xref: /freebsd/sys/dev/sound/pci/hdspe-pcm.c (revision 278d6950943a9fec2bddb037b547c04a847c54ba)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012-2021 Ruslan Bukin <br@bsdpad.com>
5  * Copyright (c) 2023-2024 Florian Walpen <dev@submerge.ch>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * RME HDSPe driver for FreeBSD (pcm-part).
32  * Supported cards: AIO, RayDAT.
33  */
34 
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pci/hdspe.h>
37 #include <dev/sound/chip.h>
38 
39 #include <dev/pci/pcireg.h>
40 #include <dev/pci/pcivar.h>
41 
42 #include <mixer_if.h>
43 
44 #define HDSPE_MATRIX_MAX	8
45 
46 struct hdspe_latency {
47 	uint32_t n;
48 	uint32_t period;
49 	float ms;
50 };
51 
52 static struct hdspe_latency latency_map[] = {
53 	{ 7,   32, 0.7 },
54 	{ 0,   64, 1.5 },
55 	{ 1,  128,   3 },
56 	{ 2,  256,   6 },
57 	{ 3,  512,  12 },
58 	{ 4, 1024,  23 },
59 	{ 5, 2048,  46 },
60 	{ 6, 4096,  93 },
61 
62 	{ 0,    0,   0 },
63 };
64 
65 struct hdspe_rate {
66 	uint32_t speed;
67 	uint32_t reg;
68 };
69 
70 static struct hdspe_rate rate_map[] = {
71 	{  32000, (HDSPE_FREQ_32000) },
72 	{  44100, (HDSPE_FREQ_44100) },
73 	{  48000, (HDSPE_FREQ_48000) },
74 	{  64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
75 	{  88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
76 	{  96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
77 	{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD)   },
78 	{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD)   },
79 	{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD)   },
80 
81 	{ 0, 0 },
82 };
83 
84 static uint32_t
85 hdspe_channel_play_ports(struct hdspe_channel *hc)
86 {
87 	return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL));
88 }
89 
90 static uint32_t
91 hdspe_channel_rec_ports(struct hdspe_channel *hc)
92 {
93 	return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL));
94 }
95 
96 static unsigned int
97 hdspe_adat_width(uint32_t speed)
98 {
99 	if (speed > 96000)
100 		return (2);
101 	if (speed > 48000)
102 		return (4);
103 	return (8);
104 }
105 
106 static uint32_t
107 hdspe_port_first(uint32_t ports)
108 {
109 	return (ports & (~(ports - 1)));	/* Extract first bit set. */
110 }
111 
112 static uint32_t
113 hdspe_port_first_row(uint32_t ports)
114 {
115 	uint32_t ends;
116 
117 	/* Restrict ports to one set with contiguous slots. */
118 	if (ports & HDSPE_CHAN_AIO_LINE)
119 		ports = HDSPE_CHAN_AIO_LINE;	/* Gap in the AIO slots here. */
120 	else if (ports & HDSPE_CHAN_AIO_ALL)
121 		ports &= HDSPE_CHAN_AIO_ALL;	/* Rest of the AIO slots. */
122 	else if (ports & HDSPE_CHAN_RAY_ALL)
123 		ports &= HDSPE_CHAN_RAY_ALL;	/* All RayDAT slots. */
124 
125 	/* Ends of port rows are followed by a port which is not in the set. */
126 	ends = ports & (~(ports >> 1));
127 	/* First row of contiguous ports ends in the first row end. */
128 	return (ports & (ends ^ (ends - 1)));
129 }
130 
131 static unsigned int
132 hdspe_channel_count(uint32_t ports, uint32_t adat_width)
133 {
134 	unsigned int count = 0;
135 
136 	if (ports & HDSPE_CHAN_AIO_ALL) {
137 		/* AIO ports. */
138 		if (ports & HDSPE_CHAN_AIO_LINE)
139 			count += 2;
140 		if (ports & HDSPE_CHAN_AIO_PHONE)
141 			count += 2;
142 		if (ports & HDSPE_CHAN_AIO_AES)
143 			count += 2;
144 		if (ports & HDSPE_CHAN_AIO_SPDIF)
145 			count += 2;
146 		if (ports & HDSPE_CHAN_AIO_ADAT)
147 			count += adat_width;
148 	} else if (ports & HDSPE_CHAN_RAY_ALL) {
149 		/* RayDAT ports. */
150 		if (ports & HDSPE_CHAN_RAY_AES)
151 			count += 2;
152 		if (ports & HDSPE_CHAN_RAY_SPDIF)
153 			count += 2;
154 		if (ports & HDSPE_CHAN_RAY_ADAT1)
155 			count += adat_width;
156 		if (ports & HDSPE_CHAN_RAY_ADAT2)
157 			count += adat_width;
158 		if (ports & HDSPE_CHAN_RAY_ADAT3)
159 			count += adat_width;
160 		if (ports & HDSPE_CHAN_RAY_ADAT4)
161 			count += adat_width;
162 	}
163 
164 	return (count);
165 }
166 
167 static unsigned int
168 hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width)
169 {
170 	uint32_t preceding;
171 
172 	/* Make sure we have a subset of ports. */
173 	subset &= ports;
174 	/* Include all ports preceding the first one of the subset. */
175 	preceding = ports & (~subset & (subset - 1));
176 
177 	if (preceding & HDSPE_CHAN_AIO_ALL)
178 		preceding &= HDSPE_CHAN_AIO_ALL;	/* Contiguous AIO slots. */
179 	else if (preceding & HDSPE_CHAN_RAY_ALL)
180 		preceding &= HDSPE_CHAN_RAY_ALL;	/* Contiguous RayDAT slots. */
181 
182 	return (hdspe_channel_count(preceding, adat_width));
183 }
184 
185 static unsigned int
186 hdspe_port_slot_offset(uint32_t port, unsigned int adat_width)
187 {
188 	/* Exctract the first port (lowest bit) if set of ports. */
189 	switch (hdspe_port_first(port)) {
190 	/* AIO ports */
191 	case HDSPE_CHAN_AIO_LINE:
192 		return (0);
193 	case HDSPE_CHAN_AIO_PHONE:
194 		return (6);
195 	case HDSPE_CHAN_AIO_AES:
196 		return (8);
197 	case HDSPE_CHAN_AIO_SPDIF:
198 		return (10);
199 	case HDSPE_CHAN_AIO_ADAT:
200 		return (12);
201 
202 	/* RayDAT ports */
203 	case HDSPE_CHAN_RAY_AES:
204 		return (0);
205 	case HDSPE_CHAN_RAY_SPDIF:
206 		return (2);
207 	case HDSPE_CHAN_RAY_ADAT1:
208 		return (4);
209 	case HDSPE_CHAN_RAY_ADAT2:
210 		return (4 + adat_width);
211 	case HDSPE_CHAN_RAY_ADAT3:
212 		return (4 + 2 * adat_width);
213 	case HDSPE_CHAN_RAY_ADAT4:
214 		return (4 + 3 * adat_width);
215 	default:
216 		return (0);
217 	}
218 }
219 
220 static unsigned int
221 hdspe_port_slot_width(uint32_t ports, unsigned int adat_width)
222 {
223 	uint32_t row;
224 
225 	/* Count number of contiguous slots from the first physical port. */
226 	row = hdspe_port_first_row(ports);
227 	return (hdspe_channel_count(row, adat_width));
228 }
229 
230 static int
231 hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
232     unsigned int src, unsigned short data)
233 {
234 	struct sc_pcminfo *scp;
235 	struct sc_info *sc;
236 	int offs;
237 
238 	scp = ch->parent;
239 	sc = scp->sc;
240 
241 	offs = 0;
242 	if (ch->dir == PCMDIR_PLAY)
243 		offs = 64;
244 
245 	hdspe_write_4(sc, HDSPE_MIXER_BASE +
246 	    ((offs + src + 128 * dst) * sizeof(uint32_t)),
247 	    data & 0xFFFF);
248 
249 	return (0);
250 };
251 
252 static int
253 hdspechan_setgain(struct sc_chinfo *ch)
254 {
255 	struct sc_info *sc;
256 	uint32_t port, ports;
257 	unsigned int slot, end_slot;
258 	unsigned short volume;
259 
260 	sc = ch->parent->sc;
261 
262 	/* Iterate through all physical ports of the channel. */
263 	ports = ch->ports;
264 	port = hdspe_port_first(ports);
265 	while (port != 0) {
266 		/* Get slot range of the physical port. */
267 		slot =
268 		    hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed));
269 		end_slot = slot +
270 		    hdspe_port_slot_width(port, hdspe_adat_width(sc->speed));
271 
272 		/* Treat first slot as left channel. */
273 		volume = ch->lvol * HDSPE_MAX_GAIN / 100;
274 		for (; slot < end_slot; slot++) {
275 			hdspe_hw_mixer(ch, slot, slot, volume);
276 			/* Subsequent slots all get the right channel volume. */
277 			volume = ch->rvol * HDSPE_MAX_GAIN / 100;
278 		}
279 
280 		ports &= ~port;
281 		port = hdspe_port_first(ports);
282 	}
283 
284 	return (0);
285 }
286 
287 static int
288 hdspemixer_init(struct snd_mixer *m)
289 {
290 	struct sc_pcminfo *scp;
291 	struct sc_info *sc;
292 	int mask;
293 
294 	scp = mix_getdevinfo(m);
295 	sc = scp->sc;
296 	if (sc == NULL)
297 		return (-1);
298 
299 	mask = SOUND_MASK_PCM;
300 
301 	if (hdspe_channel_play_ports(scp->hc))
302 		mask |= SOUND_MASK_VOLUME;
303 
304 	if (hdspe_channel_rec_ports(scp->hc))
305 		mask |= SOUND_MASK_RECLEV;
306 
307 	snd_mtxlock(sc->lock);
308 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
309 	mix_setdevs(m, mask);
310 	snd_mtxunlock(sc->lock);
311 
312 	return (0);
313 }
314 
315 static int
316 hdspemixer_set(struct snd_mixer *m, unsigned dev,
317     unsigned left, unsigned right)
318 {
319 	struct sc_pcminfo *scp;
320 	struct sc_chinfo *ch;
321 	int i;
322 
323 	scp = mix_getdevinfo(m);
324 
325 #if 0
326 	device_printf(scp->dev, "hdspemixer_set() %d %d\n",
327 	    left, right);
328 #endif
329 
330 	for (i = 0; i < scp->chnum; i++) {
331 		ch = &scp->chan[i];
332 		if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
333 		    (dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
334 			ch->lvol = left;
335 			ch->rvol = right;
336 			if (ch->run)
337 				hdspechan_setgain(ch);
338 		}
339 	}
340 
341 	return (0);
342 }
343 
344 static kobj_method_t hdspemixer_methods[] = {
345 	KOBJMETHOD(mixer_init,      hdspemixer_init),
346 	KOBJMETHOD(mixer_set,       hdspemixer_set),
347 	KOBJMETHOD_END
348 };
349 MIXER_DECLARE(hdspemixer);
350 
351 static void
352 hdspechan_enable(struct sc_chinfo *ch, int value)
353 {
354 	struct sc_pcminfo *scp;
355 	struct sc_info *sc;
356 	uint32_t row, ports;
357 	int reg;
358 	unsigned int slot, end_slot;
359 
360 	scp = ch->parent;
361 	sc = scp->sc;
362 
363 	if (ch->dir == PCMDIR_PLAY)
364 		reg = HDSPE_OUT_ENABLE_BASE;
365 	else
366 		reg = HDSPE_IN_ENABLE_BASE;
367 
368 	ch->run = value;
369 
370 	/* Iterate through rows of ports with contiguous slots. */
371 	ports = ch->ports;
372 	row = hdspe_port_first_row(ports);
373 	while (row != 0) {
374 		slot =
375 		    hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed));
376 		end_slot = slot +
377 		    hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
378 
379 		for (; slot < end_slot; slot++) {
380 			hdspe_write_1(sc, reg + (4 * slot), value);
381 		}
382 
383 		ports &= ~row;
384 		row = hdspe_port_first_row(ports);
385 	}
386 }
387 
388 static int
389 hdspe_running(struct sc_info *sc)
390 {
391 	struct sc_pcminfo *scp;
392 	struct sc_chinfo *ch;
393 	device_t *devlist;
394 	int devcount;
395 	int i, j;
396 	int err;
397 
398 	if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
399 		goto bad;
400 
401 	for (i = 0; i < devcount; i++) {
402 		scp = device_get_ivars(devlist[i]);
403 		for (j = 0; j < scp->chnum; j++) {
404 			ch = &scp->chan[j];
405 			if (ch->run)
406 				goto bad;
407 		}
408 	}
409 
410 	free(devlist, M_TEMP);
411 
412 	return (0);
413 bad:
414 
415 #if 0
416 	device_printf(sc->dev, "hdspe is running\n");
417 #endif
418 
419 	free(devlist, M_TEMP);
420 
421 	return (1);
422 }
423 
424 static void
425 hdspe_start_audio(struct sc_info *sc)
426 {
427 
428 	sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
429 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
430 }
431 
432 static void
433 hdspe_stop_audio(struct sc_info *sc)
434 {
435 
436 	if (hdspe_running(sc) == 1)
437 		return;
438 
439 	sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
440 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
441 }
442 
443 static void
444 buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
445     unsigned int samples, unsigned int slots, unsigned int channels)
446 {
447 	int slot;
448 
449 	for (; samples > 0; samples--) {
450 		for (slot = 0; slot < slots; slot++) {
451 			dma[slot * HDSPE_CHANBUF_SAMPLES + pos] =
452 			    pcm[pos * channels + slot];
453 		}
454 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
455 	}
456 }
457 
458 static void
459 buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
460     unsigned int pos, unsigned int samples, unsigned int adat_width,
461     unsigned int pcm_width)
462 {
463 	unsigned int slot_offset, slots;
464 	unsigned int channels, chan_pos;
465 
466 	/* Translate DMA slot offset to DMA buffer offset. */
467 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
468 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
469 
470 	/* Channel position of the port subset and total number of channels. */
471 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
472 	pcm += chan_pos;
473 	channels = hdspe_channel_count(ports, pcm_width);
474 
475 	/* Only copy as much as supported by both hardware and pcm channel. */
476 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
477 
478 	/* Let the compiler inline and loop unroll common cases. */
479 	if (slots == 2)
480 		buffer_mux_write(dma, pcm, pos, samples, 2, channels);
481 	else if (slots == 4)
482 		buffer_mux_write(dma, pcm, pos, samples, 4, channels);
483 	else if (slots == 8)
484 		buffer_mux_write(dma, pcm, pos, samples, 8, channels);
485 	else
486 		buffer_mux_write(dma, pcm, pos, samples, slots, channels);
487 }
488 
489 static void
490 buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
491     unsigned int samples, unsigned int slots, unsigned int channels)
492 {
493 	int slot;
494 
495 	for (; samples > 0; samples--) {
496 		for (slot = 0; slot < slots; slot++) {
497 			pcm[pos * channels + slot] =
498 			    dma[slot * HDSPE_CHANBUF_SAMPLES + pos];
499 		}
500 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
501 	}
502 }
503 
504 static void
505 buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
506     unsigned int pos, unsigned int samples, unsigned int adat_width,
507     unsigned int pcm_width)
508 {
509 	unsigned int slot_offset, slots;
510 	unsigned int channels, chan_pos;
511 
512 	/* Translate port slot offset to DMA buffer offset. */
513 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
514 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
515 
516 	/* Channel position of the port subset and total number of channels. */
517 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
518 	pcm += chan_pos;
519 	channels = hdspe_channel_count(ports, pcm_width);
520 
521 	/* Only copy as much as supported by both hardware and pcm channel. */
522 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
523 
524 	/* Let the compiler inline and loop unroll common cases. */
525 	if (slots == 2)
526 		buffer_demux_read(dma, pcm, pos, samples, 2, channels);
527 	else if (slots == 4)
528 		buffer_demux_read(dma, pcm, pos, samples, 4, channels);
529 	else if (slots == 8)
530 		buffer_demux_read(dma, pcm, pos, samples, 8, channels);
531 	else
532 		buffer_demux_read(dma, pcm, pos, samples, slots, channels);
533 }
534 
535 
536 /* Copy data between DMA and PCM buffers. */
537 static void
538 buffer_copy(struct sc_chinfo *ch)
539 {
540 	struct sc_pcminfo *scp;
541 	struct sc_info *sc;
542 	uint32_t row, ports;
543 	uint32_t dma_pos;
544 	unsigned int pos, length, offset;
545 	unsigned int n;
546 	unsigned int adat_width, pcm_width;
547 
548 	scp = ch->parent;
549 	sc = scp->sc;
550 
551 	n = AFMT_CHANNEL(ch->format); /* n channels */
552 
553 	/* Let pcm formats differ from current hardware ADAT width. */
554 	adat_width = hdspe_adat_width(sc->speed);
555 	if (n == hdspe_channel_count(ch->ports, 2))
556 		pcm_width = 2;
557 	else if (n == hdspe_channel_count(ch->ports, 4))
558 		pcm_width = 4;
559 	else
560 		pcm_width = 8;
561 
562 	/* Derive buffer position and length to be copied. */
563 	if (ch->dir == PCMDIR_PLAY) {
564 		/* Position per channel is n times smaller than PCM. */
565 		pos = sndbuf_getreadyptr(ch->buffer) / n;
566 		length = sndbuf_getready(ch->buffer) / n;
567 		/* Copy no more than 2 periods in advance. */
568 		if (length > (sc->period * 4 * 2))
569 			length = (sc->period * 4 * 2);
570 		/* Skip what was already copied last time. */
571 		offset = (ch->position + HDSPE_CHANBUF_SIZE) - pos;
572 		offset %= HDSPE_CHANBUF_SIZE;
573 		if (offset <= length) {
574 			pos = (pos + offset) % HDSPE_CHANBUF_SIZE;
575 			length -= offset;
576 		}
577 	} else {
578 		/* Position per channel is n times smaller than PCM. */
579 		pos = sndbuf_getfreeptr(ch->buffer) / n;
580 		/* Get DMA buffer write position. */
581 		dma_pos = hdspe_read_2(sc, HDSPE_STATUS_REG);
582 		dma_pos &= HDSPE_BUF_POSITION_MASK;
583 		/* Copy what is newly available. */
584 		length = (dma_pos + HDSPE_CHANBUF_SIZE) - pos;
585 		length %= HDSPE_CHANBUF_SIZE;
586 	}
587 
588 	/* Position and length in samples (4 bytes). */
589 	pos /= 4;
590 	length /= 4;
591 
592 	/* Iterate through rows of ports with contiguous slots. */
593 	ports = ch->ports;
594 	if (pcm_width == adat_width)
595 		row = hdspe_port_first_row(ports);
596 	else
597 		row = hdspe_port_first(ports);
598 
599 	while (row != 0) {
600 		if (ch->dir == PCMDIR_PLAY)
601 			buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos,
602 			    length, adat_width, pcm_width);
603 		else
604 			buffer_demux_port(sc->rbuf, ch->data, row, ch->ports,
605 			    pos, length, adat_width, pcm_width);
606 
607 		ports &= ~row;
608 		if (pcm_width == adat_width)
609 			row = hdspe_port_first_row(ports);
610 		else
611 			row = hdspe_port_first(ports);
612 	}
613 
614 	ch->position = ((pos + length) * 4) % HDSPE_CHANBUF_SIZE;
615 }
616 
617 static int
618 clean(struct sc_chinfo *ch)
619 {
620 	struct sc_pcminfo *scp;
621 	struct sc_info *sc;
622 	uint32_t *buf;
623 	uint32_t row, ports;
624 	unsigned int offset, slots;
625 
626 	scp = ch->parent;
627 	sc = scp->sc;
628 	buf = sc->rbuf;
629 
630 	if (ch->dir == PCMDIR_PLAY)
631 		buf = sc->pbuf;
632 
633 	/* Iterate through rows of ports with contiguous slots. */
634 	ports = ch->ports;
635 	row = hdspe_port_first_row(ports);
636 	while (row != 0) {
637 		offset = hdspe_port_slot_offset(row,
638 		    hdspe_adat_width(sc->speed));
639 		slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
640 
641 		bzero(buf + offset * HDSPE_CHANBUF_SAMPLES,
642 		    slots * HDSPE_CHANBUF_SIZE);
643 
644 		ports &= ~row;
645 		row = hdspe_port_first_row(ports);
646 	}
647 
648 	ch->position = 0;
649 
650 	return (0);
651 }
652 
653 /* Channel interface. */
654 static void *
655 hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
656     struct pcm_channel *c, int dir)
657 {
658 	struct sc_pcminfo *scp;
659 	struct sc_chinfo *ch;
660 	struct sc_info *sc;
661 	int num;
662 
663 	scp = devinfo;
664 	sc = scp->sc;
665 
666 	snd_mtxlock(sc->lock);
667 	num = scp->chnum;
668 
669 	ch = &scp->chan[num];
670 
671 	if (dir == PCMDIR_PLAY)
672 		ch->ports = hdspe_channel_play_ports(scp->hc);
673 	else
674 		ch->ports = hdspe_channel_rec_ports(scp->hc);
675 
676 	ch->run = 0;
677 	ch->lvol = 0;
678 	ch->rvol = 0;
679 
680 	/* Support all possible ADAT widths as channel formats. */
681 	ch->cap_fmts[0] =
682 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0);
683 	ch->cap_fmts[1] =
684 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0);
685 	ch->cap_fmts[2] =
686 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0);
687 	ch->cap_fmts[3] = 0;
688 	ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT);
689 	*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
690 
691 	/* Allocate maximum buffer size. */
692 	ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8);
693 	ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
694 	ch->position = 0;
695 
696 	ch->buffer = b;
697 	ch->channel = c;
698 	ch->parent = scp;
699 
700 	ch->dir = dir;
701 
702 	snd_mtxunlock(sc->lock);
703 
704 	if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
705 		device_printf(scp->dev, "Can't setup sndbuf.\n");
706 		return (NULL);
707 	}
708 
709 	return (ch);
710 }
711 
712 static int
713 hdspechan_trigger(kobj_t obj, void *data, int go)
714 {
715 	struct sc_pcminfo *scp;
716 	struct sc_chinfo *ch;
717 	struct sc_info *sc;
718 
719 	ch = data;
720 	scp = ch->parent;
721 	sc = scp->sc;
722 
723 	snd_mtxlock(sc->lock);
724 	switch (go) {
725 	case PCMTRIG_START:
726 #if 0
727 		device_printf(scp->dev, "hdspechan_trigger(): start\n");
728 #endif
729 		hdspechan_enable(ch, 1);
730 		hdspechan_setgain(ch);
731 		hdspe_start_audio(sc);
732 		break;
733 
734 	case PCMTRIG_STOP:
735 	case PCMTRIG_ABORT:
736 #if 0
737 		device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
738 #endif
739 		clean(ch);
740 		hdspechan_enable(ch, 0);
741 		hdspe_stop_audio(sc);
742 		break;
743 
744 	case PCMTRIG_EMLDMAWR:
745 	case PCMTRIG_EMLDMARD:
746 		if(ch->run)
747 			buffer_copy(ch);
748 		break;
749 	}
750 
751 	snd_mtxunlock(sc->lock);
752 
753 	return (0);
754 }
755 
756 static uint32_t
757 hdspechan_getptr(kobj_t obj, void *data)
758 {
759 	struct sc_pcminfo *scp;
760 	struct sc_chinfo *ch;
761 	struct sc_info *sc;
762 	uint32_t ret, pos;
763 
764 	ch = data;
765 	scp = ch->parent;
766 	sc = scp->sc;
767 
768 	snd_mtxlock(sc->lock);
769 	ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
770 	snd_mtxunlock(sc->lock);
771 
772 	pos = ret & HDSPE_BUF_POSITION_MASK;
773 	pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
774 
775 	return (pos);
776 }
777 
778 static int
779 hdspechan_free(kobj_t obj, void *data)
780 {
781 	struct sc_pcminfo *scp;
782 	struct sc_chinfo *ch;
783 	struct sc_info *sc;
784 
785 	ch = data;
786 	scp = ch->parent;
787 	sc = scp->sc;
788 
789 #if 0
790 	device_printf(scp->dev, "hdspechan_free()\n");
791 #endif
792 
793 	snd_mtxlock(sc->lock);
794 	if (ch->data != NULL) {
795 		free(ch->data, M_HDSPE);
796 		ch->data = NULL;
797 	}
798 	if (ch->caps != NULL) {
799 		free(ch->caps, M_HDSPE);
800 		ch->caps = NULL;
801 	}
802 	snd_mtxunlock(sc->lock);
803 
804 	return (0);
805 }
806 
807 static int
808 hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
809 {
810 	struct sc_chinfo *ch;
811 
812 	ch = data;
813 
814 #if 0
815 	struct sc_pcminfo *scp = ch->parent;
816 	device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
817 #endif
818 
819 	ch->format = format;
820 
821 	return (0);
822 }
823 
824 static uint32_t
825 hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
826 {
827 	struct sc_pcminfo *scp;
828 	struct hdspe_rate *hr;
829 	struct sc_chinfo *ch;
830 	struct sc_info *sc;
831 	long long period;
832 	int threshold;
833 	int i;
834 
835 	ch = data;
836 	scp = ch->parent;
837 	sc = scp->sc;
838 	hr = NULL;
839 
840 #if 0
841 	device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
842 #endif
843 
844 	if (hdspe_running(sc) == 1)
845 		goto end;
846 
847 	if (sc->force_speed > 0)
848 		speed = sc->force_speed;
849 
850 	/* First look for equal frequency. */
851 	for (i = 0; rate_map[i].speed != 0; i++) {
852 		if (rate_map[i].speed == speed)
853 			hr = &rate_map[i];
854 	}
855 
856 	/* If no match, just find nearest. */
857 	if (hr == NULL) {
858 		for (i = 0; rate_map[i].speed != 0; i++) {
859 			hr = &rate_map[i];
860 			threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
861 			    ((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
862 			if (speed < threshold)
863 				break;
864 		}
865 	}
866 
867 	switch (sc->type) {
868 	case HDSPE_RAYDAT:
869 	case HDSPE_AIO:
870 		period = HDSPE_FREQ_AIO;
871 		break;
872 	default:
873 		/* Unsupported card. */
874 		goto end;
875 	}
876 
877 	/* Write frequency on the device. */
878 	sc->ctrl_register &= ~HDSPE_FREQ_MASK;
879 	sc->ctrl_register |= hr->reg;
880 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
881 
882 	speed = hr->speed;
883 	if (speed > 96000)
884 		speed /= 4;
885 	else if (speed > 48000)
886 		speed /= 2;
887 
888 	/* Set DDS value. */
889 	period /= speed;
890 	hdspe_write_4(sc, HDSPE_FREQ_REG, period);
891 
892 	sc->speed = hr->speed;
893 end:
894 
895 	return (sc->speed);
896 }
897 
898 static uint32_t
899 hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
900 {
901 	struct hdspe_latency *hl;
902 	struct sc_pcminfo *scp;
903 	struct sc_chinfo *ch;
904 	struct sc_info *sc;
905 	int threshold;
906 	int i;
907 
908 	ch = data;
909 	scp = ch->parent;
910 	sc = scp->sc;
911 	hl = NULL;
912 
913 #if 0
914 	device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
915 #endif
916 
917 	if (hdspe_running(sc) == 1)
918 		goto end;
919 
920 	if (blocksize > HDSPE_LAT_BYTES_MAX)
921 		blocksize = HDSPE_LAT_BYTES_MAX;
922 	else if (blocksize < HDSPE_LAT_BYTES_MIN)
923 		blocksize = HDSPE_LAT_BYTES_MIN;
924 
925 	blocksize /= 4 /* samples */;
926 
927 	if (sc->force_period > 0)
928 		blocksize = sc->force_period;
929 
930 	/* First look for equal latency. */
931 	for (i = 0; latency_map[i].period != 0; i++) {
932 		if (latency_map[i].period == blocksize)
933 			hl = &latency_map[i];
934 	}
935 
936 	/* If no match, just find nearest. */
937 	if (hl == NULL) {
938 		for (i = 0; latency_map[i].period != 0; i++) {
939 			hl = &latency_map[i];
940 			threshold = hl->period + ((latency_map[i + 1].period != 0) ?
941 			    ((latency_map[i + 1].period - hl->period) >> 1) : 0);
942 			if (blocksize < threshold)
943 				break;
944 		}
945 	}
946 
947 	snd_mtxlock(sc->lock);
948 	sc->ctrl_register &= ~HDSPE_LAT_MASK;
949 	sc->ctrl_register |= hdspe_encode_latency(hl->n);
950 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
951 	sc->period = hl->period;
952 	snd_mtxunlock(sc->lock);
953 
954 #if 0
955 	device_printf(scp->dev, "New period=%d\n", sc->period);
956 #endif
957 
958 	sndbuf_resize(ch->buffer,
959 	    (HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4),
960 	    (sc->period * 4));
961 end:
962 
963 	return (sndbuf_getblksz(ch->buffer));
964 }
965 
966 static uint32_t hdspe_bkp_fmt[] = {
967 	SND_FORMAT(AFMT_S32_LE, 2, 0),
968 	0
969 };
970 
971 static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0};
972 
973 static struct pcmchan_caps *
974 hdspechan_getcaps(kobj_t obj, void *data)
975 {
976 	struct sc_chinfo *ch;
977 
978 	ch = data;
979 
980 #if 0
981 	struct sc_pcminfo *scl = ch->parent;
982 	device_printf(scp->dev, "hdspechan_getcaps()\n");
983 #endif
984 
985 	if (ch->caps != NULL)
986 		return (ch->caps);
987 
988 	return (&hdspe_bkp_caps);
989 }
990 
991 static kobj_method_t hdspechan_methods[] = {
992 	KOBJMETHOD(channel_init,         hdspechan_init),
993 	KOBJMETHOD(channel_free,         hdspechan_free),
994 	KOBJMETHOD(channel_setformat,    hdspechan_setformat),
995 	KOBJMETHOD(channel_setspeed,     hdspechan_setspeed),
996 	KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
997 	KOBJMETHOD(channel_trigger,      hdspechan_trigger),
998 	KOBJMETHOD(channel_getptr,       hdspechan_getptr),
999 	KOBJMETHOD(channel_getcaps,      hdspechan_getcaps),
1000 	KOBJMETHOD_END
1001 };
1002 CHANNEL_DECLARE(hdspechan);
1003 
1004 static int
1005 hdspe_pcm_probe(device_t dev)
1006 {
1007 
1008 #if 0
1009 	device_printf(dev,"hdspe_pcm_probe()\n");
1010 #endif
1011 
1012 	return (0);
1013 }
1014 
1015 static uint32_t
1016 hdspe_pcm_intr(struct sc_pcminfo *scp)
1017 {
1018 	struct sc_chinfo *ch;
1019 	struct sc_info *sc;
1020 	int i;
1021 
1022 	sc = scp->sc;
1023 
1024 	for (i = 0; i < scp->chnum; i++) {
1025 		ch = &scp->chan[i];
1026 		snd_mtxunlock(sc->lock);
1027 		chn_intr(ch->channel);
1028 		snd_mtxlock(sc->lock);
1029 	}
1030 
1031 	return (0);
1032 }
1033 
1034 static int
1035 hdspe_pcm_attach(device_t dev)
1036 {
1037 	char status[SND_STATUSLEN];
1038 	struct sc_pcminfo *scp;
1039 	const char *buf;
1040 	uint32_t pcm_flags;
1041 	int err;
1042 	int play, rec;
1043 
1044 	scp = device_get_ivars(dev);
1045 	scp->ih = &hdspe_pcm_intr;
1046 
1047 	if (scp->hc->ports & HDSPE_CHAN_AIO_ALL)
1048 		buf = "AIO";
1049 	else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL)
1050 		buf = "RayDAT";
1051 	else
1052 		buf = "?";
1053 	device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr);
1054 
1055 	/*
1056 	 * We don't register interrupt handler with snd_setup_intr
1057 	 * in pcm device. Mark pcm device as MPSAFE manually.
1058 	 */
1059 	pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE;
1060 	if (hdspe_channel_count(scp->hc->ports, 8) > HDSPE_MATRIX_MAX)
1061 		/* Disable vchan conversion, too many channels. */
1062 		pcm_flags |= SD_F_BITPERFECT;
1063 	pcm_setflags(dev, pcm_flags);
1064 
1065 	play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0;
1066 	rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0;
1067 	err = pcm_register(dev, scp, play, rec);
1068 	if (err) {
1069 		device_printf(dev, "Can't register pcm.\n");
1070 		return (ENXIO);
1071 	}
1072 
1073 	scp->chnum = 0;
1074 	if (play) {
1075 		pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
1076 		scp->chnum++;
1077 	}
1078 
1079 	if (rec) {
1080 		pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
1081 		scp->chnum++;
1082 	}
1083 
1084 	snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
1085 	    rman_get_start(scp->sc->cs),
1086 	    rman_get_start(scp->sc->irq),
1087 	    device_get_nameunit(device_get_parent(dev)));
1088 	pcm_setstatus(dev, status);
1089 
1090 	mixer_init(dev, &hdspemixer_class, scp);
1091 
1092 	return (0);
1093 }
1094 
1095 static int
1096 hdspe_pcm_detach(device_t dev)
1097 {
1098 	int err;
1099 
1100 	err = pcm_unregister(dev);
1101 	if (err) {
1102 		device_printf(dev, "Can't unregister device.\n");
1103 		return (err);
1104 	}
1105 
1106 	return (0);
1107 }
1108 
1109 static device_method_t hdspe_pcm_methods[] = {
1110 	DEVMETHOD(device_probe,     hdspe_pcm_probe),
1111 	DEVMETHOD(device_attach,    hdspe_pcm_attach),
1112 	DEVMETHOD(device_detach,    hdspe_pcm_detach),
1113 	{ 0, 0 }
1114 };
1115 
1116 static driver_t hdspe_pcm_driver = {
1117 	"pcm",
1118 	hdspe_pcm_methods,
1119 	PCM_SOFTC_SIZE,
1120 };
1121 
1122 DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0);
1123 MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1124 MODULE_VERSION(snd_hdspe, 1);
1125