xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 #define hdac_lockowned(sc)	mtx_owned((sc)->lock)
60 
61 #define HDAC_QUIRK_64BIT	(1 << 0)
62 #define HDAC_QUIRK_DMAPOS	(1 << 1)
63 #define HDAC_QUIRK_MSI		(1 << 2)
64 
65 static const struct {
66 	const char *key;
67 	uint32_t value;
68 } hdac_quirks_tab[] = {
69 	{ "64bit", HDAC_QUIRK_DMAPOS },
70 	{ "dmapos", HDAC_QUIRK_DMAPOS },
71 	{ "msi", HDAC_QUIRK_MSI },
72 };
73 
74 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
75 
76 static const struct {
77 	uint32_t	model;
78 	const char	*desc;
79 	char		quirks_on;
80 	char		quirks_off;
81 } hdac_devices[] = {
82 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
83 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
84 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
85 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
88 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
90 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
92 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
93 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
94 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
95 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
96 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
97 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
98 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
99 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
100 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
101 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
102 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
103 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
104 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
105 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
106 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
107 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
108 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
109 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
110 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
111 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
112 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
113 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
114 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
115 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
116 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
117 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
118 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
119 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
120 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
121 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
122 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
123 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
124 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
125 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
126 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
127 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
128 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
129 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
130 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
131 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
132 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
133 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
134 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
135 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
136 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
137 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
138 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
139 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
140 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
141 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
142 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
143 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
144 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
145 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
146 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
147 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
148 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
149 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
150 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
151 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
152 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
153 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
154 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
155 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
156 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
157 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
158 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
159 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
160 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
161 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
162 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
163 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
164 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
165 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
166 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
167 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
168 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
169 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
170 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
171 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
172 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
173 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
174 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
175 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
176 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
177 	/* Unknown */
178 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
179 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
180 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
181 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
182 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
183 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
184 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
185 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
186 };
187 
188 static const struct {
189 	uint16_t vendor;
190 	uint8_t reg;
191 	uint8_t mask;
192 	uint8_t enable;
193 } hdac_pcie_snoop[] = {
194 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
195 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
196 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
197 };
198 
199 /****************************************************************************
200  * Function prototypes
201  ****************************************************************************/
202 static void	hdac_intr_handler(void *);
203 static int	hdac_reset(struct hdac_softc *, int);
204 static int	hdac_get_capabilities(struct hdac_softc *);
205 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
206 static int	hdac_dma_alloc(struct hdac_softc *,
207 					struct hdac_dma *, bus_size_t);
208 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
209 static int	hdac_mem_alloc(struct hdac_softc *);
210 static void	hdac_mem_free(struct hdac_softc *);
211 static int	hdac_irq_alloc(struct hdac_softc *);
212 static void	hdac_irq_free(struct hdac_softc *);
213 static void	hdac_corb_init(struct hdac_softc *);
214 static void	hdac_rirb_init(struct hdac_softc *);
215 static void	hdac_corb_start(struct hdac_softc *);
216 static void	hdac_rirb_start(struct hdac_softc *);
217 
218 static void	hdac_attach2(void *);
219 
220 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
221 
222 static int	hdac_probe(device_t);
223 static int	hdac_attach(device_t);
224 static int	hdac_detach(device_t);
225 static int	hdac_suspend(device_t);
226 static int	hdac_resume(device_t);
227 
228 static int	hdac_rirb_flush(struct hdac_softc *sc);
229 static int	hdac_unsolq_flush(struct hdac_softc *sc);
230 
231 #define hdac_command(a1, a2, a3)	\
232 		hdac_send_command(a1, a3, a2)
233 
234 /* This function surely going to make its way into upper level someday. */
235 static void
236 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
237 {
238 	const char *res = NULL;
239 	int i = 0, j, k, len, inv;
240 
241 	if (resource_string_value(device_get_name(sc->dev),
242 	    device_get_unit(sc->dev), "config", &res) != 0)
243 		return;
244 	if (!(res != NULL && strlen(res) > 0))
245 		return;
246 	HDA_BOOTVERBOSE(
247 		device_printf(sc->dev, "Config options:");
248 	);
249 	for (;;) {
250 		while (res[i] != '\0' &&
251 		    (res[i] == ',' || isspace(res[i]) != 0))
252 			i++;
253 		if (res[i] == '\0') {
254 			HDA_BOOTVERBOSE(
255 				printf("\n");
256 			);
257 			return;
258 		}
259 		j = i;
260 		while (res[j] != '\0' &&
261 		    !(res[j] == ',' || isspace(res[j]) != 0))
262 			j++;
263 		len = j - i;
264 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
265 			inv = 2;
266 		else
267 			inv = 0;
268 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
269 			if (strncmp(res + i + inv,
270 			    hdac_quirks_tab[k].key, len - inv) != 0)
271 				continue;
272 			if (len - inv != strlen(hdac_quirks_tab[k].key))
273 				continue;
274 			HDA_BOOTVERBOSE(
275 				printf(" %s%s", (inv != 0) ? "no" : "",
276 				    hdac_quirks_tab[k].key);
277 			);
278 			if (inv == 0) {
279 				*on |= hdac_quirks_tab[k].value;
280 				*on &= ~hdac_quirks_tab[k].value;
281 			} else if (inv != 0) {
282 				*off |= hdac_quirks_tab[k].value;
283 				*off &= ~hdac_quirks_tab[k].value;
284 			}
285 			break;
286 		}
287 		i = j;
288 	}
289 }
290 
291 /****************************************************************************
292  * void hdac_intr_handler(void *)
293  *
294  * Interrupt handler. Processes interrupts received from the hdac.
295  ****************************************************************************/
296 static void
297 hdac_intr_handler(void *context)
298 {
299 	struct hdac_softc *sc;
300 	device_t dev;
301 	uint32_t intsts;
302 	uint8_t rirbsts;
303 	int i;
304 
305 	sc = (struct hdac_softc *)context;
306 	hdac_lock(sc);
307 
308 	/* Do we have anything to do? */
309 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
310 	if ((intsts & HDAC_INTSTS_GIS) == 0) {
311 		hdac_unlock(sc);
312 		return;
313 	}
314 
315 	/* Was this a controller interrupt? */
316 	if (intsts & HDAC_INTSTS_CIS) {
317 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
318 		/* Get as many responses that we can */
319 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
320 			HDAC_WRITE_1(&sc->mem,
321 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
322 			hdac_rirb_flush(sc);
323 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
324 		}
325 		if (sc->unsolq_rp != sc->unsolq_wp)
326 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
327 	}
328 
329 	if (intsts & HDAC_INTSTS_SIS_MASK) {
330 		for (i = 0; i < sc->num_ss; i++) {
331 			if ((intsts & (1 << i)) == 0)
332 				continue;
333 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
334 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
335 			if ((dev = sc->streams[i].dev) != NULL) {
336 				HDAC_STREAM_INTR(dev,
337 				    sc->streams[i].dir, sc->streams[i].stream);
338 			}
339 		}
340 	}
341 
342 	HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
343 	hdac_unlock(sc);
344 }
345 
346 static void
347 hdac_poll_callback(void *arg)
348 {
349 	struct hdac_softc *sc = arg;
350 
351 	if (sc == NULL)
352 		return;
353 
354 	hdac_lock(sc);
355 	if (sc->polling == 0) {
356 		hdac_unlock(sc);
357 		return;
358 	}
359 	callout_reset(&sc->poll_callout, sc->poll_ival,
360 	    hdac_poll_callback, sc);
361 	hdac_unlock(sc);
362 
363 	hdac_intr_handler(sc);
364 }
365 
366 /****************************************************************************
367  * int hdac_reset(hdac_softc *, int)
368  *
369  * Reset the hdac to a quiescent and known state.
370  ****************************************************************************/
371 static int
372 hdac_reset(struct hdac_softc *sc, int wakeup)
373 {
374 	uint32_t gctl;
375 	int count, i;
376 
377 	/*
378 	 * Stop all Streams DMA engine
379 	 */
380 	for (i = 0; i < sc->num_iss; i++)
381 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
382 	for (i = 0; i < sc->num_oss; i++)
383 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
384 	for (i = 0; i < sc->num_bss; i++)
385 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
386 
387 	/*
388 	 * Stop Control DMA engines.
389 	 */
390 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
391 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
392 
393 	/*
394 	 * Reset DMA position buffer.
395 	 */
396 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
397 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
398 
399 	/*
400 	 * Reset the controller. The reset must remain asserted for
401 	 * a minimum of 100us.
402 	 */
403 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
404 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
405 	count = 10000;
406 	do {
407 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
408 		if (!(gctl & HDAC_GCTL_CRST))
409 			break;
410 		DELAY(10);
411 	} while	(--count);
412 	if (gctl & HDAC_GCTL_CRST) {
413 		device_printf(sc->dev, "Unable to put hdac in reset\n");
414 		return (ENXIO);
415 	}
416 
417 	/* If wakeup is not requested - leave the controller in reset state. */
418 	if (!wakeup)
419 		return (0);
420 
421 	DELAY(100);
422 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
423 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
424 	count = 10000;
425 	do {
426 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
427 		if (gctl & HDAC_GCTL_CRST)
428 			break;
429 		DELAY(10);
430 	} while (--count);
431 	if (!(gctl & HDAC_GCTL_CRST)) {
432 		device_printf(sc->dev, "Device stuck in reset\n");
433 		return (ENXIO);
434 	}
435 
436 	/*
437 	 * Wait for codecs to finish their own reset sequence. The delay here
438 	 * should be of 250us but for some reasons, it's not enough on my
439 	 * computer. Let's use twice as much as necessary to make sure that
440 	 * it's reset properly.
441 	 */
442 	DELAY(1000);
443 
444 	return (0);
445 }
446 
447 
448 /****************************************************************************
449  * int hdac_get_capabilities(struct hdac_softc *);
450  *
451  * Retreive the general capabilities of the hdac;
452  *	Number of Input Streams
453  *	Number of Output Streams
454  *	Number of bidirectional Streams
455  *	64bit ready
456  *	CORB and RIRB sizes
457  ****************************************************************************/
458 static int
459 hdac_get_capabilities(struct hdac_softc *sc)
460 {
461 	uint16_t gcap;
462 	uint8_t corbsize, rirbsize;
463 
464 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
465 	sc->num_iss = HDAC_GCAP_ISS(gcap);
466 	sc->num_oss = HDAC_GCAP_OSS(gcap);
467 	sc->num_bss = HDAC_GCAP_BSS(gcap);
468 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
469 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
470 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
471 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
472 		sc->support_64bit = 1;
473 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
474 		sc->support_64bit = 0;
475 
476 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
477 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
478 	    HDAC_CORBSIZE_CORBSZCAP_256)
479 		sc->corb_size = 256;
480 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
481 	    HDAC_CORBSIZE_CORBSZCAP_16)
482 		sc->corb_size = 16;
483 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
484 	    HDAC_CORBSIZE_CORBSZCAP_2)
485 		sc->corb_size = 2;
486 	else {
487 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
488 		    __func__, corbsize);
489 		return (ENXIO);
490 	}
491 
492 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
493 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
494 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
495 		sc->rirb_size = 256;
496 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
497 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
498 		sc->rirb_size = 16;
499 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
500 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
501 		sc->rirb_size = 2;
502 	else {
503 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
504 		    __func__, rirbsize);
505 		return (ENXIO);
506 	}
507 
508 	HDA_BOOTVERBOSE(
509 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
510 		    "NSDO %d%s, CORB %d, RIRB %d\n",
511 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
512 		    sc->support_64bit ? ", 64bit" : "",
513 		    sc->corb_size, sc->rirb_size);
514 	);
515 
516 	return (0);
517 }
518 
519 
520 /****************************************************************************
521  * void hdac_dma_cb
522  *
523  * This function is called by bus_dmamap_load when the mapping has been
524  * established. We just record the physical address of the mapping into
525  * the struct hdac_dma passed in.
526  ****************************************************************************/
527 static void
528 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
529 {
530 	struct hdac_dma *dma;
531 
532 	if (error == 0) {
533 		dma = (struct hdac_dma *)callback_arg;
534 		dma->dma_paddr = segs[0].ds_addr;
535 	}
536 }
537 
538 
539 /****************************************************************************
540  * int hdac_dma_alloc
541  *
542  * This function allocate and setup a dma region (struct hdac_dma).
543  * It must be freed by a corresponding hdac_dma_free.
544  ****************************************************************************/
545 static int
546 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
547 {
548 	bus_size_t roundsz;
549 	int result;
550 
551 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
552 	bzero(dma, sizeof(*dma));
553 
554 	/*
555 	 * Create a DMA tag
556 	 */
557 	result = bus_dma_tag_create(
558 	    bus_get_dma_tag(sc->dev),		/* parent */
559 	    HDA_DMA_ALIGNMENT,			/* alignment */
560 	    0,					/* boundary */
561 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
562 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
563 	    BUS_SPACE_MAXADDR,			/* highaddr */
564 	    NULL,				/* filtfunc */
565 	    NULL,				/* fistfuncarg */
566 	    roundsz, 				/* maxsize */
567 	    1,					/* nsegments */
568 	    roundsz, 				/* maxsegsz */
569 	    0,					/* flags */
570 	    NULL,				/* lockfunc */
571 	    NULL,				/* lockfuncarg */
572 	    &dma->dma_tag);			/* dmat */
573 	if (result != 0) {
574 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
575 		    __func__, result);
576 		goto hdac_dma_alloc_fail;
577 	}
578 
579 	/*
580 	 * Allocate DMA memory
581 	 */
582 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
583 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
584 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
585 	     BUS_DMA_COHERENT),
586 	    &dma->dma_map);
587 	if (result != 0) {
588 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
589 		    __func__, result);
590 		goto hdac_dma_alloc_fail;
591 	}
592 
593 	dma->dma_size = roundsz;
594 
595 	/*
596 	 * Map the memory
597 	 */
598 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
599 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
600 	if (result != 0 || dma->dma_paddr == 0) {
601 		if (result == 0)
602 			result = ENOMEM;
603 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
604 		    __func__, result);
605 		goto hdac_dma_alloc_fail;
606 	}
607 
608 	HDA_BOOTHVERBOSE(
609 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
610 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
611 	);
612 
613 	return (0);
614 
615 hdac_dma_alloc_fail:
616 	hdac_dma_free(sc, dma);
617 
618 	return (result);
619 }
620 
621 
622 /****************************************************************************
623  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
624  *
625  * Free a struct dhac_dma that has been previously allocated via the
626  * hdac_dma_alloc function.
627  ****************************************************************************/
628 static void
629 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
630 {
631 	if (dma->dma_paddr != 0) {
632 		/* Flush caches */
633 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
634 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
635 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
636 		dma->dma_paddr = 0;
637 	}
638 	if (dma->dma_vaddr != NULL) {
639 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
640 		dma->dma_vaddr = NULL;
641 	}
642 	if (dma->dma_tag != NULL) {
643 		bus_dma_tag_destroy(dma->dma_tag);
644 		dma->dma_tag = NULL;
645 	}
646 	dma->dma_size = 0;
647 }
648 
649 /****************************************************************************
650  * int hdac_mem_alloc(struct hdac_softc *)
651  *
652  * Allocate all the bus resources necessary to speak with the physical
653  * controller.
654  ****************************************************************************/
655 static int
656 hdac_mem_alloc(struct hdac_softc *sc)
657 {
658 	struct hdac_mem *mem;
659 
660 	mem = &sc->mem;
661 	mem->mem_rid = PCIR_BAR(0);
662 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
663 	    &mem->mem_rid, RF_ACTIVE);
664 	if (mem->mem_res == NULL) {
665 		device_printf(sc->dev,
666 		    "%s: Unable to allocate memory resource\n", __func__);
667 		return (ENOMEM);
668 	}
669 	mem->mem_tag = rman_get_bustag(mem->mem_res);
670 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
671 
672 	return (0);
673 }
674 
675 /****************************************************************************
676  * void hdac_mem_free(struct hdac_softc *)
677  *
678  * Free up resources previously allocated by hdac_mem_alloc.
679  ****************************************************************************/
680 static void
681 hdac_mem_free(struct hdac_softc *sc)
682 {
683 	struct hdac_mem *mem;
684 
685 	mem = &sc->mem;
686 	if (mem->mem_res != NULL)
687 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
688 		    mem->mem_res);
689 	mem->mem_res = NULL;
690 }
691 
692 /****************************************************************************
693  * int hdac_irq_alloc(struct hdac_softc *)
694  *
695  * Allocate and setup the resources necessary for interrupt handling.
696  ****************************************************************************/
697 static int
698 hdac_irq_alloc(struct hdac_softc *sc)
699 {
700 	struct hdac_irq *irq;
701 	int result;
702 
703 	irq = &sc->irq;
704 	irq->irq_rid = 0x0;
705 
706 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
707 	    (result = pci_msi_count(sc->dev)) == 1 &&
708 	    pci_alloc_msi(sc->dev, &result) == 0)
709 		irq->irq_rid = 0x1;
710 
711 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
712 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
713 	if (irq->irq_res == NULL) {
714 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
715 		    __func__);
716 		goto hdac_irq_alloc_fail;
717 	}
718 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
719 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
720 	if (result != 0) {
721 		device_printf(sc->dev,
722 		    "%s: Unable to setup interrupt handler (%d)\n",
723 		    __func__, result);
724 		goto hdac_irq_alloc_fail;
725 	}
726 
727 	return (0);
728 
729 hdac_irq_alloc_fail:
730 	hdac_irq_free(sc);
731 
732 	return (ENXIO);
733 }
734 
735 /****************************************************************************
736  * void hdac_irq_free(struct hdac_softc *)
737  *
738  * Free up resources previously allocated by hdac_irq_alloc.
739  ****************************************************************************/
740 static void
741 hdac_irq_free(struct hdac_softc *sc)
742 {
743 	struct hdac_irq *irq;
744 
745 	irq = &sc->irq;
746 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
747 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
748 	if (irq->irq_res != NULL)
749 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
750 		    irq->irq_res);
751 	if (irq->irq_rid == 0x1)
752 		pci_release_msi(sc->dev);
753 	irq->irq_handle = NULL;
754 	irq->irq_res = NULL;
755 	irq->irq_rid = 0x0;
756 }
757 
758 /****************************************************************************
759  * void hdac_corb_init(struct hdac_softc *)
760  *
761  * Initialize the corb registers for operations but do not start it up yet.
762  * The CORB engine must not be running when this function is called.
763  ****************************************************************************/
764 static void
765 hdac_corb_init(struct hdac_softc *sc)
766 {
767 	uint8_t corbsize;
768 	uint64_t corbpaddr;
769 
770 	/* Setup the CORB size. */
771 	switch (sc->corb_size) {
772 	case 256:
773 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
774 		break;
775 	case 16:
776 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
777 		break;
778 	case 2:
779 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
780 		break;
781 	default:
782 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
783 	}
784 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
785 
786 	/* Setup the CORB Address in the hdac */
787 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
788 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
789 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
790 
791 	/* Set the WP and RP */
792 	sc->corb_wp = 0;
793 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
794 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
795 	/*
796 	 * The HDA specification indicates that the CORBRPRST bit will always
797 	 * read as zero. Unfortunately, it seems that at least the 82801G
798 	 * doesn't reset the bit to zero, which stalls the corb engine.
799 	 * manually reset the bit to zero before continuing.
800 	 */
801 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
802 
803 	/* Enable CORB error reporting */
804 #if 0
805 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
806 #endif
807 }
808 
809 /****************************************************************************
810  * void hdac_rirb_init(struct hdac_softc *)
811  *
812  * Initialize the rirb registers for operations but do not start it up yet.
813  * The RIRB engine must not be running when this function is called.
814  ****************************************************************************/
815 static void
816 hdac_rirb_init(struct hdac_softc *sc)
817 {
818 	uint8_t rirbsize;
819 	uint64_t rirbpaddr;
820 
821 	/* Setup the RIRB size. */
822 	switch (sc->rirb_size) {
823 	case 256:
824 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
825 		break;
826 	case 16:
827 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
828 		break;
829 	case 2:
830 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
831 		break;
832 	default:
833 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
834 	}
835 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
836 
837 	/* Setup the RIRB Address in the hdac */
838 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
839 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
840 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
841 
842 	/* Setup the WP and RP */
843 	sc->rirb_rp = 0;
844 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
845 
846 	/* Setup the interrupt threshold */
847 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
848 
849 	/* Enable Overrun and response received reporting */
850 #if 0
851 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
852 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
853 #else
854 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
855 #endif
856 
857 	/*
858 	 * Make sure that the Host CPU cache doesn't contain any dirty
859 	 * cache lines that falls in the rirb. If I understood correctly, it
860 	 * should be sufficient to do this only once as the rirb is purely
861 	 * read-only from now on.
862 	 */
863 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
864 	    BUS_DMASYNC_PREREAD);
865 }
866 
867 /****************************************************************************
868  * void hdac_corb_start(hdac_softc *)
869  *
870  * Startup the corb DMA engine
871  ****************************************************************************/
872 static void
873 hdac_corb_start(struct hdac_softc *sc)
874 {
875 	uint32_t corbctl;
876 
877 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
878 	corbctl |= HDAC_CORBCTL_CORBRUN;
879 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
880 }
881 
882 /****************************************************************************
883  * void hdac_rirb_start(hdac_softc *)
884  *
885  * Startup the rirb DMA engine
886  ****************************************************************************/
887 static void
888 hdac_rirb_start(struct hdac_softc *sc)
889 {
890 	uint32_t rirbctl;
891 
892 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
893 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
894 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
895 }
896 
897 static int
898 hdac_rirb_flush(struct hdac_softc *sc)
899 {
900 	struct hdac_rirb *rirb_base, *rirb;
901 	nid_t cad;
902 	uint32_t resp, resp_ex;
903 	uint8_t rirbwp;
904 	int ret;
905 
906 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
907 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
908 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
909 	    BUS_DMASYNC_POSTREAD);
910 
911 	ret = 0;
912 	while (sc->rirb_rp != rirbwp) {
913 		sc->rirb_rp++;
914 		sc->rirb_rp %= sc->rirb_size;
915 		rirb = &rirb_base[sc->rirb_rp];
916 		resp = le32toh(rirb->response);
917 		resp_ex = le32toh(rirb->response_ex);
918 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
919 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
920 			sc->unsolq[sc->unsolq_wp++] = resp;
921 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
922 			sc->unsolq[sc->unsolq_wp++] = cad;
923 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
924 		} else if (sc->codecs[cad].pending <= 0) {
925 			device_printf(sc->dev, "Unexpected unsolicited "
926 			    "response from address %d: %08x\n", cad, resp);
927 		} else {
928 			sc->codecs[cad].response = resp;
929 			sc->codecs[cad].pending--;
930 		}
931 		ret++;
932 	}
933 
934 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
935 	    BUS_DMASYNC_PREREAD);
936 	return (ret);
937 }
938 
939 static int
940 hdac_unsolq_flush(struct hdac_softc *sc)
941 {
942 	device_t child;
943 	nid_t cad;
944 	uint32_t resp;
945 	int ret = 0;
946 
947 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
948 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
949 		while (sc->unsolq_rp != sc->unsolq_wp) {
950 			resp = sc->unsolq[sc->unsolq_rp++];
951 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
952 			cad = sc->unsolq[sc->unsolq_rp++];
953 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
954 			if ((child = sc->codecs[cad].dev) != NULL)
955 				HDAC_UNSOL_INTR(child, resp);
956 			ret++;
957 		}
958 		sc->unsolq_st = HDAC_UNSOLQ_READY;
959 	}
960 
961 	return (ret);
962 }
963 
964 /****************************************************************************
965  * uint32_t hdac_command_sendone_internal
966  *
967  * Wrapper function that sends only one command to a given codec
968  ****************************************************************************/
969 static uint32_t
970 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
971 {
972 	int timeout;
973 	uint32_t *corb;
974 
975 	if (!hdac_lockowned(sc))
976 		device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
977 	verb &= ~HDA_CMD_CAD_MASK;
978 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
979 	sc->codecs[cad].response = HDA_INVALID;
980 
981 	sc->codecs[cad].pending++;
982 	sc->corb_wp++;
983 	sc->corb_wp %= sc->corb_size;
984 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
985 	bus_dmamap_sync(sc->corb_dma.dma_tag,
986 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
987 	corb[sc->corb_wp] = htole32(verb);
988 	bus_dmamap_sync(sc->corb_dma.dma_tag,
989 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
990 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
991 
992 	timeout = 10000;
993 	do {
994 		if (hdac_rirb_flush(sc) == 0)
995 			DELAY(10);
996 	} while (sc->codecs[cad].pending != 0 && --timeout);
997 
998 	if (sc->codecs[cad].pending != 0) {
999 		device_printf(sc->dev, "Command timeout on address %d\n", cad);
1000 		sc->codecs[cad].pending = 0;
1001 	}
1002 
1003 	if (sc->unsolq_rp != sc->unsolq_wp)
1004 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1005 	return (sc->codecs[cad].response);
1006 }
1007 
1008 /****************************************************************************
1009  * Device Methods
1010  ****************************************************************************/
1011 
1012 /****************************************************************************
1013  * int hdac_probe(device_t)
1014  *
1015  * Probe for the presence of an hdac. If none is found, check for a generic
1016  * match using the subclass of the device.
1017  ****************************************************************************/
1018 static int
1019 hdac_probe(device_t dev)
1020 {
1021 	int i, result;
1022 	uint32_t model;
1023 	uint16_t class, subclass;
1024 	char desc[64];
1025 
1026 	model = (uint32_t)pci_get_device(dev) << 16;
1027 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1028 	class = pci_get_class(dev);
1029 	subclass = pci_get_subclass(dev);
1030 
1031 	bzero(desc, sizeof(desc));
1032 	result = ENXIO;
1033 	for (i = 0; i < nitems(hdac_devices); i++) {
1034 		if (hdac_devices[i].model == model) {
1035 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1036 			result = BUS_PROBE_DEFAULT;
1037 			break;
1038 		}
1039 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1040 		    class == PCIC_MULTIMEDIA &&
1041 		    subclass == PCIS_MULTIMEDIA_HDA) {
1042 			snprintf(desc, sizeof(desc),
1043 			    "%s (0x%04x)",
1044 			    hdac_devices[i].desc, pci_get_device(dev));
1045 			result = BUS_PROBE_GENERIC;
1046 			break;
1047 		}
1048 	}
1049 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1050 	    subclass == PCIS_MULTIMEDIA_HDA) {
1051 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1052 		result = BUS_PROBE_GENERIC;
1053 	}
1054 	if (result != ENXIO) {
1055 		strlcat(desc, " HDA Controller", sizeof(desc));
1056 		device_set_desc_copy(dev, desc);
1057 	}
1058 
1059 	return (result);
1060 }
1061 
1062 static void
1063 hdac_unsolq_task(void *context, int pending)
1064 {
1065 	struct hdac_softc *sc;
1066 
1067 	sc = (struct hdac_softc *)context;
1068 
1069 	hdac_lock(sc);
1070 	hdac_unsolq_flush(sc);
1071 	hdac_unlock(sc);
1072 }
1073 
1074 /****************************************************************************
1075  * int hdac_attach(device_t)
1076  *
1077  * Attach the device into the kernel. Interrupts usually won't be enabled
1078  * when this function is called. Setup everything that doesn't require
1079  * interrupts and defer probing of codecs until interrupts are enabled.
1080  ****************************************************************************/
1081 static int
1082 hdac_attach(device_t dev)
1083 {
1084 	struct hdac_softc *sc;
1085 	int result;
1086 	int i, devid = -1;
1087 	uint32_t model;
1088 	uint16_t class, subclass;
1089 	uint16_t vendor;
1090 	uint8_t v;
1091 
1092 	sc = device_get_softc(dev);
1093 	HDA_BOOTVERBOSE(
1094 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1095 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1096 		device_printf(dev, "HDA Driver Revision: %s\n",
1097 		    HDA_DRV_TEST_REV);
1098 	);
1099 
1100 	model = (uint32_t)pci_get_device(dev) << 16;
1101 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1102 	class = pci_get_class(dev);
1103 	subclass = pci_get_subclass(dev);
1104 
1105 	for (i = 0; i < nitems(hdac_devices); i++) {
1106 		if (hdac_devices[i].model == model) {
1107 			devid = i;
1108 			break;
1109 		}
1110 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1111 		    class == PCIC_MULTIMEDIA &&
1112 		    subclass == PCIS_MULTIMEDIA_HDA) {
1113 			devid = i;
1114 			break;
1115 		}
1116 	}
1117 
1118 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1119 	sc->dev = dev;
1120 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1121 	callout_init(&sc->poll_callout, 1);
1122 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1123 		sc->codecs[i].dev = NULL;
1124 	if (devid >= 0) {
1125 		sc->quirks_on = hdac_devices[devid].quirks_on;
1126 		sc->quirks_off = hdac_devices[devid].quirks_off;
1127 	} else {
1128 		sc->quirks_on = 0;
1129 		sc->quirks_off = 0;
1130 	}
1131 	if (resource_int_value(device_get_name(dev),
1132 	    device_get_unit(dev), "msi", &i) == 0) {
1133 		if (i == 0)
1134 			sc->quirks_off |= HDAC_QUIRK_MSI;
1135 		else {
1136 			sc->quirks_on |= HDAC_QUIRK_MSI;
1137 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1138 		}
1139 	}
1140 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1141 	HDA_BOOTVERBOSE(
1142 		device_printf(sc->dev,
1143 		    "Config options: on=0x%08x off=0x%08x\n",
1144 		    sc->quirks_on, sc->quirks_off);
1145 	);
1146 	sc->poll_ival = hz;
1147 	if (resource_int_value(device_get_name(dev),
1148 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1149 		sc->polling = 1;
1150 	else
1151 		sc->polling = 0;
1152 
1153 	pci_enable_busmaster(dev);
1154 
1155 	vendor = pci_get_vendor(dev);
1156 	if (vendor == INTEL_VENDORID) {
1157 		/* TCSEL -> TC0 */
1158 		v = pci_read_config(dev, 0x44, 1);
1159 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1160 		HDA_BOOTHVERBOSE(
1161 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1162 			    pci_read_config(dev, 0x44, 1));
1163 		);
1164 	}
1165 
1166 #if defined(__i386__) || defined(__amd64__)
1167 	sc->flags |= HDAC_F_DMA_NOCACHE;
1168 
1169 	if (resource_int_value(device_get_name(dev),
1170 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1171 #else
1172 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1173 #endif
1174 		/*
1175 		 * Try to enable PCIe snoop to avoid messing around with
1176 		 * uncacheable DMA attribute. Since PCIe snoop register
1177 		 * config is pretty much vendor specific, there are no
1178 		 * general solutions on how to enable it, forcing us (even
1179 		 * Microsoft) to enable uncacheable or write combined DMA
1180 		 * by default.
1181 		 *
1182 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1183 		 */
1184 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1185 			if (hdac_pcie_snoop[i].vendor != vendor)
1186 				continue;
1187 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1188 			if (hdac_pcie_snoop[i].reg == 0x00)
1189 				break;
1190 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1191 			if ((v & hdac_pcie_snoop[i].enable) ==
1192 			    hdac_pcie_snoop[i].enable)
1193 				break;
1194 			v &= hdac_pcie_snoop[i].mask;
1195 			v |= hdac_pcie_snoop[i].enable;
1196 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1197 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1198 			if ((v & hdac_pcie_snoop[i].enable) !=
1199 			    hdac_pcie_snoop[i].enable) {
1200 				HDA_BOOTVERBOSE(
1201 					device_printf(dev,
1202 					    "WARNING: Failed to enable PCIe "
1203 					    "snoop!\n");
1204 				);
1205 #if defined(__i386__) || defined(__amd64__)
1206 				sc->flags |= HDAC_F_DMA_NOCACHE;
1207 #endif
1208 			}
1209 			break;
1210 		}
1211 #if defined(__i386__) || defined(__amd64__)
1212 	}
1213 #endif
1214 
1215 	HDA_BOOTHVERBOSE(
1216 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1217 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1218 		    "Uncacheable" : "PCIe snoop", vendor);
1219 	);
1220 
1221 	/* Allocate resources */
1222 	result = hdac_mem_alloc(sc);
1223 	if (result != 0)
1224 		goto hdac_attach_fail;
1225 	result = hdac_irq_alloc(sc);
1226 	if (result != 0)
1227 		goto hdac_attach_fail;
1228 
1229 	/* Get Capabilities */
1230 	result = hdac_get_capabilities(sc);
1231 	if (result != 0)
1232 		goto hdac_attach_fail;
1233 
1234 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1235 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1236 	    sc->corb_size * sizeof(uint32_t));
1237 	if (result != 0)
1238 		goto hdac_attach_fail;
1239 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1240 	    sc->rirb_size * sizeof(struct hdac_rirb));
1241 	if (result != 0)
1242 		goto hdac_attach_fail;
1243 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1244 	    M_HDAC, M_ZERO | M_WAITOK);
1245 	for (i = 0; i < sc->num_ss; i++) {
1246 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1247 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1248 		if (result != 0)
1249 			goto hdac_attach_fail;
1250 	}
1251 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1252 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1253 			HDA_BOOTVERBOSE(
1254 				device_printf(dev, "Failed to "
1255 				    "allocate DMA pos buffer "
1256 				    "(non-fatal)\n");
1257 			);
1258 		} else {
1259 			uint64_t addr = sc->pos_dma.dma_paddr;
1260 
1261 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1262 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1263 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1264 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1265 		}
1266 	}
1267 
1268 	result = bus_dma_tag_create(
1269 	    bus_get_dma_tag(sc->dev),		/* parent */
1270 	    HDA_DMA_ALIGNMENT,			/* alignment */
1271 	    0,					/* boundary */
1272 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1273 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1274 	    BUS_SPACE_MAXADDR,			/* highaddr */
1275 	    NULL,				/* filtfunc */
1276 	    NULL,				/* fistfuncarg */
1277 	    HDA_BUFSZ_MAX, 			/* maxsize */
1278 	    1,					/* nsegments */
1279 	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1280 	    0,					/* flags */
1281 	    NULL,				/* lockfunc */
1282 	    NULL,				/* lockfuncarg */
1283 	    &sc->chan_dmat);			/* dmat */
1284 	if (result != 0) {
1285 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1286 		     __func__, result);
1287 		goto hdac_attach_fail;
1288 	}
1289 
1290 	/* Quiesce everything */
1291 	HDA_BOOTHVERBOSE(
1292 		device_printf(dev, "Reset controller...\n");
1293 	);
1294 	hdac_reset(sc, 1);
1295 
1296 	/* Initialize the CORB and RIRB */
1297 	hdac_corb_init(sc);
1298 	hdac_rirb_init(sc);
1299 
1300 	/* Defer remaining of initialization until interrupts are enabled */
1301 	sc->intrhook.ich_func = hdac_attach2;
1302 	sc->intrhook.ich_arg = (void *)sc;
1303 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1304 		sc->intrhook.ich_func = NULL;
1305 		hdac_attach2((void *)sc);
1306 	}
1307 
1308 	return (0);
1309 
1310 hdac_attach_fail:
1311 	hdac_irq_free(sc);
1312 	if (sc->streams != NULL)
1313 		for (i = 0; i < sc->num_ss; i++)
1314 			hdac_dma_free(sc, &sc->streams[i].bdl);
1315 	free(sc->streams, M_HDAC);
1316 	hdac_dma_free(sc, &sc->rirb_dma);
1317 	hdac_dma_free(sc, &sc->corb_dma);
1318 	hdac_mem_free(sc);
1319 	snd_mtxfree(sc->lock);
1320 
1321 	return (ENXIO);
1322 }
1323 
1324 static int
1325 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1326 {
1327 	struct hdac_softc *sc;
1328 	device_t *devlist;
1329 	device_t dev;
1330 	int devcount, i, err, val;
1331 
1332 	dev = oidp->oid_arg1;
1333 	sc = device_get_softc(dev);
1334 	if (sc == NULL)
1335 		return (EINVAL);
1336 	val = 0;
1337 	err = sysctl_handle_int(oidp, &val, 0, req);
1338 	if (err != 0 || req->newptr == NULL || val == 0)
1339 		return (err);
1340 
1341 	/* XXX: Temporary. For debugging. */
1342 	if (val == 100) {
1343 		hdac_suspend(dev);
1344 		return (0);
1345 	} else if (val == 101) {
1346 		hdac_resume(dev);
1347 		return (0);
1348 	}
1349 
1350 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1351 		return (err);
1352 	hdac_lock(sc);
1353 	for (i = 0; i < devcount; i++)
1354 		HDAC_PINDUMP(devlist[i]);
1355 	hdac_unlock(sc);
1356 	free(devlist, M_TEMP);
1357 	return (0);
1358 }
1359 
1360 static int
1361 hdac_mdata_rate(uint16_t fmt)
1362 {
1363 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1364 	int rate, bits;
1365 
1366 	if (fmt & (1 << 14))
1367 		rate = 44100;
1368 	else
1369 		rate = 48000;
1370 	rate *= ((fmt >> 11) & 0x07) + 1;
1371 	rate /= ((fmt >> 8) & 0x07) + 1;
1372 	bits = mbits[(fmt >> 4) & 0x03];
1373 	bits *= (fmt & 0x0f) + 1;
1374 	return (rate * bits);
1375 }
1376 
1377 static int
1378 hdac_bdata_rate(uint16_t fmt, int output)
1379 {
1380 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1381 	int rate, bits;
1382 
1383 	rate = 48000;
1384 	rate *= ((fmt >> 11) & 0x07) + 1;
1385 	bits = bbits[(fmt >> 4) & 0x03];
1386 	bits *= (fmt & 0x0f) + 1;
1387 	if (!output)
1388 		bits = ((bits + 7) & ~0x07) + 10;
1389 	return (rate * bits);
1390 }
1391 
1392 static void
1393 hdac_poll_reinit(struct hdac_softc *sc)
1394 {
1395 	int i, pollticks, min = 1000000;
1396 	struct hdac_stream *s;
1397 
1398 	if (sc->polling == 0)
1399 		return;
1400 	if (sc->unsol_registered > 0)
1401 		min = hz / 2;
1402 	for (i = 0; i < sc->num_ss; i++) {
1403 		s = &sc->streams[i];
1404 		if (s->running == 0)
1405 			continue;
1406 		pollticks = ((uint64_t)hz * s->blksz) /
1407 		    (hdac_mdata_rate(s->format) / 8);
1408 		pollticks >>= 1;
1409 		if (pollticks > hz)
1410 			pollticks = hz;
1411 		if (pollticks < 1) {
1412 			HDA_BOOTVERBOSE(
1413 				device_printf(sc->dev,
1414 				    "poll interval < 1 tick !\n");
1415 			);
1416 			pollticks = 1;
1417 		}
1418 		if (min > pollticks)
1419 			min = pollticks;
1420 	}
1421 	HDA_BOOTVERBOSE(
1422 		device_printf(sc->dev,
1423 		    "poll interval %d -> %d ticks\n",
1424 		    sc->poll_ival, min);
1425 	);
1426 	sc->poll_ival = min;
1427 	if (min == 1000000)
1428 		callout_stop(&sc->poll_callout);
1429 	else
1430 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1431 }
1432 
1433 static int
1434 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1435 {
1436 	struct hdac_softc *sc;
1437 	device_t dev;
1438 	uint32_t ctl;
1439 	int err, val;
1440 
1441 	dev = oidp->oid_arg1;
1442 	sc = device_get_softc(dev);
1443 	if (sc == NULL)
1444 		return (EINVAL);
1445 	hdac_lock(sc);
1446 	val = sc->polling;
1447 	hdac_unlock(sc);
1448 	err = sysctl_handle_int(oidp, &val, 0, req);
1449 
1450 	if (err != 0 || req->newptr == NULL)
1451 		return (err);
1452 	if (val < 0 || val > 1)
1453 		return (EINVAL);
1454 
1455 	hdac_lock(sc);
1456 	if (val != sc->polling) {
1457 		if (val == 0) {
1458 			callout_stop(&sc->poll_callout);
1459 			hdac_unlock(sc);
1460 			callout_drain(&sc->poll_callout);
1461 			hdac_lock(sc);
1462 			sc->polling = 0;
1463 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1464 			ctl |= HDAC_INTCTL_GIE;
1465 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1466 		} else {
1467 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1468 			ctl &= ~HDAC_INTCTL_GIE;
1469 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1470 			sc->polling = 1;
1471 			hdac_poll_reinit(sc);
1472 		}
1473 	}
1474 	hdac_unlock(sc);
1475 
1476 	return (err);
1477 }
1478 
1479 static void
1480 hdac_attach2(void *arg)
1481 {
1482 	struct hdac_softc *sc;
1483 	device_t child;
1484 	uint32_t vendorid, revisionid;
1485 	int i;
1486 	uint16_t statests;
1487 
1488 	sc = (struct hdac_softc *)arg;
1489 
1490 	hdac_lock(sc);
1491 
1492 	/* Remove ourselves from the config hooks */
1493 	if (sc->intrhook.ich_func != NULL) {
1494 		config_intrhook_disestablish(&sc->intrhook);
1495 		sc->intrhook.ich_func = NULL;
1496 	}
1497 
1498 	HDA_BOOTHVERBOSE(
1499 		device_printf(sc->dev, "Starting CORB Engine...\n");
1500 	);
1501 	hdac_corb_start(sc);
1502 	HDA_BOOTHVERBOSE(
1503 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1504 	);
1505 	hdac_rirb_start(sc);
1506 	HDA_BOOTHVERBOSE(
1507 		device_printf(sc->dev,
1508 		    "Enabling controller interrupt...\n");
1509 	);
1510 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1511 	    HDAC_GCTL_UNSOL);
1512 	if (sc->polling == 0) {
1513 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1514 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1515 	}
1516 	DELAY(1000);
1517 
1518 	HDA_BOOTHVERBOSE(
1519 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1520 	);
1521 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1522 	hdac_unlock(sc);
1523 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1524 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1525 			HDA_BOOTHVERBOSE(
1526 				device_printf(sc->dev,
1527 				    "Found CODEC at address %d\n", i);
1528 			);
1529 			hdac_lock(sc);
1530 			vendorid = hdac_send_command(sc, i,
1531 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1532 			revisionid = hdac_send_command(sc, i,
1533 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1534 			hdac_unlock(sc);
1535 			if (vendorid == HDA_INVALID &&
1536 			    revisionid == HDA_INVALID) {
1537 				device_printf(sc->dev,
1538 				    "CODEC is not responding!\n");
1539 				continue;
1540 			}
1541 			sc->codecs[i].vendor_id =
1542 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1543 			sc->codecs[i].device_id =
1544 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1545 			sc->codecs[i].revision_id =
1546 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1547 			sc->codecs[i].stepping_id =
1548 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1549 			child = device_add_child(sc->dev, "hdacc", -1);
1550 			if (child == NULL) {
1551 				device_printf(sc->dev,
1552 				    "Failed to add CODEC device\n");
1553 				continue;
1554 			}
1555 			device_set_ivars(child, (void *)(intptr_t)i);
1556 			sc->codecs[i].dev = child;
1557 		}
1558 	}
1559 	bus_generic_attach(sc->dev);
1560 
1561 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1562 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1563 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1564 	    sysctl_hdac_pindump, "I", "Dump pin states/data");
1565 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1566 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1567 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1568 	    sysctl_hdac_polling, "I", "Enable polling mode");
1569 }
1570 
1571 /****************************************************************************
1572  * int hdac_suspend(device_t)
1573  *
1574  * Suspend and power down HDA bus and codecs.
1575  ****************************************************************************/
1576 static int
1577 hdac_suspend(device_t dev)
1578 {
1579 	struct hdac_softc *sc = device_get_softc(dev);
1580 
1581 	HDA_BOOTHVERBOSE(
1582 		device_printf(dev, "Suspend...\n");
1583 	);
1584 	bus_generic_suspend(dev);
1585 
1586 	hdac_lock(sc);
1587 	HDA_BOOTHVERBOSE(
1588 		device_printf(dev, "Reset controller...\n");
1589 	);
1590 	callout_stop(&sc->poll_callout);
1591 	hdac_reset(sc, 0);
1592 	hdac_unlock(sc);
1593 	callout_drain(&sc->poll_callout);
1594 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1595 	HDA_BOOTHVERBOSE(
1596 		device_printf(dev, "Suspend done\n");
1597 	);
1598 	return (0);
1599 }
1600 
1601 /****************************************************************************
1602  * int hdac_resume(device_t)
1603  *
1604  * Powerup and restore HDA bus and codecs state.
1605  ****************************************************************************/
1606 static int
1607 hdac_resume(device_t dev)
1608 {
1609 	struct hdac_softc *sc = device_get_softc(dev);
1610 	int error;
1611 
1612 	HDA_BOOTHVERBOSE(
1613 		device_printf(dev, "Resume...\n");
1614 	);
1615 	hdac_lock(sc);
1616 
1617 	/* Quiesce everything */
1618 	HDA_BOOTHVERBOSE(
1619 		device_printf(dev, "Reset controller...\n");
1620 	);
1621 	hdac_reset(sc, 1);
1622 
1623 	/* Initialize the CORB and RIRB */
1624 	hdac_corb_init(sc);
1625 	hdac_rirb_init(sc);
1626 
1627 	HDA_BOOTHVERBOSE(
1628 		device_printf(dev, "Starting CORB Engine...\n");
1629 	);
1630 	hdac_corb_start(sc);
1631 	HDA_BOOTHVERBOSE(
1632 		device_printf(dev, "Starting RIRB Engine...\n");
1633 	);
1634 	hdac_rirb_start(sc);
1635 	HDA_BOOTHVERBOSE(
1636 		device_printf(dev, "Enabling controller interrupt...\n");
1637 	);
1638 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1639 	    HDAC_GCTL_UNSOL);
1640 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1641 	DELAY(1000);
1642 	hdac_poll_reinit(sc);
1643 	hdac_unlock(sc);
1644 
1645 	error = bus_generic_resume(dev);
1646 	HDA_BOOTHVERBOSE(
1647 		device_printf(dev, "Resume done\n");
1648 	);
1649 	return (error);
1650 }
1651 
1652 /****************************************************************************
1653  * int hdac_detach(device_t)
1654  *
1655  * Detach and free up resources utilized by the hdac device.
1656  ****************************************************************************/
1657 static int
1658 hdac_detach(device_t dev)
1659 {
1660 	struct hdac_softc *sc = device_get_softc(dev);
1661 	device_t *devlist;
1662 	int cad, i, devcount, error;
1663 
1664 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1665 		return (error);
1666 	for (i = 0; i < devcount; i++) {
1667 		cad = (intptr_t)device_get_ivars(devlist[i]);
1668 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1669 			free(devlist, M_TEMP);
1670 			return (error);
1671 		}
1672 		sc->codecs[cad].dev = NULL;
1673 	}
1674 	free(devlist, M_TEMP);
1675 
1676 	hdac_lock(sc);
1677 	hdac_reset(sc, 0);
1678 	hdac_unlock(sc);
1679 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1680 	hdac_irq_free(sc);
1681 
1682 	for (i = 0; i < sc->num_ss; i++)
1683 		hdac_dma_free(sc, &sc->streams[i].bdl);
1684 	free(sc->streams, M_HDAC);
1685 	hdac_dma_free(sc, &sc->pos_dma);
1686 	hdac_dma_free(sc, &sc->rirb_dma);
1687 	hdac_dma_free(sc, &sc->corb_dma);
1688 	if (sc->chan_dmat != NULL) {
1689 		bus_dma_tag_destroy(sc->chan_dmat);
1690 		sc->chan_dmat = NULL;
1691 	}
1692 	hdac_mem_free(sc);
1693 	snd_mtxfree(sc->lock);
1694 	return (0);
1695 }
1696 
1697 static bus_dma_tag_t
1698 hdac_get_dma_tag(device_t dev, device_t child)
1699 {
1700 	struct hdac_softc *sc = device_get_softc(dev);
1701 
1702 	return (sc->chan_dmat);
1703 }
1704 
1705 static int
1706 hdac_print_child(device_t dev, device_t child)
1707 {
1708 	int retval;
1709 
1710 	retval = bus_print_child_header(dev, child);
1711 	retval += printf(" at cad %d",
1712 	    (int)(intptr_t)device_get_ivars(child));
1713 	retval += bus_print_child_footer(dev, child);
1714 
1715 	return (retval);
1716 }
1717 
1718 static int
1719 hdac_child_location_str(device_t dev, device_t child, char *buf,
1720     size_t buflen)
1721 {
1722 
1723 	snprintf(buf, buflen, "cad=%d",
1724 	    (int)(intptr_t)device_get_ivars(child));
1725 	return (0);
1726 }
1727 
1728 static int
1729 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1730     size_t buflen)
1731 {
1732 	struct hdac_softc *sc = device_get_softc(dev);
1733 	nid_t cad = (uintptr_t)device_get_ivars(child);
1734 
1735 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
1736 	    "stepping=0x%02x",
1737 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1738 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1739 	return (0);
1740 }
1741 
1742 static int
1743 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1744 {
1745 	struct hdac_softc *sc = device_get_softc(dev);
1746 	nid_t cad = (uintptr_t)device_get_ivars(child);
1747 
1748 	switch (which) {
1749 	case HDA_IVAR_CODEC_ID:
1750 		*result = cad;
1751 		break;
1752 	case HDA_IVAR_VENDOR_ID:
1753 		*result = sc->codecs[cad].vendor_id;
1754 		break;
1755 	case HDA_IVAR_DEVICE_ID:
1756 		*result = sc->codecs[cad].device_id;
1757 		break;
1758 	case HDA_IVAR_REVISION_ID:
1759 		*result = sc->codecs[cad].revision_id;
1760 		break;
1761 	case HDA_IVAR_STEPPING_ID:
1762 		*result = sc->codecs[cad].stepping_id;
1763 		break;
1764 	case HDA_IVAR_SUBVENDOR_ID:
1765 		*result = pci_get_subvendor(dev);
1766 		break;
1767 	case HDA_IVAR_SUBDEVICE_ID:
1768 		*result = pci_get_subdevice(dev);
1769 		break;
1770 	case HDA_IVAR_DMA_NOCACHE:
1771 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1772 		break;
1773 	case HDA_IVAR_STRIPES_MASK:
1774 		*result = (1 << (1 << sc->num_sdo)) - 1;
1775 		break;
1776 	default:
1777 		return (ENOENT);
1778 	}
1779 	return (0);
1780 }
1781 
1782 static struct mtx *
1783 hdac_get_mtx(device_t dev, device_t child)
1784 {
1785 	struct hdac_softc *sc = device_get_softc(dev);
1786 
1787 	return (sc->lock);
1788 }
1789 
1790 static uint32_t
1791 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1792 {
1793 
1794 	return (hdac_send_command(device_get_softc(dev),
1795 	    (intptr_t)device_get_ivars(child), verb));
1796 }
1797 
1798 static int
1799 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1800 {
1801 	int i, ss;
1802 
1803 	ss = -1;
1804 	/* Allocate ISS/OSS first. */
1805 	if (dir == 0) {
1806 		for (i = 0; i < sc->num_iss; i++) {
1807 			if (sc->streams[i].stream == stream) {
1808 				ss = i;
1809 				break;
1810 			}
1811 		}
1812 	} else {
1813 		for (i = 0; i < sc->num_oss; i++) {
1814 			if (sc->streams[i + sc->num_iss].stream == stream) {
1815 				ss = i + sc->num_iss;
1816 				break;
1817 			}
1818 		}
1819 	}
1820 	/* Fallback to BSS. */
1821 	if (ss == -1) {
1822 		for (i = 0; i < sc->num_bss; i++) {
1823 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1824 			    == stream) {
1825 				ss = i + sc->num_iss + sc->num_oss;
1826 				break;
1827 			}
1828 		}
1829 	}
1830 	return (ss);
1831 }
1832 
1833 static int
1834 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1835     uint32_t **dmapos)
1836 {
1837 	struct hdac_softc *sc = device_get_softc(dev);
1838 	nid_t cad = (uintptr_t)device_get_ivars(child);
1839 	int stream, ss, bw, maxbw, prevbw;
1840 
1841 	/* Look for empty stream. */
1842 	ss = hdac_find_stream(sc, dir, 0);
1843 
1844 	/* Return if found nothing. */
1845 	if (ss < 0)
1846 		return (0);
1847 
1848 	/* Check bus bandwidth. */
1849 	bw = hdac_bdata_rate(format, dir);
1850 	if (dir == 1) {
1851 		bw *= 1 << (sc->num_sdo - stripe);
1852 		prevbw = sc->sdo_bw_used;
1853 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1854 	} else {
1855 		prevbw = sc->codecs[cad].sdi_bw_used;
1856 		maxbw = 48000 * 464;
1857 	}
1858 	HDA_BOOTHVERBOSE(
1859 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1860 		    (bw + prevbw) / 1000, maxbw / 1000,
1861 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1862 	);
1863 	if (bw + prevbw > maxbw)
1864 		return (0);
1865 	if (dir == 1)
1866 		sc->sdo_bw_used += bw;
1867 	else
1868 		sc->codecs[cad].sdi_bw_used += bw;
1869 
1870 	/* Allocate stream number */
1871 	if (ss >= sc->num_iss + sc->num_oss)
1872 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1873 	else if (ss >= sc->num_iss)
1874 		stream = ss - sc->num_iss + 1;
1875 	else
1876 		stream = ss + 1;
1877 
1878 	sc->streams[ss].dev = child;
1879 	sc->streams[ss].dir = dir;
1880 	sc->streams[ss].stream = stream;
1881 	sc->streams[ss].bw = bw;
1882 	sc->streams[ss].format = format;
1883 	sc->streams[ss].stripe = stripe;
1884 	if (dmapos != NULL) {
1885 		if (sc->pos_dma.dma_vaddr != NULL)
1886 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1887 		else
1888 			*dmapos = NULL;
1889 	}
1890 	return (stream);
1891 }
1892 
1893 static void
1894 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1895 {
1896 	struct hdac_softc *sc = device_get_softc(dev);
1897 	nid_t cad = (uintptr_t)device_get_ivars(child);
1898 	int ss;
1899 
1900 	ss = hdac_find_stream(sc, dir, stream);
1901 	KASSERT(ss >= 0,
1902 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1903 	if (dir == 1)
1904 		sc->sdo_bw_used -= sc->streams[ss].bw;
1905 	else
1906 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1907 	sc->streams[ss].stream = 0;
1908 	sc->streams[ss].dev = NULL;
1909 }
1910 
1911 static int
1912 hdac_stream_start(device_t dev, device_t child,
1913     int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
1914 {
1915 	struct hdac_softc *sc = device_get_softc(dev);
1916 	struct hdac_bdle *bdle;
1917 	uint64_t addr;
1918 	int i, ss, off;
1919 	uint32_t ctl;
1920 
1921 	ss = hdac_find_stream(sc, dir, stream);
1922 	KASSERT(ss >= 0,
1923 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1924 
1925 	addr = (uint64_t)buf;
1926 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1927 	for (i = 0; i < blkcnt; i++, bdle++) {
1928 		bdle->addrl = htole32((uint32_t)addr);
1929 		bdle->addrh = htole32((uint32_t)(addr >> 32));
1930 		bdle->len = htole32(blksz);
1931 		bdle->ioc = htole32(1);
1932 		addr += blksz;
1933 	}
1934 
1935 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1936 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1937 
1938 	off = ss << 5;
1939 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1940 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1941 	addr = sc->streams[ss].bdl.dma_paddr;
1942 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1943 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1944 
1945 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1946 	if (dir)
1947 		ctl |= HDAC_SDCTL2_DIR;
1948 	else
1949 		ctl &= ~HDAC_SDCTL2_DIR;
1950 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
1951 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1952 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1953 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1954 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1955 
1956 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1957 
1958 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1959 	ctl |= 1 << ss;
1960 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1961 
1962 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1963 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1964 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1965 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1966 	    HDAC_SDCTL_RUN;
1967 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1968 
1969 	sc->streams[ss].blksz = blksz;
1970 	sc->streams[ss].running = 1;
1971 	hdac_poll_reinit(sc);
1972 	return (0);
1973 }
1974 
1975 static void
1976 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1977 {
1978 	struct hdac_softc *sc = device_get_softc(dev);
1979 	int ss, off;
1980 	uint32_t ctl;
1981 
1982 	ss = hdac_find_stream(sc, dir, stream);
1983 	KASSERT(ss >= 0,
1984 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1985 
1986 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1987 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
1988 
1989 	off = ss << 5;
1990 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1991 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1992 	    HDAC_SDCTL_RUN);
1993 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1994 
1995 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1996 	ctl &= ~(1 << ss);
1997 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1998 
1999 	sc->streams[ss].running = 0;
2000 	hdac_poll_reinit(sc);
2001 }
2002 
2003 static void
2004 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2005 {
2006 	struct hdac_softc *sc = device_get_softc(dev);
2007 	int timeout = 1000;
2008 	int to = timeout;
2009 	int ss, off;
2010 	uint32_t ctl;
2011 
2012 	ss = hdac_find_stream(sc, dir, stream);
2013 	KASSERT(ss >= 0,
2014 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2015 
2016 	off = ss << 5;
2017 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2018 	ctl |= HDAC_SDCTL_SRST;
2019 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2020 	do {
2021 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2022 		if (ctl & HDAC_SDCTL_SRST)
2023 			break;
2024 		DELAY(10);
2025 	} while (--to);
2026 	if (!(ctl & HDAC_SDCTL_SRST))
2027 		device_printf(dev, "Reset setting timeout\n");
2028 	ctl &= ~HDAC_SDCTL_SRST;
2029 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2030 	to = timeout;
2031 	do {
2032 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2033 		if (!(ctl & HDAC_SDCTL_SRST))
2034 			break;
2035 		DELAY(10);
2036 	} while (--to);
2037 	if (ctl & HDAC_SDCTL_SRST)
2038 		device_printf(dev, "Reset timeout!\n");
2039 }
2040 
2041 static uint32_t
2042 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2043 {
2044 	struct hdac_softc *sc = device_get_softc(dev);
2045 	int ss, off;
2046 
2047 	ss = hdac_find_stream(sc, dir, stream);
2048 	KASSERT(ss >= 0,
2049 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2050 
2051 	off = ss << 5;
2052 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2053 }
2054 
2055 static int
2056 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2057 {
2058 	struct hdac_softc *sc = device_get_softc(dev);
2059 
2060 	sc->unsol_registered++;
2061 	hdac_poll_reinit(sc);
2062 	return (tag);
2063 }
2064 
2065 static void
2066 hdac_unsol_free(device_t dev, device_t child, int tag)
2067 {
2068 	struct hdac_softc *sc = device_get_softc(dev);
2069 
2070 	sc->unsol_registered--;
2071 	hdac_poll_reinit(sc);
2072 }
2073 
2074 static device_method_t hdac_methods[] = {
2075 	/* device interface */
2076 	DEVMETHOD(device_probe,		hdac_probe),
2077 	DEVMETHOD(device_attach,	hdac_attach),
2078 	DEVMETHOD(device_detach,	hdac_detach),
2079 	DEVMETHOD(device_suspend,	hdac_suspend),
2080 	DEVMETHOD(device_resume,	hdac_resume),
2081 	/* Bus interface */
2082 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2083 	DEVMETHOD(bus_print_child,	hdac_print_child),
2084 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2085 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2086 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2087 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2088 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2089 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2090 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2091 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2092 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2093 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2094 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2095 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2096 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2097 	DEVMETHOD_END
2098 };
2099 
2100 static driver_t hdac_driver = {
2101 	"hdac",
2102 	hdac_methods,
2103 	sizeof(struct hdac_softc),
2104 };
2105 
2106 static devclass_t hdac_devclass;
2107 
2108 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2109