1 /*- 2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 3 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006 4 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org> 5 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_isa.h" 31 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_snd.h" 34 #endif 35 36 #include <dev/sound/pcm/sound.h> 37 #include <dev/sound/pcm/vchan.h> 38 39 #include "feeder_if.h" 40 41 SND_DECLARE_FILE("$FreeBSD$"); 42 43 int report_soft_formats = 1; 44 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW, 45 &report_soft_formats, 1, "report software-emulated formats"); 46 47 int report_soft_matrix = 1; 48 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW, 49 &report_soft_matrix, 1, "report software-emulated channel matrixing"); 50 51 int chn_latency = CHN_LATENCY_DEFAULT; 52 TUNABLE_INT("hw.snd.latency", &chn_latency); 53 54 static int 55 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS) 56 { 57 int err, val; 58 59 val = chn_latency; 60 err = sysctl_handle_int(oidp, &val, 0, req); 61 if (err != 0 || req->newptr == NULL) 62 return err; 63 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX) 64 err = EINVAL; 65 else 66 chn_latency = val; 67 68 return err; 69 } 70 SYSCTL_PROC(_hw_snd, OID_AUTO, latency, CTLTYPE_INT | CTLFLAG_RW, 71 0, sizeof(int), sysctl_hw_snd_latency, "I", 72 "buffering latency (0=low ... 10=high)"); 73 74 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT; 75 TUNABLE_INT("hw.snd.latency_profile", &chn_latency_profile); 76 77 static int 78 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS) 79 { 80 int err, val; 81 82 val = chn_latency_profile; 83 err = sysctl_handle_int(oidp, &val, 0, req); 84 if (err != 0 || req->newptr == NULL) 85 return err; 86 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX) 87 err = EINVAL; 88 else 89 chn_latency_profile = val; 90 91 return err; 92 } 93 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile, CTLTYPE_INT | CTLFLAG_RW, 94 0, sizeof(int), sysctl_hw_snd_latency_profile, "I", 95 "buffering latency profile (0=aggresive 1=safe)"); 96 97 static int chn_timeout = CHN_TIMEOUT; 98 TUNABLE_INT("hw.snd.timeout", &chn_timeout); 99 #ifdef SND_DEBUG 100 static int 101 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS) 102 { 103 int err, val; 104 105 val = chn_timeout; 106 err = sysctl_handle_int(oidp, &val, 0, req); 107 if (err != 0 || req->newptr == NULL) 108 return err; 109 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX) 110 err = EINVAL; 111 else 112 chn_timeout = val; 113 114 return err; 115 } 116 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout, CTLTYPE_INT | CTLFLAG_RW, 117 0, sizeof(int), sysctl_hw_snd_timeout, "I", 118 "interrupt timeout (1 - 10) seconds"); 119 #endif 120 121 static int chn_vpc_autoreset = 1; 122 TUNABLE_INT("hw.snd.vpc_autoreset", &chn_vpc_autoreset); 123 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RW, 124 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db"); 125 126 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM; 127 TUNABLE_INT("hw.snd.vpc_0db", &chn_vol_0db_pcm); 128 129 static void 130 chn_vpc_proc(int reset, int db) 131 { 132 struct snddev_info *d; 133 struct pcm_channel *c; 134 int i; 135 136 for (i = 0; pcm_devclass != NULL && 137 i < devclass_get_maxunit(pcm_devclass); i++) { 138 d = devclass_get_softc(pcm_devclass, i); 139 if (!PCM_REGISTERED(d)) 140 continue; 141 PCM_LOCK(d); 142 PCM_WAIT(d); 143 PCM_ACQUIRE(d); 144 CHN_FOREACH(c, d, channels.pcm) { 145 CHN_LOCK(c); 146 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db); 147 if (reset != 0) 148 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 149 CHN_UNLOCK(c); 150 } 151 PCM_RELEASE(d); 152 PCM_UNLOCK(d); 153 } 154 } 155 156 static int 157 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS) 158 { 159 int err, val; 160 161 val = chn_vol_0db_pcm; 162 err = sysctl_handle_int(oidp, &val, 0, req); 163 if (err != 0 || req->newptr == NULL) 164 return (err); 165 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX) 166 return (EINVAL); 167 168 chn_vol_0db_pcm = val; 169 chn_vpc_proc(0, val); 170 171 return (0); 172 } 173 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db, CTLTYPE_INT | CTLFLAG_RW, 174 0, sizeof(int), sysctl_hw_snd_vpc_0db, "I", 175 "0db relative level"); 176 177 static int 178 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS) 179 { 180 int err, val; 181 182 val = 0; 183 err = sysctl_handle_int(oidp, &val, 0, req); 184 if (err != 0 || req->newptr == NULL || val == 0) 185 return (err); 186 187 chn_vol_0db_pcm = SND_VOL_0DB_PCM; 188 chn_vpc_proc(1, SND_VOL_0DB_PCM); 189 190 return (0); 191 } 192 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset, CTLTYPE_INT | CTLFLAG_RW, 193 0, sizeof(int), sysctl_hw_snd_vpc_reset, "I", 194 "reset volume on all channels"); 195 196 static int chn_usefrags = 0; 197 TUNABLE_INT("hw.snd.usefrags", &chn_usefrags); 198 static int chn_syncdelay = -1; 199 TUNABLE_INT("hw.snd.syncdelay", &chn_syncdelay); 200 #ifdef SND_DEBUG 201 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RW, 202 &chn_usefrags, 1, "prefer setfragments() over setblocksize()"); 203 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RW, 204 &chn_syncdelay, 1, 205 "append (0-1000) millisecond trailing buffer delay on each sync"); 206 #endif 207 208 /** 209 * @brief Channel sync group lock 210 * 211 * Clients should acquire this lock @b without holding any channel locks 212 * before touching syncgroups or the main syncgroup list. 213 */ 214 struct mtx snd_pcm_syncgroups_mtx; 215 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF); 216 /** 217 * @brief syncgroups' master list 218 * 219 * Each time a channel syncgroup is created, it's added to this list. This 220 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held. 221 * 222 * See SNDCTL_DSP_SYNCGROUP for more information. 223 */ 224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups); 225 226 static void 227 chn_lockinit(struct pcm_channel *c, int dir) 228 { 229 switch (dir) { 230 case PCMDIR_PLAY: 231 c->lock = snd_mtxcreate(c->name, "pcm play channel"); 232 cv_init(&c->intr_cv, "pcmwr"); 233 break; 234 case PCMDIR_PLAY_VIRTUAL: 235 c->lock = snd_mtxcreate(c->name, "pcm virtual play channel"); 236 cv_init(&c->intr_cv, "pcmwrv"); 237 break; 238 case PCMDIR_REC: 239 c->lock = snd_mtxcreate(c->name, "pcm record channel"); 240 cv_init(&c->intr_cv, "pcmrd"); 241 break; 242 case PCMDIR_REC_VIRTUAL: 243 c->lock = snd_mtxcreate(c->name, "pcm virtual record channel"); 244 cv_init(&c->intr_cv, "pcmrdv"); 245 break; 246 default: 247 panic("%s(): Invalid direction=%d", __func__, dir); 248 break; 249 } 250 251 cv_init(&c->cv, "pcmchn"); 252 } 253 254 static void 255 chn_lockdestroy(struct pcm_channel *c) 256 { 257 CHN_LOCKASSERT(c); 258 259 CHN_BROADCAST(&c->cv); 260 CHN_BROADCAST(&c->intr_cv); 261 262 cv_destroy(&c->cv); 263 cv_destroy(&c->intr_cv); 264 265 snd_mtxfree(c->lock); 266 } 267 268 /** 269 * @brief Determine channel is ready for I/O 270 * 271 * @retval 1 = ready for I/O 272 * @retval 0 = not ready for I/O 273 */ 274 static int 275 chn_polltrigger(struct pcm_channel *c) 276 { 277 struct snd_dbuf *bs = c->bufsoft; 278 u_int delta; 279 280 CHN_LOCKASSERT(c); 281 282 if (c->flags & CHN_F_MMAP) { 283 if (sndbuf_getprevtotal(bs) < c->lw) 284 delta = c->lw; 285 else 286 delta = sndbuf_gettotal(bs) - sndbuf_getprevtotal(bs); 287 } else { 288 if (c->direction == PCMDIR_PLAY) 289 delta = sndbuf_getfree(bs); 290 else 291 delta = sndbuf_getready(bs); 292 } 293 294 return ((delta < c->lw) ? 0 : 1); 295 } 296 297 static void 298 chn_pollreset(struct pcm_channel *c) 299 { 300 301 CHN_LOCKASSERT(c); 302 sndbuf_updateprevtotal(c->bufsoft); 303 } 304 305 static void 306 chn_wakeup(struct pcm_channel *c) 307 { 308 struct snd_dbuf *bs; 309 struct pcm_channel *ch; 310 311 CHN_LOCKASSERT(c); 312 313 bs = c->bufsoft; 314 315 if (CHN_EMPTY(c, children.busy)) { 316 if (SEL_WAITING(sndbuf_getsel(bs)) && chn_polltrigger(c)) 317 selwakeuppri(sndbuf_getsel(bs), PRIBIO); 318 if (c->flags & CHN_F_SLEEPING) { 319 /* 320 * Ok, I can just panic it right here since it is 321 * quite obvious that we never allow multiple waiters 322 * from userland. I'm too generous... 323 */ 324 CHN_BROADCAST(&c->intr_cv); 325 } 326 } else { 327 CHN_FOREACH(ch, c, children.busy) { 328 CHN_LOCK(ch); 329 chn_wakeup(ch); 330 CHN_UNLOCK(ch); 331 } 332 } 333 } 334 335 static int 336 chn_sleep(struct pcm_channel *c, int timeout) 337 { 338 int ret; 339 340 CHN_LOCKASSERT(c); 341 342 if (c->flags & CHN_F_DEAD) 343 return (EINVAL); 344 345 c->flags |= CHN_F_SLEEPING; 346 ret = cv_timedwait_sig(&c->intr_cv, c->lock, timeout); 347 c->flags &= ~CHN_F_SLEEPING; 348 349 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret); 350 } 351 352 /* 353 * chn_dmaupdate() tracks the status of a dma transfer, 354 * updating pointers. 355 */ 356 357 static unsigned int 358 chn_dmaupdate(struct pcm_channel *c) 359 { 360 struct snd_dbuf *b = c->bufhard; 361 unsigned int delta, old, hwptr, amt; 362 363 KASSERT(sndbuf_getsize(b) > 0, ("bufsize == 0")); 364 CHN_LOCKASSERT(c); 365 366 old = sndbuf_gethwptr(b); 367 hwptr = chn_getptr(c); 368 delta = (sndbuf_getsize(b) + hwptr - old) % sndbuf_getsize(b); 369 sndbuf_sethwptr(b, hwptr); 370 371 if (c->direction == PCMDIR_PLAY) { 372 amt = min(delta, sndbuf_getready(b)); 373 amt -= amt % sndbuf_getalign(b); 374 if (amt > 0) 375 sndbuf_dispose(b, NULL, amt); 376 } else { 377 amt = min(delta, sndbuf_getfree(b)); 378 amt -= amt % sndbuf_getalign(b); 379 if (amt > 0) 380 sndbuf_acquire(b, NULL, amt); 381 } 382 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) { 383 device_printf(c->dev, "WARNING: %s DMA completion " 384 "too fast/slow ! hwptr=%u, old=%u " 385 "delta=%u amt=%u ready=%u free=%u\n", 386 CHN_DIRSTR(c), hwptr, old, delta, amt, 387 sndbuf_getready(b), sndbuf_getfree(b)); 388 } 389 390 return delta; 391 } 392 393 static void 394 chn_wrfeed(struct pcm_channel *c) 395 { 396 struct snd_dbuf *b = c->bufhard; 397 struct snd_dbuf *bs = c->bufsoft; 398 unsigned int amt, want, wasfree; 399 400 CHN_LOCKASSERT(c); 401 402 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING)) 403 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs)); 404 405 wasfree = sndbuf_getfree(b); 406 want = min(sndbuf_getsize(b), 407 imax(0, sndbuf_xbytes(sndbuf_getsize(bs), bs, b) - 408 sndbuf_getready(b))); 409 amt = min(wasfree, want); 410 if (amt > 0) 411 sndbuf_feed(bs, b, c, c->feeder, amt); 412 413 /* 414 * Possible xruns. There should be no empty space left in buffer. 415 */ 416 if (sndbuf_getready(b) < want) 417 c->xruns++; 418 419 if (sndbuf_getfree(b) < wasfree) 420 chn_wakeup(c); 421 } 422 423 #if 0 424 static void 425 chn_wrupdate(struct pcm_channel *c) 426 { 427 428 CHN_LOCKASSERT(c); 429 KASSERT(c->direction == PCMDIR_PLAY, ("%s(): bad channel", __func__)); 430 431 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 432 return; 433 chn_dmaupdate(c); 434 chn_wrfeed(c); 435 /* tell the driver we've updated the primary buffer */ 436 chn_trigger(c, PCMTRIG_EMLDMAWR); 437 } 438 #endif 439 440 static void 441 chn_wrintr(struct pcm_channel *c) 442 { 443 444 CHN_LOCKASSERT(c); 445 /* update pointers in primary buffer */ 446 chn_dmaupdate(c); 447 /* ...and feed from secondary to primary */ 448 chn_wrfeed(c); 449 /* tell the driver we've updated the primary buffer */ 450 chn_trigger(c, PCMTRIG_EMLDMAWR); 451 } 452 453 /* 454 * user write routine - uiomove data into secondary buffer, trigger if necessary 455 * if blocking, sleep, rinse and repeat. 456 * 457 * called externally, so must handle locking 458 */ 459 460 int 461 chn_write(struct pcm_channel *c, struct uio *buf) 462 { 463 struct snd_dbuf *bs = c->bufsoft; 464 void *off; 465 int ret, timeout, sz, t, p; 466 467 CHN_LOCKASSERT(c); 468 469 ret = 0; 470 timeout = chn_timeout * hz; 471 472 while (ret == 0 && buf->uio_resid > 0) { 473 sz = min(buf->uio_resid, sndbuf_getfree(bs)); 474 if (sz > 0) { 475 /* 476 * The following assumes that the free space in 477 * the buffer can never be less around the 478 * unlock-uiomove-lock sequence. 479 */ 480 while (ret == 0 && sz > 0) { 481 p = sndbuf_getfreeptr(bs); 482 t = min(sz, sndbuf_getsize(bs) - p); 483 off = sndbuf_getbufofs(bs, p); 484 CHN_UNLOCK(c); 485 ret = uiomove(off, t, buf); 486 CHN_LOCK(c); 487 sz -= t; 488 sndbuf_acquire(bs, NULL, t); 489 } 490 ret = 0; 491 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 492 ret = chn_start(c, 0); 493 if (ret != 0) 494 c->flags |= CHN_F_DEAD; 495 } 496 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) { 497 /** 498 * @todo Evaluate whether EAGAIN is truly desirable. 499 * 4Front drivers behave like this, but I'm 500 * not sure if it at all violates the "write 501 * should be allowed to block" model. 502 * 503 * The idea is that, while set with CHN_F_NOTRIGGER, 504 * a channel isn't playing, *but* without this we 505 * end up with "interrupt timeout / channel dead". 506 */ 507 ret = EAGAIN; 508 } else { 509 ret = chn_sleep(c, timeout); 510 if (ret == EAGAIN) { 511 ret = EINVAL; 512 c->flags |= CHN_F_DEAD; 513 device_printf(c->dev, "%s(): %s: " 514 "play interrupt timeout, channel dead\n", 515 __func__, c->name); 516 } else if (ret == ERESTART || ret == EINTR) 517 c->flags |= CHN_F_ABORTING; 518 } 519 } 520 521 return (ret); 522 } 523 524 /* 525 * Feed new data from the read buffer. Can be called in the bottom half. 526 */ 527 static void 528 chn_rdfeed(struct pcm_channel *c) 529 { 530 struct snd_dbuf *b = c->bufhard; 531 struct snd_dbuf *bs = c->bufsoft; 532 unsigned int amt; 533 534 CHN_LOCKASSERT(c); 535 536 if (c->flags & CHN_F_MMAP) 537 sndbuf_dispose(bs, NULL, sndbuf_getready(bs)); 538 539 amt = sndbuf_getfree(bs); 540 if (amt > 0) 541 sndbuf_feed(b, bs, c, c->feeder, amt); 542 543 amt = sndbuf_getready(b); 544 if (amt > 0) { 545 c->xruns++; 546 sndbuf_dispose(b, NULL, amt); 547 } 548 549 if (sndbuf_getready(bs) > 0) 550 chn_wakeup(c); 551 } 552 553 #if 0 554 static void 555 chn_rdupdate(struct pcm_channel *c) 556 { 557 558 CHN_LOCKASSERT(c); 559 KASSERT(c->direction == PCMDIR_REC, ("chn_rdupdate on bad channel")); 560 561 if ((c->flags & (CHN_F_MMAP | CHN_F_VIRTUAL)) || CHN_STOPPED(c)) 562 return; 563 chn_trigger(c, PCMTRIG_EMLDMARD); 564 chn_dmaupdate(c); 565 chn_rdfeed(c); 566 } 567 #endif 568 569 /* read interrupt routine. Must be called with interrupts blocked. */ 570 static void 571 chn_rdintr(struct pcm_channel *c) 572 { 573 574 CHN_LOCKASSERT(c); 575 /* tell the driver to update the primary buffer if non-dma */ 576 chn_trigger(c, PCMTRIG_EMLDMARD); 577 /* update pointers in primary buffer */ 578 chn_dmaupdate(c); 579 /* ...and feed from primary to secondary */ 580 chn_rdfeed(c); 581 } 582 583 /* 584 * user read routine - trigger if necessary, uiomove data from secondary buffer 585 * if blocking, sleep, rinse and repeat. 586 * 587 * called externally, so must handle locking 588 */ 589 590 int 591 chn_read(struct pcm_channel *c, struct uio *buf) 592 { 593 struct snd_dbuf *bs = c->bufsoft; 594 void *off; 595 int ret, timeout, sz, t, p; 596 597 CHN_LOCKASSERT(c); 598 599 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) { 600 ret = chn_start(c, 0); 601 if (ret != 0) { 602 c->flags |= CHN_F_DEAD; 603 return (ret); 604 } 605 } 606 607 ret = 0; 608 timeout = chn_timeout * hz; 609 610 while (ret == 0 && buf->uio_resid > 0) { 611 sz = min(buf->uio_resid, sndbuf_getready(bs)); 612 if (sz > 0) { 613 /* 614 * The following assumes that the free space in 615 * the buffer can never be less around the 616 * unlock-uiomove-lock sequence. 617 */ 618 while (ret == 0 && sz > 0) { 619 p = sndbuf_getreadyptr(bs); 620 t = min(sz, sndbuf_getsize(bs) - p); 621 off = sndbuf_getbufofs(bs, p); 622 CHN_UNLOCK(c); 623 ret = uiomove(off, t, buf); 624 CHN_LOCK(c); 625 sz -= t; 626 sndbuf_dispose(bs, NULL, t); 627 } 628 ret = 0; 629 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) 630 ret = EAGAIN; 631 else { 632 ret = chn_sleep(c, timeout); 633 if (ret == EAGAIN) { 634 ret = EINVAL; 635 c->flags |= CHN_F_DEAD; 636 device_printf(c->dev, "%s(): %s: " 637 "record interrupt timeout, channel dead\n", 638 __func__, c->name); 639 } else if (ret == ERESTART || ret == EINTR) 640 c->flags |= CHN_F_ABORTING; 641 } 642 } 643 644 return (ret); 645 } 646 647 void 648 chn_intr_locked(struct pcm_channel *c) 649 { 650 651 CHN_LOCKASSERT(c); 652 653 c->interrupts++; 654 655 if (c->direction == PCMDIR_PLAY) 656 chn_wrintr(c); 657 else 658 chn_rdintr(c); 659 } 660 661 void 662 chn_intr(struct pcm_channel *c) 663 { 664 665 if (CHN_LOCKOWNED(c)) { 666 chn_intr_locked(c); 667 return; 668 } 669 670 CHN_LOCK(c); 671 chn_intr_locked(c); 672 CHN_UNLOCK(c); 673 } 674 675 u_int32_t 676 chn_start(struct pcm_channel *c, int force) 677 { 678 u_int32_t i, j; 679 struct snd_dbuf *b = c->bufhard; 680 struct snd_dbuf *bs = c->bufsoft; 681 int err; 682 683 CHN_LOCKASSERT(c); 684 /* if we're running, or if we're prevented from triggering, bail */ 685 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force)) 686 return (EINVAL); 687 688 err = 0; 689 690 if (force) { 691 i = 1; 692 j = 0; 693 } else { 694 if (c->direction == PCMDIR_REC) { 695 i = sndbuf_getfree(bs); 696 j = (i > 0) ? 1 : sndbuf_getready(b); 697 } else { 698 if (sndbuf_getfree(bs) == 0) { 699 i = 1; 700 j = 0; 701 } else { 702 struct snd_dbuf *pb; 703 704 pb = CHN_BUF_PARENT(c, b); 705 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb); 706 j = sndbuf_getalign(pb); 707 } 708 } 709 if (snd_verbose > 3 && CHN_EMPTY(c, children)) 710 device_printf(c->dev, "%s(): %s (%s) threshold " 711 "i=%d j=%d\n", __func__, CHN_DIRSTR(c), 712 (c->flags & CHN_F_VIRTUAL) ? "virtual" : 713 "hardware", i, j); 714 } 715 716 if (i >= j) { 717 c->flags |= CHN_F_TRIGGERED; 718 sndbuf_setrun(b, 1); 719 if (c->flags & CHN_F_CLOSING) 720 c->feedcount = 2; 721 else { 722 c->feedcount = 0; 723 c->interrupts = 0; 724 c->xruns = 0; 725 } 726 if (c->parentchannel == NULL) { 727 if (c->direction == PCMDIR_PLAY) 728 sndbuf_fillsilence_rl(b, 729 sndbuf_xbytes(sndbuf_getsize(bs), bs, b)); 730 if (snd_verbose > 3) 731 device_printf(c->dev, 732 "%s(): %s starting! (%s/%s) " 733 "(ready=%d force=%d i=%d j=%d " 734 "intrtimeout=%u latency=%dms)\n", 735 __func__, 736 (c->flags & CHN_F_HAS_VCHAN) ? 737 "VCHAN PARENT" : "HW", CHN_DIRSTR(c), 738 (c->flags & CHN_F_CLOSING) ? "closing" : 739 "running", 740 sndbuf_getready(b), 741 force, i, j, c->timeout, 742 (sndbuf_getsize(b) * 1000) / 743 (sndbuf_getalign(b) * sndbuf_getspd(b))); 744 } 745 err = chn_trigger(c, PCMTRIG_START); 746 } 747 748 return (err); 749 } 750 751 void 752 chn_resetbuf(struct pcm_channel *c) 753 { 754 struct snd_dbuf *b = c->bufhard; 755 struct snd_dbuf *bs = c->bufsoft; 756 757 c->blocks = 0; 758 sndbuf_reset(b); 759 sndbuf_reset(bs); 760 } 761 762 /* 763 * chn_sync waits until the space in the given channel goes above 764 * a threshold. The threshold is checked against fl or rl respectively. 765 * Assume that the condition can become true, do not check here... 766 */ 767 int 768 chn_sync(struct pcm_channel *c, int threshold) 769 { 770 struct snd_dbuf *b, *bs; 771 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz; 772 u_int32_t cflag; 773 774 CHN_LOCKASSERT(c); 775 776 if (c->direction != PCMDIR_PLAY) 777 return (EINVAL); 778 779 bs = c->bufsoft; 780 781 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) || 782 (threshold < 1 && sndbuf_getready(bs) < 1)) 783 return (0); 784 785 /* if we haven't yet started and nothing is buffered, else start*/ 786 if (CHN_STOPPED(c)) { 787 if (threshold > 0 || sndbuf_getready(bs) > 0) { 788 ret = chn_start(c, 1); 789 if (ret != 0) 790 return (ret); 791 } else 792 return (0); 793 } 794 795 b = CHN_BUF_PARENT(c, c->bufhard); 796 797 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs); 798 799 syncdelay = chn_syncdelay; 800 801 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0)) 802 minflush += sndbuf_xbytes(sndbuf_getsize(b), b, bs); 803 804 /* 805 * Append (0-1000) millisecond trailing buffer (if needed) 806 * for slower / high latency hardwares (notably USB audio) 807 * to avoid audible truncation. 808 */ 809 if (syncdelay > 0) 810 minflush += (sndbuf_getalign(bs) * sndbuf_getspd(bs) * 811 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000; 812 813 minflush -= minflush % sndbuf_getalign(bs); 814 815 if (minflush > 0) { 816 threshold = min(minflush, sndbuf_getfree(bs)); 817 sndbuf_clear(bs, threshold); 818 sndbuf_acquire(bs, NULL, threshold); 819 minflush -= threshold; 820 } 821 822 resid = sndbuf_getready(bs); 823 residp = resid; 824 blksz = sndbuf_getblksz(b); 825 if (blksz < 1) { 826 device_printf(c->dev, 827 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n", 828 __func__, sndbuf_getmaxsize(b), sndbuf_getsize(b), 829 sndbuf_getblksz(b), sndbuf_getblkcnt(b)); 830 if (sndbuf_getblkcnt(b) > 0) 831 blksz = sndbuf_getsize(b) / sndbuf_getblkcnt(b); 832 if (blksz < 1) 833 blksz = 1; 834 } 835 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz; 836 hcount = count; 837 ret = 0; 838 839 if (snd_verbose > 3) 840 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d " 841 "minflush=%d resid=%d\n", __func__, c->timeout, count, 842 minflush, resid); 843 844 cflag = c->flags & CHN_F_CLOSING; 845 c->flags |= CHN_F_CLOSING; 846 while (count > 0 && (resid > 0 || minflush > 0)) { 847 ret = chn_sleep(c, c->timeout); 848 if (ret == ERESTART || ret == EINTR) { 849 c->flags |= CHN_F_ABORTING; 850 break; 851 } else if (ret == 0 || ret == EAGAIN) { 852 resid = sndbuf_getready(bs); 853 if (resid == residp) { 854 --count; 855 if (snd_verbose > 3) 856 device_printf(c->dev, 857 "%s(): [stalled] timeout=%d " 858 "count=%d hcount=%d " 859 "resid=%d minflush=%d\n", 860 __func__, c->timeout, count, 861 hcount, resid, minflush); 862 } else if (resid < residp && count < hcount) { 863 ++count; 864 if (snd_verbose > 3) 865 device_printf(c->dev, 866 "%s((): [resume] timeout=%d " 867 "count=%d hcount=%d " 868 "resid=%d minflush=%d\n", 869 __func__, c->timeout, count, 870 hcount, resid, minflush); 871 } 872 if (minflush > 0 && sndbuf_getfree(bs) > 0) { 873 threshold = min(minflush, 874 sndbuf_getfree(bs)); 875 sndbuf_clear(bs, threshold); 876 sndbuf_acquire(bs, NULL, threshold); 877 resid = sndbuf_getready(bs); 878 minflush -= threshold; 879 } 880 residp = resid; 881 } else 882 break; 883 } 884 c->flags &= ~CHN_F_CLOSING; 885 c->flags |= cflag; 886 887 if (snd_verbose > 3) 888 device_printf(c->dev, 889 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d " 890 "minflush=%d ret=%d\n", 891 __func__, c->timeout, count, hcount, resid, residp, 892 minflush, ret); 893 894 return (0); 895 } 896 897 /* called externally, handle locking */ 898 int 899 chn_poll(struct pcm_channel *c, int ev, struct thread *td) 900 { 901 struct snd_dbuf *bs = c->bufsoft; 902 int ret; 903 904 CHN_LOCKASSERT(c); 905 906 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) { 907 ret = chn_start(c, 1); 908 if (ret != 0) 909 return (0); 910 } 911 912 ret = 0; 913 if (chn_polltrigger(c)) { 914 chn_pollreset(c); 915 ret = ev; 916 } else 917 selrecord(td, sndbuf_getsel(bs)); 918 919 return (ret); 920 } 921 922 /* 923 * chn_abort terminates a running dma transfer. it may sleep up to 200ms. 924 * it returns the number of bytes that have not been transferred. 925 * 926 * called from: dsp_close, dsp_ioctl, with channel locked 927 */ 928 int 929 chn_abort(struct pcm_channel *c) 930 { 931 int missing = 0; 932 struct snd_dbuf *b = c->bufhard; 933 struct snd_dbuf *bs = c->bufsoft; 934 935 CHN_LOCKASSERT(c); 936 if (CHN_STOPPED(c)) 937 return 0; 938 c->flags |= CHN_F_ABORTING; 939 940 c->flags &= ~CHN_F_TRIGGERED; 941 /* kill the channel */ 942 chn_trigger(c, PCMTRIG_ABORT); 943 sndbuf_setrun(b, 0); 944 if (!(c->flags & CHN_F_VIRTUAL)) 945 chn_dmaupdate(c); 946 missing = sndbuf_getready(bs); 947 948 c->flags &= ~CHN_F_ABORTING; 949 return missing; 950 } 951 952 /* 953 * this routine tries to flush the dma transfer. It is called 954 * on a close of a playback channel. 955 * first, if there is data in the buffer, but the dma has not yet 956 * begun, we need to start it. 957 * next, we wait for the play buffer to drain 958 * finally, we stop the dma. 959 * 960 * called from: dsp_close, not valid for record channels. 961 */ 962 963 int 964 chn_flush(struct pcm_channel *c) 965 { 966 struct snd_dbuf *b = c->bufhard; 967 968 CHN_LOCKASSERT(c); 969 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel")); 970 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags)); 971 972 c->flags |= CHN_F_CLOSING; 973 chn_sync(c, 0); 974 c->flags &= ~CHN_F_TRIGGERED; 975 /* kill the channel */ 976 chn_trigger(c, PCMTRIG_ABORT); 977 sndbuf_setrun(b, 0); 978 979 c->flags &= ~CHN_F_CLOSING; 980 return 0; 981 } 982 983 int 984 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist) 985 { 986 int i; 987 988 for (i = 0; fmtlist[i] != 0; i++) { 989 if (fmt == fmtlist[i] || 990 ((fmt & AFMT_PASSTHROUGH) && 991 (AFMT_ENCODING(fmt) & fmtlist[i]))) 992 return (1); 993 } 994 995 return (0); 996 } 997 998 static const struct { 999 char *name, *alias1, *alias2; 1000 uint32_t afmt; 1001 } afmt_tab[] = { 1002 { "alaw", NULL, NULL, AFMT_A_LAW }, 1003 { "mulaw", NULL, NULL, AFMT_MU_LAW }, 1004 { "u8", "8", NULL, AFMT_U8 }, 1005 { "s8", NULL, NULL, AFMT_S8 }, 1006 #if BYTE_ORDER == LITTLE_ENDIAN 1007 { "s16le", "s16", "16", AFMT_S16_LE }, 1008 { "s16be", NULL, NULL, AFMT_S16_BE }, 1009 #else 1010 { "s16le", NULL, NULL, AFMT_S16_LE }, 1011 { "s16be", "s16", "16", AFMT_S16_BE }, 1012 #endif 1013 { "u16le", NULL, NULL, AFMT_U16_LE }, 1014 { "u16be", NULL, NULL, AFMT_U16_BE }, 1015 { "s24le", NULL, NULL, AFMT_S24_LE }, 1016 { "s24be", NULL, NULL, AFMT_S24_BE }, 1017 { "u24le", NULL, NULL, AFMT_U24_LE }, 1018 { "u24be", NULL, NULL, AFMT_U24_BE }, 1019 #if BYTE_ORDER == LITTLE_ENDIAN 1020 { "s32le", "s32", "32", AFMT_S32_LE }, 1021 { "s32be", NULL, NULL, AFMT_S32_BE }, 1022 #else 1023 { "s32le", NULL, NULL, AFMT_S32_LE }, 1024 { "s32be", "s32", "32", AFMT_S32_BE }, 1025 #endif 1026 { "u32le", NULL, NULL, AFMT_U32_LE }, 1027 { "u32be", NULL, NULL, AFMT_U32_BE }, 1028 { "ac3", NULL, NULL, AFMT_AC3 }, 1029 { NULL, NULL, NULL, 0 } 1030 }; 1031 1032 static const struct { 1033 char *name, *alias1, *alias2; 1034 int matrix_id; 1035 } matrix_id_tab[] = { 1036 { "1.0", "1", "mono", SND_CHN_MATRIX_1_0 }, 1037 { "2.0", "2", "stereo", SND_CHN_MATRIX_2_0 }, 1038 { "2.1", NULL, NULL, SND_CHN_MATRIX_2_1 }, 1039 { "3.0", "3", NULL, SND_CHN_MATRIX_3_0 }, 1040 { "4.0", "4", "quad", SND_CHN_MATRIX_4_0 }, 1041 { "4.1", NULL, NULL, SND_CHN_MATRIX_4_1 }, 1042 { "5.0", "5", NULL, SND_CHN_MATRIX_5_0 }, 1043 { "5.1", "6", NULL, SND_CHN_MATRIX_5_1 }, 1044 { "6.0", NULL, NULL, SND_CHN_MATRIX_6_0 }, 1045 { "6.1", "7", NULL, SND_CHN_MATRIX_6_1 }, 1046 { "7.1", "8", NULL, SND_CHN_MATRIX_7_1 }, 1047 { NULL, NULL, NULL, SND_CHN_MATRIX_UNKNOWN } 1048 }; 1049 1050 uint32_t 1051 snd_str2afmt(const char *req) 1052 { 1053 uint32_t i, afmt; 1054 int matrix_id; 1055 char b1[8], b2[8]; 1056 1057 i = sscanf(req, "%5[^:]:%6s", b1, b2); 1058 1059 if (i == 1) { 1060 if (strlen(req) != strlen(b1)) 1061 return (0); 1062 strlcpy(b2, "2.0", sizeof(b2)); 1063 } else if (i == 2) { 1064 if (strlen(req) != (strlen(b1) + 1 + strlen(b2))) 1065 return (0); 1066 } else 1067 return (0); 1068 1069 afmt = 0; 1070 matrix_id = SND_CHN_MATRIX_UNKNOWN; 1071 1072 for (i = 0; afmt == 0 && afmt_tab[i].name != NULL; i++) { 1073 if (strcasecmp(afmt_tab[i].name, b1) == 0 || 1074 (afmt_tab[i].alias1 != NULL && 1075 strcasecmp(afmt_tab[i].alias1, b1) == 0) || 1076 (afmt_tab[i].alias2 != NULL && 1077 strcasecmp(afmt_tab[i].alias2, b1) == 0)) { 1078 afmt = afmt_tab[i].afmt; 1079 strlcpy(b1, afmt_tab[i].name, sizeof(b1)); 1080 } 1081 } 1082 1083 if (afmt == 0) 1084 return (0); 1085 1086 for (i = 0; matrix_id == SND_CHN_MATRIX_UNKNOWN && 1087 matrix_id_tab[i].name != NULL; i++) { 1088 if (strcmp(matrix_id_tab[i].name, b2) == 0 || 1089 (matrix_id_tab[i].alias1 != NULL && 1090 strcmp(matrix_id_tab[i].alias1, b2) == 0) || 1091 (matrix_id_tab[i].alias2 != NULL && 1092 strcasecmp(matrix_id_tab[i].alias2, b2) == 0)) { 1093 matrix_id = matrix_id_tab[i].matrix_id; 1094 strlcpy(b2, matrix_id_tab[i].name, sizeof(b2)); 1095 } 1096 } 1097 1098 if (matrix_id == SND_CHN_MATRIX_UNKNOWN) 1099 return (0); 1100 1101 #ifndef _KERNEL 1102 printf("Parse OK: '%s' -> '%s:%s' %d\n", req, b1, b2, 1103 (int)(b2[0]) - '0' + (int)(b2[2]) - '0'); 1104 #endif 1105 1106 return (SND_FORMAT(afmt, b2[0] - '0' + b2[2] - '0', b2[2] - '0')); 1107 } 1108 1109 uint32_t 1110 snd_afmt2str(uint32_t afmt, char *buf, size_t len) 1111 { 1112 uint32_t i, enc, ch, ext; 1113 char tmp[AFMTSTR_LEN]; 1114 1115 if (buf == NULL || len < AFMTSTR_LEN) 1116 return (0); 1117 1118 1119 bzero(tmp, sizeof(tmp)); 1120 1121 enc = AFMT_ENCODING(afmt); 1122 ch = AFMT_CHANNEL(afmt); 1123 ext = AFMT_EXTCHANNEL(afmt); 1124 1125 for (i = 0; afmt_tab[i].name != NULL; i++) { 1126 if (enc == afmt_tab[i].afmt) { 1127 strlcpy(tmp, afmt_tab[i].name, sizeof(tmp)); 1128 strlcat(tmp, ":", sizeof(tmp)); 1129 break; 1130 } 1131 } 1132 1133 if (strlen(tmp) == 0) 1134 return (0); 1135 1136 for (i = 0; matrix_id_tab[i].name != NULL; i++) { 1137 if (ch == (matrix_id_tab[i].name[0] - '0' + 1138 matrix_id_tab[i].name[2] - '0') && 1139 ext == (matrix_id_tab[i].name[2] - '0')) { 1140 strlcat(tmp, matrix_id_tab[i].name, sizeof(tmp)); 1141 break; 1142 } 1143 } 1144 1145 if (strlen(tmp) == 0) 1146 return (0); 1147 1148 strlcpy(buf, tmp, len); 1149 1150 return (snd_str2afmt(buf)); 1151 } 1152 1153 int 1154 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd) 1155 { 1156 int r; 1157 1158 CHN_LOCKASSERT(c); 1159 c->feedcount = 0; 1160 c->flags &= CHN_F_RESET; 1161 c->interrupts = 0; 1162 c->timeout = 1; 1163 c->xruns = 0; 1164 1165 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ? 1166 CHN_F_BITPERFECT : 0; 1167 1168 r = CHANNEL_RESET(c->methods, c->devinfo); 1169 if (r == 0 && fmt != 0 && spd != 0) { 1170 r = chn_setparam(c, fmt, spd); 1171 fmt = 0; 1172 spd = 0; 1173 } 1174 if (r == 0 && fmt != 0) 1175 r = chn_setformat(c, fmt); 1176 if (r == 0 && spd != 0) 1177 r = chn_setspeed(c, spd); 1178 if (r == 0) 1179 r = chn_setlatency(c, chn_latency); 1180 if (r == 0) { 1181 chn_resetbuf(c); 1182 r = CHANNEL_RESETDONE(c->methods, c->devinfo); 1183 } 1184 return r; 1185 } 1186 1187 int 1188 chn_init(struct pcm_channel *c, void *devinfo, int dir, int direction) 1189 { 1190 struct feeder_class *fc; 1191 struct snd_dbuf *b, *bs; 1192 int i, ret; 1193 1194 if (chn_timeout < CHN_TIMEOUT_MIN || chn_timeout > CHN_TIMEOUT_MAX) 1195 chn_timeout = CHN_TIMEOUT; 1196 1197 chn_lockinit(c, dir); 1198 1199 b = NULL; 1200 bs = NULL; 1201 CHN_INIT(c, children); 1202 CHN_INIT(c, children.busy); 1203 c->devinfo = NULL; 1204 c->feeder = NULL; 1205 c->latency = -1; 1206 c->timeout = 1; 1207 1208 ret = ENOMEM; 1209 b = sndbuf_create(c->dev, c->name, "primary", c); 1210 if (b == NULL) 1211 goto out; 1212 bs = sndbuf_create(c->dev, c->name, "secondary", c); 1213 if (bs == NULL) 1214 goto out; 1215 1216 CHN_LOCK(c); 1217 1218 ret = EINVAL; 1219 fc = feeder_getclass(NULL); 1220 if (fc == NULL) 1221 goto out; 1222 if (chn_addfeeder(c, fc, NULL)) 1223 goto out; 1224 1225 /* 1226 * XXX - sndbuf_setup() & sndbuf_resize() expect to be called 1227 * with the channel unlocked because they are also called 1228 * from driver methods that don't know about locking 1229 */ 1230 CHN_UNLOCK(c); 1231 sndbuf_setup(bs, NULL, 0); 1232 CHN_LOCK(c); 1233 c->bufhard = b; 1234 c->bufsoft = bs; 1235 c->flags = 0; 1236 c->feederflags = 0; 1237 c->sm = NULL; 1238 c->format = SND_FORMAT(AFMT_U8, 1, 0); 1239 c->speed = DSP_DEFAULT_SPEED; 1240 1241 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0); 1242 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1243 1244 for (i = 0; i < SND_CHN_T_MAX; i++) { 1245 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER; 1246 } 1247 1248 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER; 1249 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm; 1250 1251 chn_vpc_reset(c, SND_VOL_C_PCM, 1); 1252 1253 ret = ENODEV; 1254 CHN_UNLOCK(c); /* XXX - Unlock for CHANNEL_INIT() malloc() call */ 1255 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction); 1256 CHN_LOCK(c); 1257 if (c->devinfo == NULL) 1258 goto out; 1259 1260 ret = ENOMEM; 1261 if ((sndbuf_getsize(b) == 0) && ((c->flags & CHN_F_VIRTUAL) == 0)) 1262 goto out; 1263 1264 ret = 0; 1265 c->direction = direction; 1266 1267 sndbuf_setfmt(b, c->format); 1268 sndbuf_setspd(b, c->speed); 1269 sndbuf_setfmt(bs, c->format); 1270 sndbuf_setspd(bs, c->speed); 1271 1272 /** 1273 * @todo Should this be moved somewhere else? The primary buffer 1274 * is allocated by the driver or via DMA map setup, and tmpbuf 1275 * seems to only come into existence in sndbuf_resize(). 1276 */ 1277 if (c->direction == PCMDIR_PLAY) { 1278 bs->sl = sndbuf_getmaxsize(bs); 1279 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_NOWAIT); 1280 if (bs->shadbuf == NULL) { 1281 ret = ENOMEM; 1282 goto out; 1283 } 1284 } 1285 1286 out: 1287 CHN_UNLOCK(c); 1288 if (ret) { 1289 if (c->devinfo) { 1290 if (CHANNEL_FREE(c->methods, c->devinfo)) 1291 sndbuf_free(b); 1292 } 1293 if (bs) 1294 sndbuf_destroy(bs); 1295 if (b) 1296 sndbuf_destroy(b); 1297 CHN_LOCK(c); 1298 c->flags |= CHN_F_DEAD; 1299 chn_lockdestroy(c); 1300 1301 return ret; 1302 } 1303 1304 return 0; 1305 } 1306 1307 int 1308 chn_kill(struct pcm_channel *c) 1309 { 1310 struct snd_dbuf *b = c->bufhard; 1311 struct snd_dbuf *bs = c->bufsoft; 1312 1313 if (CHN_STARTED(c)) { 1314 CHN_LOCK(c); 1315 chn_trigger(c, PCMTRIG_ABORT); 1316 CHN_UNLOCK(c); 1317 } 1318 while (chn_removefeeder(c) == 0) 1319 ; 1320 if (CHANNEL_FREE(c->methods, c->devinfo)) 1321 sndbuf_free(b); 1322 sndbuf_destroy(bs); 1323 sndbuf_destroy(b); 1324 CHN_LOCK(c); 1325 c->flags |= CHN_F_DEAD; 1326 chn_lockdestroy(c); 1327 1328 return (0); 1329 } 1330 1331 /* XXX Obsolete. Use *_matrix() variant instead. */ 1332 int 1333 chn_setvolume(struct pcm_channel *c, int left, int right) 1334 { 1335 int ret; 1336 1337 ret = chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FL, left); 1338 ret |= chn_setvolume_matrix(c, SND_VOL_C_MASTER, SND_CHN_T_FR, 1339 right) << 8; 1340 1341 return (ret); 1342 } 1343 1344 int 1345 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right, 1346 int center) 1347 { 1348 int i, ret; 1349 1350 ret = 0; 1351 1352 for (i = 0; i < SND_CHN_T_MAX; i++) { 1353 if ((1 << i) & SND_CHN_LEFT_MASK) 1354 ret |= chn_setvolume_matrix(c, vc, i, left); 1355 else if ((1 << i) & SND_CHN_RIGHT_MASK) 1356 ret |= chn_setvolume_matrix(c, vc, i, right) << 8; 1357 else 1358 ret |= chn_setvolume_matrix(c, vc, i, center) << 16; 1359 } 1360 1361 return (ret); 1362 } 1363 1364 int 1365 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val) 1366 { 1367 int i; 1368 1369 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1370 (vc == SND_VOL_C_MASTER || (vc & 1)) && 1371 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && 1372 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB || 1373 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)), 1374 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d", 1375 __func__, c, vc, vt, val)); 1376 CHN_LOCKASSERT(c); 1377 1378 if (val < 0) 1379 val = 0; 1380 if (val > 100) 1381 val = 100; 1382 1383 c->volume[vc][vt] = val; 1384 1385 /* 1386 * Do relative calculation here and store it into class + 1 1387 * to ease the job of feeder_volume. 1388 */ 1389 if (vc == SND_VOL_C_MASTER) { 1390 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END; 1391 vc += SND_VOL_C_STEP) 1392 c->volume[SND_VOL_C_VAL(vc)][vt] = 1393 SND_VOL_CALC_VAL(c->volume, vc, vt); 1394 } else if (vc & 1) { 1395 if (vt == SND_CHN_T_VOL_0DB) 1396 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; 1397 i += SND_CHN_T_STEP) { 1398 c->volume[SND_VOL_C_VAL(vc)][i] = 1399 SND_VOL_CALC_VAL(c->volume, vc, i); 1400 } 1401 else 1402 c->volume[SND_VOL_C_VAL(vc)][vt] = 1403 SND_VOL_CALC_VAL(c->volume, vc, vt); 1404 } 1405 1406 return (val); 1407 } 1408 1409 int 1410 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt) 1411 { 1412 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX && 1413 (vt == SND_CHN_T_VOL_0DB || 1414 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)), 1415 ("%s(): invalid volume matrix c=%p vc=%d vt=%d", 1416 __func__, c, vc, vt)); 1417 CHN_LOCKASSERT(c); 1418 1419 return (c->volume[vc][vt]); 1420 } 1421 1422 struct pcmchan_matrix * 1423 chn_getmatrix(struct pcm_channel *c) 1424 { 1425 1426 KASSERT(c != NULL, ("%s(): NULL channel", __func__)); 1427 CHN_LOCKASSERT(c); 1428 1429 if (!(c->format & AFMT_CONVERTIBLE)) 1430 return (NULL); 1431 1432 return (&c->matrix); 1433 } 1434 1435 int 1436 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m) 1437 { 1438 1439 KASSERT(c != NULL && m != NULL, 1440 ("%s(): NULL channel or matrix", __func__)); 1441 CHN_LOCKASSERT(c); 1442 1443 if (!(c->format & AFMT_CONVERTIBLE)) 1444 return (EINVAL); 1445 1446 c->matrix = *m; 1447 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; 1448 1449 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext))); 1450 } 1451 1452 /* 1453 * XXX chn_oss_* exists for the sake of compatibility. 1454 */ 1455 int 1456 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map) 1457 { 1458 1459 KASSERT(c != NULL && map != NULL, 1460 ("%s(): NULL channel or map", __func__)); 1461 CHN_LOCKASSERT(c); 1462 1463 if (!(c->format & AFMT_CONVERTIBLE)) 1464 return (EINVAL); 1465 1466 return (feeder_matrix_oss_get_channel_order(&c->matrix, map)); 1467 } 1468 1469 int 1470 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map) 1471 { 1472 struct pcmchan_matrix m; 1473 int ret; 1474 1475 KASSERT(c != NULL && map != NULL, 1476 ("%s(): NULL channel or map", __func__)); 1477 CHN_LOCKASSERT(c); 1478 1479 if (!(c->format & AFMT_CONVERTIBLE)) 1480 return (EINVAL); 1481 1482 m = c->matrix; 1483 ret = feeder_matrix_oss_set_channel_order(&m, map); 1484 if (ret != 0) 1485 return (ret); 1486 1487 return (chn_setmatrix(c, &m)); 1488 } 1489 1490 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR) 1491 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR) 1492 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF) 1493 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR) 1494 1495 int 1496 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask) 1497 { 1498 struct pcmchan_matrix *m; 1499 struct pcmchan_caps *caps; 1500 uint32_t i, format; 1501 1502 KASSERT(c != NULL && retmask != NULL, 1503 ("%s(): NULL channel or retmask", __func__)); 1504 CHN_LOCKASSERT(c); 1505 1506 caps = chn_getcaps(c); 1507 if (caps == NULL || caps->fmtlist == NULL) 1508 return (ENODEV); 1509 1510 for (i = 0; caps->fmtlist[i] != 0; i++) { 1511 format = caps->fmtlist[i]; 1512 if (!(format & AFMT_CONVERTIBLE)) { 1513 *retmask |= DSP_BIND_SPDIF; 1514 continue; 1515 } 1516 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format); 1517 if (m == NULL) 1518 continue; 1519 if (m->mask & SND_CHN_OSS_FRONT) 1520 *retmask |= DSP_BIND_FRONT; 1521 if (m->mask & SND_CHN_OSS_SURR) 1522 *retmask |= DSP_BIND_SURR; 1523 if (m->mask & SND_CHN_OSS_CENTER_LFE) 1524 *retmask |= DSP_BIND_CENTER_LFE; 1525 if (m->mask & SND_CHN_OSS_REAR) 1526 *retmask |= DSP_BIND_REAR; 1527 } 1528 1529 /* report software-supported binding mask */ 1530 if (!CHN_BITPERFECT(c) && report_soft_matrix) 1531 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR | 1532 DSP_BIND_CENTER_LFE | DSP_BIND_REAR; 1533 1534 return (0); 1535 } 1536 1537 void 1538 chn_vpc_reset(struct pcm_channel *c, int vc, int force) 1539 { 1540 int i; 1541 1542 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END, 1543 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc)); 1544 CHN_LOCKASSERT(c); 1545 1546 if (force == 0 && chn_vpc_autoreset == 0) 1547 return; 1548 1549 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP) 1550 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]); 1551 } 1552 1553 static u_int32_t 1554 round_pow2(u_int32_t v) 1555 { 1556 u_int32_t ret; 1557 1558 if (v < 2) 1559 v = 2; 1560 ret = 0; 1561 while (v >> ret) 1562 ret++; 1563 ret = 1 << (ret - 1); 1564 while (ret < v) 1565 ret <<= 1; 1566 return ret; 1567 } 1568 1569 static u_int32_t 1570 round_blksz(u_int32_t v, int round) 1571 { 1572 u_int32_t ret, tmp; 1573 1574 if (round < 1) 1575 round = 1; 1576 1577 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1); 1578 1579 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2)) 1580 ret >>= 1; 1581 1582 tmp = ret - (ret % round); 1583 while (tmp < 16 || tmp < round) { 1584 ret <<= 1; 1585 tmp = ret - (ret % round); 1586 } 1587 1588 return ret; 1589 } 1590 1591 /* 1592 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea 1593 * is to keep 2nd buffer short so that it doesn't cause long queue during 1594 * buffer transfer. 1595 * 1596 * Latency reference table for 48khz stereo 16bit: (PLAY) 1597 * 1598 * +---------+------------+-----------+------------+ 1599 * | Latency | Blockcount | Blocksize | Buffersize | 1600 * +---------+------------+-----------+------------+ 1601 * | 0 | 2 | 64 | 128 | 1602 * +---------+------------+-----------+------------+ 1603 * | 1 | 4 | 128 | 512 | 1604 * +---------+------------+-----------+------------+ 1605 * | 2 | 8 | 512 | 4096 | 1606 * +---------+------------+-----------+------------+ 1607 * | 3 | 16 | 512 | 8192 | 1608 * +---------+------------+-----------+------------+ 1609 * | 4 | 32 | 512 | 16384 | 1610 * +---------+------------+-----------+------------+ 1611 * | 5 | 32 | 1024 | 32768 | 1612 * +---------+------------+-----------+------------+ 1613 * | 6 | 16 | 2048 | 32768 | 1614 * +---------+------------+-----------+------------+ 1615 * | 7 | 8 | 4096 | 32768 | 1616 * +---------+------------+-----------+------------+ 1617 * | 8 | 4 | 8192 | 32768 | 1618 * +---------+------------+-----------+------------+ 1619 * | 9 | 2 | 16384 | 32768 | 1620 * +---------+------------+-----------+------------+ 1621 * | 10 | 2 | 32768 | 65536 | 1622 * +---------+------------+-----------+------------+ 1623 * 1624 * Recording need a different reference table. All we care is 1625 * gobbling up everything within reasonable buffering threshold. 1626 * 1627 * Latency reference table for 48khz stereo 16bit: (REC) 1628 * 1629 * +---------+------------+-----------+------------+ 1630 * | Latency | Blockcount | Blocksize | Buffersize | 1631 * +---------+------------+-----------+------------+ 1632 * | 0 | 512 | 32 | 16384 | 1633 * +---------+------------+-----------+------------+ 1634 * | 1 | 256 | 64 | 16384 | 1635 * +---------+------------+-----------+------------+ 1636 * | 2 | 128 | 128 | 16384 | 1637 * +---------+------------+-----------+------------+ 1638 * | 3 | 64 | 256 | 16384 | 1639 * +---------+------------+-----------+------------+ 1640 * | 4 | 32 | 512 | 16384 | 1641 * +---------+------------+-----------+------------+ 1642 * | 5 | 32 | 1024 | 32768 | 1643 * +---------+------------+-----------+------------+ 1644 * | 6 | 16 | 2048 | 32768 | 1645 * +---------+------------+-----------+------------+ 1646 * | 7 | 8 | 4096 | 32768 | 1647 * +---------+------------+-----------+------------+ 1648 * | 8 | 4 | 8192 | 32768 | 1649 * +---------+------------+-----------+------------+ 1650 * | 9 | 2 | 16384 | 32768 | 1651 * +---------+------------+-----------+------------+ 1652 * | 10 | 2 | 32768 | 65536 | 1653 * +---------+------------+-----------+------------+ 1654 * 1655 * Calculations for other data rate are entirely based on these reference 1656 * tables. For normal operation, Latency 5 seems give the best, well 1657 * balanced performance for typical workload. Anything below 5 will 1658 * eat up CPU to keep up with increasing context switches because of 1659 * shorter buffer space and usually require the application to handle it 1660 * aggresively through possibly real time programming technique. 1661 * 1662 */ 1663 #define CHN_LATENCY_PBLKCNT_REF \ 1664 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \ 1665 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}} 1666 #define CHN_LATENCY_PBUFSZ_REF \ 1667 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \ 1668 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}} 1669 1670 #define CHN_LATENCY_RBLKCNT_REF \ 1671 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \ 1672 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}} 1673 #define CHN_LATENCY_RBUFSZ_REF \ 1674 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \ 1675 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}} 1676 1677 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */ 1678 1679 static int 1680 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate, 1681 u_int32_t max, int *rblksz, int *rblkcnt) 1682 { 1683 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1684 CHN_LATENCY_PBLKCNT_REF; 1685 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1686 CHN_LATENCY_PBUFSZ_REF; 1687 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1688 CHN_LATENCY_RBLKCNT_REF; 1689 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] = 1690 CHN_LATENCY_RBUFSZ_REF; 1691 u_int32_t bufsz; 1692 int lprofile, blksz, blkcnt; 1693 1694 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX || 1695 bps < 1 || datarate < 1 || 1696 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) { 1697 if (rblksz != NULL) 1698 *rblksz = CHN_2NDBUFMAXSIZE >> 1; 1699 if (rblkcnt != NULL) 1700 *rblkcnt = 2; 1701 printf("%s(): FAILED dir=%d latency=%d bps=%d " 1702 "datarate=%u max=%u\n", 1703 __func__, dir, latency, bps, datarate, max); 1704 return CHN_2NDBUFMAXSIZE; 1705 } 1706 1707 lprofile = chn_latency_profile; 1708 1709 if (dir == PCMDIR_PLAY) { 1710 blkcnt = pblkcnts[lprofile][latency]; 1711 bufsz = pbufszs[lprofile][latency]; 1712 } else { 1713 blkcnt = rblkcnts[lprofile][latency]; 1714 bufsz = rbufszs[lprofile][latency]; 1715 } 1716 1717 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF, 1718 datarate)); 1719 if (bufsz > max) 1720 bufsz = max; 1721 blksz = round_blksz(bufsz >> blkcnt, bps); 1722 1723 if (rblksz != NULL) 1724 *rblksz = blksz; 1725 if (rblkcnt != NULL) 1726 *rblkcnt = 1 << blkcnt; 1727 1728 return blksz << blkcnt; 1729 } 1730 1731 static int 1732 chn_resizebuf(struct pcm_channel *c, int latency, 1733 int blkcnt, int blksz) 1734 { 1735 struct snd_dbuf *b, *bs, *pb; 1736 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt; 1737 int ret; 1738 1739 CHN_LOCKASSERT(c); 1740 1741 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) || 1742 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC)) 1743 return EINVAL; 1744 1745 if (latency == -1) { 1746 c->latency = -1; 1747 latency = chn_latency; 1748 } else if (latency == -2) { 1749 latency = c->latency; 1750 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1751 latency = chn_latency; 1752 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX) 1753 return EINVAL; 1754 else { 1755 c->latency = latency; 1756 } 1757 1758 bs = c->bufsoft; 1759 b = c->bufhard; 1760 1761 if (!(blksz == 0 || blkcnt == -1) && 1762 (blksz < 16 || blksz < sndbuf_getalign(bs) || blkcnt < 2 || 1763 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE)) 1764 return EINVAL; 1765 1766 chn_calclatency(c->direction, latency, sndbuf_getalign(bs), 1767 sndbuf_getalign(bs) * sndbuf_getspd(bs), CHN_2NDBUFMAXSIZE, 1768 &sblksz, &sblkcnt); 1769 1770 if (blksz == 0 || blkcnt == -1) { 1771 if (blkcnt == -1) 1772 c->flags &= ~CHN_F_HAS_SIZE; 1773 if (c->flags & CHN_F_HAS_SIZE) { 1774 blksz = sndbuf_getblksz(bs); 1775 blkcnt = sndbuf_getblkcnt(bs); 1776 } 1777 } else 1778 c->flags |= CHN_F_HAS_SIZE; 1779 1780 if (c->flags & CHN_F_HAS_SIZE) { 1781 /* 1782 * The application has requested their own blksz/blkcnt. 1783 * Just obey with it, and let them toast alone. We can 1784 * clamp it to the nearest latency profile, but that would 1785 * defeat the purpose of having custom control. The least 1786 * we can do is round it to the nearest ^2 and align it. 1787 */ 1788 sblksz = round_blksz(blksz, sndbuf_getalign(bs)); 1789 sblkcnt = round_pow2(blkcnt); 1790 } 1791 1792 if (c->parentchannel != NULL) { 1793 pb = c->parentchannel->bufsoft; 1794 CHN_UNLOCK(c); 1795 CHN_LOCK(c->parentchannel); 1796 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE); 1797 CHN_UNLOCK(c->parentchannel); 1798 CHN_LOCK(c); 1799 if (c->direction == PCMDIR_PLAY) { 1800 limit = (pb != NULL) ? 1801 sndbuf_xbytes(sndbuf_getsize(pb), pb, bs) : 0; 1802 } else { 1803 limit = (pb != NULL) ? 1804 sndbuf_xbytes(sndbuf_getblksz(pb), pb, bs) * 2 : 0; 1805 } 1806 } else { 1807 hblkcnt = 2; 1808 if (c->flags & CHN_F_HAS_SIZE) { 1809 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b), 1810 sndbuf_getalign(b)); 1811 hblkcnt = round_pow2(sndbuf_getblkcnt(bs)); 1812 } else 1813 chn_calclatency(c->direction, latency, 1814 sndbuf_getalign(b), 1815 sndbuf_getalign(b) * sndbuf_getspd(b), 1816 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt); 1817 1818 if ((hblksz << 1) > sndbuf_getmaxsize(b)) 1819 hblksz = round_blksz(sndbuf_getmaxsize(b) >> 1, 1820 sndbuf_getalign(b)); 1821 1822 while ((hblksz * hblkcnt) > sndbuf_getmaxsize(b)) { 1823 if (hblkcnt < 4) 1824 hblksz >>= 1; 1825 else 1826 hblkcnt >>= 1; 1827 } 1828 1829 hblksz -= hblksz % sndbuf_getalign(b); 1830 1831 #if 0 1832 hblksz = sndbuf_getmaxsize(b) >> 1; 1833 hblksz -= hblksz % sndbuf_getalign(b); 1834 hblkcnt = 2; 1835 #endif 1836 1837 CHN_UNLOCK(c); 1838 if (chn_usefrags == 0 || 1839 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo, 1840 hblksz, hblkcnt) != 0) 1841 sndbuf_setblksz(b, CHANNEL_SETBLOCKSIZE(c->methods, 1842 c->devinfo, hblksz)); 1843 CHN_LOCK(c); 1844 1845 if (!CHN_EMPTY(c, children)) { 1846 nsblksz = round_blksz( 1847 sndbuf_xbytes(sndbuf_getblksz(b), b, bs), 1848 sndbuf_getalign(bs)); 1849 nsblkcnt = sndbuf_getblkcnt(b); 1850 if (c->direction == PCMDIR_PLAY) { 1851 do { 1852 nsblkcnt--; 1853 } while (nsblkcnt >= 2 && 1854 nsblksz * nsblkcnt >= sblksz * sblkcnt); 1855 nsblkcnt++; 1856 } 1857 sblksz = nsblksz; 1858 sblkcnt = nsblkcnt; 1859 limit = 0; 1860 } else 1861 limit = sndbuf_xbytes(sndbuf_getblksz(b), b, bs) * 2; 1862 } 1863 1864 if (limit > CHN_2NDBUFMAXSIZE) 1865 limit = CHN_2NDBUFMAXSIZE; 1866 1867 #if 0 1868 while (limit > 0 && (sblksz * sblkcnt) > limit) { 1869 if (sblkcnt < 4) 1870 break; 1871 sblkcnt >>= 1; 1872 } 1873 #endif 1874 1875 while ((sblksz * sblkcnt) < limit) 1876 sblkcnt <<= 1; 1877 1878 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) { 1879 if (sblkcnt < 4) 1880 sblksz >>= 1; 1881 else 1882 sblkcnt >>= 1; 1883 } 1884 1885 sblksz -= sblksz % sndbuf_getalign(bs); 1886 1887 if (sndbuf_getblkcnt(bs) != sblkcnt || sndbuf_getblksz(bs) != sblksz || 1888 sndbuf_getsize(bs) != (sblkcnt * sblksz)) { 1889 ret = sndbuf_remalloc(bs, sblkcnt, sblksz); 1890 if (ret != 0) { 1891 device_printf(c->dev, "%s(): Failed: %d %d\n", 1892 __func__, sblkcnt, sblksz); 1893 return ret; 1894 } 1895 } 1896 1897 /* 1898 * Interrupt timeout 1899 */ 1900 c->timeout = ((u_int64_t)hz * sndbuf_getsize(bs)) / 1901 ((u_int64_t)sndbuf_getspd(bs) * sndbuf_getalign(bs)); 1902 if (c->parentchannel != NULL) 1903 c->timeout = min(c->timeout, c->parentchannel->timeout); 1904 if (c->timeout < 1) 1905 c->timeout = 1; 1906 1907 /* 1908 * OSSv4 docs: "By default OSS will set the low water level equal 1909 * to the fragment size which is optimal in most cases." 1910 */ 1911 c->lw = sndbuf_getblksz(bs); 1912 chn_resetbuf(c); 1913 1914 if (snd_verbose > 3) 1915 device_printf(c->dev, "%s(): %s (%s) timeout=%u " 1916 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n", 1917 __func__, CHN_DIRSTR(c), 1918 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware", 1919 c->timeout, 1920 sndbuf_getsize(b), sndbuf_getblksz(b), 1921 sndbuf_getblkcnt(b), 1922 sndbuf_getsize(bs), sndbuf_getblksz(bs), 1923 sndbuf_getblkcnt(bs), limit); 1924 1925 return 0; 1926 } 1927 1928 int 1929 chn_setlatency(struct pcm_channel *c, int latency) 1930 { 1931 CHN_LOCKASSERT(c); 1932 /* Destroy blksz/blkcnt, enforce latency profile. */ 1933 return chn_resizebuf(c, latency, -1, 0); 1934 } 1935 1936 int 1937 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz) 1938 { 1939 CHN_LOCKASSERT(c); 1940 /* Destroy latency profile, enforce blksz/blkcnt */ 1941 return chn_resizebuf(c, -1, blkcnt, blksz); 1942 } 1943 1944 int 1945 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed) 1946 { 1947 struct pcmchan_caps *caps; 1948 uint32_t hwspeed, delta; 1949 int ret; 1950 1951 CHN_LOCKASSERT(c); 1952 1953 if (speed < 1 || format == 0 || CHN_STARTED(c)) 1954 return (EINVAL); 1955 1956 c->format = format; 1957 c->speed = speed; 1958 1959 caps = chn_getcaps(c); 1960 1961 hwspeed = speed; 1962 RANGE(hwspeed, caps->minspeed, caps->maxspeed); 1963 1964 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo, 1965 hwspeed)); 1966 hwspeed = sndbuf_getspd(c->bufhard); 1967 1968 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed); 1969 1970 if (delta <= feeder_rate_round) 1971 c->speed = hwspeed; 1972 1973 ret = feeder_chain(c); 1974 1975 if (ret == 0) 1976 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, 1977 sndbuf_getfmt(c->bufhard)); 1978 1979 if (ret == 0) 1980 ret = chn_resizebuf(c, -2, 0, 0); 1981 1982 return (ret); 1983 } 1984 1985 int 1986 chn_setspeed(struct pcm_channel *c, uint32_t speed) 1987 { 1988 uint32_t oldformat, oldspeed, format; 1989 int ret; 1990 1991 #if 0 1992 /* XXX force 48k */ 1993 if (c->format & AFMT_PASSTHROUGH) 1994 speed = AFMT_PASSTHROUGH_RATE; 1995 #endif 1996 1997 oldformat = c->format; 1998 oldspeed = c->speed; 1999 format = oldformat; 2000 2001 ret = chn_setparam(c, format, speed); 2002 if (ret != 0) { 2003 if (snd_verbose > 3) 2004 device_printf(c->dev, 2005 "%s(): Setting speed %d failed, " 2006 "falling back to %d\n", 2007 __func__, speed, oldspeed); 2008 chn_setparam(c, c->format, oldspeed); 2009 } 2010 2011 return (ret); 2012 } 2013 2014 int 2015 chn_setformat(struct pcm_channel *c, uint32_t format) 2016 { 2017 uint32_t oldformat, oldspeed, speed; 2018 int ret; 2019 2020 /* XXX force stereo */ 2021 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) { 2022 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL, 2023 AFMT_PASSTHROUGH_EXTCHANNEL); 2024 } 2025 2026 oldformat = c->format; 2027 oldspeed = c->speed; 2028 speed = oldspeed; 2029 2030 ret = chn_setparam(c, format, speed); 2031 if (ret != 0) { 2032 if (snd_verbose > 3) 2033 device_printf(c->dev, 2034 "%s(): Format change 0x%08x failed, " 2035 "falling back to 0x%08x\n", 2036 __func__, format, oldformat); 2037 chn_setparam(c, oldformat, oldspeed); 2038 } 2039 2040 return (ret); 2041 } 2042 2043 void 2044 chn_syncstate(struct pcm_channel *c) 2045 { 2046 struct snddev_info *d; 2047 struct snd_mixer *m; 2048 2049 d = (c != NULL) ? c->parentsnddev : NULL; 2050 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 : 2051 NULL; 2052 2053 if (d == NULL || m == NULL) 2054 return; 2055 2056 CHN_LOCKASSERT(c); 2057 2058 if (c->feederflags & (1 << FEEDER_VOLUME)) { 2059 uint32_t parent; 2060 int vol, pvol, left, right, center; 2061 2062 if (c->direction == PCMDIR_PLAY && 2063 (d->flags & SD_F_SOFTPCMVOL)) { 2064 /* CHN_UNLOCK(c); */ 2065 vol = mix_get(m, SOUND_MIXER_PCM); 2066 parent = mix_getparent(m, SOUND_MIXER_PCM); 2067 if (parent != SOUND_MIXER_NONE) 2068 pvol = mix_get(m, parent); 2069 else 2070 pvol = 100 | (100 << 8); 2071 /* CHN_LOCK(c); */ 2072 } else { 2073 vol = 100 | (100 << 8); 2074 pvol = vol; 2075 } 2076 2077 if (vol == -1) { 2078 device_printf(c->dev, 2079 "Soft PCM Volume: Failed to read pcm " 2080 "default value\n"); 2081 vol = 100 | (100 << 8); 2082 } 2083 2084 if (pvol == -1) { 2085 device_printf(c->dev, 2086 "Soft PCM Volume: Failed to read parent " 2087 "default value\n"); 2088 pvol = 100 | (100 << 8); 2089 } 2090 2091 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100; 2092 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100; 2093 center = (left + right) >> 1; 2094 2095 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center); 2096 } 2097 2098 if (c->feederflags & (1 << FEEDER_EQ)) { 2099 struct pcm_feeder *f; 2100 int treble, bass, state; 2101 2102 /* CHN_UNLOCK(c); */ 2103 treble = mix_get(m, SOUND_MIXER_TREBLE); 2104 bass = mix_get(m, SOUND_MIXER_BASS); 2105 /* CHN_LOCK(c); */ 2106 2107 if (treble == -1) 2108 treble = 50; 2109 else 2110 treble = ((treble & 0x7f) + 2111 ((treble >> 8) & 0x7f)) >> 1; 2112 2113 if (bass == -1) 2114 bass = 50; 2115 else 2116 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1; 2117 2118 f = chn_findfeeder(c, FEEDER_EQ); 2119 if (f != NULL) { 2120 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0) 2121 device_printf(c->dev, 2122 "EQ: Failed to set treble -- %d\n", 2123 treble); 2124 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0) 2125 device_printf(c->dev, 2126 "EQ: Failed to set bass -- %d\n", 2127 bass); 2128 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0) 2129 device_printf(c->dev, 2130 "EQ: Failed to set preamp -- %d\n", 2131 d->eqpreamp); 2132 if (d->flags & SD_F_EQ_BYPASSED) 2133 state = FEEDEQ_BYPASS; 2134 else if (d->flags & SD_F_EQ_ENABLED) 2135 state = FEEDEQ_ENABLE; 2136 else 2137 state = FEEDEQ_DISABLE; 2138 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0) 2139 device_printf(c->dev, 2140 "EQ: Failed to set state -- %d\n", state); 2141 } 2142 } 2143 } 2144 2145 int 2146 chn_trigger(struct pcm_channel *c, int go) 2147 { 2148 #ifdef DEV_ISA 2149 struct snd_dbuf *b = c->bufhard; 2150 #endif 2151 struct snddev_info *d = c->parentsnddev; 2152 int ret; 2153 2154 CHN_LOCKASSERT(c); 2155 #ifdef DEV_ISA 2156 if (SND_DMA(b) && (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD)) 2157 sndbuf_dmabounce(b); 2158 #endif 2159 if (!PCMTRIG_COMMON(go)) 2160 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go)); 2161 2162 if (go == c->trigger) 2163 return (0); 2164 2165 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go); 2166 if (ret != 0) 2167 return (ret); 2168 2169 switch (go) { 2170 case PCMTRIG_START: 2171 if (snd_verbose > 3) 2172 device_printf(c->dev, 2173 "%s() %s: calling go=0x%08x , " 2174 "prev=0x%08x\n", __func__, c->name, go, 2175 c->trigger); 2176 if (c->trigger != PCMTRIG_START) { 2177 c->trigger = go; 2178 CHN_UNLOCK(c); 2179 PCM_LOCK(d); 2180 CHN_INSERT_HEAD(d, c, channels.pcm.busy); 2181 PCM_UNLOCK(d); 2182 CHN_LOCK(c); 2183 chn_syncstate(c); 2184 } 2185 break; 2186 case PCMTRIG_STOP: 2187 case PCMTRIG_ABORT: 2188 if (snd_verbose > 3) 2189 device_printf(c->dev, 2190 "%s() %s: calling go=0x%08x , " 2191 "prev=0x%08x\n", __func__, c->name, go, 2192 c->trigger); 2193 if (c->trigger == PCMTRIG_START) { 2194 c->trigger = go; 2195 CHN_UNLOCK(c); 2196 PCM_LOCK(d); 2197 CHN_REMOVE(d, c, channels.pcm.busy); 2198 PCM_UNLOCK(d); 2199 CHN_LOCK(c); 2200 } 2201 break; 2202 default: 2203 break; 2204 } 2205 2206 return (0); 2207 } 2208 2209 /** 2210 * @brief Queries sound driver for sample-aligned hardware buffer pointer index 2211 * 2212 * This function obtains the hardware pointer location, then aligns it to 2213 * the current bytes-per-sample value before returning. (E.g., a channel 2214 * running in 16 bit stereo mode would require 4 bytes per sample, so a 2215 * hwptr value ranging from 32-35 would be returned as 32.) 2216 * 2217 * @param c PCM channel context 2218 * @returns sample-aligned hardware buffer pointer index 2219 */ 2220 int 2221 chn_getptr(struct pcm_channel *c) 2222 { 2223 int hwptr; 2224 2225 CHN_LOCKASSERT(c); 2226 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0; 2227 return (hwptr - (hwptr % sndbuf_getalign(c->bufhard))); 2228 } 2229 2230 struct pcmchan_caps * 2231 chn_getcaps(struct pcm_channel *c) 2232 { 2233 CHN_LOCKASSERT(c); 2234 return CHANNEL_GETCAPS(c->methods, c->devinfo); 2235 } 2236 2237 u_int32_t 2238 chn_getformats(struct pcm_channel *c) 2239 { 2240 u_int32_t *fmtlist, fmts; 2241 int i; 2242 2243 fmtlist = chn_getcaps(c)->fmtlist; 2244 fmts = 0; 2245 for (i = 0; fmtlist[i]; i++) 2246 fmts |= fmtlist[i]; 2247 2248 /* report software-supported formats */ 2249 if (!CHN_BITPERFECT(c) && report_soft_formats) 2250 fmts |= AFMT_CONVERTIBLE; 2251 2252 return (AFMT_ENCODING(fmts)); 2253 } 2254 2255 int 2256 chn_notify(struct pcm_channel *c, u_int32_t flags) 2257 { 2258 struct pcm_channel *ch; 2259 struct pcmchan_caps *caps; 2260 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate; 2261 uint32_t vpflags; 2262 int dirty, err, run, nrun; 2263 2264 CHN_LOCKASSERT(c); 2265 2266 if (CHN_EMPTY(c, children)) 2267 return (ENODEV); 2268 2269 err = 0; 2270 2271 /* 2272 * If the hwchan is running, we can't change its rate, format or 2273 * blocksize 2274 */ 2275 run = (CHN_STARTED(c)) ? 1 : 0; 2276 if (run) 2277 flags &= CHN_N_VOLUME | CHN_N_TRIGGER; 2278 2279 if (flags & CHN_N_RATE) { 2280 /* 2281 * XXX I'll make good use of this someday. 2282 * However this is currently being superseded by 2283 * the availability of CHN_F_VCHAN_DYNAMIC. 2284 */ 2285 } 2286 2287 if (flags & CHN_N_FORMAT) { 2288 /* 2289 * XXX I'll make good use of this someday. 2290 * However this is currently being superseded by 2291 * the availability of CHN_F_VCHAN_DYNAMIC. 2292 */ 2293 } 2294 2295 if (flags & CHN_N_VOLUME) { 2296 /* 2297 * XXX I'll make good use of this someday, though 2298 * soft volume control is currently pretty much 2299 * integrated. 2300 */ 2301 } 2302 2303 if (flags & CHN_N_BLOCKSIZE) { 2304 /* 2305 * Set to default latency profile 2306 */ 2307 chn_setlatency(c, chn_latency); 2308 } 2309 2310 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) { 2311 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1; 2312 if (nrun && !run) 2313 err = chn_start(c, 1); 2314 if (!nrun && run) 2315 chn_abort(c); 2316 flags &= ~CHN_N_TRIGGER; 2317 } 2318 2319 if (flags & CHN_N_TRIGGER) { 2320 if (c->direction == PCMDIR_PLAY) { 2321 vchanformat = &c->parentsnddev->pvchanformat; 2322 vchanrate = &c->parentsnddev->pvchanrate; 2323 } else { 2324 vchanformat = &c->parentsnddev->rvchanformat; 2325 vchanrate = &c->parentsnddev->rvchanrate; 2326 } 2327 2328 /* Dynamic Virtual Channel */ 2329 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) { 2330 bestformat = *vchanformat; 2331 bestspeed = *vchanrate; 2332 } else { 2333 bestformat = 0; 2334 bestspeed = 0; 2335 } 2336 2337 besthwformat = 0; 2338 nrun = 0; 2339 caps = chn_getcaps(c); 2340 dirty = 0; 2341 vpflags = 0; 2342 2343 CHN_FOREACH(ch, c, children.busy) { 2344 CHN_LOCK(ch); 2345 if ((ch->format & AFMT_PASSTHROUGH) && 2346 snd_fmtvalid(ch->format, caps->fmtlist)) { 2347 bestformat = ch->format; 2348 bestspeed = ch->speed; 2349 CHN_UNLOCK(ch); 2350 vpflags = CHN_F_PASSTHROUGH; 2351 nrun++; 2352 break; 2353 } 2354 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) { 2355 if (c->flags & CHN_F_VCHAN_ADAPTIVE) { 2356 bestspeed = ch->speed; 2357 RANGE(bestspeed, caps->minspeed, 2358 caps->maxspeed); 2359 besthwformat = snd_fmtbest(ch->format, 2360 caps->fmtlist); 2361 if (besthwformat != 0) 2362 bestformat = besthwformat; 2363 } 2364 CHN_UNLOCK(ch); 2365 vpflags = CHN_F_EXCLUSIVE; 2366 nrun++; 2367 continue; 2368 } 2369 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) || 2370 vpflags != 0) { 2371 CHN_UNLOCK(ch); 2372 nrun++; 2373 continue; 2374 } 2375 if (ch->speed > bestspeed) { 2376 bestspeed = ch->speed; 2377 RANGE(bestspeed, caps->minspeed, 2378 caps->maxspeed); 2379 } 2380 besthwformat = snd_fmtbest(ch->format, caps->fmtlist); 2381 if (!(besthwformat & AFMT_VCHAN)) { 2382 CHN_UNLOCK(ch); 2383 nrun++; 2384 continue; 2385 } 2386 if (AFMT_CHANNEL(besthwformat) > 2387 AFMT_CHANNEL(bestformat)) 2388 bestformat = besthwformat; 2389 else if (AFMT_CHANNEL(besthwformat) == 2390 AFMT_CHANNEL(bestformat) && 2391 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat)) 2392 bestformat = besthwformat; 2393 CHN_UNLOCK(ch); 2394 nrun++; 2395 } 2396 2397 if (bestformat == 0) 2398 bestformat = c->format; 2399 if (bestspeed == 0) 2400 bestspeed = c->speed; 2401 2402 if (bestformat != c->format || bestspeed != c->speed) 2403 dirty = 1; 2404 2405 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2406 c->flags |= vpflags; 2407 2408 if (nrun && !run) { 2409 if (dirty) { 2410 bestspeed = CHANNEL_SETSPEED(c->methods, 2411 c->devinfo, bestspeed); 2412 err = chn_reset(c, bestformat, bestspeed); 2413 } 2414 if (err == 0 && dirty) { 2415 CHN_FOREACH(ch, c, children.busy) { 2416 CHN_LOCK(ch); 2417 if (VCHAN_SYNC_REQUIRED(ch)) 2418 vchan_sync(ch); 2419 CHN_UNLOCK(ch); 2420 } 2421 } 2422 if (err == 0) { 2423 if (dirty) 2424 c->flags |= CHN_F_DIRTY; 2425 err = chn_start(c, 1); 2426 } 2427 } 2428 2429 if (nrun && run && dirty) { 2430 chn_abort(c); 2431 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo, 2432 bestspeed); 2433 err = chn_reset(c, bestformat, bestspeed); 2434 if (err == 0) { 2435 CHN_FOREACH(ch, c, children.busy) { 2436 CHN_LOCK(ch); 2437 if (VCHAN_SYNC_REQUIRED(ch)) 2438 vchan_sync(ch); 2439 CHN_UNLOCK(ch); 2440 } 2441 } 2442 if (err == 0) { 2443 c->flags |= CHN_F_DIRTY; 2444 err = chn_start(c, 1); 2445 } 2446 } 2447 2448 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) && 2449 (bestformat & AFMT_VCHAN)) { 2450 *vchanformat = bestformat; 2451 *vchanrate = bestspeed; 2452 } 2453 2454 if (!nrun && run) { 2455 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE); 2456 bestformat = *vchanformat; 2457 bestspeed = *vchanrate; 2458 chn_abort(c); 2459 if (c->format != bestformat || c->speed != bestspeed) 2460 chn_reset(c, bestformat, bestspeed); 2461 } 2462 } 2463 2464 return (err); 2465 } 2466 2467 /** 2468 * @brief Fetch array of supported discrete sample rates 2469 * 2470 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for 2471 * detailed information. 2472 * 2473 * @note If the operation isn't supported, this function will just return 0 2474 * (no rates in the array), and *rates will be set to NULL. Callers 2475 * should examine rates @b only if this function returns non-zero. 2476 * 2477 * @param c pcm channel to examine 2478 * @param rates pointer to array of integers; rate table will be recorded here 2479 * 2480 * @return number of rates in the array pointed to be @c rates 2481 */ 2482 int 2483 chn_getrates(struct pcm_channel *c, int **rates) 2484 { 2485 KASSERT(rates != NULL, ("rates is null")); 2486 CHN_LOCKASSERT(c); 2487 return CHANNEL_GETRATES(c->methods, c->devinfo, rates); 2488 } 2489 2490 /** 2491 * @brief Remove channel from a sync group, if there is one. 2492 * 2493 * This function is initially intended for the following conditions: 2494 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl) 2495 * - Closing a device. (A channel can't be destroyed if it's still in use.) 2496 * 2497 * @note Before calling this function, the syncgroup list mutex must be 2498 * held. (Consider pcm_channel::sm protected by the SG list mutex 2499 * whether @c c is locked or not.) 2500 * 2501 * @param c channel device to be started or closed 2502 * @returns If this channel was the only member of a group, the group ID 2503 * is returned to the caller so that the caller can release it 2504 * via free_unr() after giving up the syncgroup lock. Else it 2505 * returns 0. 2506 */ 2507 int 2508 chn_syncdestroy(struct pcm_channel *c) 2509 { 2510 struct pcmchan_syncmember *sm; 2511 struct pcmchan_syncgroup *sg; 2512 int sg_id; 2513 2514 sg_id = 0; 2515 2516 PCM_SG_LOCKASSERT(MA_OWNED); 2517 2518 if (c->sm != NULL) { 2519 sm = c->sm; 2520 sg = sm->parent; 2521 c->sm = NULL; 2522 2523 KASSERT(sg != NULL, ("syncmember has null parent")); 2524 2525 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link); 2526 free(sm, M_DEVBUF); 2527 2528 if (SLIST_EMPTY(&sg->members)) { 2529 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link); 2530 sg_id = sg->id; 2531 free(sg, M_DEVBUF); 2532 } 2533 } 2534 2535 return sg_id; 2536 } 2537 2538 #ifdef OSSV4_EXPERIMENT 2539 int 2540 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak) 2541 { 2542 CHN_LOCKASSERT(c); 2543 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak); 2544 } 2545 #endif 2546