 762 minflush, resid); 763 764 cflag = c->flags & CHN_F_CLOSING; 765 c->flags |= CHN_F_CLOSING; 766 while (count > 0 && (resid > 0 || minflush > 0)) { 767 ret = chn_sleep(c, c->timeout); 768 if (ret == ERESTART || ret == EINTR) { 769 c->flags |= CHN_F_ABORTING; 770 break; 771 } else if (ret == 0 || ret == EAGAIN) { 772 resid = sndbuf_getready(bs); 773 if (resid == residp) { 774 --count; 775 if (snd_verbose > 3) 776 device_printf(c->dev, 777 "%s(): [stalled] timeout=%d " 778 "count=%d hcount=%d " 779 "resid=%d minflush=%d\n", 780 __func__, c->timeout, count, 781 hcount, resid, minflush); 782 } else if (resid < residp && count < hcount) { 783 ++count; 784 if (snd_verbose > 3) 785 device_printf(c->dev, 786 "%s((): [resume] timeout=%d " 787 "count=%d hcount=%d " 788 "resid=%d minflush=%d\n", 789 __func__, c->timeout, count, 790 hcount, resid, minflush); 791 } 792 if (minflush > 0 && sndbuf_getfree(bs) > 0) { 793 threshold = min(minflush, 794 sndbuf_getfree(bs)); 795 sndbuf_clear(bs, threshold); 796 sndbuf_acquire(bs, NULL, threshold); 797 resid = sndbuf_getready(bs); 798 minflush -= threshold; 799 } 800 residp = resid; 801 } else 802 break; 803 } 804 c->flags &= ~CHN_F_CLOSING; 805 c->flags |= cflag; 806 807 if (snd_verbose > 3) 808 device_printf(c->dev, 809 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " 810 "minflush=%d ret=%d\n", 811 __func__, c->timeout, count, hcount, resid, residp, 812 minflush, ret); 813 814 return (0); 815 } 816 817 /* called externally, handle locking */ 818 int 819 chn_poll(struct pcm_channel *c, int ev, struct thread *td) 820 { 821 struct snd_dbuf *bs = c->bufsoft; 822 int ret; 823 824 CHN_LOCKASSERT(c); 825 826 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { 827 ret = chn_start(c, 1); 828 if (ret != 0) 829 return (0); 830 } 831 832 ret = 0; 833 if (chn_polltrigger(c)) { 834 chn_pollreset(c); 835 ret = ev; 836 } else 837 selrecord(td, &bs->sel); 838 839 return (ret); 840 } 841 842 /* 843 * chn_abort terminates a running dma transfer. it may sleep up to 200ms. 844 * it returns the number of bytes that have not been transferred. 845 * 846 * called from: dsp_close, dsp_ioctl, with channel locked 847 */ 848 int 849 chn_abort(struct pcm_channel *c) 850 { 851 int missing = 0; 852 struct snd_dbuf *b = c->bufhard; 853 struct snd_dbuf *bs = c->bufsoft; 854 855 CHN_LOCKASSERT(c); 856 if (CHN_STOPPED(c)) 857 return 0; 858 c->flags |= CHN_F_ABORTING; 859 860 c->flags &= ~CHN_F_TRIGGERED; 861 /* kill the channel */ 862 chn_trigger(c, PCMTRIG_ABORT); 863 sndbuf_setrun(b, 0); 864 if (!(c->flags & CHN_F_VIRTUAL)) 865 chn_dmaupdate(c); 866 missing = sndbuf_getready(bs); 867 868 c->flags &= ~CHN_F_ABORTING; 869 return missing; 870 } 871 872 /* 873 * this routine tries to flush the dma transfer. It is called 874 * on a close of a playback channel. 875 * first, if there is data in the buffer, but the dma has not yet 876 * begun, we need to start it. 877 * next, we wait for the play buffer to drain 878 * finally, we stop the dma. 879 * 880 * called from: dsp_close, not valid for record channels. 881 */ 882 883 int 884 chn_flush(struct pcm_channel *c) 885 { 886 struct snd_dbuf *b = c->bufhard; 887 888 CHN_LOCKASSERT(c); 889 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); 890 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); 891 892 c->flags |= CHN_F_CLOSING; 893 chn_sync(c, 0); 894 c->flags &= ~CHN_F_TRIGGERED; 895 /* kill the channel */ 896 chn_trigger(c, PCMTRIG_ABORT); 897 sndbuf_setrun(b, 0); 898 899 c->flags &= ~CHN_F_CLOSING; 900 return 0; 901 } 902 903 int 904 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) 905 { 906 int i; 907 908 for (i = 0; fmtlist[i] != 0; i++) { 909 if (fmt == fmtlist[i] || 910 ((fmt & AFMT_PASSTHROUGH) && 911 (AFMT_ENCODING(fmt) & fmtlist[i]))) 912 return (1); 913 } 914 915 return (0); 916 } 917 918 static const struct { 919 char *name, *alias1, *alias2; 920 uint32_t afmt; 921 } afmt_tab[] = { 922 { "alaw", NULL, NULL, AFMT_A_LAW }, 923 { "mulaw", NULL, NULL, AFMT_MU_LAW }, 924 { "u8", "8", NULL, AFMT_U8 }, 925 { "s8", NULL, NULL, AFMT_S8 }, 926 { "ac3", NULL, NULL, AFMT_AC3 }, 927 #if BYTE_ORDER == LITTLE_ENDIAN 928 { "s16le", "s16", "16", AFMT_S16_LE }, 929 { "s16be", NULL, NULL, AFMT_S16_BE }, 930 { "s24le", "s24", "24", AFMT_S24_LE }, 931 { "s24be", NULL, NULL, AFMT_S24_BE }, 932 { "s32le", "s32", "32", AFMT_S32_LE }, 933 { "s32be", NULL, NULL, AFMT_S32_BE }, 934 { "f32le", "f32", NULL, AFMT_F32_LE }, 935 { "f32be", NULL, NULL, AFMT_F32_BE }, 936 { "u16le", "u16", NULL, AFMT_U16_LE }, 937 { "u16be", NULL, NULL, AFMT_U16_BE }, 938 { "u24le", "u24", NULL, AFMT_U24_LE }, 939 { "u24be", NULL, NULL, AFMT_U24_BE }, 940 { "u32le", "u32", NULL, AFMT_U32_LE }, 941 { "u32be", NULL, NULL, AFMT_U32_BE }, 942 #else 943 { "s16le", NULL, NULL, AFMT_S16_LE }, 944 { "s16be", "s16", "16", AFMT_S16_BE }, 945 { "s24le", NULL, NULL, AFMT_S24_LE }, 946 { "s24be", "s24", "24", AFMT_S24_BE }, 947 { "s32le", NULL, NULL, AFMT_S32_LE }, 948 { "s32be", "s32", "32", AFMT_S32_BE }, 949 { "f32le", NULL, NULL, AFMT_F32_LE }, 950 { "f32be", "f32", NULL, AFMT_F32_BE }, 951 { "u16le", NULL, NULL, AFMT_U16_LE }, 952 { "u16be", "u16", NULL, AFMT_U16_BE }, 953 { "u24le", NULL, NULL, AFMT_U24_LE }, 954 { "u24be", "u24", NULL, AFMT_U24_BE }, 955 { "u32le", NULL, NULL, AFMT_U32_LE }, 956 { "u32be", "u32", NULL, AFMT_U32_BE }, 957 #endif 958 { NULL, NULL, NULL, 0 } 959 }; 960 961 uint32_t 962 snd_str2afmt(const char *req) 963 { 964 int ext; 965 int ch; 966 int i; 967 char b1[8]; 968 char b2[8]; 969 970 memset(b1, 0, sizeof(b1)); 971 memset(b2, 0, sizeof(b2)); 972 973 i = sscanf(req, "%5[^:]:%6s", b1, b2); 974 975 if (i == 1) { 976 if (strlen(req) != strlen(b1)) 977 return (0); 978 strlcpy(b2, "2.0", sizeof(b2)); 979 } else if (i == 2) { 980 if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) 981 return (0); 982 } else 983 return (0); 984 985 i = sscanf(b2, "%d.%d", &ch, &ext); 986 987 if (i == 0) { 988 if (strcasecmp(b2, "mono") == 0) { 989 ch = 1; 990 ext = 0; 991 } else if (strcasecmp(b2, "stereo") == 0) { 992 ch = 2; 993 ext = 0; 994 } else if (strcasecmp(b2, "quad") == 0) { 995 ch = 4; 996 ext = 0; 997 } else 998 return (0); 999 } else if (i == 1) { 1000 if (ch < 1 || ch > AFMT_CHANNEL_MAX) 1001 return (0); 1002 ext = 0; 1003 } else if (i == 2) { 1004 if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX) 1005 return (0); 1006 if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX) 1007 return (0); 1008 } else 1009 return (0); 1010 1011 for (i = 0; afmt_tab[i].name != NULL; i++) { 1012 if (strcasecmp(afmt_tab[i].name, b1) != 0) { 1013 if (afmt_tab[i].alias1 == NULL) 1014 continue; 1015 if (strcasecmp(afmt_tab[i].alias1, b1) != 0) { 1016 if (afmt_tab[i].alias2 == NULL) 1017 continue; 1018 if (strcasecmp(afmt_tab[i].alias2, b1) != 0) 1019 continue; 1020 } 1021 } 1022 /* found a match */ 1023 return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext)); 1024 } 1025 /* not a valid format */ 1026 return (0); 1027 } 1028 1029 uint32_t 1030 snd_afmt2str(uint32_t afmt, char *buf, size_t len) 1031 { 1032 uint32_t enc; 1033 uint32_t ext; 1034 uint32_t ch; 1035 int i; 1036 1037 if (buf == NULL || len < AFMTSTR_LEN) 1038 return (0); 1039 1040 memset(buf, 0, len); 1041 1042 enc = AFMT_ENCODING(afmt); 1043 ch = AFMT_CHANNEL(afmt); 1044 ext = AFMT_EXTCHANNEL(afmt); 1045 /* check there is at least one channel */ 1046 if (ch <= ext) 1047 return (0); 1048 for (i = 0; afmt_tab[i].name != NULL; i++) { 1049 if (enc != afmt_tab[i].afmt) 1050 continue; 1051 /* found a match */ 1052 snprintf(buf, len, "%s:%d.%d", 1053 afmt_tab[i].name, ch - ext, ext); 1054 return (SND_FORMAT(enc, ch, ext)); 1055 } 1056 return (0); 1057 } 1058 1059 int 1060 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) 1061 { 1062 int r; 1063 1064 CHN_LOCKASSERT(c); 1065 c->feedcount = 0; 1066 c->flags &= CHN_F_RESET; 1067 c->interrupts = 0; 1068 c->timeout = 1; 1069 c->xruns = 0; 1070 1071 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? 1072 CHN_F_BITPERFECT : 0; 1073 1074 r = CHANNEL_RESET(c->methods, c->devinfo); 1075 if (r == 0 && fmt != 0 && spd != 0) { 1076 r = chn_setparam(c, fmt, spd); 1077 fmt = 0; 1078 spd = 0; 1079 } 1080 if (r == 0 && fmt != 0) 1081 r = chn_setformat(c, fmt); 1082 if (r == 0 && spd != 0) 1083 r = chn_setspeed(c, spd); 1084 if (r == 0) 1085 r = chn_setlatency(c, chn_latency); 1086 if (r == 0) { 1087 chn_resetbuf(c); 1088 r = CHANNEL_RESETDONE(c->methods, c->devinfo); 1089 } 1090 return r; 1091 } 1092 1093 static struct unrhdr * 1094 chn_getunr(struct snddev_info *d, int type) 1095 { 1096 switch (type) { 1097 case PCMDIR_PLAY: 1098 return (d->p_unr); 1099 case PCMDIR_PLAY_VIRTUAL: 1100 return (d->vp_unr); 1101 case PCMDIR_REC: 1102 return (d->r_unr); 1103 case PCMDIR_REC_VIRTUAL: 1104 return (d->vr_unr); 1105 default: 1106 __assert_unreachable(); 1107 } 1108 1109 } 1110 1111 char * 1112 chn_mkname(char *buf, size_t len, struct pcm_channel *c) 1113 { 1114 const char *str; 1115 1116 KASSERT(buf != NULL && len != 0, 1117 ("%s(): bogus buf=%p len=%zu", __func__, buf, len)); 1118 1119 switch (c->type) { 1120 case PCMDIR_PLAY: 1121 str = "play"; 1122 break; 1123 case PCMDIR_PLAY_VIRTUAL: 1124 str = "virtual_play"; 1125 break; 1126 case PCMDIR_REC: 1127 str = "record"; 1128 break; 1129 case PCMDIR_REC_VIRTUAL: 1130 str = "virtual_record"; 1131 break; 1132 default: 1133 __assert_unreachable(); 1134 } 1135 1136 snprintf(buf, len, "dsp%d.%s.%d", 1137 device_get_unit(c->dev), str, c->unit); 1138 1139 return (buf); 1140 } 1141 1142 struct pcm_channel * 1143 chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls, 1144 int dir, void *devinfo) 1145 { 1146 struct pcm_channel *c; 1147 struct feeder_class *fc; 1148 struct snd_dbuf *b, *bs; 1149 char buf[CHN_NAMELEN]; 1150 int err, i, direction, *vchanrate, *vchanformat; 1151 1152 PCM_BUSYASSERT(d); 1153 PCM_LOCKASSERT(d); 1154 1155 switch (dir) { 1156 case PCMDIR_PLAY: 1157 d->playcount++; 1158 /* FALLTHROUGH */ 1159 case PCMDIR_PLAY_VIRTUAL: 1160 if (dir == PCMDIR_PLAY_VIRTUAL) 1161 d->pvchancount++; 1162 direction = PCMDIR_PLAY; 1163 vchanrate = &d->pvchanrate; 1164 vchanformat = &d->pvchanformat; 1165 break; 1166 case PCMDIR_REC: 1167 d->reccount++; 1168 /* FALLTHROUGH */ 1169 case PCMDIR_REC_VIRTUAL: 1170 if (dir == PCMDIR_REC_VIRTUAL) 1171 d->rvchancount++; 1172 direction = PCMDIR_REC; 1173 vchanrate = &d->rvchanrate; 1174 vchanformat = &d->rvchanformat; 1175 break; 1176 default: 1177 device_printf(d->dev, 1178 "%s(): invalid channel direction: %d\n", 1179 __func__, dir); 1180 return (NULL); 1181 } 1182 1183 PCM_UNLOCK(d); 1184 b = NULL; 1185 bs = NULL; 1186 1187 c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO); 1188 c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO); 1189 chn_lockinit(c, dir); 1190 CHN_INIT(c, children); 1191 CHN_INIT(c, children.busy); 1192 c->direction = direction; 1193 c->type = dir; 1194 c->unit = alloc_unr(chn_getunr(d, c->type)); 1195 c->format = SND_FORMAT(AFMT_S16_LE, 2, 0); 1196 c->speed = 48000; 1197 c->pid = -1; 1198 c->latency = -1; 1199 c->timeout = 1; 1200 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); 1201 c->parentsnddev = d; 1202 c->parentchannel = parent; 1203 c->dev = d->dev; 1204 c->trigger = PCMTRIG_STOP; 1205 strlcpy(c->name, chn_mkname(buf, sizeof(buf), c), sizeof(c->name)); 1206 1207 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); 1208 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1209 1210 for (i = 0; i < SND_CHN_T_MAX; i++) 1211 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; 1212 1213 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; 1214 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; 1215 1216 CHN_LOCK(c); 1217 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 1218 CHN_UNLOCK(c); 1219 1220 fc = feeder_getclass(FEEDER_ROOT); 1221 if (fc == NULL) { 1222 device_printf(d->dev, "%s(): failed to get feeder class\n", 1223 __func__); 1224 goto fail; 1225 } 1226 if (feeder_add(c, fc, NULL)) { 1227 device_printf(d->dev, "%s(): failed to add feeder\n", __func__); 1228 goto fail; 1229 } 1230 1231 b = sndbuf_create(c, "primary"); 1232 bs = sndbuf_create(c, "secondary"); 1233 if (b == NULL || bs == NULL) { 1234 device_printf(d->dev, "%s(): failed to create %s buffer\n", 1235 __func__, b == NULL ? "hardware" : "software"); 1236 goto fail; 1237 } 1238 c->bufhard = b; 1239 c->bufsoft = bs; 1240 knlist_init_mtx(&bs->sel.si_note, &c->lock); 1241 1242 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); 1243 if (c->devinfo == NULL) { 1244 device_printf(d->dev, "%s(): CHANNEL_INIT() failed\n", __func__); 1245 goto fail; 1246 } 1247 1248 if (b->bufsize == 0 && ((c->flags & CHN_F_VIRTUAL) == 0)) { 1249 device_printf(d->dev, "%s(): hardware buffer's size is 0\n", 1250 __func__); 1251 goto fail; 1252 } 1253 1254 sndbuf_setfmt(b, c->format); 1255 sndbuf_setspd(b, c->speed); 1256 sndbuf_setfmt(bs, c->format); 1257 sndbuf_setspd(bs, c->speed); 1258 sndbuf_setup(bs, NULL, 0); 1259 1260 /** 1261 * @todo Should this be moved somewhere else? The primary buffer 1262 * is allocated by the driver or via DMA map setup, and tmpbuf 1263 * seems to only come into existence in sndbuf_resize(). 1264 */ 1265 if (c->direction == PCMDIR_PLAY) { 1266 bs->sl = bs->maxsize; 1267 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_WAITOK); 1268 } 1269 1270 if ((c->flags & CHN_F_VIRTUAL) == 0) { 1271 CHN_LOCK(c); 1272 err = chn_reset(c, c->format, c->speed); 1273 CHN_UNLOCK(c); 1274 if (err != 0) 1275 goto fail; 1276 } 1277 1278 PCM_LOCK(d); 1279 CHN_INSERT_SORT_ASCEND(d, c, channels.pcm); 1280 if ((c->flags & CHN_F_VIRTUAL) == 0) { 1281 CHN_INSERT_SORT_ASCEND(d, c, channels.pcm.primary); 1282 /* Initialize the *vchanrate/vchanformat parameters. */ 1283 *vchanrate = c->bufsoft->spd; 1284 *vchanformat = c->bufsoft->fmt; 1285 } 1286 1287 return (c); 1288 1289 fail: 1290 chn_kill(c); 1291 PCM_LOCK(d); 1292 1293 return (NULL); 1294 } 1295 1296 void 1297 chn_kill(struct pcm_channel *c) 1298 { 1299 struct snddev_info *d = c->parentsnddev; 1300 struct snd_dbuf *b = c->bufhard; 1301 struct snd_dbuf *bs = c->bufsoft; 1302 1303 PCM_BUSYASSERT(c->parentsnddev); 1304 1305 PCM_LOCK(d); 1306 CHN_REMOVE(d, c, channels.pcm); 1307 if ((c->flags & CHN_F_VIRTUAL) == 0) 1308 CHN_REMOVE(d, c, channels.pcm.primary); 1309 1310 switch (c->type) { 1311 case PCMDIR_PLAY: 1312 d->playcount--; 1313 break; 1314 case PCMDIR_PLAY_VIRTUAL: 1315 d->pvchancount--; 1316 break; 1317 case PCMDIR_REC: 1318 d->reccount--; 1319 break; 1320 case PCMDIR_REC_VIRTUAL: 1321 d->rvchancount--; 1322 break; 1323 default: 1324 __assert_unreachable(); 1325 } 1326 PCM_UNLOCK(d); 1327 1328 if (CHN_STARTED(c)) { 1329 CHN_LOCK(c); 1330 chn_trigger(c, PCMTRIG_ABORT); 1331 CHN_UNLOCK(c); 1332 } 1333 free_unr(chn_getunr(d, c->type), c->unit); 1334 feeder_remove(c); 1335 if (c->devinfo) 1336 CHANNEL_FREE(c->methods, c->devinfo); 1337 if (bs) { 1338 knlist_clear(&bs->sel.si_note, 0); 1339 knlist_destroy(&bs->sel.si_note); 1340 sndbuf_destroy(bs); 1341 } 1342 if (b) 1343 sndbuf_destroy(b); 1344 CHN_LOCK(c); 1345 c->flags |= CHN_F_DEAD; 1346 chn_lockdestroy(c); 1347 kobj_delete(c->methods, M_DEVBUF); 1348 free(c, M_DEVBUF); 1349 } 1350 1351 void 1352 chn_shutdown(struct pcm_channel *c) 1353 { 1354 CHN_LOCKASSERT(c); 1355 1356 chn_wakeup(c); 1357 c->flags |= CHN_F_DEAD; 1358 } 1359 1360 /* release a locked channel and unlock it */ 1361 int 1362 chn_release(struct pcm_channel *c) 1363 { 1364 PCM_BUSYASSERT(c->parentsnddev); 1365 CHN_LOCKASSERT(c); 1366 1367 c->flags &= ~CHN_F_BUSY; 1368 c->pid = -1; 1369 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm)); 1370 CHN_UNLOCK(c); 1371 1372 return (0); 1373 } 1374 1375 int 1376 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, 1377 int center) 1378 { 1379 int i, ret; 1380 1381 ret = 0; 1382 1383 for (i = 0; i < SND_CHN_T_MAX; i++) { 1384 if ((1 << i) & SND_CHN_LEFT_MASK) 1385 ret |= chn_setvolume_matrix(c, vc, i, left); 1386 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1387 ret |= chn_setvolume_matrix(c, vc, i, right) << 8; 1388 else 1389 ret |= chn_setvolume_matrix(c, vc, i, center) << 16; 1390 } 1391 1392 return (ret); 1393 } 1394 1395 int 1396 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) 1397 { 1398 int i; 1399 1400 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1401 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1402 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && 1403 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || 1404 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), 1405 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", 1406 __func__, c, vc, vt, val)); 1407 CHN_LOCKASSERT(c); 1408 1409 if (val < 0) 1410 val = 0; 1411 if (val > 100) 1412 val = 100; 1413 1414 c->volume[vc][vt] = val; 1415 1416 /* 1417 * Do relative calculation here and store it into class + 1 1418 * to ease the job of feeder_volume. 1419 */ 1420 if (vc == SND_VOL_C_MASTER) { 1421 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1422 vc += SND_VOL_C_STEP) 1423 c->volume[SND_VOL_C_VAL(vc)][vt] = 1424 SND_VOL_CALC_VAL(c->volume, vc, vt); 1425 } else if (vc & 1) { 1426 if (vt == SND_CHN_T_VOL_0DB) 1427 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1428 i += SND_CHN_T_STEP) { 1429 c->volume[SND_VOL_C_VAL(vc)][i] = 1430 SND_VOL_CALC_VAL(c->volume, vc, i); 1431 } 1432 else 1433 c->volume[SND_VOL_C_VAL(vc)][vt] = 1434 SND_VOL_CALC_VAL(c->volume, vc, vt); 1435 } 1436 1437 return (val); 1438 } 1439 1440 int 1441 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) 1442 { 1443 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1444 (vt == SND_CHN_T_VOL_0DB || 1445 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1446 ("%s(): invalid volume matrix c=%p vc=%d vt=%d", 1447 __func__, c, vc, vt)); 1448 CHN_LOCKASSERT(c); 1449 1450 return (c->volume[vc][vt]); 1451 } 1452 1453 int 1454 chn_setmute_multi(struct pcm_channel *c, int vc, int mute) 1455 { 1456 int i, ret; 1457 1458 ret = 0; 1459 1460 for (i = 0; i < SND_CHN_T_MAX; i++) { 1461 if ((1 << i) & SND_CHN_LEFT_MASK) 1462 ret |= chn_setmute_matrix(c, vc, i, mute); 1463 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1464 ret |= chn_setmute_matrix(c, vc, i, mute) << 8; 1465 else 1466 ret |= chn_setmute_matrix(c, vc, i, mute) << 16; 1467 } 1468 return (ret); 1469 } 1470 1471 int 1472 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute) 1473 { 1474 int i; 1475 1476 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1477 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1478 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1479 ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d", 1480 __func__, c, vc, vt, mute)); 1481 1482 CHN_LOCKASSERT(c); 1483 1484 mute = (mute != 0); 1485 1486 c->muted[vc][vt] = mute; 1487 1488 /* 1489 * Do relative calculation here and store it into class + 1 1490 * to ease the job of feeder_volume. 1491 */ 1492 if (vc == SND_VOL_C_MASTER) { 1493 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1494 vc += SND_VOL_C_STEP) 1495 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1496 } else if (vc & 1) { 1497 if (vt == SND_CHN_T_VOL_0DB) { 1498 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1499 i += SND_CHN_T_STEP) { 1500 c->muted[SND_VOL_C_VAL(vc)][i] = mute; 1501 } 1502 } else { 1503 c->muted[SND_VOL_C_VAL(vc)][vt] = mute; 1504 } 1505 } 1506 return (mute); 1507 } 1508 1509 int 1510 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt) 1511 { 1512 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1513 (vt == SND_CHN_T_VOL_0DB || 1514 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1515 ("%s(): invalid mute matrix c=%p vc=%d vt=%d", 1516 __func__, c, vc, vt)); 1517 CHN_LOCKASSERT(c); 1518 1519 return (c->muted[vc][vt]); 1520 } 1521 1522 struct pcmchan_matrix * 1523 chn_getmatrix(struct pcm_channel *c) 1524 { 1525 1526 KASSERT(c != NULL, ("%s(): NULL channel", __func__)); 1527 CHN_LOCKASSERT(c); 1528 1529 if (!(c->format & AFMT_CONVERTIBLE)) 1530 return (NULL); 1531 1532 return (&c->matrix); 1533 } 1534 1535 int 1536 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) 1537 { 1538 1539 KASSERT(c != NULL && m != NULL, 1540 ("%s(): NULL channel or matrix", __func__)); 1541 CHN_LOCKASSERT(c); 1542 1543 if (!(c->format & AFMT_CONVERTIBLE)) 1544 return (EINVAL); 1545 1546 c->matrix = *m; 1547 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1548 1549 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); 1550 } 1551 1552 /* 1553 * XXX chn_oss_* exists for the sake of compatibility. 1554 */ 1555 int 1556 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) 1557 { 1558 1559 KASSERT(c != NULL && map != NULL, 1560 ("%s(): NULL channel or map", __func__)); 1561 CHN_LOCKASSERT(c); 1562 1563 if (!(c->format & AFMT_CONVERTIBLE)) 1564 return (EINVAL); 1565 1566 return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); 1567 } 1568 1569 int 1570 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) 1571 { 1572 struct pcmchan_matrix m; 1573 int ret; 1574 1575 KASSERT(c != NULL && map != NULL, 1576 ("%s(): NULL channel or map", __func__)); 1577 CHN_LOCKASSERT(c); 1578 1579 if (!(c->format & AFMT_CONVERTIBLE)) 1580 return (EINVAL); 1581 1582 m = c->matrix; 1583 ret = feeder_matrix_oss_set_channel_order(&m, map); 1584 if (ret != 0) 1585 return (ret); 1586 1587 return (chn_setmatrix(c, &m)); 1588 } 1589 1590 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) 1591 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) 1592 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) 1593 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) 1594 1595 int 1596 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) 1597 { 1598 struct pcmchan_matrix *m; 1599 struct pcmchan_caps *caps; 1600 uint32_t i, format; 1601 1602 KASSERT(c != NULL && retmask != NULL, 1603 ("%s(): NULL channel or retmask", __func__)); 1604 CHN_LOCKASSERT(c); 1605 1606 caps = chn_getcaps(c); 1607 if (caps == NULL || caps->fmtlist == NULL) 1608 return (ENODEV); 1609 1610 for (i = 0; caps->fmtlist[i] != 0; i++) { 1611 format = caps->fmtlist[i]; 1612 if (!(format & AFMT_CONVERTIBLE)) { 1613 *retmask |= DSP_BIND_SPDIF; 1614 continue; 1615 } 1616 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); 1617 if (m == NULL) 1618 continue; 1619 if (m->mask & SND_CHN_OSS_FRONT) 1620 *retmask |= DSP_BIND_FRONT; 1621 if (m->mask & SND_CHN_OSS_SURR) 1622 *retmask |= DSP_BIND_SURR; 1623 if (m->mask & SND_CHN_OSS_CENTER_LFE) 1624 *retmask |= DSP_BIND_CENTER_LFE; 1625 if (m->mask & SND_CHN_OSS_REAR) 1626 *retmask |= DSP_BIND_REAR; 1627 } 1628 1629 /* report software-supported binding mask */ 1630 if (!CHN_BITPERFECT(c) && report_soft_matrix) 1631 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | 1632 DSP_BIND_CENTER_LFE | DSP_BIND_REAR; 1633 1634 return (0); 1635 } 1636 1637 void 1638 chn_vpc_reset(struct pcm_channel *c, int vc, int force) 1639 { 1640 int i; 1641 1642 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, 1643 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); 1644 CHN_LOCKASSERT(c); 1645 1646 if (force == 0 && chn_vpc_autoreset == 0) 1647 return; 1648 1649 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) 1650 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); 1651 } 1652 1653 static u_int32_t 1654 round_pow2(u_int32_t v) 1655 { 1656 u_int32_t ret; 1657 1658 if (v < 2) 1659 v = 2; 1660 ret = 0; 1661 while (v >> ret) 1662 ret++; 1663 ret = 1 << (ret - 1); 1664 while (ret < v) 1665 ret <<= 1; 1666 return ret; 1667 } 1668 1669 static u_int32_t 1670 round_blksz(u_int32_t v, int round) 1671 { 1672 u_int32_t ret, tmp; 1673 1674 if (round < 1) 1675 round = 1; 1676 1677 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); 1678 1679 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) 1680 ret >>= 1; 1681 1682 tmp = ret - (ret % round); 1683 while (tmp < 16 || tmp < round) { 1684 ret <<= 1; 1685 tmp = ret - (ret % round); 1686 } 1687 1688 return ret; 1689 } 1690 1691 /* 1692 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea 1693 * is to keep 2nd buffer short so that it doesn't cause long queue during 1694 * buffer transfer. 1695 * 1696 * Latency reference table for 48khz stereo 16bit: (PLAY) 1697 * 1698 * +---------+------------+-----------+------------+ 1699 * | Latency | Blockcount | Blocksize | Buffersize | 1700 * +---------+------------+-----------+------------+ 1701 * | 0 | 2 | 64 | 128 | 1702 * +---------+------------+-----------+------------+ 1703 * | 1 | 4 | 128 | 512 | 1704 * +---------+------------+-----------+------------+ 1705 * | 2 | 8 | 512 | 4096 | 1706 * +---------+------------+-----------+------------+ 1707 * | 3 | 16 | 512 | 8192 | 1708 * +---------+------------+-----------+------------+ 1709 * | 4 | 32 | 512 | 16384 | 1710 * +---------+------------+-----------+------------+ 1711 * | 5 | 32 | 1024 | 32768 | 1712 * +---------+------------+-----------+------------+ 1713 * | 6 | 16 | 2048 | 32768 | 1714 * +---------+------------+-----------+------------+ 1715 * | 7 | 8 | 4096 | 32768 | 1716 * +---------+------------+-----------+------------+ 1717 * | 8 | 4 | 8192 | 32768 | 1718 * +---------+------------+-----------+------------+ 1719 * | 9 | 2 | 16384 | 32768 | 1720 * +---------+------------+-----------+------------+ 1721 * | 10 | 2 | 32768 | 65536 | 1722 * +---------+------------+-----------+------------+ 1723 * 1724 * Recording need a different reference table. All we care is 1725 * gobbling up everything within reasonable buffering threshold. 1726 * 1727 * Latency reference table for 48khz stereo 16bit: (REC) 1728 * 1729 * +---------+------------+-----------+------------+ 1730 * | Latency | Blockcount | Blocksize | Buffersize | 1731 * +---------+------------+-----------+------------+ 1732 * | 0 | 512 | 32 | 16384 | 1733 * +---------+------------+-----------+------------+ 1734 * | 1 | 256 | 64 | 16384 | 1735 * +---------+------------+-----------+------------+ 1736 * | 2 | 128 | 128 | 16384 | 1737 * +---------+------------+-----------+------------+ 1738 * | 3 | 64 | 256 | 16384 | 1739 * +---------+------------+-----------+------------+ 1740 * | 4 | 32 | 512 | 16384 | 1741 * +---------+------------+-----------+------------+ 1742 * | 5 | 32 | 1024 | 32768 | 1743 * +---------+------------+-----------+------------+ 1744 * | 6 | 16 | 2048 | 32768 | 1745 * +---------+------------+-----------+------------+ 1746 * | 7 | 8 | 4096 | 32768 | 1747 * +---------+------------+-----------+------------+ 1748 * | 8 | 4 | 8192 | 32768 | 1749 * +---------+------------+-----------+------------+ 1750 * | 9 | 2 | 16384 | 32768 | 1751 * +---------+------------+-----------+------------+ 1752 * | 10 | 2 | 32768 | 65536 | 1753 * +---------+------------+-----------+------------+ 1754 * 1755 * Calculations for other data rate are entirely based on these reference 1756 * tables. For normal operation, Latency 5 seems give the best, well 1757 * balanced performance for typical workload. Anything below 5 will 1758 * eat up CPU to keep up with increasing context switches because of 1759 * shorter buffer space and usually require the application to handle it 1760 * aggressively through possibly real time programming technique. 1761 * 1762 */ 1763 #define CHN_LATENCY_PBLKCNT_REF \ 1764 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ 1765 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} 1766 #define CHN_LATENCY_PBUFSZ_REF \ 1767 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ 1768 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} 1769 1770 #define CHN_LATENCY_RBLKCNT_REF \ 1771 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ 1772 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} 1773 #define CHN_LATENCY_RBUFSZ_REF \ 1774 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ 1775 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} 1776 1777 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ 1778 1779 static int 1780 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, 1781 u_int32_t max, int *rblksz, int *rblkcnt) 1782 { 1783 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1784 CHN_LATENCY_PBLKCNT_REF; 1785 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1786 CHN_LATENCY_PBUFSZ_REF; 1787 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1788 CHN_LATENCY_RBLKCNT_REF; 1789 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1790 CHN_LATENCY_RBUFSZ_REF; 1791 u_int32_t bufsz; 1792 int lprofile, blksz, blkcnt; 1793 1794 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || 1795 bps < 1 || datarate < 1 || 1796 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { 1797 if (rblksz != NULL) 1798 *rblksz = CHN_2NDBUFMAXSIZE >> 1; 1799 if (rblkcnt != NULL) 1800 *rblkcnt = 2; 1801 printf("%s(): FAILED dir=%d latency=%d bps=%d " 1802 "datarate=%u max=%u\n", 1803 __func__, dir, latency, bps, datarate, max); 1804 return CHN_2NDBUFMAXSIZE; 1805 } 1806 1807 lprofile = chn_latency_profile; 1808 1809 if (dir == PCMDIR_PLAY) { 1810 blkcnt = pblkcnts[lprofile][latency]; 1811 bufsz = pbufszs[lprofile][latency]; 1812 } else { 1813 blkcnt = rblkcnts[lprofile][latency]; 1814 bufsz = rbufszs[lprofile][latency]; 1815 } 1816 1817 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, 1818 datarate)); 1819 if (bufsz > max) 1820 bufsz = max; 1821 blksz = round_blksz(bufsz >> blkcnt, bps); 1822 1823 if (rblksz != NULL) 1824 *rblksz = blksz; 1825 if (rblkcnt != NULL) 1826 *rblkcnt = 1 << blkcnt; 1827 1828 return blksz << blkcnt; 1829 } 1830 1831 static int 1832 chn_resizebuf(struct pcm_channel *c, int latency, 1833 int blkcnt, int blksz) 1834 { 1835 struct snd_dbuf *b, *bs, *pb; 1836 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; 1837 int ret; 1838 1839 CHN_LOCKASSERT(c); 1840 1841 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || 1842 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) 1843 return EINVAL; 1844 1845 if (latency == -1) { 1846 c->latency = -1; 1847 latency = chn_latency; 1848 } else if (latency == -2) { 1849 latency = c->latency; 1850 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1851 latency = chn_latency; 1852 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1853 return EINVAL; 1854 else { 1855 c->latency = latency; 1856 } 1857 1858 bs = c->bufsoft; 1859 b = c->bufhard; 1860 1861 if (!(blksz == 0 || blkcnt == -1) && 1862 (blksz < 16 || blksz < bs->align || blkcnt < 2 || 1863 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) 1864 return EINVAL; 1865 1866 chn_calclatency(c->direction, latency, bs->align, 1867 bs->align * bs->spd, CHN_2NDBUFMAXSIZE, 1868 &sblksz, &sblkcnt); 1869 1870 if (blksz == 0 || blkcnt == -1) { 1871 if (blkcnt == -1) 1872 c->flags &= ~CHN_F_HAS_SIZE; 1873 if (c->flags & CHN_F_HAS_SIZE) { 1874 blksz = bs->blksz; 1875 blkcnt = bs->blkcnt; 1876 } 1877 } else 1878 c->flags |= CHN_F_HAS_SIZE; 1879 1880 if (c->flags & CHN_F_HAS_SIZE) { 1881 /* 1882 * The application has requested their own blksz/blkcnt. 1883 * Just obey with it, and let them toast alone. We can 1884 * clamp it to the nearest latency profile, but that would 1885 * defeat the purpose of having custom control. The least 1886 * we can do is round it to the nearest ^2 and align it. 1887 */ 1888 sblksz = round_blksz(blksz, bs->align); 1889 sblkcnt = round_pow2(blkcnt); 1890 } 1891 1892 if (c->parentchannel != NULL) { 1893 pb = c->parentchannel->bufsoft; 1894 CHN_UNLOCK(c); 1895 CHN_LOCK(c->parentchannel); 1896 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); 1897 CHN_UNLOCK(c->parentchannel); 1898 CHN_LOCK(c); 1899 if (c->direction == PCMDIR_PLAY) { 1900 limit = (pb != NULL) ? 1901 sndbuf_xbytes(pb->bufsize, pb, bs) : 0; 1902 } else { 1903 limit = (pb != NULL) ? 1904 sndbuf_xbytes(pb->blksz, pb, bs) * 2 : 0; 1905 } 1906 } else { 1907 hblkcnt = 2; 1908 if (c->flags & CHN_F_HAS_SIZE) { 1909 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), 1910 b->align); 1911 hblkcnt = round_pow2(bs->blkcnt); 1912 } else 1913 chn_calclatency(c->direction, latency, 1914 b->align, b->align * b->spd, 1915 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); 1916 1917 if ((hblksz << 1) > b->maxsize) 1918 hblksz = round_blksz(b->maxsize >> 1, b->align); 1919 1920 while ((hblksz * hblkcnt) > b->maxsize) { 1921 if (hblkcnt < 4) 1922 hblksz >>= 1; 1923 else 1924 hblkcnt >>= 1; 1925 } 1926 1927 hblksz -= hblksz % b->align; 1928 1929 CHN_UNLOCK(c); 1930 if (chn_usefrags == 0 || 1931 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, 1932 hblksz, hblkcnt) != 0) 1933 b->blksz = CHANNEL_SETBLOCKSIZE(c->methods, 1934 c->devinfo, hblksz); 1935 CHN_LOCK(c); 1936 1937 if (!CHN_EMPTY(c, children)) { 1938 nsblksz = round_blksz( 1939 sndbuf_xbytes(b->blksz, b, bs), bs->align); 1940 nsblkcnt = b->blkcnt; 1941 if (c->direction == PCMDIR_PLAY) { 1942 do { 1943 nsblkcnt--; 1944 } while (nsblkcnt >= 2 && 1945 nsblksz * nsblkcnt >= sblksz * sblkcnt); 1946 nsblkcnt++; 1947 } 1948 sblksz = nsblksz; 1949 sblkcnt = nsblkcnt; 1950 limit = 0; 1951 } else 1952 limit = sndbuf_xbytes(b->blksz, b, bs) * 2; 1953 } 1954 1955 if (limit > CHN_2NDBUFMAXSIZE) 1956 limit = CHN_2NDBUFMAXSIZE; 1957 1958 while ((sblksz * sblkcnt) < limit) 1959 sblkcnt <<= 1; 1960 1961 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { 1962 if (sblkcnt < 4) 1963 sblksz >>= 1; 1964 else 1965 sblkcnt >>= 1; 1966 } 1967 1968 sblksz -= sblksz % bs->align; 1969 1970 if (bs->blkcnt != sblkcnt || bs->blksz != sblksz || 1971 bs->bufsize != (sblkcnt * sblksz)) { 1972 ret = sndbuf_remalloc(bs, sblkcnt, sblksz); 1973 if (ret != 0) { 1974 device_printf(c->dev, "%s(): Failed: %d %d\n", 1975 __func__, sblkcnt, sblksz); 1976 return ret; 1977 } 1978 } 1979 1980 /* 1981 * Interrupt timeout 1982 */ 1983 c->timeout = ((u_int64_t)hz * bs->bufsize) / 1984 ((u_int64_t)bs->spd * bs->align); 1985 if (c->parentchannel != NULL) 1986 c->timeout = min(c->timeout, c->parentchannel->timeout); 1987 if (c->timeout < 1) 1988 c->timeout = 1; 1989 1990 /* 1991 * OSSv4 docs: "By default OSS will set the low water level equal 1992 * to the fragment size which is optimal in most cases." 1993 */ 1994 c->lw = bs->blksz; 1995 chn_resetbuf(c); 1996 1997 if (snd_verbose > 3) 1998 device_printf(c->dev, "%s(): %s (%s) timeout=%u " 1999 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", 2000 __func__, CHN_DIRSTR(c), 2001 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", 2002 c->timeout, 2003 b->bufsize, b->blksz, 2004 b->blkcnt, 2005 bs->bufsize, bs->blksz, 2006 bs->blkcnt, limit); 2007 2008 return 0; 2009 } 2010 2011 int 2012 chn_setlatency(struct pcm_channel *c, int latency) 2013 { 2014 CHN_LOCKASSERT(c); 2015 /* Destroy blksz/blkcnt, enforce latency profile. */ 2016 return chn_resizebuf(c, latency, -1, 0); 2017 } 2018 2019 int 2020 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) 2021 { 2022 CHN_LOCKASSERT(c); 2023 /* Destroy latency profile, enforce blksz/blkcnt */ 2024 return chn_resizebuf(c, -1, blkcnt, blksz); 2025 } 2026 2027 int 2028 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) 2029 { 2030 struct pcmchan_caps *caps; 2031 uint32_t hwspeed, delta; 2032 int ret; 2033 2034 CHN_LOCKASSERT(c); 2035 2036 if (speed < 1 || format == 0 || CHN_STARTED(c)) 2037 return (EINVAL); 2038 2039 c->format = format; 2040 c->speed = speed; 2041 2042 caps = chn_getcaps(c); 2043 2044 hwspeed = speed; 2045 RANGE(hwspeed, caps->minspeed, caps->maxspeed); 2046 2047 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, 2048 hwspeed)); 2049 hwspeed = c->bufhard->spd; 2050 2051 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); 2052 2053 if (delta <= feeder_rate_round) 2054 c->speed = hwspeed; 2055 2056 ret = feeder_chain(c); 2057 2058 if (ret == 0) 2059 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, c->bufhard->fmt); 2060 2061 if (ret == 0) 2062 ret = chn_resizebuf(c, -2, 0, 0); 2063 2064 return (ret); 2065 } 2066 2067 int 2068 chn_setspeed(struct pcm_channel *c, uint32_t speed) 2069 { 2070 uint32_t oldformat, oldspeed; 2071 int ret; 2072 2073 oldformat = c->format; 2074 oldspeed = c->speed; 2075 2076 if (c->speed == speed) 2077 return (0); 2078 2079 ret = chn_setparam(c, c->format, speed); 2080 if (ret != 0) { 2081 if (snd_verbose > 3) 2082 device_printf(c->dev, 2083 "%s(): Setting speed %d failed, " 2084 "falling back to %d\n", 2085 __func__, speed, oldspeed); 2086 chn_setparam(c, oldformat, oldspeed); 2087 } 2088 2089 return (ret); 2090 } 2091 2092 int 2093 chn_setformat(struct pcm_channel *c, uint32_t format) 2094 { 2095 uint32_t oldformat, oldspeed; 2096 int ret; 2097 2098 /* XXX force stereo */ 2099 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { 2100 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, 2101 AFMT_PASSTHROUGH_EXTCHANNEL); 2102 } 2103 2104 oldformat = c->format; 2105 oldspeed = c->speed; 2106 2107 if (c->format == format) 2108 return (0); 2109 2110 ret = chn_setparam(c, format, c->speed); 2111 if (ret != 0) { 2112 if (snd_verbose > 3) 2113 device_printf(c->dev, 2114 "%s(): Format change 0x%08x failed, " 2115 "falling back to 0x%08x\n", 2116 __func__, format, oldformat); 2117 chn_setparam(c, oldformat, oldspeed); 2118 } 2119 2120 return (ret); 2121 } 2122 2123 void 2124 chn_syncstate(struct pcm_channel *c) 2125 { 2126 struct snddev_info *d; 2127 struct snd_mixer *m; 2128 2129 d = (c != NULL) ? c->parentsnddev : NULL; 2130 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : 2131 NULL; 2132 2133 if (d == NULL || m == NULL) 2134 return; 2135 2136 CHN_LOCKASSERT(c); 2137 2138 if (c->feederflags & (1 << FEEDER_VOLUME)) { 2139 uint32_t parent; 2140 int vol, pvol, left, right, center; 2141 2142 if (c->direction == PCMDIR_PLAY && 2143 (d->flags & SD_F_SOFTPCMVOL)) { 2144 /* CHN_UNLOCK(c); */ 2145 vol = mix_get(m, SOUND_MIXER_PCM); 2146 parent = mix_getparent(m, SOUND_MIXER_PCM); 2147 if (parent != SOUND_MIXER_NONE) 2148 pvol = mix_get(m, parent); 2149 else 2150 pvol = 100 | (100 << 8); 2151 /* CHN_LOCK(c); */ 2152 } else { 2153 vol = 100 | (100 << 8); 2154 pvol = vol; 2155 } 2156 2157 if (vol == -1) { 2158 device_printf(c->dev, 2159 "Soft PCM Volume: Failed to read pcm " 2160 "default value\n"); 2161 vol = 100 | (100 << 8); 2162 } 2163 2164 if (pvol == -1) { 2165 device_printf(c->dev, 2166 "Soft PCM Volume: Failed to read parent " 2167 "default value\n"); 2168 pvol = 100 | (100 << 8); 2169 } 2170 2171 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; 2172 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; 2173 center = (left + right) >> 1; 2174 2175 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); 2176 } 2177 2178 if (c->feederflags & (1 << FEEDER_EQ)) { 2179 struct pcm_feeder *f; 2180 int treble, bass, state; 2181 2182 /* CHN_UNLOCK(c); */ 2183 treble = mix_get(m, SOUND_MIXER_TREBLE); 2184 bass = mix_get(m, SOUND_MIXER_BASS); 2185 /* CHN_LOCK(c); */ 2186 2187 if (treble == -1) 2188 treble = 50; 2189 else 2190 treble = ((treble & 0x7f) + 2191 ((treble >> 8) & 0x7f)) >> 1; 2192 2193 if (bass == -1) 2194 bass = 50; 2195 else 2196 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; 2197 2198 f = feeder_find(c, FEEDER_EQ); 2199 if (f != NULL) { 2200 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) 2201 device_printf(c->dev, 2202 "EQ: Failed to set treble -- %d\n", 2203 treble); 2204 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) 2205 device_printf(c->dev, 2206 "EQ: Failed to set bass -- %d\n", 2207 bass); 2208 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) 2209 device_printf(c->dev, 2210 "EQ: Failed to set preamp -- %d\n", 2211 d->eqpreamp); 2212 if (d->flags & SD_F_EQ_BYPASSED) 2213 state = FEEDEQ_BYPASS; 2214 else if (d->flags & SD_F_EQ_ENABLED) 2215 state = FEEDEQ_ENABLE; 2216 else 2217 state = FEEDEQ_DISABLE; 2218 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) 2219 device_printf(c->dev, 2220 "EQ: Failed to set state -- %d\n", state); 2221 } 2222 } 2223 } 2224 2225 int 2226 chn_trigger(struct pcm_channel *c, int go) 2227 { 2228 struct snddev_info *d = c->parentsnddev; 2229 int ret; 2230 2231 CHN_LOCKASSERT(c); 2232 if (!PCMTRIG_COMMON(go)) 2233 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); 2234 2235 if (go == c->trigger) 2236 return (0); 2237 2238 if (snd_verbose > 3) { 2239 device_printf(c->dev, "%s() %s: calling go=0x%08x , " 2240 "prev=0x%08x\n", __func__, c->name, go, c->trigger); 2241 } 2242 2243 c->trigger = go; 2244 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); 2245 if (ret != 0) 2246 return (ret); 2247 2248 CHN_UNLOCK(c); 2249 PCM_LOCK(d); 2250 CHN_LOCK(c); 2251 2252 /* 2253 * Do nothing if another thread set a different trigger while we had 2254 * dropped the mutex. 2255 */ 2256 if (go != c->trigger) { 2257 PCM_UNLOCK(d); 2258 return (0); 2259 } 2260 2261 /* 2262 * Use the SAFE variants to prevent inserting/removing an already 2263 * existing/missing element. 2264 */ 2265 switch (go) { 2266 case PCMTRIG_START: 2267 CHN_INSERT_HEAD_SAFE(d, c, channels.pcm.busy); 2268 PCM_UNLOCK(d); 2269 chn_syncstate(c); 2270 break; 2271 case PCMTRIG_STOP: 2272 case PCMTRIG_ABORT: 2273 CHN_REMOVE(d, c, channels.pcm.busy); 2274 PCM_UNLOCK(d); 2275 break; 2276 default: 2277 PCM_UNLOCK(d); 2278 break; 2279 } 2280 2281 return (0); 2282 } 2283 2284 /** 2285 * @brief Queries sound driver for sample-aligned hardware buffer pointer index 2286 * 2287 * This function obtains the hardware pointer location, then aligns it to 2288 * the current bytes-per-sample value before returning. (E.g., a channel 2289 * running in 16 bit stereo mode would require 4 bytes per sample, so a 2290 * hwptr value ranging from 32-35 would be returned as 32.) 2291 * 2292 * @param c PCM channel context 2293 * @returns sample-aligned hardware buffer pointer index 2294 */ 2295 int 2296 chn_getptr(struct pcm_channel *c) 2297 { 2298 int hwptr; 2299 2300 CHN_LOCKASSERT(c); 2301 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; 2302 return (hwptr - (hwptr % c->bufhard->align)); 2303 } 2304 2305 struct pcmchan_caps * 2306 chn_getcaps(struct pcm_channel *c) 2307 { 2308 CHN_LOCKASSERT(c); 2309 return CHANNEL_GETCAPS(c->methods, c->devinfo); 2310 } 2311 2312 u_int32_t 2313 chn_getformats(struct pcm_channel *c) 2314 { 2315 u_int32_t *fmtlist, fmts; 2316 int i; 2317 2318 fmtlist = chn_getcaps(c)->fmtlist; 2319 fmts = 0; 2320 for (i = 0; fmtlist[i]; i++) 2321 fmts |= fmtlist[i]; 2322 2323 /* report software-supported formats */ 2324 if (!CHN_BITPERFECT(c) && report_soft_formats) 2325 fmts |= AFMT_CONVERTIBLE; 2326 2327 return (AFMT_ENCODING(fmts)); 2328 } 2329 2330 int 2331 chn_notify(struct pcm_channel *c, u_int32_t flags) 2332 { 2333 struct pcm_channel *ch; 2334 struct pcmchan_caps *caps; 2335 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; 2336 uint32_t vpflags; 2337 int dirty, err, run, nrun; 2338 2339 CHN_LOCKASSERT(c); 2340 2341 if (CHN_EMPTY(c, children)) 2342 return (0); 2343 2344 err = 0; 2345 2346 /* 2347 * If the hwchan is running, we can't change its rate, format or 2348 * blocksize 2349 */ 2350 run = (CHN_STARTED(c)) ? 1 : 0; 2351 if (run) 2352 flags &= CHN_N_VOLUME | CHN_N_TRIGGER; 2353 2354 if (flags & CHN_N_RATE) { 2355 /* 2356 * XXX I'll make good use of this someday. 2357 * However this is currently being superseded by 2358 * the availability of CHN_F_VCHAN_DYNAMIC. 2359 */ 2360 } 2361 2362 if (flags & CHN_N_FORMAT) { 2363 /* 2364 * XXX I'll make good use of this someday. 2365 * However this is currently being superseded by 2366 * the availability of CHN_F_VCHAN_DYNAMIC. 2367 */ 2368 } 2369 2370 if (flags & CHN_N_VOLUME) { 2371 /* 2372 * XXX I'll make good use of this someday, though 2373 * soft volume control is currently pretty much 2374 * integrated. 2375 */ 2376 } 2377 2378 if (flags & CHN_N_BLOCKSIZE) { 2379 /* 2380 * Set to default latency profile 2381 */ 2382 chn_setlatency(c, chn_latency); 2383 } 2384 2385 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { 2386 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; 2387 if (nrun && !run) 2388 err = chn_start(c, 1); 2389 if (!nrun && run) 2390 chn_abort(c); 2391 flags &= ~CHN_N_TRIGGER; 2392 } 2393 2394 if (flags & CHN_N_TRIGGER) { 2395 if (c->direction == PCMDIR_PLAY) { 2396 vchanformat = &c->parentsnddev->pvchanformat; 2397 vchanrate = &c->parentsnddev->pvchanrate; 2398 } else { 2399 vchanformat = &c->parentsnddev->rvchanformat; 2400 vchanrate = &c->parentsnddev->rvchanrate; 2401 } 2402 2403 /* Dynamic Virtual Channel */ 2404 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { 2405 bestformat = *vchanformat; 2406 bestspeed = *vchanrate; 2407 } else { 2408 bestformat = 0; 2409 bestspeed = 0; 2410 } 2411 2412 besthwformat = 0; 2413 nrun = 0; 2414 caps = chn_getcaps(c); 2415 dirty = 0; 2416 vpflags = 0; 2417 2418 CHN_FOREACH(ch, c, children.busy) { 2419 CHN_LOCK(ch); 2420 if ((ch->format & AFMT_PASSTHROUGH) && 2421 snd_fmtvalid(ch->format, caps->fmtlist)) { 2422 bestformat = ch->format; 2423 bestspeed = ch->speed; 2424 CHN_UNLOCK(ch); 2425 vpflags = CHN_F_PASSTHROUGH; 2426 nrun++; 2427 break; 2428 } 2429 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { 2430 if (c->flags & CHN_F_VCHAN_ADAPTIVE) { 2431 bestspeed = ch->speed; 2432 RANGE(bestspeed, caps->minspeed, 2433 caps->maxspeed); 2434 besthwformat = snd_fmtbest(ch->format, 2435 caps->fmtlist); 2436 if (besthwformat != 0) 2437 bestformat = besthwformat; 2438 } 2439 CHN_UNLOCK(ch); 2440 vpflags = CHN_F_EXCLUSIVE; 2441 nrun++; 2442 continue; 2443 } 2444 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || 2445 vpflags != 0) { 2446 CHN_UNLOCK(ch); 2447 nrun++; 2448 continue; 2449 } 2450 if (ch->speed > bestspeed) { 2451 bestspeed = ch->speed; 2452 RANGE(bestspeed, caps->minspeed, 2453 caps->maxspeed); 2454 } 2455 besthwformat = snd_fmtbest(ch->format, caps->fmtlist); 2456 if (!(besthwformat & AFMT_VCHAN)) { 2457 CHN_UNLOCK(ch); 2458 nrun++; 2459 continue; 2460 } 2461 if (AFMT_CHANNEL(besthwformat) > 2462 AFMT_CHANNEL(bestformat)) 2463 bestformat = besthwformat; 2464 else if (AFMT_CHANNEL(besthwformat) == 2465 AFMT_CHANNEL(bestformat) && 2466 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) 2467 bestformat = besthwformat; 2468 CHN_UNLOCK(ch); 2469 nrun++; 2470 } 2471 2472 if (bestformat == 0) 2473 bestformat = c->format; 2474 if (bestspeed == 0) 2475 bestspeed = c->speed; 2476 2477 if (bestformat != c->format || bestspeed != c->speed) 2478 dirty = 1; 2479 2480 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2481 c->flags |= vpflags; 2482 2483 if (nrun && !run) { 2484 if (dirty) { 2485 bestspeed = CHANNEL_SETSPEED(c->methods, 2486 c->devinfo, bestspeed); 2487 err = chn_reset(c, bestformat, bestspeed); 2488 } 2489 if (err == 0 && dirty) { 2490 CHN_FOREACH(ch, c, children.busy) { 2491 CHN_LOCK(ch); 2492 if (VCHAN_SYNC_REQUIRED(ch)) 2493 vchan_sync(ch); 2494 CHN_UNLOCK(ch); 2495 } 2496 } 2497 if (err == 0) { 2498 if (dirty) 2499 c->flags |= CHN_F_DIRTY; 2500 err = chn_start(c, 1); 2501 } 2502 } 2503 2504 if (nrun && run && dirty) { 2505 chn_abort(c); 2506 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, 2507 bestspeed); 2508 err = chn_reset(c, bestformat, bestspeed); 2509 if (err == 0) { 2510 CHN_FOREACH(ch, c, children.busy) { 2511 CHN_LOCK(ch); 2512 if (VCHAN_SYNC_REQUIRED(ch)) 2513 vchan_sync(ch); 2514 CHN_UNLOCK(ch); 2515 } 2516 } 2517 if (err == 0) { 2518 c->flags |= CHN_F_DIRTY; 2519 err = chn_start(c, 1); 2520 } 2521 } 2522 2523 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && 2524 (bestformat & AFMT_VCHAN)) { 2525 *vchanformat = bestformat; 2526 *vchanrate = bestspeed; 2527 } 2528 2529 if (!nrun && run) { 2530 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2531 bestformat = *vchanformat; 2532 bestspeed = *vchanrate; 2533 chn_abort(c); 2534 if (c->format != bestformat || c->speed != bestspeed) 2535 chn_reset(c, bestformat, bestspeed); 2536 } 2537 } 2538 2539 return (err); 2540 } 2541 2542 /** 2543 * @brief Fetch array of supported discrete sample rates 2544 * 2545 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for 2546 * detailed information. 2547 * 2548 * @note If the operation isn't supported, this function will just return 0 2549 * (no rates in the array), and *rates will be set to NULL. Callers 2550 * should examine rates @b only if this function returns non-zero. 2551 * 2552 * @param c pcm channel to examine 2553 * @param rates pointer to array of integers; rate table will be recorded here 2554 * 2555 * @return number of rates in the array pointed to be @c rates 2556 */ 2557 int 2558 chn_getrates(struct pcm_channel *c, int **rates) 2559 { 2560 KASSERT(rates != NULL, ("rates is null")); 2561 CHN_LOCKASSERT(c); 2562 return CHANNEL_GETRATES(c->methods, c->devinfo, rates); 2563 } 2564 2565 /** 2566 * @brief Remove channel from a sync group, if there is one. 2567 * 2568 * This function is initially intended for the following conditions: 2569 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) 2570 * - Closing a device. (A channel can't be destroyed if it's still in use.) 2571 * 2572 * @note Before calling this function, the syncgroup list mutex must be 2573 * held. (Consider pcm_channel::sm protected by the SG list mutex 2574 * whether @c c is locked or not.) 2575 * 2576 * @param c channel device to be started or closed 2577 * @returns If this channel was the only member of a group, the group ID 2578 * is returned to the caller so that the caller can release it 2579 * via free_unr() after giving up the syncgroup lock. Else it 2580 * returns 0. 2581 */ 2582 int 2583 chn_syncdestroy(struct pcm_channel *c) 2584 { 2585 struct pcmchan_syncmember *sm; 2586 struct pcmchan_syncgroup *sg; 2587 int sg_id; 2588 2589 sg_id = 0; 2590 2591 PCM_SG_LOCKASSERT(MA_OWNED); 2592 2593 if (c->sm != NULL) { 2594 sm = c->sm; 2595 sg = sm->parent; 2596 c->sm = NULL; 2597 2598 KASSERT(sg != NULL, ("syncmember has null parent")); 2599 2600 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); 2601 free(sm, M_DEVBUF); 2602 2603 if (SLIST_EMPTY(&sg->members)) { 2604 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); 2605 sg_id = sg->id; 2606 free(sg, M_DEVBUF); 2607 } 2608 } 2609 2610 return sg_id; 2611 } 2612 2613 #ifdef OSSV4_EXPERIMENT 2614 int 2615 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) 2616 { 2617 CHN_LOCKASSERT(c); 2618 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); 2619 } 2620 #endif 2621