1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
6 * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
7 * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99
8 * All rights reserved.
9 * Copyright (c) 2024-2025 The FreeBSD Foundation
10 *
11 * Portions of this software were developed by Christos Margiolis
12 * <christos@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_snd.h"
38 #endif
39
40 #include <dev/sound/pcm/sound.h>
41 #include <dev/sound/pcm/vchan.h>
42
43 #include "feeder_if.h"
44
45 int report_soft_formats = 1;
46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW,
47 &report_soft_formats, 0, "report software-emulated formats");
48
49 int report_soft_matrix = 1;
50 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW,
51 &report_soft_matrix, 0, "report software-emulated channel matrixing");
52
53 int chn_latency = CHN_LATENCY_DEFAULT;
54
55 static int
sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)56 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)
57 {
58 int err, val;
59
60 val = chn_latency;
61 err = sysctl_handle_int(oidp, &val, 0, req);
62 if (err != 0 || req->newptr == NULL)
63 return err;
64 if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX)
65 err = EINVAL;
66 else
67 chn_latency = val;
68
69 return err;
70 }
71 SYSCTL_PROC(_hw_snd, OID_AUTO, latency,
72 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
73 sysctl_hw_snd_latency, "I",
74 "buffering latency (0=low ... 10=high)");
75
76 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
77
78 static int
sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)79 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)
80 {
81 int err, val;
82
83 val = chn_latency_profile;
84 err = sysctl_handle_int(oidp, &val, 0, req);
85 if (err != 0 || req->newptr == NULL)
86 return err;
87 if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX)
88 err = EINVAL;
89 else
90 chn_latency_profile = val;
91
92 return err;
93 }
94 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile,
95 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
96 sysctl_hw_snd_latency_profile, "I",
97 "buffering latency profile (0=aggressive 1=safe)");
98
99 static int chn_timeout = CHN_TIMEOUT;
100
101 static int
sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)102 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)
103 {
104 int err, val;
105
106 val = chn_timeout;
107 err = sysctl_handle_int(oidp, &val, 0, req);
108 if (err != 0 || req->newptr == NULL)
109 return err;
110 if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX)
111 err = EINVAL;
112 else
113 chn_timeout = val;
114
115 return err;
116 }
117 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout,
118 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
119 sysctl_hw_snd_timeout, "I",
120 "interrupt timeout (1 - 10) seconds");
121
122 static int chn_vpc_autoreset = 1;
123 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN,
124 &chn_vpc_autoreset, 0, "automatically reset channels volume to 0db");
125
126 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM;
127
128 static void
chn_vpc_proc(int reset,int db)129 chn_vpc_proc(int reset, int db)
130 {
131 struct snddev_info *d;
132 struct pcm_channel *c;
133 int i;
134
135 bus_topo_lock();
136 for (i = 0; pcm_devclass != NULL &&
137 i < devclass_get_maxunit(pcm_devclass); i++) {
138 d = devclass_get_softc(pcm_devclass, i);
139 if (!PCM_REGISTERED(d))
140 continue;
141 PCM_LOCK(d);
142 PCM_WAIT(d);
143 PCM_ACQUIRE(d);
144 CHN_FOREACH(c, d, channels.pcm) {
145 CHN_LOCK(c);
146 CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db);
147 if (reset != 0)
148 chn_vpc_reset(c, SND_VOL_C_PCM, 1);
149 CHN_UNLOCK(c);
150 }
151 PCM_RELEASE(d);
152 PCM_UNLOCK(d);
153 }
154 bus_topo_unlock();
155 }
156
157 static int
sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)158 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)
159 {
160 int err, val;
161
162 val = chn_vol_0db_pcm;
163 err = sysctl_handle_int(oidp, &val, 0, req);
164 if (err != 0 || req->newptr == NULL)
165 return (err);
166 if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX)
167 return (EINVAL);
168
169 chn_vol_0db_pcm = val;
170 chn_vpc_proc(0, val);
171
172 return (0);
173 }
174 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db,
175 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
176 sysctl_hw_snd_vpc_0db, "I",
177 "0db relative level");
178
179 static int
sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)180 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)
181 {
182 int err, val;
183
184 val = 0;
185 err = sysctl_handle_int(oidp, &val, 0, req);
186 if (err != 0 || req->newptr == NULL || val == 0)
187 return (err);
188
189 chn_vol_0db_pcm = SND_VOL_0DB_PCM;
190 chn_vpc_proc(1, SND_VOL_0DB_PCM);
191
192 return (0);
193 }
194 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset,
195 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
196 sysctl_hw_snd_vpc_reset, "I",
197 "reset volume on all channels");
198
199 static int chn_usefrags = 0;
200 static int chn_syncdelay = -1;
201
202 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN,
203 &chn_usefrags, 0, "prefer setfragments() over setblocksize()");
204 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN,
205 &chn_syncdelay, 0,
206 "append (0-1000) millisecond trailing buffer delay on each sync");
207
208 /**
209 * @brief Channel sync group lock
210 *
211 * Clients should acquire this lock @b without holding any channel locks
212 * before touching syncgroups or the main syncgroup list.
213 */
214 struct mtx snd_pcm_syncgroups_mtx;
215 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF);
216 /**
217 * @brief syncgroups' master list
218 *
219 * Each time a channel syncgroup is created, it's added to this list. This
220 * list should only be accessed with @sa snd_pcm_syncgroups_mtx held.
221 *
222 * See SNDCTL_DSP_SYNCGROUP for more information.
223 */
224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups);
225
226 static void
chn_lockinit(struct pcm_channel * c,int dir)227 chn_lockinit(struct pcm_channel *c, int dir)
228 {
229 switch (dir) {
230 case PCMDIR_PLAY:
231 mtx_init(&c->lock, c->name, "pcm play channel", MTX_DEF);
232 cv_init(&c->intr_cv, "pcmwr");
233 break;
234 case PCMDIR_PLAY_VIRTUAL:
235 mtx_init(&c->lock, c->name, "pcm virtual play channel",
236 MTX_DEF);
237 cv_init(&c->intr_cv, "pcmwrv");
238 break;
239 case PCMDIR_REC:
240 mtx_init(&c->lock, c->name, "pcm record channel", MTX_DEF);
241 cv_init(&c->intr_cv, "pcmrd");
242 break;
243 case PCMDIR_REC_VIRTUAL:
244 mtx_init(&c->lock, c->name, "pcm virtual record channel",
245 MTX_DEF);
246 cv_init(&c->intr_cv, "pcmrdv");
247 break;
248 default:
249 panic("%s(): Invalid direction=%d", __func__, dir);
250 break;
251 }
252
253 cv_init(&c->cv, "pcmchn");
254 }
255
256 static void
chn_lockdestroy(struct pcm_channel * c)257 chn_lockdestroy(struct pcm_channel *c)
258 {
259 CHN_LOCKASSERT(c);
260
261 CHN_BROADCAST(&c->cv);
262 CHN_BROADCAST(&c->intr_cv);
263
264 cv_destroy(&c->cv);
265 cv_destroy(&c->intr_cv);
266
267 mtx_destroy(&c->lock);
268 }
269
270 /**
271 * @brief Determine channel is ready for I/O
272 *
273 * @retval 1 = ready for I/O
274 * @retval 0 = not ready for I/O
275 */
276 int
chn_polltrigger(struct pcm_channel * c)277 chn_polltrigger(struct pcm_channel *c)
278 {
279 struct snd_dbuf *bs = c->bufsoft;
280 u_int delta;
281
282 CHN_LOCKASSERT(c);
283
284 if (c->flags & CHN_F_MMAP) {
285 if (bs->prev_total < c->lw)
286 delta = c->lw;
287 else
288 delta = bs->total - bs->prev_total;
289 } else {
290 if (c->direction == PCMDIR_PLAY)
291 delta = sndbuf_getfree(bs);
292 else
293 delta = sndbuf_getready(bs);
294 }
295
296 return ((delta < c->lw) ? 0 : 1);
297 }
298
299 static void
chn_pollreset(struct pcm_channel * c)300 chn_pollreset(struct pcm_channel *c)
301 {
302
303 CHN_LOCKASSERT(c);
304 c->bufsoft->prev_total = c->bufsoft->total;
305 }
306
307 static void
chn_wakeup(struct pcm_channel * c)308 chn_wakeup(struct pcm_channel *c)
309 {
310 struct snd_dbuf *bs;
311 struct pcm_channel *ch;
312
313 CHN_LOCKASSERT(c);
314
315 bs = c->bufsoft;
316
317 if (CHN_EMPTY(c, children.busy)) {
318 KNOTE_LOCKED(&bs->sel.si_note, 0);
319 if (SEL_WAITING(&bs->sel) && chn_polltrigger(c))
320 selwakeuppri(&bs->sel, PRIBIO);
321 CHN_BROADCAST(&c->intr_cv);
322 } else {
323 CHN_FOREACH(ch, c, children.busy) {
324 CHN_LOCK(ch);
325 chn_wakeup(ch);
326 CHN_UNLOCK(ch);
327 }
328 }
329 }
330
331 static int
chn_sleep(struct pcm_channel * c,int timeout)332 chn_sleep(struct pcm_channel *c, int timeout)
333 {
334 int ret;
335
336 CHN_LOCKASSERT(c);
337
338 if (c->flags & CHN_F_DEAD)
339 return (EINVAL);
340
341 c->sleeping++;
342 ret = cv_timedwait_sig(&c->intr_cv, &c->lock, timeout);
343 c->sleeping--;
344
345 return ((c->flags & CHN_F_DEAD) ? EINVAL : ret);
346 }
347
348 /*
349 * chn_dmaupdate() tracks the status of a dma transfer,
350 * updating pointers.
351 */
352
353 static unsigned int
chn_dmaupdate(struct pcm_channel * c)354 chn_dmaupdate(struct pcm_channel *c)
355 {
356 struct snd_dbuf *b = c->bufhard;
357 unsigned int delta, old, hwptr, amt;
358
359 KASSERT(b->bufsize > 0, ("bufsize == 0"));
360 CHN_LOCKASSERT(c);
361
362 old = b->hp;
363 hwptr = chn_getptr(c);
364 delta = (b->bufsize + hwptr - old) % b->bufsize;
365 b->hp = hwptr;
366
367 if (c->direction == PCMDIR_PLAY) {
368 amt = min(delta, sndbuf_getready(b));
369 amt -= amt % b->align;
370 if (amt > 0)
371 sndbuf_dispose(b, NULL, amt);
372 } else {
373 amt = min(delta, sndbuf_getfree(b));
374 amt -= amt % b->align;
375 if (amt > 0)
376 sndbuf_acquire(b, NULL, amt);
377 }
378 if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) {
379 device_printf(c->dev, "WARNING: %s DMA completion "
380 "too fast/slow ! hwptr=%u, old=%u "
381 "delta=%u amt=%u ready=%u free=%u\n",
382 CHN_DIRSTR(c), hwptr, old, delta, amt,
383 sndbuf_getready(b), sndbuf_getfree(b));
384 }
385
386 return delta;
387 }
388
389 static void
chn_wrfeed(struct pcm_channel * c)390 chn_wrfeed(struct pcm_channel *c)
391 {
392 struct snd_dbuf *b = c->bufhard;
393 struct snd_dbuf *bs = c->bufsoft;
394 unsigned int amt, want, wasfree;
395
396 CHN_LOCKASSERT(c);
397
398 if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING))
399 sndbuf_acquire(bs, NULL, sndbuf_getfree(bs));
400
401 wasfree = sndbuf_getfree(b);
402 want = min(b->bufsize, imax(0, sndbuf_xbytes(bs->bufsize, bs, b) -
403 sndbuf_getready(b)));
404 amt = min(wasfree, want);
405 if (amt > 0)
406 sndbuf_feed(bs, b, c, c->feeder, amt);
407
408 /*
409 * Possible xruns. There should be no empty space left in buffer.
410 */
411 if (sndbuf_getready(b) < want)
412 c->xruns++;
413
414 if (sndbuf_getfree(b) < wasfree)
415 chn_wakeup(c);
416 }
417
418 static void
chn_wrintr(struct pcm_channel * c)419 chn_wrintr(struct pcm_channel *c)
420 {
421
422 CHN_LOCKASSERT(c);
423 /* update pointers in primary buffer */
424 chn_dmaupdate(c);
425 /* ...and feed from secondary to primary */
426 chn_wrfeed(c);
427 /* tell the driver we've updated the primary buffer */
428 chn_trigger(c, PCMTRIG_EMLDMAWR);
429 }
430
431 /*
432 * user write routine - uiomove data into secondary buffer, trigger if necessary
433 * if blocking, sleep, rinse and repeat.
434 *
435 * called externally, so must handle locking
436 */
437
438 int
chn_write(struct pcm_channel * c,struct uio * buf)439 chn_write(struct pcm_channel *c, struct uio *buf)
440 {
441 struct snd_dbuf *bs = c->bufsoft;
442 void *off;
443 int ret, timeout, sz, p;
444
445 CHN_LOCKASSERT(c);
446
447 ret = 0;
448 timeout = chn_timeout * hz;
449
450 while (ret == 0 && buf->uio_resid > 0) {
451 p = sndbuf_getfreeptr(bs);
452 sz = min(buf->uio_resid, sndbuf_getfree(bs));
453 sz = min(sz, bs->bufsize - p);
454 if (sz > 0) {
455 off = sndbuf_getbufofs(bs, p);
456 sndbuf_acquire(bs, NULL, sz);
457 CHN_UNLOCK(c);
458 ret = uiomove(off, sz, buf);
459 CHN_LOCK(c);
460 if (ret != 0)
461 break;
462 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
463 ret = chn_start(c, 0);
464 if (ret != 0)
465 c->flags |= CHN_F_DEAD;
466 }
467 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) {
468 /**
469 * @todo Evaluate whether EAGAIN is truly desirable.
470 * 4Front drivers behave like this, but I'm
471 * not sure if it at all violates the "write
472 * should be allowed to block" model.
473 *
474 * The idea is that, while set with CHN_F_NOTRIGGER,
475 * a channel isn't playing, *but* without this we
476 * end up with "interrupt timeout / channel dead".
477 */
478 ret = EAGAIN;
479 } else {
480 ret = chn_sleep(c, timeout);
481 if (ret == ERESTART || ret == EINTR)
482 c->flags |= CHN_F_ABORTING;
483 }
484 }
485
486 return (ret);
487 }
488
489 /*
490 * Feed new data from the read buffer. Can be called in the bottom half.
491 */
492 static void
chn_rdfeed(struct pcm_channel * c)493 chn_rdfeed(struct pcm_channel *c)
494 {
495 struct snd_dbuf *b = c->bufhard;
496 struct snd_dbuf *bs = c->bufsoft;
497 unsigned int amt;
498
499 CHN_LOCKASSERT(c);
500
501 if (c->flags & CHN_F_MMAP)
502 sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
503
504 amt = sndbuf_getfree(bs);
505 if (amt > 0)
506 sndbuf_feed(b, bs, c, c->feeder, amt);
507
508 amt = sndbuf_getready(b);
509 if (amt > 0) {
510 c->xruns++;
511 sndbuf_dispose(b, NULL, amt);
512 }
513
514 if (sndbuf_getready(bs) > 0)
515 chn_wakeup(c);
516 }
517
518 /* read interrupt routine. Must be called with interrupts blocked. */
519 static void
chn_rdintr(struct pcm_channel * c)520 chn_rdintr(struct pcm_channel *c)
521 {
522
523 CHN_LOCKASSERT(c);
524 /* tell the driver to update the primary buffer if non-dma */
525 chn_trigger(c, PCMTRIG_EMLDMARD);
526 /* update pointers in primary buffer */
527 chn_dmaupdate(c);
528 /* ...and feed from primary to secondary */
529 chn_rdfeed(c);
530 }
531
532 /*
533 * user read routine - trigger if necessary, uiomove data from secondary buffer
534 * if blocking, sleep, rinse and repeat.
535 *
536 * called externally, so must handle locking
537 */
538
539 int
chn_read(struct pcm_channel * c,struct uio * buf)540 chn_read(struct pcm_channel *c, struct uio *buf)
541 {
542 struct snd_dbuf *bs = c->bufsoft;
543 void *off;
544 int ret, timeout, sz, p;
545
546 CHN_LOCKASSERT(c);
547
548 if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
549 ret = chn_start(c, 0);
550 if (ret != 0) {
551 c->flags |= CHN_F_DEAD;
552 return (ret);
553 }
554 }
555
556 ret = 0;
557 timeout = chn_timeout * hz;
558
559 while (ret == 0 && buf->uio_resid > 0) {
560 p = sndbuf_getreadyptr(bs);
561 sz = min(buf->uio_resid, sndbuf_getready(bs));
562 sz = min(sz, bs->bufsize - p);
563 if (sz > 0) {
564 off = sndbuf_getbufofs(bs, p);
565 sndbuf_dispose(bs, NULL, sz);
566 CHN_UNLOCK(c);
567 ret = uiomove(off, sz, buf);
568 CHN_LOCK(c);
569 if (ret != 0)
570 break;
571 } else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER))
572 ret = EAGAIN;
573 else {
574 ret = chn_sleep(c, timeout);
575 if (ret == ERESTART || ret == EINTR)
576 c->flags |= CHN_F_ABORTING;
577 }
578 }
579
580 return (ret);
581 }
582
583 void
chn_intr(struct pcm_channel * c)584 chn_intr(struct pcm_channel *c)
585 {
586 CHN_LOCK(c);
587 c->interrupts++;
588 if (c->direction == PCMDIR_PLAY)
589 chn_wrintr(c);
590 else
591 chn_rdintr(c);
592 CHN_UNLOCK(c);
593 }
594
595 u_int32_t
chn_start(struct pcm_channel * c,int force)596 chn_start(struct pcm_channel *c, int force)
597 {
598 u_int32_t i, j;
599 struct snd_dbuf *b = c->bufhard;
600 struct snd_dbuf *bs = c->bufsoft;
601 int err;
602
603 CHN_LOCKASSERT(c);
604 /* if we're running, or if we're prevented from triggering, bail */
605 if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force))
606 return (EINVAL);
607
608 err = 0;
609
610 if (force) {
611 i = 1;
612 j = 0;
613 } else {
614 if (c->direction == PCMDIR_REC) {
615 i = sndbuf_getfree(bs);
616 j = (i > 0) ? 1 : sndbuf_getready(b);
617 } else {
618 if (sndbuf_getfree(bs) == 0) {
619 i = 1;
620 j = 0;
621 } else {
622 struct snd_dbuf *pb;
623
624 pb = CHN_BUF_PARENT(c, b);
625 i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb);
626 j = pb->align;
627 }
628 }
629 if (snd_verbose > 3 && CHN_EMPTY(c, children))
630 device_printf(c->dev, "%s(): %s (%s) threshold "
631 "i=%d j=%d\n", __func__, CHN_DIRSTR(c),
632 (c->flags & CHN_F_VIRTUAL) ? "virtual" :
633 "hardware", i, j);
634 }
635
636 if (i >= j) {
637 c->flags |= CHN_F_TRIGGERED;
638 sndbuf_setrun(b, 1);
639 if (c->flags & CHN_F_CLOSING)
640 c->feedcount = 2;
641 else {
642 c->feedcount = 0;
643 c->interrupts = 0;
644 c->xruns = 0;
645 }
646 if (c->parentchannel == NULL) {
647 if (c->direction == PCMDIR_PLAY)
648 sndbuf_fillsilence_rl(b,
649 sndbuf_xbytes(bs->bufsize, bs, b));
650 if (snd_verbose > 3)
651 device_printf(c->dev,
652 "%s(): %s starting! (%s/%s) "
653 "(ready=%d force=%d i=%d j=%d "
654 "intrtimeout=%u latency=%dms)\n",
655 __func__,
656 (c->flags & CHN_F_HAS_VCHAN) ?
657 "VCHAN PARENT" : "HW", CHN_DIRSTR(c),
658 (c->flags & CHN_F_CLOSING) ? "closing" :
659 "running",
660 sndbuf_getready(b),
661 force, i, j, c->timeout,
662 (b->bufsize * 1000) /
663 (b->align * b->spd));
664 }
665 err = chn_trigger(c, PCMTRIG_START);
666 }
667
668 return (err);
669 }
670
671 void
chn_resetbuf(struct pcm_channel * c)672 chn_resetbuf(struct pcm_channel *c)
673 {
674 struct snd_dbuf *b = c->bufhard;
675 struct snd_dbuf *bs = c->bufsoft;
676
677 c->blocks = 0;
678 sndbuf_reset(b);
679 sndbuf_reset(bs);
680 }
681
682 /*
683 * chn_sync waits until the space in the given channel goes above
684 * a threshold. The threshold is checked against fl or rl respectively.
685 * Assume that the condition can become true, do not check here...
686 */
687 int
chn_sync(struct pcm_channel * c,int threshold)688 chn_sync(struct pcm_channel *c, int threshold)
689 {
690 struct snd_dbuf *b, *bs;
691 int ret, count, hcount, minflush, resid, residp, syncdelay, blksz;
692 u_int32_t cflag;
693
694 CHN_LOCKASSERT(c);
695
696 if (c->direction != PCMDIR_PLAY)
697 return (EINVAL);
698
699 bs = c->bufsoft;
700
701 if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) ||
702 (threshold < 1 && sndbuf_getready(bs) < 1))
703 return (0);
704
705 /* if we haven't yet started and nothing is buffered, else start*/
706 if (CHN_STOPPED(c)) {
707 if (threshold > 0 || sndbuf_getready(bs) > 0) {
708 ret = chn_start(c, 1);
709 if (ret != 0)
710 return (ret);
711 } else
712 return (0);
713 }
714
715 b = CHN_BUF_PARENT(c, c->bufhard);
716
717 minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs);
718
719 syncdelay = chn_syncdelay;
720
721 if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0))
722 minflush += sndbuf_xbytes(b->bufsize, b, bs);
723
724 /*
725 * Append (0-1000) millisecond trailing buffer (if needed)
726 * for slower / high latency hardwares (notably USB audio)
727 * to avoid audible truncation.
728 */
729 if (syncdelay > 0)
730 minflush += (bs->align * bs->spd *
731 ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000;
732
733 minflush -= minflush % bs->align;
734
735 if (minflush > 0) {
736 threshold = min(minflush, sndbuf_getfree(bs));
737 sndbuf_clear(bs, threshold);
738 sndbuf_acquire(bs, NULL, threshold);
739 minflush -= threshold;
740 }
741
742 resid = sndbuf_getready(bs);
743 residp = resid;
744 blksz = b->blksz;
745 if (blksz < 1) {
746 device_printf(c->dev,
747 "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n",
748 __func__, b->maxsize, b->bufsize,
749 b->blksz, b->blkcnt);
750 if (b->blkcnt > 0)
751 blksz = b->bufsize / b->blkcnt;
752 if (blksz < 1)
753 blksz = 1;
754 }
755 count = sndbuf_xbytes(minflush + resid, bs, b) / blksz;
756 hcount = count;
757 ret = 0;
758
759 if (snd_verbose > 3)
760 device_printf(c->dev, "%s(): [begin] timeout=%d count=%d "
761 "minflush=%d resid=%d\n", __func__, c->timeout, count,
762 minflush, resid);
763
764 cflag = c->flags & CHN_F_CLOSING;
765 c->flags |= CHN_F_CLOSING;
766 while (count > 0 && (resid > 0 || minflush > 0)) {
767 ret = chn_sleep(c, c->timeout);
768 if (ret == ERESTART || ret == EINTR) {
769 c->flags |= CHN_F_ABORTING;
770 break;
771 } else if (ret == 0 || ret == EAGAIN) {
772 resid = sndbuf_getready(bs);
773 if (resid == residp) {
774 --count;
775 if (snd_verbose > 3)
776 device_printf(c->dev,
777 "%s(): [stalled] timeout=%d "
778 "count=%d hcount=%d "
779 "resid=%d minflush=%d\n",
780 __func__, c->timeout, count,
781 hcount, resid, minflush);
782 } else if (resid < residp && count < hcount) {
783 ++count;
784 if (snd_verbose > 3)
785 device_printf(c->dev,
786 "%s((): [resume] timeout=%d "
787 "count=%d hcount=%d "
788 "resid=%d minflush=%d\n",
789 __func__, c->timeout, count,
790 hcount, resid, minflush);
791 }
792 if (minflush > 0 && sndbuf_getfree(bs) > 0) {
793 threshold = min(minflush,
794 sndbuf_getfree(bs));
795 sndbuf_clear(bs, threshold);
796 sndbuf_acquire(bs, NULL, threshold);
797 resid = sndbuf_getready(bs);
798 minflush -= threshold;
799 }
800 residp = resid;
801 } else
802 break;
803 }
804 c->flags &= ~CHN_F_CLOSING;
805 c->flags |= cflag;
806
807 if (snd_verbose > 3)
808 device_printf(c->dev,
809 "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d "
810 "minflush=%d ret=%d\n",
811 __func__, c->timeout, count, hcount, resid, residp,
812 minflush, ret);
813
814 return (0);
815 }
816
817 /* called externally, handle locking */
818 int
chn_poll(struct pcm_channel * c,int ev,struct thread * td)819 chn_poll(struct pcm_channel *c, int ev, struct thread *td)
820 {
821 struct snd_dbuf *bs = c->bufsoft;
822 int ret;
823
824 CHN_LOCKASSERT(c);
825
826 if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) {
827 ret = chn_start(c, 1);
828 if (ret != 0)
829 return (0);
830 }
831
832 ret = 0;
833 if (chn_polltrigger(c)) {
834 chn_pollreset(c);
835 ret = ev;
836 } else
837 selrecord(td, &bs->sel);
838
839 return (ret);
840 }
841
842 /*
843 * chn_abort terminates a running dma transfer. it may sleep up to 200ms.
844 * it returns the number of bytes that have not been transferred.
845 *
846 * called from: dsp_close, dsp_ioctl, with channel locked
847 */
848 int
chn_abort(struct pcm_channel * c)849 chn_abort(struct pcm_channel *c)
850 {
851 int missing = 0;
852 struct snd_dbuf *b = c->bufhard;
853 struct snd_dbuf *bs = c->bufsoft;
854
855 CHN_LOCKASSERT(c);
856 if (CHN_STOPPED(c))
857 return 0;
858 c->flags |= CHN_F_ABORTING;
859
860 c->flags &= ~CHN_F_TRIGGERED;
861 /* kill the channel */
862 chn_trigger(c, PCMTRIG_ABORT);
863 sndbuf_setrun(b, 0);
864 if (!(c->flags & CHN_F_VIRTUAL))
865 chn_dmaupdate(c);
866 missing = sndbuf_getready(bs);
867
868 c->flags &= ~CHN_F_ABORTING;
869 return missing;
870 }
871
872 /*
873 * this routine tries to flush the dma transfer. It is called
874 * on a close of a playback channel.
875 * first, if there is data in the buffer, but the dma has not yet
876 * begun, we need to start it.
877 * next, we wait for the play buffer to drain
878 * finally, we stop the dma.
879 *
880 * called from: dsp_close, not valid for record channels.
881 */
882
883 int
chn_flush(struct pcm_channel * c)884 chn_flush(struct pcm_channel *c)
885 {
886 struct snd_dbuf *b = c->bufhard;
887
888 CHN_LOCKASSERT(c);
889 KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel"));
890 DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags));
891
892 c->flags |= CHN_F_CLOSING;
893 chn_sync(c, 0);
894 c->flags &= ~CHN_F_TRIGGERED;
895 /* kill the channel */
896 chn_trigger(c, PCMTRIG_ABORT);
897 sndbuf_setrun(b, 0);
898
899 c->flags &= ~CHN_F_CLOSING;
900 return 0;
901 }
902
903 int
snd_fmtvalid(uint32_t fmt,uint32_t * fmtlist)904 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist)
905 {
906 int i;
907
908 for (i = 0; fmtlist[i] != 0; i++) {
909 if (fmt == fmtlist[i] ||
910 ((fmt & AFMT_PASSTHROUGH) &&
911 (AFMT_ENCODING(fmt) & fmtlist[i])))
912 return (1);
913 }
914
915 return (0);
916 }
917
918 static const struct {
919 char *name, *alias1, *alias2;
920 uint32_t afmt;
921 } afmt_tab[] = {
922 { "alaw", NULL, NULL, AFMT_A_LAW },
923 { "mulaw", NULL, NULL, AFMT_MU_LAW },
924 { "u8", "8", NULL, AFMT_U8 },
925 { "s8", NULL, NULL, AFMT_S8 },
926 { "ac3", NULL, NULL, AFMT_AC3 },
927 #if BYTE_ORDER == LITTLE_ENDIAN
928 { "s16le", "s16", "16", AFMT_S16_LE },
929 { "s16be", NULL, NULL, AFMT_S16_BE },
930 { "s24le", "s24", "24", AFMT_S24_LE },
931 { "s24be", NULL, NULL, AFMT_S24_BE },
932 { "s32le", "s32", "32", AFMT_S32_LE },
933 { "s32be", NULL, NULL, AFMT_S32_BE },
934 { "f32le", "f32", NULL, AFMT_F32_LE },
935 { "f32be", NULL, NULL, AFMT_F32_BE },
936 { "u16le", "u16", NULL, AFMT_U16_LE },
937 { "u16be", NULL, NULL, AFMT_U16_BE },
938 { "u24le", "u24", NULL, AFMT_U24_LE },
939 { "u24be", NULL, NULL, AFMT_U24_BE },
940 { "u32le", "u32", NULL, AFMT_U32_LE },
941 { "u32be", NULL, NULL, AFMT_U32_BE },
942 #else
943 { "s16le", NULL, NULL, AFMT_S16_LE },
944 { "s16be", "s16", "16", AFMT_S16_BE },
945 { "s24le", NULL, NULL, AFMT_S24_LE },
946 { "s24be", "s24", "24", AFMT_S24_BE },
947 { "s32le", NULL, NULL, AFMT_S32_LE },
948 { "s32be", "s32", "32", AFMT_S32_BE },
949 { "f32le", NULL, NULL, AFMT_F32_LE },
950 { "f32be", "f32", NULL, AFMT_F32_BE },
951 { "u16le", NULL, NULL, AFMT_U16_LE },
952 { "u16be", "u16", NULL, AFMT_U16_BE },
953 { "u24le", NULL, NULL, AFMT_U24_LE },
954 { "u24be", "u24", NULL, AFMT_U24_BE },
955 { "u32le", NULL, NULL, AFMT_U32_LE },
956 { "u32be", "u32", NULL, AFMT_U32_BE },
957 #endif
958 { NULL, NULL, NULL, 0 }
959 };
960
961 uint32_t
snd_str2afmt(const char * req)962 snd_str2afmt(const char *req)
963 {
964 int ext;
965 int ch;
966 int i;
967 char b1[8];
968 char b2[8];
969
970 memset(b1, 0, sizeof(b1));
971 memset(b2, 0, sizeof(b2));
972
973 i = sscanf(req, "%5[^:]:%6s", b1, b2);
974
975 if (i == 1) {
976 if (strlen(req) != strlen(b1))
977 return (0);
978 strlcpy(b2, "2.0", sizeof(b2));
979 } else if (i == 2) {
980 if (strlen(req) != (strlen(b1) + 1 + strlen(b2)))
981 return (0);
982 } else
983 return (0);
984
985 i = sscanf(b2, "%d.%d", &ch, &ext);
986
987 if (i == 0) {
988 if (strcasecmp(b2, "mono") == 0) {
989 ch = 1;
990 ext = 0;
991 } else if (strcasecmp(b2, "stereo") == 0) {
992 ch = 2;
993 ext = 0;
994 } else if (strcasecmp(b2, "quad") == 0) {
995 ch = 4;
996 ext = 0;
997 } else
998 return (0);
999 } else if (i == 1) {
1000 if (ch < 1 || ch > AFMT_CHANNEL_MAX)
1001 return (0);
1002 ext = 0;
1003 } else if (i == 2) {
1004 if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX)
1005 return (0);
1006 if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX)
1007 return (0);
1008 } else
1009 return (0);
1010
1011 for (i = 0; afmt_tab[i].name != NULL; i++) {
1012 if (strcasecmp(afmt_tab[i].name, b1) != 0) {
1013 if (afmt_tab[i].alias1 == NULL)
1014 continue;
1015 if (strcasecmp(afmt_tab[i].alias1, b1) != 0) {
1016 if (afmt_tab[i].alias2 == NULL)
1017 continue;
1018 if (strcasecmp(afmt_tab[i].alias2, b1) != 0)
1019 continue;
1020 }
1021 }
1022 /* found a match */
1023 return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext));
1024 }
1025 /* not a valid format */
1026 return (0);
1027 }
1028
1029 uint32_t
snd_afmt2str(uint32_t afmt,char * buf,size_t len)1030 snd_afmt2str(uint32_t afmt, char *buf, size_t len)
1031 {
1032 uint32_t enc;
1033 uint32_t ext;
1034 uint32_t ch;
1035 int i;
1036
1037 if (buf == NULL || len < AFMTSTR_LEN)
1038 return (0);
1039
1040 memset(buf, 0, len);
1041
1042 enc = AFMT_ENCODING(afmt);
1043 ch = AFMT_CHANNEL(afmt);
1044 ext = AFMT_EXTCHANNEL(afmt);
1045 /* check there is at least one channel */
1046 if (ch <= ext)
1047 return (0);
1048 for (i = 0; afmt_tab[i].name != NULL; i++) {
1049 if (enc != afmt_tab[i].afmt)
1050 continue;
1051 /* found a match */
1052 snprintf(buf, len, "%s:%d.%d",
1053 afmt_tab[i].name, ch - ext, ext);
1054 return (SND_FORMAT(enc, ch, ext));
1055 }
1056 return (0);
1057 }
1058
1059 int
chn_reset(struct pcm_channel * c,uint32_t fmt,uint32_t spd)1060 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd)
1061 {
1062 int r;
1063
1064 CHN_LOCKASSERT(c);
1065 c->feedcount = 0;
1066 c->flags &= CHN_F_RESET;
1067 c->interrupts = 0;
1068 c->timeout = 1;
1069 c->xruns = 0;
1070
1071 c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ?
1072 CHN_F_BITPERFECT : 0;
1073
1074 r = CHANNEL_RESET(c->methods, c->devinfo);
1075 if (r == 0 && fmt != 0 && spd != 0) {
1076 r = chn_setparam(c, fmt, spd);
1077 fmt = 0;
1078 spd = 0;
1079 }
1080 if (r == 0 && fmt != 0)
1081 r = chn_setformat(c, fmt);
1082 if (r == 0 && spd != 0)
1083 r = chn_setspeed(c, spd);
1084 if (r == 0)
1085 r = chn_setlatency(c, chn_latency);
1086 if (r == 0) {
1087 chn_resetbuf(c);
1088 r = CHANNEL_RESETDONE(c->methods, c->devinfo);
1089 }
1090 return r;
1091 }
1092
1093 static struct unrhdr *
chn_getunr(struct snddev_info * d,int type)1094 chn_getunr(struct snddev_info *d, int type)
1095 {
1096 switch (type) {
1097 case PCMDIR_PLAY:
1098 return (d->p_unr);
1099 case PCMDIR_PLAY_VIRTUAL:
1100 return (d->vp_unr);
1101 case PCMDIR_REC:
1102 return (d->r_unr);
1103 case PCMDIR_REC_VIRTUAL:
1104 return (d->vr_unr);
1105 default:
1106 __assert_unreachable();
1107 }
1108
1109 }
1110
1111 char *
chn_mkname(char * buf,size_t len,struct pcm_channel * c)1112 chn_mkname(char *buf, size_t len, struct pcm_channel *c)
1113 {
1114 const char *str;
1115
1116 KASSERT(buf != NULL && len != 0,
1117 ("%s(): bogus buf=%p len=%zu", __func__, buf, len));
1118
1119 switch (c->type) {
1120 case PCMDIR_PLAY:
1121 str = "play";
1122 break;
1123 case PCMDIR_PLAY_VIRTUAL:
1124 str = "virtual_play";
1125 break;
1126 case PCMDIR_REC:
1127 str = "record";
1128 break;
1129 case PCMDIR_REC_VIRTUAL:
1130 str = "virtual_record";
1131 break;
1132 default:
1133 __assert_unreachable();
1134 }
1135
1136 snprintf(buf, len, "dsp%d.%s.%d",
1137 device_get_unit(c->dev), str, c->unit);
1138
1139 return (buf);
1140 }
1141
1142 struct pcm_channel *
chn_init(struct snddev_info * d,struct pcm_channel * parent,kobj_class_t cls,int dir,void * devinfo)1143 chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls,
1144 int dir, void *devinfo)
1145 {
1146 struct pcm_channel *c;
1147 struct feeder_class *fc;
1148 struct snd_dbuf *b, *bs;
1149 char buf[CHN_NAMELEN];
1150 int err, i, direction, *vchanrate, *vchanformat;
1151
1152 PCM_BUSYASSERT(d);
1153 PCM_LOCKASSERT(d);
1154
1155 switch (dir) {
1156 case PCMDIR_PLAY:
1157 d->playcount++;
1158 /* FALLTHROUGH */
1159 case PCMDIR_PLAY_VIRTUAL:
1160 if (dir == PCMDIR_PLAY_VIRTUAL)
1161 d->pvchancount++;
1162 direction = PCMDIR_PLAY;
1163 vchanrate = &d->pvchanrate;
1164 vchanformat = &d->pvchanformat;
1165 break;
1166 case PCMDIR_REC:
1167 d->reccount++;
1168 /* FALLTHROUGH */
1169 case PCMDIR_REC_VIRTUAL:
1170 if (dir == PCMDIR_REC_VIRTUAL)
1171 d->rvchancount++;
1172 direction = PCMDIR_REC;
1173 vchanrate = &d->rvchanrate;
1174 vchanformat = &d->rvchanformat;
1175 break;
1176 default:
1177 device_printf(d->dev,
1178 "%s(): invalid channel direction: %d\n",
1179 __func__, dir);
1180 return (NULL);
1181 }
1182
1183 PCM_UNLOCK(d);
1184 b = NULL;
1185 bs = NULL;
1186
1187 c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO);
1188 c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO);
1189 chn_lockinit(c, dir);
1190 CHN_INIT(c, children);
1191 CHN_INIT(c, children.busy);
1192 c->direction = direction;
1193 c->type = dir;
1194 c->unit = alloc_unr(chn_getunr(d, c->type));
1195 c->format = SND_FORMAT(AFMT_S16_LE, 2, 0);
1196 c->speed = 48000;
1197 c->pid = -1;
1198 c->latency = -1;
1199 c->timeout = 1;
1200 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1201 c->parentsnddev = d;
1202 c->parentchannel = parent;
1203 c->dev = d->dev;
1204 c->trigger = PCMTRIG_STOP;
1205 strlcpy(c->name, chn_mkname(buf, sizeof(buf), c), sizeof(c->name));
1206
1207 c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0);
1208 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1209
1210 for (i = 0; i < SND_CHN_T_MAX; i++)
1211 c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER;
1212
1213 c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER;
1214 c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm;
1215
1216 CHN_LOCK(c);
1217 chn_vpc_reset(c, SND_VOL_C_PCM, 1);
1218 CHN_UNLOCK(c);
1219
1220 fc = feeder_getclass(FEEDER_ROOT);
1221 if (fc == NULL) {
1222 device_printf(d->dev, "%s(): failed to get feeder class\n",
1223 __func__);
1224 goto fail;
1225 }
1226 if (feeder_add(c, fc, NULL)) {
1227 device_printf(d->dev, "%s(): failed to add feeder\n", __func__);
1228 goto fail;
1229 }
1230
1231 b = sndbuf_create(c, "primary");
1232 bs = sndbuf_create(c, "secondary");
1233 if (b == NULL || bs == NULL) {
1234 device_printf(d->dev, "%s(): failed to create %s buffer\n",
1235 __func__, b == NULL ? "hardware" : "software");
1236 goto fail;
1237 }
1238 c->bufhard = b;
1239 c->bufsoft = bs;
1240 knlist_init_mtx(&bs->sel.si_note, &c->lock);
1241
1242 c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction);
1243 if (c->devinfo == NULL) {
1244 device_printf(d->dev, "%s(): CHANNEL_INIT() failed\n", __func__);
1245 goto fail;
1246 }
1247
1248 if (b->bufsize == 0 && ((c->flags & CHN_F_VIRTUAL) == 0)) {
1249 device_printf(d->dev, "%s(): hardware buffer's size is 0\n",
1250 __func__);
1251 goto fail;
1252 }
1253
1254 sndbuf_setfmt(b, c->format);
1255 sndbuf_setspd(b, c->speed);
1256 sndbuf_setfmt(bs, c->format);
1257 sndbuf_setspd(bs, c->speed);
1258 sndbuf_setup(bs, NULL, 0);
1259
1260 /**
1261 * @todo Should this be moved somewhere else? The primary buffer
1262 * is allocated by the driver or via DMA map setup, and tmpbuf
1263 * seems to only come into existence in sndbuf_resize().
1264 */
1265 if (c->direction == PCMDIR_PLAY) {
1266 bs->sl = bs->maxsize;
1267 bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_WAITOK);
1268 }
1269
1270 if ((c->flags & CHN_F_VIRTUAL) == 0) {
1271 CHN_LOCK(c);
1272 err = chn_reset(c, c->format, c->speed);
1273 CHN_UNLOCK(c);
1274 if (err != 0)
1275 goto fail;
1276 }
1277
1278 PCM_LOCK(d);
1279 CHN_INSERT_SORT_ASCEND(d, c, channels.pcm);
1280 if ((c->flags & CHN_F_VIRTUAL) == 0) {
1281 CHN_INSERT_SORT_ASCEND(d, c, channels.pcm.primary);
1282 /* Initialize the *vchanrate/vchanformat parameters. */
1283 *vchanrate = c->bufsoft->spd;
1284 *vchanformat = c->bufsoft->fmt;
1285 }
1286
1287 return (c);
1288
1289 fail:
1290 chn_kill(c);
1291 PCM_LOCK(d);
1292
1293 return (NULL);
1294 }
1295
1296 void
chn_kill(struct pcm_channel * c)1297 chn_kill(struct pcm_channel *c)
1298 {
1299 struct snddev_info *d = c->parentsnddev;
1300 struct snd_dbuf *b = c->bufhard;
1301 struct snd_dbuf *bs = c->bufsoft;
1302
1303 PCM_BUSYASSERT(c->parentsnddev);
1304
1305 PCM_LOCK(d);
1306 CHN_REMOVE(d, c, channels.pcm);
1307 if ((c->flags & CHN_F_VIRTUAL) == 0)
1308 CHN_REMOVE(d, c, channels.pcm.primary);
1309
1310 switch (c->type) {
1311 case PCMDIR_PLAY:
1312 d->playcount--;
1313 break;
1314 case PCMDIR_PLAY_VIRTUAL:
1315 d->pvchancount--;
1316 break;
1317 case PCMDIR_REC:
1318 d->reccount--;
1319 break;
1320 case PCMDIR_REC_VIRTUAL:
1321 d->rvchancount--;
1322 break;
1323 default:
1324 __assert_unreachable();
1325 }
1326 PCM_UNLOCK(d);
1327
1328 if (CHN_STARTED(c)) {
1329 CHN_LOCK(c);
1330 chn_trigger(c, PCMTRIG_ABORT);
1331 CHN_UNLOCK(c);
1332 }
1333 free_unr(chn_getunr(d, c->type), c->unit);
1334 feeder_remove(c);
1335 if (c->devinfo)
1336 CHANNEL_FREE(c->methods, c->devinfo);
1337 if (bs) {
1338 knlist_clear(&bs->sel.si_note, 0);
1339 knlist_destroy(&bs->sel.si_note);
1340 sndbuf_destroy(bs);
1341 }
1342 if (b)
1343 sndbuf_destroy(b);
1344 CHN_LOCK(c);
1345 c->flags |= CHN_F_DEAD;
1346 chn_lockdestroy(c);
1347 kobj_delete(c->methods, M_DEVBUF);
1348 free(c, M_DEVBUF);
1349 }
1350
1351 void
chn_shutdown(struct pcm_channel * c)1352 chn_shutdown(struct pcm_channel *c)
1353 {
1354 CHN_LOCKASSERT(c);
1355
1356 chn_wakeup(c);
1357 c->flags |= CHN_F_DEAD;
1358 }
1359
1360 /* release a locked channel and unlock it */
1361 int
chn_release(struct pcm_channel * c)1362 chn_release(struct pcm_channel *c)
1363 {
1364 PCM_BUSYASSERT(c->parentsnddev);
1365 CHN_LOCKASSERT(c);
1366
1367 c->flags &= ~CHN_F_BUSY;
1368 c->pid = -1;
1369 strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1370 CHN_UNLOCK(c);
1371
1372 return (0);
1373 }
1374
1375 int
chn_setvolume_multi(struct pcm_channel * c,int vc,int left,int right,int center)1376 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right,
1377 int center)
1378 {
1379 int i, ret;
1380
1381 ret = 0;
1382
1383 for (i = 0; i < SND_CHN_T_MAX; i++) {
1384 if ((1 << i) & SND_CHN_LEFT_MASK)
1385 ret |= chn_setvolume_matrix(c, vc, i, left);
1386 else if ((1 << i) & SND_CHN_RIGHT_MASK)
1387 ret |= chn_setvolume_matrix(c, vc, i, right) << 8;
1388 else
1389 ret |= chn_setvolume_matrix(c, vc, i, center) << 16;
1390 }
1391
1392 return (ret);
1393 }
1394
1395 int
chn_setvolume_matrix(struct pcm_channel * c,int vc,int vt,int val)1396 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val)
1397 {
1398 int i;
1399
1400 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1401 (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1402 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN &&
1403 vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB ||
1404 (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)),
1405 ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d",
1406 __func__, c, vc, vt, val));
1407 CHN_LOCKASSERT(c);
1408
1409 if (val < 0)
1410 val = 0;
1411 if (val > 100)
1412 val = 100;
1413
1414 c->volume[vc][vt] = val;
1415
1416 /*
1417 * Do relative calculation here and store it into class + 1
1418 * to ease the job of feeder_volume.
1419 */
1420 if (vc == SND_VOL_C_MASTER) {
1421 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1422 vc += SND_VOL_C_STEP)
1423 c->volume[SND_VOL_C_VAL(vc)][vt] =
1424 SND_VOL_CALC_VAL(c->volume, vc, vt);
1425 } else if (vc & 1) {
1426 if (vt == SND_CHN_T_VOL_0DB)
1427 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1428 i += SND_CHN_T_STEP) {
1429 c->volume[SND_VOL_C_VAL(vc)][i] =
1430 SND_VOL_CALC_VAL(c->volume, vc, i);
1431 }
1432 else
1433 c->volume[SND_VOL_C_VAL(vc)][vt] =
1434 SND_VOL_CALC_VAL(c->volume, vc, vt);
1435 }
1436
1437 return (val);
1438 }
1439
1440 int
chn_getvolume_matrix(struct pcm_channel * c,int vc,int vt)1441 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt)
1442 {
1443 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1444 (vt == SND_CHN_T_VOL_0DB ||
1445 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1446 ("%s(): invalid volume matrix c=%p vc=%d vt=%d",
1447 __func__, c, vc, vt));
1448 CHN_LOCKASSERT(c);
1449
1450 return (c->volume[vc][vt]);
1451 }
1452
1453 int
chn_setmute_multi(struct pcm_channel * c,int vc,int mute)1454 chn_setmute_multi(struct pcm_channel *c, int vc, int mute)
1455 {
1456 int i, ret;
1457
1458 ret = 0;
1459
1460 for (i = 0; i < SND_CHN_T_MAX; i++) {
1461 if ((1 << i) & SND_CHN_LEFT_MASK)
1462 ret |= chn_setmute_matrix(c, vc, i, mute);
1463 else if ((1 << i) & SND_CHN_RIGHT_MASK)
1464 ret |= chn_setmute_matrix(c, vc, i, mute) << 8;
1465 else
1466 ret |= chn_setmute_matrix(c, vc, i, mute) << 16;
1467 }
1468 return (ret);
1469 }
1470
1471 int
chn_setmute_matrix(struct pcm_channel * c,int vc,int vt,int mute)1472 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute)
1473 {
1474 int i;
1475
1476 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1477 (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1478 (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1479 ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d",
1480 __func__, c, vc, vt, mute));
1481
1482 CHN_LOCKASSERT(c);
1483
1484 mute = (mute != 0);
1485
1486 c->muted[vc][vt] = mute;
1487
1488 /*
1489 * Do relative calculation here and store it into class + 1
1490 * to ease the job of feeder_volume.
1491 */
1492 if (vc == SND_VOL_C_MASTER) {
1493 for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1494 vc += SND_VOL_C_STEP)
1495 c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1496 } else if (vc & 1) {
1497 if (vt == SND_CHN_T_VOL_0DB) {
1498 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1499 i += SND_CHN_T_STEP) {
1500 c->muted[SND_VOL_C_VAL(vc)][i] = mute;
1501 }
1502 } else {
1503 c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1504 }
1505 }
1506 return (mute);
1507 }
1508
1509 int
chn_getmute_matrix(struct pcm_channel * c,int vc,int vt)1510 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt)
1511 {
1512 KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1513 (vt == SND_CHN_T_VOL_0DB ||
1514 (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1515 ("%s(): invalid mute matrix c=%p vc=%d vt=%d",
1516 __func__, c, vc, vt));
1517 CHN_LOCKASSERT(c);
1518
1519 return (c->muted[vc][vt]);
1520 }
1521
1522 struct pcmchan_matrix *
chn_getmatrix(struct pcm_channel * c)1523 chn_getmatrix(struct pcm_channel *c)
1524 {
1525
1526 KASSERT(c != NULL, ("%s(): NULL channel", __func__));
1527 CHN_LOCKASSERT(c);
1528
1529 if (!(c->format & AFMT_CONVERTIBLE))
1530 return (NULL);
1531
1532 return (&c->matrix);
1533 }
1534
1535 int
chn_setmatrix(struct pcm_channel * c,struct pcmchan_matrix * m)1536 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m)
1537 {
1538
1539 KASSERT(c != NULL && m != NULL,
1540 ("%s(): NULL channel or matrix", __func__));
1541 CHN_LOCKASSERT(c);
1542
1543 if (!(c->format & AFMT_CONVERTIBLE))
1544 return (EINVAL);
1545
1546 c->matrix = *m;
1547 c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1548
1549 return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext)));
1550 }
1551
1552 /*
1553 * XXX chn_oss_* exists for the sake of compatibility.
1554 */
1555 int
chn_oss_getorder(struct pcm_channel * c,unsigned long long * map)1556 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map)
1557 {
1558
1559 KASSERT(c != NULL && map != NULL,
1560 ("%s(): NULL channel or map", __func__));
1561 CHN_LOCKASSERT(c);
1562
1563 if (!(c->format & AFMT_CONVERTIBLE))
1564 return (EINVAL);
1565
1566 return (feeder_matrix_oss_get_channel_order(&c->matrix, map));
1567 }
1568
1569 int
chn_oss_setorder(struct pcm_channel * c,unsigned long long * map)1570 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map)
1571 {
1572 struct pcmchan_matrix m;
1573 int ret;
1574
1575 KASSERT(c != NULL && map != NULL,
1576 ("%s(): NULL channel or map", __func__));
1577 CHN_LOCKASSERT(c);
1578
1579 if (!(c->format & AFMT_CONVERTIBLE))
1580 return (EINVAL);
1581
1582 m = c->matrix;
1583 ret = feeder_matrix_oss_set_channel_order(&m, map);
1584 if (ret != 0)
1585 return (ret);
1586
1587 return (chn_setmatrix(c, &m));
1588 }
1589
1590 #define SND_CHN_OSS_FRONT (SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR)
1591 #define SND_CHN_OSS_SURR (SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR)
1592 #define SND_CHN_OSS_CENTER_LFE (SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF)
1593 #define SND_CHN_OSS_REAR (SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR)
1594
1595 int
chn_oss_getmask(struct pcm_channel * c,uint32_t * retmask)1596 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask)
1597 {
1598 struct pcmchan_matrix *m;
1599 struct pcmchan_caps *caps;
1600 uint32_t i, format;
1601
1602 KASSERT(c != NULL && retmask != NULL,
1603 ("%s(): NULL channel or retmask", __func__));
1604 CHN_LOCKASSERT(c);
1605
1606 caps = chn_getcaps(c);
1607 if (caps == NULL || caps->fmtlist == NULL)
1608 return (ENODEV);
1609
1610 for (i = 0; caps->fmtlist[i] != 0; i++) {
1611 format = caps->fmtlist[i];
1612 if (!(format & AFMT_CONVERTIBLE)) {
1613 *retmask |= DSP_BIND_SPDIF;
1614 continue;
1615 }
1616 m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format);
1617 if (m == NULL)
1618 continue;
1619 if (m->mask & SND_CHN_OSS_FRONT)
1620 *retmask |= DSP_BIND_FRONT;
1621 if (m->mask & SND_CHN_OSS_SURR)
1622 *retmask |= DSP_BIND_SURR;
1623 if (m->mask & SND_CHN_OSS_CENTER_LFE)
1624 *retmask |= DSP_BIND_CENTER_LFE;
1625 if (m->mask & SND_CHN_OSS_REAR)
1626 *retmask |= DSP_BIND_REAR;
1627 }
1628
1629 /* report software-supported binding mask */
1630 if (!CHN_BITPERFECT(c) && report_soft_matrix)
1631 *retmask |= DSP_BIND_FRONT | DSP_BIND_SURR |
1632 DSP_BIND_CENTER_LFE | DSP_BIND_REAR;
1633
1634 return (0);
1635 }
1636
1637 void
chn_vpc_reset(struct pcm_channel * c,int vc,int force)1638 chn_vpc_reset(struct pcm_channel *c, int vc, int force)
1639 {
1640 int i;
1641
1642 KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END,
1643 ("%s(): invalid reset c=%p vc=%d", __func__, c, vc));
1644 CHN_LOCKASSERT(c);
1645
1646 if (force == 0 && chn_vpc_autoreset == 0)
1647 return;
1648
1649 for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP)
1650 CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]);
1651 }
1652
1653 static u_int32_t
round_pow2(u_int32_t v)1654 round_pow2(u_int32_t v)
1655 {
1656 u_int32_t ret;
1657
1658 if (v < 2)
1659 v = 2;
1660 ret = 0;
1661 while (v >> ret)
1662 ret++;
1663 ret = 1 << (ret - 1);
1664 while (ret < v)
1665 ret <<= 1;
1666 return ret;
1667 }
1668
1669 static u_int32_t
round_blksz(u_int32_t v,int round)1670 round_blksz(u_int32_t v, int round)
1671 {
1672 u_int32_t ret, tmp;
1673
1674 if (round < 1)
1675 round = 1;
1676
1677 ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1);
1678
1679 if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2))
1680 ret >>= 1;
1681
1682 tmp = ret - (ret % round);
1683 while (tmp < 16 || tmp < round) {
1684 ret <<= 1;
1685 tmp = ret - (ret % round);
1686 }
1687
1688 return ret;
1689 }
1690
1691 /*
1692 * 4Front call it DSP Policy, while we call it "Latency Profile". The idea
1693 * is to keep 2nd buffer short so that it doesn't cause long queue during
1694 * buffer transfer.
1695 *
1696 * Latency reference table for 48khz stereo 16bit: (PLAY)
1697 *
1698 * +---------+------------+-----------+------------+
1699 * | Latency | Blockcount | Blocksize | Buffersize |
1700 * +---------+------------+-----------+------------+
1701 * | 0 | 2 | 64 | 128 |
1702 * +---------+------------+-----------+------------+
1703 * | 1 | 4 | 128 | 512 |
1704 * +---------+------------+-----------+------------+
1705 * | 2 | 8 | 512 | 4096 |
1706 * +---------+------------+-----------+------------+
1707 * | 3 | 16 | 512 | 8192 |
1708 * +---------+------------+-----------+------------+
1709 * | 4 | 32 | 512 | 16384 |
1710 * +---------+------------+-----------+------------+
1711 * | 5 | 32 | 1024 | 32768 |
1712 * +---------+------------+-----------+------------+
1713 * | 6 | 16 | 2048 | 32768 |
1714 * +---------+------------+-----------+------------+
1715 * | 7 | 8 | 4096 | 32768 |
1716 * +---------+------------+-----------+------------+
1717 * | 8 | 4 | 8192 | 32768 |
1718 * +---------+------------+-----------+------------+
1719 * | 9 | 2 | 16384 | 32768 |
1720 * +---------+------------+-----------+------------+
1721 * | 10 | 2 | 32768 | 65536 |
1722 * +---------+------------+-----------+------------+
1723 *
1724 * Recording need a different reference table. All we care is
1725 * gobbling up everything within reasonable buffering threshold.
1726 *
1727 * Latency reference table for 48khz stereo 16bit: (REC)
1728 *
1729 * +---------+------------+-----------+------------+
1730 * | Latency | Blockcount | Blocksize | Buffersize |
1731 * +---------+------------+-----------+------------+
1732 * | 0 | 512 | 32 | 16384 |
1733 * +---------+------------+-----------+------------+
1734 * | 1 | 256 | 64 | 16384 |
1735 * +---------+------------+-----------+------------+
1736 * | 2 | 128 | 128 | 16384 |
1737 * +---------+------------+-----------+------------+
1738 * | 3 | 64 | 256 | 16384 |
1739 * +---------+------------+-----------+------------+
1740 * | 4 | 32 | 512 | 16384 |
1741 * +---------+------------+-----------+------------+
1742 * | 5 | 32 | 1024 | 32768 |
1743 * +---------+------------+-----------+------------+
1744 * | 6 | 16 | 2048 | 32768 |
1745 * +---------+------------+-----------+------------+
1746 * | 7 | 8 | 4096 | 32768 |
1747 * +---------+------------+-----------+------------+
1748 * | 8 | 4 | 8192 | 32768 |
1749 * +---------+------------+-----------+------------+
1750 * | 9 | 2 | 16384 | 32768 |
1751 * +---------+------------+-----------+------------+
1752 * | 10 | 2 | 32768 | 65536 |
1753 * +---------+------------+-----------+------------+
1754 *
1755 * Calculations for other data rate are entirely based on these reference
1756 * tables. For normal operation, Latency 5 seems give the best, well
1757 * balanced performance for typical workload. Anything below 5 will
1758 * eat up CPU to keep up with increasing context switches because of
1759 * shorter buffer space and usually require the application to handle it
1760 * aggressively through possibly real time programming technique.
1761 *
1762 */
1763 #define CHN_LATENCY_PBLKCNT_REF \
1764 {{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}, \
1765 {1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}}
1766 #define CHN_LATENCY_PBUFSZ_REF \
1767 {{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16}, \
1768 {11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}}
1769
1770 #define CHN_LATENCY_RBLKCNT_REF \
1771 {{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}, \
1772 {9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}}
1773 #define CHN_LATENCY_RBUFSZ_REF \
1774 {{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16}, \
1775 {15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}}
1776
1777 #define CHN_LATENCY_DATA_REF 192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */
1778
1779 static int
chn_calclatency(int dir,int latency,int bps,u_int32_t datarate,u_int32_t max,int * rblksz,int * rblkcnt)1780 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate,
1781 u_int32_t max, int *rblksz, int *rblkcnt)
1782 {
1783 static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1784 CHN_LATENCY_PBLKCNT_REF;
1785 static int pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1786 CHN_LATENCY_PBUFSZ_REF;
1787 static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1788 CHN_LATENCY_RBLKCNT_REF;
1789 static int rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1790 CHN_LATENCY_RBUFSZ_REF;
1791 u_int32_t bufsz;
1792 int lprofile, blksz, blkcnt;
1793
1794 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX ||
1795 bps < 1 || datarate < 1 ||
1796 !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) {
1797 if (rblksz != NULL)
1798 *rblksz = CHN_2NDBUFMAXSIZE >> 1;
1799 if (rblkcnt != NULL)
1800 *rblkcnt = 2;
1801 printf("%s(): FAILED dir=%d latency=%d bps=%d "
1802 "datarate=%u max=%u\n",
1803 __func__, dir, latency, bps, datarate, max);
1804 return CHN_2NDBUFMAXSIZE;
1805 }
1806
1807 lprofile = chn_latency_profile;
1808
1809 if (dir == PCMDIR_PLAY) {
1810 blkcnt = pblkcnts[lprofile][latency];
1811 bufsz = pbufszs[lprofile][latency];
1812 } else {
1813 blkcnt = rblkcnts[lprofile][latency];
1814 bufsz = rbufszs[lprofile][latency];
1815 }
1816
1817 bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF,
1818 datarate));
1819 if (bufsz > max)
1820 bufsz = max;
1821 blksz = round_blksz(bufsz >> blkcnt, bps);
1822
1823 if (rblksz != NULL)
1824 *rblksz = blksz;
1825 if (rblkcnt != NULL)
1826 *rblkcnt = 1 << blkcnt;
1827
1828 return blksz << blkcnt;
1829 }
1830
1831 static int
chn_resizebuf(struct pcm_channel * c,int latency,int blkcnt,int blksz)1832 chn_resizebuf(struct pcm_channel *c, int latency,
1833 int blkcnt, int blksz)
1834 {
1835 struct snd_dbuf *b, *bs, *pb;
1836 int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt;
1837 int ret;
1838
1839 CHN_LOCKASSERT(c);
1840
1841 if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) ||
1842 !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC))
1843 return EINVAL;
1844
1845 if (latency == -1) {
1846 c->latency = -1;
1847 latency = chn_latency;
1848 } else if (latency == -2) {
1849 latency = c->latency;
1850 if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1851 latency = chn_latency;
1852 } else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1853 return EINVAL;
1854 else {
1855 c->latency = latency;
1856 }
1857
1858 bs = c->bufsoft;
1859 b = c->bufhard;
1860
1861 if (!(blksz == 0 || blkcnt == -1) &&
1862 (blksz < 16 || blksz < bs->align || blkcnt < 2 ||
1863 (blksz * blkcnt) > CHN_2NDBUFMAXSIZE))
1864 return EINVAL;
1865
1866 chn_calclatency(c->direction, latency, bs->align,
1867 bs->align * bs->spd, CHN_2NDBUFMAXSIZE,
1868 &sblksz, &sblkcnt);
1869
1870 if (blksz == 0 || blkcnt == -1) {
1871 if (blkcnt == -1)
1872 c->flags &= ~CHN_F_HAS_SIZE;
1873 if (c->flags & CHN_F_HAS_SIZE) {
1874 blksz = bs->blksz;
1875 blkcnt = bs->blkcnt;
1876 }
1877 } else
1878 c->flags |= CHN_F_HAS_SIZE;
1879
1880 if (c->flags & CHN_F_HAS_SIZE) {
1881 /*
1882 * The application has requested their own blksz/blkcnt.
1883 * Just obey with it, and let them toast alone. We can
1884 * clamp it to the nearest latency profile, but that would
1885 * defeat the purpose of having custom control. The least
1886 * we can do is round it to the nearest ^2 and align it.
1887 */
1888 sblksz = round_blksz(blksz, bs->align);
1889 sblkcnt = round_pow2(blkcnt);
1890 }
1891
1892 if (c->parentchannel != NULL) {
1893 pb = c->parentchannel->bufsoft;
1894 CHN_UNLOCK(c);
1895 CHN_LOCK(c->parentchannel);
1896 chn_notify(c->parentchannel, CHN_N_BLOCKSIZE);
1897 CHN_UNLOCK(c->parentchannel);
1898 CHN_LOCK(c);
1899 if (c->direction == PCMDIR_PLAY) {
1900 limit = (pb != NULL) ?
1901 sndbuf_xbytes(pb->bufsize, pb, bs) : 0;
1902 } else {
1903 limit = (pb != NULL) ?
1904 sndbuf_xbytes(pb->blksz, pb, bs) * 2 : 0;
1905 }
1906 } else {
1907 hblkcnt = 2;
1908 if (c->flags & CHN_F_HAS_SIZE) {
1909 hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b),
1910 b->align);
1911 hblkcnt = round_pow2(bs->blkcnt);
1912 } else
1913 chn_calclatency(c->direction, latency,
1914 b->align, b->align * b->spd,
1915 CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt);
1916
1917 if ((hblksz << 1) > b->maxsize)
1918 hblksz = round_blksz(b->maxsize >> 1, b->align);
1919
1920 while ((hblksz * hblkcnt) > b->maxsize) {
1921 if (hblkcnt < 4)
1922 hblksz >>= 1;
1923 else
1924 hblkcnt >>= 1;
1925 }
1926
1927 hblksz -= hblksz % b->align;
1928
1929 CHN_UNLOCK(c);
1930 if (chn_usefrags == 0 ||
1931 CHANNEL_SETFRAGMENTS(c->methods, c->devinfo,
1932 hblksz, hblkcnt) != 0)
1933 b->blksz = CHANNEL_SETBLOCKSIZE(c->methods,
1934 c->devinfo, hblksz);
1935 CHN_LOCK(c);
1936
1937 if (!CHN_EMPTY(c, children)) {
1938 nsblksz = round_blksz(
1939 sndbuf_xbytes(b->blksz, b, bs), bs->align);
1940 nsblkcnt = b->blkcnt;
1941 if (c->direction == PCMDIR_PLAY) {
1942 do {
1943 nsblkcnt--;
1944 } while (nsblkcnt >= 2 &&
1945 nsblksz * nsblkcnt >= sblksz * sblkcnt);
1946 nsblkcnt++;
1947 }
1948 sblksz = nsblksz;
1949 sblkcnt = nsblkcnt;
1950 limit = 0;
1951 } else
1952 limit = sndbuf_xbytes(b->blksz, b, bs) * 2;
1953 }
1954
1955 if (limit > CHN_2NDBUFMAXSIZE)
1956 limit = CHN_2NDBUFMAXSIZE;
1957
1958 while ((sblksz * sblkcnt) < limit)
1959 sblkcnt <<= 1;
1960
1961 while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) {
1962 if (sblkcnt < 4)
1963 sblksz >>= 1;
1964 else
1965 sblkcnt >>= 1;
1966 }
1967
1968 sblksz -= sblksz % bs->align;
1969
1970 if (bs->blkcnt != sblkcnt || bs->blksz != sblksz ||
1971 bs->bufsize != (sblkcnt * sblksz)) {
1972 ret = sndbuf_remalloc(bs, sblkcnt, sblksz);
1973 if (ret != 0) {
1974 device_printf(c->dev, "%s(): Failed: %d %d\n",
1975 __func__, sblkcnt, sblksz);
1976 return ret;
1977 }
1978 }
1979
1980 /*
1981 * Interrupt timeout
1982 */
1983 c->timeout = ((u_int64_t)hz * bs->bufsize) /
1984 ((u_int64_t)bs->spd * bs->align);
1985 if (c->parentchannel != NULL)
1986 c->timeout = min(c->timeout, c->parentchannel->timeout);
1987 if (c->timeout < 1)
1988 c->timeout = 1;
1989
1990 /*
1991 * OSSv4 docs: "By default OSS will set the low water level equal
1992 * to the fragment size which is optimal in most cases."
1993 */
1994 c->lw = bs->blksz;
1995 chn_resetbuf(c);
1996
1997 if (snd_verbose > 3)
1998 device_printf(c->dev, "%s(): %s (%s) timeout=%u "
1999 "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n",
2000 __func__, CHN_DIRSTR(c),
2001 (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
2002 c->timeout,
2003 b->bufsize, b->blksz,
2004 b->blkcnt,
2005 bs->bufsize, bs->blksz,
2006 bs->blkcnt, limit);
2007
2008 return 0;
2009 }
2010
2011 int
chn_setlatency(struct pcm_channel * c,int latency)2012 chn_setlatency(struct pcm_channel *c, int latency)
2013 {
2014 CHN_LOCKASSERT(c);
2015 /* Destroy blksz/blkcnt, enforce latency profile. */
2016 return chn_resizebuf(c, latency, -1, 0);
2017 }
2018
2019 int
chn_setblocksize(struct pcm_channel * c,int blkcnt,int blksz)2020 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz)
2021 {
2022 CHN_LOCKASSERT(c);
2023 /* Destroy latency profile, enforce blksz/blkcnt */
2024 return chn_resizebuf(c, -1, blkcnt, blksz);
2025 }
2026
2027 int
chn_setparam(struct pcm_channel * c,uint32_t format,uint32_t speed)2028 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed)
2029 {
2030 struct pcmchan_caps *caps;
2031 uint32_t hwspeed, delta;
2032 int ret;
2033
2034 CHN_LOCKASSERT(c);
2035
2036 if (speed < 1 || format == 0 || CHN_STARTED(c))
2037 return (EINVAL);
2038
2039 c->format = format;
2040 c->speed = speed;
2041
2042 caps = chn_getcaps(c);
2043
2044 hwspeed = speed;
2045 RANGE(hwspeed, caps->minspeed, caps->maxspeed);
2046
2047 sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo,
2048 hwspeed));
2049 hwspeed = c->bufhard->spd;
2050
2051 delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed);
2052
2053 if (delta <= feeder_rate_round)
2054 c->speed = hwspeed;
2055
2056 ret = feeder_chain(c);
2057
2058 if (ret == 0)
2059 ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, c->bufhard->fmt);
2060
2061 if (ret == 0)
2062 ret = chn_resizebuf(c, -2, 0, 0);
2063
2064 return (ret);
2065 }
2066
2067 int
chn_setspeed(struct pcm_channel * c,uint32_t speed)2068 chn_setspeed(struct pcm_channel *c, uint32_t speed)
2069 {
2070 uint32_t oldformat, oldspeed;
2071 int ret;
2072
2073 oldformat = c->format;
2074 oldspeed = c->speed;
2075
2076 if (c->speed == speed)
2077 return (0);
2078
2079 ret = chn_setparam(c, c->format, speed);
2080 if (ret != 0) {
2081 if (snd_verbose > 3)
2082 device_printf(c->dev,
2083 "%s(): Setting speed %d failed, "
2084 "falling back to %d\n",
2085 __func__, speed, oldspeed);
2086 chn_setparam(c, oldformat, oldspeed);
2087 }
2088
2089 return (ret);
2090 }
2091
2092 int
chn_setformat(struct pcm_channel * c,uint32_t format)2093 chn_setformat(struct pcm_channel *c, uint32_t format)
2094 {
2095 uint32_t oldformat, oldspeed;
2096 int ret;
2097
2098 /* XXX force stereo */
2099 if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) {
2100 format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL,
2101 AFMT_PASSTHROUGH_EXTCHANNEL);
2102 }
2103
2104 oldformat = c->format;
2105 oldspeed = c->speed;
2106
2107 if (c->format == format)
2108 return (0);
2109
2110 ret = chn_setparam(c, format, c->speed);
2111 if (ret != 0) {
2112 if (snd_verbose > 3)
2113 device_printf(c->dev,
2114 "%s(): Format change 0x%08x failed, "
2115 "falling back to 0x%08x\n",
2116 __func__, format, oldformat);
2117 chn_setparam(c, oldformat, oldspeed);
2118 }
2119
2120 return (ret);
2121 }
2122
2123 void
chn_syncstate(struct pcm_channel * c)2124 chn_syncstate(struct pcm_channel *c)
2125 {
2126 struct snddev_info *d;
2127 struct snd_mixer *m;
2128
2129 d = (c != NULL) ? c->parentsnddev : NULL;
2130 m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 :
2131 NULL;
2132
2133 if (d == NULL || m == NULL)
2134 return;
2135
2136 CHN_LOCKASSERT(c);
2137
2138 if (c->feederflags & (1 << FEEDER_VOLUME)) {
2139 uint32_t parent;
2140 int vol, pvol, left, right, center;
2141
2142 if (c->direction == PCMDIR_PLAY &&
2143 (d->flags & SD_F_SOFTPCMVOL)) {
2144 /* CHN_UNLOCK(c); */
2145 vol = mix_get(m, SOUND_MIXER_PCM);
2146 parent = mix_getparent(m, SOUND_MIXER_PCM);
2147 if (parent != SOUND_MIXER_NONE)
2148 pvol = mix_get(m, parent);
2149 else
2150 pvol = 100 | (100 << 8);
2151 /* CHN_LOCK(c); */
2152 } else {
2153 vol = 100 | (100 << 8);
2154 pvol = vol;
2155 }
2156
2157 if (vol == -1) {
2158 device_printf(c->dev,
2159 "Soft PCM Volume: Failed to read pcm "
2160 "default value\n");
2161 vol = 100 | (100 << 8);
2162 }
2163
2164 if (pvol == -1) {
2165 device_printf(c->dev,
2166 "Soft PCM Volume: Failed to read parent "
2167 "default value\n");
2168 pvol = 100 | (100 << 8);
2169 }
2170
2171 left = ((vol & 0x7f) * (pvol & 0x7f)) / 100;
2172 right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100;
2173 center = (left + right) >> 1;
2174
2175 chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center);
2176 }
2177
2178 if (c->feederflags & (1 << FEEDER_EQ)) {
2179 struct pcm_feeder *f;
2180 int treble, bass, state;
2181
2182 /* CHN_UNLOCK(c); */
2183 treble = mix_get(m, SOUND_MIXER_TREBLE);
2184 bass = mix_get(m, SOUND_MIXER_BASS);
2185 /* CHN_LOCK(c); */
2186
2187 if (treble == -1)
2188 treble = 50;
2189 else
2190 treble = ((treble & 0x7f) +
2191 ((treble >> 8) & 0x7f)) >> 1;
2192
2193 if (bass == -1)
2194 bass = 50;
2195 else
2196 bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1;
2197
2198 f = feeder_find(c, FEEDER_EQ);
2199 if (f != NULL) {
2200 if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0)
2201 device_printf(c->dev,
2202 "EQ: Failed to set treble -- %d\n",
2203 treble);
2204 if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0)
2205 device_printf(c->dev,
2206 "EQ: Failed to set bass -- %d\n",
2207 bass);
2208 if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0)
2209 device_printf(c->dev,
2210 "EQ: Failed to set preamp -- %d\n",
2211 d->eqpreamp);
2212 if (d->flags & SD_F_EQ_BYPASSED)
2213 state = FEEDEQ_BYPASS;
2214 else if (d->flags & SD_F_EQ_ENABLED)
2215 state = FEEDEQ_ENABLE;
2216 else
2217 state = FEEDEQ_DISABLE;
2218 if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0)
2219 device_printf(c->dev,
2220 "EQ: Failed to set state -- %d\n", state);
2221 }
2222 }
2223 }
2224
2225 int
chn_trigger(struct pcm_channel * c,int go)2226 chn_trigger(struct pcm_channel *c, int go)
2227 {
2228 struct snddev_info *d = c->parentsnddev;
2229 int ret;
2230
2231 CHN_LOCKASSERT(c);
2232 if (!PCMTRIG_COMMON(go))
2233 return (CHANNEL_TRIGGER(c->methods, c->devinfo, go));
2234
2235 if (go == c->trigger)
2236 return (0);
2237
2238 if (snd_verbose > 3) {
2239 device_printf(c->dev, "%s() %s: calling go=0x%08x , "
2240 "prev=0x%08x\n", __func__, c->name, go, c->trigger);
2241 }
2242
2243 c->trigger = go;
2244 ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go);
2245 if (ret != 0)
2246 return (ret);
2247
2248 CHN_UNLOCK(c);
2249 PCM_LOCK(d);
2250 CHN_LOCK(c);
2251
2252 /*
2253 * Do nothing if another thread set a different trigger while we had
2254 * dropped the mutex.
2255 */
2256 if (go != c->trigger) {
2257 PCM_UNLOCK(d);
2258 return (0);
2259 }
2260
2261 /*
2262 * Use the SAFE variants to prevent inserting/removing an already
2263 * existing/missing element.
2264 */
2265 switch (go) {
2266 case PCMTRIG_START:
2267 CHN_INSERT_HEAD_SAFE(d, c, channels.pcm.busy);
2268 PCM_UNLOCK(d);
2269 chn_syncstate(c);
2270 break;
2271 case PCMTRIG_STOP:
2272 case PCMTRIG_ABORT:
2273 CHN_REMOVE(d, c, channels.pcm.busy);
2274 PCM_UNLOCK(d);
2275 break;
2276 default:
2277 PCM_UNLOCK(d);
2278 break;
2279 }
2280
2281 return (0);
2282 }
2283
2284 /**
2285 * @brief Queries sound driver for sample-aligned hardware buffer pointer index
2286 *
2287 * This function obtains the hardware pointer location, then aligns it to
2288 * the current bytes-per-sample value before returning. (E.g., a channel
2289 * running in 16 bit stereo mode would require 4 bytes per sample, so a
2290 * hwptr value ranging from 32-35 would be returned as 32.)
2291 *
2292 * @param c PCM channel context
2293 * @returns sample-aligned hardware buffer pointer index
2294 */
2295 int
chn_getptr(struct pcm_channel * c)2296 chn_getptr(struct pcm_channel *c)
2297 {
2298 int hwptr;
2299
2300 CHN_LOCKASSERT(c);
2301 hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0;
2302 return (hwptr - (hwptr % c->bufhard->align));
2303 }
2304
2305 struct pcmchan_caps *
chn_getcaps(struct pcm_channel * c)2306 chn_getcaps(struct pcm_channel *c)
2307 {
2308 CHN_LOCKASSERT(c);
2309 return CHANNEL_GETCAPS(c->methods, c->devinfo);
2310 }
2311
2312 u_int32_t
chn_getformats(struct pcm_channel * c)2313 chn_getformats(struct pcm_channel *c)
2314 {
2315 u_int32_t *fmtlist, fmts;
2316 int i;
2317
2318 fmtlist = chn_getcaps(c)->fmtlist;
2319 fmts = 0;
2320 for (i = 0; fmtlist[i]; i++)
2321 fmts |= fmtlist[i];
2322
2323 /* report software-supported formats */
2324 if (!CHN_BITPERFECT(c) && report_soft_formats)
2325 fmts |= AFMT_CONVERTIBLE;
2326
2327 return (AFMT_ENCODING(fmts));
2328 }
2329
2330 int
chn_notify(struct pcm_channel * c,u_int32_t flags)2331 chn_notify(struct pcm_channel *c, u_int32_t flags)
2332 {
2333 struct pcm_channel *ch;
2334 struct pcmchan_caps *caps;
2335 uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate;
2336 uint32_t vpflags;
2337 int dirty, err, run, nrun;
2338
2339 CHN_LOCKASSERT(c);
2340
2341 if (CHN_EMPTY(c, children))
2342 return (0);
2343
2344 err = 0;
2345
2346 /*
2347 * If the hwchan is running, we can't change its rate, format or
2348 * blocksize
2349 */
2350 run = (CHN_STARTED(c)) ? 1 : 0;
2351 if (run)
2352 flags &= CHN_N_VOLUME | CHN_N_TRIGGER;
2353
2354 if (flags & CHN_N_RATE) {
2355 /*
2356 * XXX I'll make good use of this someday.
2357 * However this is currently being superseded by
2358 * the availability of CHN_F_VCHAN_DYNAMIC.
2359 */
2360 }
2361
2362 if (flags & CHN_N_FORMAT) {
2363 /*
2364 * XXX I'll make good use of this someday.
2365 * However this is currently being superseded by
2366 * the availability of CHN_F_VCHAN_DYNAMIC.
2367 */
2368 }
2369
2370 if (flags & CHN_N_VOLUME) {
2371 /*
2372 * XXX I'll make good use of this someday, though
2373 * soft volume control is currently pretty much
2374 * integrated.
2375 */
2376 }
2377
2378 if (flags & CHN_N_BLOCKSIZE) {
2379 /*
2380 * Set to default latency profile
2381 */
2382 chn_setlatency(c, chn_latency);
2383 }
2384
2385 if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) {
2386 nrun = CHN_EMPTY(c, children.busy) ? 0 : 1;
2387 if (nrun && !run)
2388 err = chn_start(c, 1);
2389 if (!nrun && run)
2390 chn_abort(c);
2391 flags &= ~CHN_N_TRIGGER;
2392 }
2393
2394 if (flags & CHN_N_TRIGGER) {
2395 if (c->direction == PCMDIR_PLAY) {
2396 vchanformat = &c->parentsnddev->pvchanformat;
2397 vchanrate = &c->parentsnddev->pvchanrate;
2398 } else {
2399 vchanformat = &c->parentsnddev->rvchanformat;
2400 vchanrate = &c->parentsnddev->rvchanrate;
2401 }
2402
2403 /* Dynamic Virtual Channel */
2404 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) {
2405 bestformat = *vchanformat;
2406 bestspeed = *vchanrate;
2407 } else {
2408 bestformat = 0;
2409 bestspeed = 0;
2410 }
2411
2412 besthwformat = 0;
2413 nrun = 0;
2414 caps = chn_getcaps(c);
2415 dirty = 0;
2416 vpflags = 0;
2417
2418 CHN_FOREACH(ch, c, children.busy) {
2419 CHN_LOCK(ch);
2420 if ((ch->format & AFMT_PASSTHROUGH) &&
2421 snd_fmtvalid(ch->format, caps->fmtlist)) {
2422 bestformat = ch->format;
2423 bestspeed = ch->speed;
2424 CHN_UNLOCK(ch);
2425 vpflags = CHN_F_PASSTHROUGH;
2426 nrun++;
2427 break;
2428 }
2429 if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) {
2430 if (c->flags & CHN_F_VCHAN_ADAPTIVE) {
2431 bestspeed = ch->speed;
2432 RANGE(bestspeed, caps->minspeed,
2433 caps->maxspeed);
2434 besthwformat = snd_fmtbest(ch->format,
2435 caps->fmtlist);
2436 if (besthwformat != 0)
2437 bestformat = besthwformat;
2438 }
2439 CHN_UNLOCK(ch);
2440 vpflags = CHN_F_EXCLUSIVE;
2441 nrun++;
2442 continue;
2443 }
2444 if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) ||
2445 vpflags != 0) {
2446 CHN_UNLOCK(ch);
2447 nrun++;
2448 continue;
2449 }
2450 if (ch->speed > bestspeed) {
2451 bestspeed = ch->speed;
2452 RANGE(bestspeed, caps->minspeed,
2453 caps->maxspeed);
2454 }
2455 besthwformat = snd_fmtbest(ch->format, caps->fmtlist);
2456 if (!(besthwformat & AFMT_VCHAN)) {
2457 CHN_UNLOCK(ch);
2458 nrun++;
2459 continue;
2460 }
2461 if (AFMT_CHANNEL(besthwformat) >
2462 AFMT_CHANNEL(bestformat))
2463 bestformat = besthwformat;
2464 else if (AFMT_CHANNEL(besthwformat) ==
2465 AFMT_CHANNEL(bestformat) &&
2466 AFMT_BIT(besthwformat) > AFMT_BIT(bestformat))
2467 bestformat = besthwformat;
2468 CHN_UNLOCK(ch);
2469 nrun++;
2470 }
2471
2472 if (bestformat == 0)
2473 bestformat = c->format;
2474 if (bestspeed == 0)
2475 bestspeed = c->speed;
2476
2477 if (bestformat != c->format || bestspeed != c->speed)
2478 dirty = 1;
2479
2480 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2481 c->flags |= vpflags;
2482
2483 if (nrun && !run) {
2484 if (dirty) {
2485 bestspeed = CHANNEL_SETSPEED(c->methods,
2486 c->devinfo, bestspeed);
2487 err = chn_reset(c, bestformat, bestspeed);
2488 }
2489 if (err == 0 && dirty) {
2490 CHN_FOREACH(ch, c, children.busy) {
2491 CHN_LOCK(ch);
2492 if (VCHAN_SYNC_REQUIRED(ch))
2493 vchan_sync(ch);
2494 CHN_UNLOCK(ch);
2495 }
2496 }
2497 if (err == 0) {
2498 if (dirty)
2499 c->flags |= CHN_F_DIRTY;
2500 err = chn_start(c, 1);
2501 }
2502 }
2503
2504 if (nrun && run && dirty) {
2505 chn_abort(c);
2506 bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo,
2507 bestspeed);
2508 err = chn_reset(c, bestformat, bestspeed);
2509 if (err == 0) {
2510 CHN_FOREACH(ch, c, children.busy) {
2511 CHN_LOCK(ch);
2512 if (VCHAN_SYNC_REQUIRED(ch))
2513 vchan_sync(ch);
2514 CHN_UNLOCK(ch);
2515 }
2516 }
2517 if (err == 0) {
2518 c->flags |= CHN_F_DIRTY;
2519 err = chn_start(c, 1);
2520 }
2521 }
2522
2523 if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) &&
2524 (bestformat & AFMT_VCHAN)) {
2525 *vchanformat = bestformat;
2526 *vchanrate = bestspeed;
2527 }
2528
2529 if (!nrun && run) {
2530 c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2531 bestformat = *vchanformat;
2532 bestspeed = *vchanrate;
2533 chn_abort(c);
2534 if (c->format != bestformat || c->speed != bestspeed)
2535 chn_reset(c, bestformat, bestspeed);
2536 }
2537 }
2538
2539 return (err);
2540 }
2541
2542 /**
2543 * @brief Fetch array of supported discrete sample rates
2544 *
2545 * Wrapper for CHANNEL_GETRATES. Please see channel_if.m:getrates() for
2546 * detailed information.
2547 *
2548 * @note If the operation isn't supported, this function will just return 0
2549 * (no rates in the array), and *rates will be set to NULL. Callers
2550 * should examine rates @b only if this function returns non-zero.
2551 *
2552 * @param c pcm channel to examine
2553 * @param rates pointer to array of integers; rate table will be recorded here
2554 *
2555 * @return number of rates in the array pointed to be @c rates
2556 */
2557 int
chn_getrates(struct pcm_channel * c,int ** rates)2558 chn_getrates(struct pcm_channel *c, int **rates)
2559 {
2560 KASSERT(rates != NULL, ("rates is null"));
2561 CHN_LOCKASSERT(c);
2562 return CHANNEL_GETRATES(c->methods, c->devinfo, rates);
2563 }
2564
2565 /**
2566 * @brief Remove channel from a sync group, if there is one.
2567 *
2568 * This function is initially intended for the following conditions:
2569 * - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl)
2570 * - Closing a device. (A channel can't be destroyed if it's still in use.)
2571 *
2572 * @note Before calling this function, the syncgroup list mutex must be
2573 * held. (Consider pcm_channel::sm protected by the SG list mutex
2574 * whether @c c is locked or not.)
2575 *
2576 * @param c channel device to be started or closed
2577 * @returns If this channel was the only member of a group, the group ID
2578 * is returned to the caller so that the caller can release it
2579 * via free_unr() after giving up the syncgroup lock. Else it
2580 * returns 0.
2581 */
2582 int
chn_syncdestroy(struct pcm_channel * c)2583 chn_syncdestroy(struct pcm_channel *c)
2584 {
2585 struct pcmchan_syncmember *sm;
2586 struct pcmchan_syncgroup *sg;
2587 int sg_id;
2588
2589 sg_id = 0;
2590
2591 PCM_SG_LOCKASSERT(MA_OWNED);
2592
2593 if (c->sm != NULL) {
2594 sm = c->sm;
2595 sg = sm->parent;
2596 c->sm = NULL;
2597
2598 KASSERT(sg != NULL, ("syncmember has null parent"));
2599
2600 SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link);
2601 free(sm, M_DEVBUF);
2602
2603 if (SLIST_EMPTY(&sg->members)) {
2604 SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link);
2605 sg_id = sg->id;
2606 free(sg, M_DEVBUF);
2607 }
2608 }
2609
2610 return sg_id;
2611 }
2612
2613 #ifdef OSSV4_EXPERIMENT
2614 int
chn_getpeaks(struct pcm_channel * c,int * lpeak,int * rpeak)2615 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak)
2616 {
2617 CHN_LOCKASSERT(c);
2618 return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak);
2619 }
2620 #endif
2621