xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 
60 #define HDAC_QUIRK_64BIT	(1 << 0)
61 #define HDAC_QUIRK_DMAPOS	(1 << 1)
62 #define HDAC_QUIRK_MSI		(1 << 2)
63 
64 static const struct {
65 	const char *key;
66 	uint32_t value;
67 } hdac_quirks_tab[] = {
68 	{ "64bit", HDAC_QUIRK_64BIT },
69 	{ "dmapos", HDAC_QUIRK_DMAPOS },
70 	{ "msi", HDAC_QUIRK_MSI },
71 };
72 
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74 
75 static const struct {
76 	uint32_t	model;
77 	const char	*desc;
78 	char		quirks_on;
79 	char		quirks_off;
80 } hdac_devices[] = {
81 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
82 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
83 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
84 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
85 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
88 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
90 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
91 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
92 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
94 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
95 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
96 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
97 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
98 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
99 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
100 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
101 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
102 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
103 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
104 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
105 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
106 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
107 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
108 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
109 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
110 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
111 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
112 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
113 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
114 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
115 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
116 	{ HDA_INTEL_ALLKM,   "Intel Alder Lake-M",	0, 0 },
117 	{ HDA_INTEL_ALLKN,   "Intel Alder Lake-N",	0, 0 },
118 	{ HDA_INTEL_ALLKP1,  "Intel Alder Lake-P",	0, 0 },
119 	{ HDA_INTEL_ALLKP2,  "Intel Alder Lake-P",	0, 0 },
120 	{ HDA_INTEL_ALLKPS,  "Intel Alder Lake-PS",	0, 0 },
121 	{ HDA_INTEL_RPTLK1,  "Intel Raptor Lake-P",	0, 0 },
122 	{ HDA_INTEL_RPTLK2,  "Intel Raptor Lake-P",	0, 0 },
123 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
124 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
125 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
126 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
127 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
128 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
129 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
130 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
131 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
132 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
133 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
134 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
135 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
136 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
137 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
138 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
139 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
140 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
141 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
142 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
143 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
144 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
145 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
146 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
147 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
148 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
149 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
150 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
151 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
152 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
153 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
154 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
155 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
156 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
157 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
158 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
159 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
160 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
161 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
162 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
163 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
164 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
165 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
166 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
167 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
168 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
169 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
170 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
171 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
172 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
173 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
174 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
175 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
176 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
177 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
178 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
179 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
180 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
181 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
182 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
183 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
184 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
185 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
186 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
187 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
188 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
189 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
190 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
191 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
192 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
193 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
194 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
195 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
196 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
197 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
198 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
199 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
200 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
201 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
202 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
203 	{ HDA_VMWARE,        "VMware",		0, 0 },
204 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
205 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
206 	/* Unknown */
207 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
208 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
209 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
210 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
211 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
212 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
213 	{ HDA_VMWARE_ALL, "VMware",		0, 0 },
214 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
215 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
216 };
217 
218 static const struct {
219 	uint16_t vendor;
220 	uint8_t reg;
221 	uint8_t mask;
222 	uint8_t enable;
223 } hdac_pcie_snoop[] = {
224 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
225 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
226 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
227 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
228 };
229 
230 /****************************************************************************
231  * Function prototypes
232  ****************************************************************************/
233 static void	hdac_intr_handler(void *);
234 static int	hdac_reset(struct hdac_softc *, bool);
235 static int	hdac_get_capabilities(struct hdac_softc *);
236 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
237 static int	hdac_dma_alloc(struct hdac_softc *,
238 					struct hdac_dma *, bus_size_t);
239 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
240 static int	hdac_mem_alloc(struct hdac_softc *);
241 static void	hdac_mem_free(struct hdac_softc *);
242 static int	hdac_irq_alloc(struct hdac_softc *);
243 static void	hdac_irq_free(struct hdac_softc *);
244 static void	hdac_corb_init(struct hdac_softc *);
245 static void	hdac_rirb_init(struct hdac_softc *);
246 static void	hdac_corb_start(struct hdac_softc *);
247 static void	hdac_rirb_start(struct hdac_softc *);
248 
249 static void	hdac_attach2(void *);
250 
251 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
252 
253 static int	hdac_probe(device_t);
254 static int	hdac_attach(device_t);
255 static int	hdac_detach(device_t);
256 static int	hdac_suspend(device_t);
257 static int	hdac_resume(device_t);
258 
259 static int	hdac_rirb_flush(struct hdac_softc *sc);
260 static int	hdac_unsolq_flush(struct hdac_softc *sc);
261 
262 /* This function surely going to make its way into upper level someday. */
263 static void
264 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
265 {
266 	const char *res = NULL;
267 	int i = 0, j, k, len, inv;
268 
269 	if (resource_string_value(device_get_name(sc->dev),
270 	    device_get_unit(sc->dev), "config", &res) != 0)
271 		return;
272 	if (!(res != NULL && strlen(res) > 0))
273 		return;
274 	HDA_BOOTVERBOSE(
275 		device_printf(sc->dev, "Config options:");
276 	);
277 	for (;;) {
278 		while (res[i] != '\0' &&
279 		    (res[i] == ',' || isspace(res[i]) != 0))
280 			i++;
281 		if (res[i] == '\0') {
282 			HDA_BOOTVERBOSE(
283 				printf("\n");
284 			);
285 			return;
286 		}
287 		j = i;
288 		while (res[j] != '\0' &&
289 		    !(res[j] == ',' || isspace(res[j]) != 0))
290 			j++;
291 		len = j - i;
292 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
293 			inv = 2;
294 		else
295 			inv = 0;
296 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
297 			if (strncmp(res + i + inv,
298 			    hdac_quirks_tab[k].key, len - inv) != 0)
299 				continue;
300 			if (len - inv != strlen(hdac_quirks_tab[k].key))
301 				continue;
302 			HDA_BOOTVERBOSE(
303 				printf(" %s%s", (inv != 0) ? "no" : "",
304 				    hdac_quirks_tab[k].key);
305 			);
306 			if (inv == 0) {
307 				*on |= hdac_quirks_tab[k].value;
308 				*off &= ~hdac_quirks_tab[k].value;
309 			} else if (inv != 0) {
310 				*off |= hdac_quirks_tab[k].value;
311 				*on &= ~hdac_quirks_tab[k].value;
312 			}
313 			break;
314 		}
315 		i = j;
316 	}
317 }
318 
319 static void
320 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
321 {
322 	device_t dev;
323 	uint8_t rirbsts;
324 	int i;
325 
326 	/* Was this a controller interrupt? */
327 	if (intsts & HDAC_INTSTS_CIS) {
328 		/*
329 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
330 		 * we will need to check and clear HDAC_STATESTS.
331 		 * That event is used to report codec status changes such as
332 		 * a reset or a wake-up event.
333 		 */
334 		/*
335 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
336 		 * will need to check and clear HDAC_CORBSTS_CMEI in
337 		 * HDAC_CORBSTS.
338 		 * That event is used to report CORB memory errors.
339 		 */
340 		/*
341 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
342 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
343 		 * HDAC_RIRBSTS.
344 		 * That event is used to report response FIFO overruns.
345 		 */
346 
347 		/* Get as many responses that we can */
348 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
349 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
350 			HDAC_WRITE_1(&sc->mem,
351 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
352 			hdac_rirb_flush(sc);
353 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
354 		}
355 		if (sc->unsolq_rp != sc->unsolq_wp)
356 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
357 	}
358 
359 	if (intsts & HDAC_INTSTS_SIS_MASK) {
360 		for (i = 0; i < sc->num_ss; i++) {
361 			if ((intsts & (1 << i)) == 0)
362 				continue;
363 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
364 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
365 			if ((dev = sc->streams[i].dev) != NULL) {
366 				HDAC_STREAM_INTR(dev,
367 				    sc->streams[i].dir, sc->streams[i].stream);
368 			}
369 		}
370 	}
371 }
372 
373 /****************************************************************************
374  * void hdac_intr_handler(void *)
375  *
376  * Interrupt handler. Processes interrupts received from the hdac.
377  ****************************************************************************/
378 static void
379 hdac_intr_handler(void *context)
380 {
381 	struct hdac_softc *sc;
382 	uint32_t intsts;
383 
384 	sc = (struct hdac_softc *)context;
385 
386 	/*
387 	 * Loop until HDAC_INTSTS_GIS gets clear.
388 	 * It is plausible that hardware interrupts a host only when GIS goes
389 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
390 	 * statuses, so it's possible that a previously cleared status gets set
391 	 * again while another status has not been cleared yet.  Thus, there
392 	 * will be no new interrupt as GIS always stayed set.  If we don't
393 	 * re-examine GIS then we can leave it set and never get an interrupt
394 	 * again.
395 	 */
396 	hdac_lock(sc);
397 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
398 	while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
399 		hdac_one_intr(sc, intsts);
400 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
401 	}
402 	hdac_unlock(sc);
403 }
404 
405 static void
406 hdac_poll_callback(void *arg)
407 {
408 	struct hdac_softc *sc = arg;
409 
410 	if (sc == NULL)
411 		return;
412 
413 	hdac_lock(sc);
414 	if (sc->polling == 0) {
415 		hdac_unlock(sc);
416 		return;
417 	}
418 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
419 	hdac_unlock(sc);
420 
421 	hdac_intr_handler(sc);
422 }
423 
424 /****************************************************************************
425  * int hdac_reset(hdac_softc *, bool)
426  *
427  * Reset the hdac to a quiescent and known state.
428  ****************************************************************************/
429 static int
430 hdac_reset(struct hdac_softc *sc, bool wakeup)
431 {
432 	uint32_t gctl;
433 	int count, i;
434 
435 	/*
436 	 * Stop all Streams DMA engine
437 	 */
438 	for (i = 0; i < sc->num_iss; i++)
439 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
440 	for (i = 0; i < sc->num_oss; i++)
441 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
442 	for (i = 0; i < sc->num_bss; i++)
443 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
444 
445 	/*
446 	 * Stop Control DMA engines.
447 	 */
448 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
449 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
450 
451 	/*
452 	 * Reset DMA position buffer.
453 	 */
454 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
455 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
456 
457 	/*
458 	 * Reset the controller. The reset must remain asserted for
459 	 * a minimum of 100us.
460 	 */
461 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
462 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
463 	count = 10000;
464 	do {
465 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
466 		if (!(gctl & HDAC_GCTL_CRST))
467 			break;
468 		DELAY(10);
469 	} while (--count);
470 	if (gctl & HDAC_GCTL_CRST) {
471 		device_printf(sc->dev, "Unable to put hdac in reset\n");
472 		return (ENXIO);
473 	}
474 
475 	/* If wakeup is not requested - leave the controller in reset state. */
476 	if (!wakeup)
477 		return (0);
478 
479 	DELAY(100);
480 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
481 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
482 	count = 10000;
483 	do {
484 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
485 		if (gctl & HDAC_GCTL_CRST)
486 			break;
487 		DELAY(10);
488 	} while (--count);
489 	if (!(gctl & HDAC_GCTL_CRST)) {
490 		device_printf(sc->dev, "Device stuck in reset\n");
491 		return (ENXIO);
492 	}
493 
494 	/*
495 	 * Wait for codecs to finish their own reset sequence. The delay here
496 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
497 	 */
498 	DELAY(1000);
499 
500 	return (0);
501 }
502 
503 /****************************************************************************
504  * int hdac_get_capabilities(struct hdac_softc *);
505  *
506  * Retreive the general capabilities of the hdac;
507  *	Number of Input Streams
508  *	Number of Output Streams
509  *	Number of bidirectional Streams
510  *	64bit ready
511  *	CORB and RIRB sizes
512  ****************************************************************************/
513 static int
514 hdac_get_capabilities(struct hdac_softc *sc)
515 {
516 	uint16_t gcap;
517 	uint8_t corbsize, rirbsize;
518 
519 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
520 	sc->num_iss = HDAC_GCAP_ISS(gcap);
521 	sc->num_oss = HDAC_GCAP_OSS(gcap);
522 	sc->num_bss = HDAC_GCAP_BSS(gcap);
523 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
524 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
525 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
526 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
527 		sc->support_64bit = 1;
528 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
529 		sc->support_64bit = 0;
530 
531 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
532 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
533 	    HDAC_CORBSIZE_CORBSZCAP_256)
534 		sc->corb_size = 256;
535 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
536 	    HDAC_CORBSIZE_CORBSZCAP_16)
537 		sc->corb_size = 16;
538 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
539 	    HDAC_CORBSIZE_CORBSZCAP_2)
540 		sc->corb_size = 2;
541 	else {
542 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
543 		    __func__, corbsize);
544 		return (ENXIO);
545 	}
546 
547 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
548 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
549 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
550 		sc->rirb_size = 256;
551 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
552 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
553 		sc->rirb_size = 16;
554 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
555 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
556 		sc->rirb_size = 2;
557 	else {
558 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
559 		    __func__, rirbsize);
560 		return (ENXIO);
561 	}
562 
563 	HDA_BOOTVERBOSE(
564 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
565 		    "NSDO %d%s, CORB %d, RIRB %d\n",
566 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
567 		    sc->support_64bit ? ", 64bit" : "",
568 		    sc->corb_size, sc->rirb_size);
569 	);
570 
571 	return (0);
572 }
573 
574 /****************************************************************************
575  * void hdac_dma_cb
576  *
577  * This function is called by bus_dmamap_load when the mapping has been
578  * established. We just record the physical address of the mapping into
579  * the struct hdac_dma passed in.
580  ****************************************************************************/
581 static void
582 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
583 {
584 	struct hdac_dma *dma;
585 
586 	if (error == 0) {
587 		dma = (struct hdac_dma *)callback_arg;
588 		dma->dma_paddr = segs[0].ds_addr;
589 	}
590 }
591 
592 /****************************************************************************
593  * int hdac_dma_alloc
594  *
595  * This function allocate and setup a dma region (struct hdac_dma).
596  * It must be freed by a corresponding hdac_dma_free.
597  ****************************************************************************/
598 static int
599 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
600 {
601 	bus_size_t roundsz;
602 	int result;
603 
604 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
605 	bzero(dma, sizeof(*dma));
606 
607 	/*
608 	 * Create a DMA tag
609 	 */
610 	result = bus_dma_tag_create(
611 	    bus_get_dma_tag(sc->dev),		/* parent */
612 	    HDA_DMA_ALIGNMENT,			/* alignment */
613 	    0,					/* boundary */
614 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
615 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
616 	    BUS_SPACE_MAXADDR,			/* highaddr */
617 	    NULL,				/* filtfunc */
618 	    NULL,				/* fistfuncarg */
619 	    roundsz,				/* maxsize */
620 	    1,					/* nsegments */
621 	    roundsz,				/* maxsegsz */
622 	    0,					/* flags */
623 	    NULL,				/* lockfunc */
624 	    NULL,				/* lockfuncarg */
625 	    &dma->dma_tag);			/* dmat */
626 	if (result != 0) {
627 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
628 		    __func__, result);
629 		goto hdac_dma_alloc_fail;
630 	}
631 
632 	/*
633 	 * Allocate DMA memory
634 	 */
635 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
636 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
637 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
638 	     BUS_DMA_COHERENT),
639 	    &dma->dma_map);
640 	if (result != 0) {
641 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
642 		    __func__, result);
643 		goto hdac_dma_alloc_fail;
644 	}
645 
646 	dma->dma_size = roundsz;
647 
648 	/*
649 	 * Map the memory
650 	 */
651 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
652 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
653 	if (result != 0 || dma->dma_paddr == 0) {
654 		if (result == 0)
655 			result = ENOMEM;
656 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
657 		    __func__, result);
658 		goto hdac_dma_alloc_fail;
659 	}
660 
661 	HDA_BOOTHVERBOSE(
662 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
663 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
664 	);
665 
666 	return (0);
667 
668 hdac_dma_alloc_fail:
669 	hdac_dma_free(sc, dma);
670 
671 	return (result);
672 }
673 
674 /****************************************************************************
675  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
676  *
677  * Free a struct hdac_dma that has been previously allocated via the
678  * hdac_dma_alloc function.
679  ****************************************************************************/
680 static void
681 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
682 {
683 	if (dma->dma_paddr != 0) {
684 		/* Flush caches */
685 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
686 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
687 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
688 		dma->dma_paddr = 0;
689 	}
690 	if (dma->dma_vaddr != NULL) {
691 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
692 		dma->dma_vaddr = NULL;
693 	}
694 	if (dma->dma_tag != NULL) {
695 		bus_dma_tag_destroy(dma->dma_tag);
696 		dma->dma_tag = NULL;
697 	}
698 	dma->dma_size = 0;
699 }
700 
701 /****************************************************************************
702  * int hdac_mem_alloc(struct hdac_softc *)
703  *
704  * Allocate all the bus resources necessary to speak with the physical
705  * controller.
706  ****************************************************************************/
707 static int
708 hdac_mem_alloc(struct hdac_softc *sc)
709 {
710 	struct hdac_mem *mem;
711 
712 	mem = &sc->mem;
713 	mem->mem_rid = PCIR_BAR(0);
714 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
715 	    &mem->mem_rid, RF_ACTIVE);
716 	if (mem->mem_res == NULL) {
717 		device_printf(sc->dev,
718 		    "%s: Unable to allocate memory resource\n", __func__);
719 		return (ENOMEM);
720 	}
721 	mem->mem_tag = rman_get_bustag(mem->mem_res);
722 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
723 
724 	return (0);
725 }
726 
727 /****************************************************************************
728  * void hdac_mem_free(struct hdac_softc *)
729  *
730  * Free up resources previously allocated by hdac_mem_alloc.
731  ****************************************************************************/
732 static void
733 hdac_mem_free(struct hdac_softc *sc)
734 {
735 	struct hdac_mem *mem;
736 
737 	mem = &sc->mem;
738 	if (mem->mem_res != NULL)
739 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
740 		    mem->mem_res);
741 	mem->mem_res = NULL;
742 }
743 
744 /****************************************************************************
745  * int hdac_irq_alloc(struct hdac_softc *)
746  *
747  * Allocate and setup the resources necessary for interrupt handling.
748  ****************************************************************************/
749 static int
750 hdac_irq_alloc(struct hdac_softc *sc)
751 {
752 	struct hdac_irq *irq;
753 	int result;
754 
755 	irq = &sc->irq;
756 	irq->irq_rid = 0x0;
757 
758 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
759 	    (result = pci_msi_count(sc->dev)) == 1 &&
760 	    pci_alloc_msi(sc->dev, &result) == 0)
761 		irq->irq_rid = 0x1;
762 
763 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
764 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
765 	if (irq->irq_res == NULL) {
766 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
767 		    __func__);
768 		goto hdac_irq_alloc_fail;
769 	}
770 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
771 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
772 	if (result != 0) {
773 		device_printf(sc->dev,
774 		    "%s: Unable to setup interrupt handler (%d)\n",
775 		    __func__, result);
776 		goto hdac_irq_alloc_fail;
777 	}
778 
779 	return (0);
780 
781 hdac_irq_alloc_fail:
782 	hdac_irq_free(sc);
783 
784 	return (ENXIO);
785 }
786 
787 /****************************************************************************
788  * void hdac_irq_free(struct hdac_softc *)
789  *
790  * Free up resources previously allocated by hdac_irq_alloc.
791  ****************************************************************************/
792 static void
793 hdac_irq_free(struct hdac_softc *sc)
794 {
795 	struct hdac_irq *irq;
796 
797 	irq = &sc->irq;
798 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
799 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
800 	if (irq->irq_res != NULL)
801 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
802 		    irq->irq_res);
803 	if (irq->irq_rid == 0x1)
804 		pci_release_msi(sc->dev);
805 	irq->irq_handle = NULL;
806 	irq->irq_res = NULL;
807 	irq->irq_rid = 0x0;
808 }
809 
810 /****************************************************************************
811  * void hdac_corb_init(struct hdac_softc *)
812  *
813  * Initialize the corb registers for operations but do not start it up yet.
814  * The CORB engine must not be running when this function is called.
815  ****************************************************************************/
816 static void
817 hdac_corb_init(struct hdac_softc *sc)
818 {
819 	uint8_t corbsize;
820 	uint64_t corbpaddr;
821 
822 	/* Setup the CORB size. */
823 	switch (sc->corb_size) {
824 	case 256:
825 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
826 		break;
827 	case 16:
828 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
829 		break;
830 	case 2:
831 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
832 		break;
833 	default:
834 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
835 	}
836 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
837 
838 	/* Setup the CORB Address in the hdac */
839 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
840 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
841 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
842 
843 	/* Set the WP and RP */
844 	sc->corb_wp = 0;
845 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
846 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
847 	/*
848 	 * The HDA specification indicates that the CORBRPRST bit will always
849 	 * read as zero. Unfortunately, it seems that at least the 82801G
850 	 * doesn't reset the bit to zero, which stalls the corb engine.
851 	 * manually reset the bit to zero before continuing.
852 	 */
853 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
854 
855 	/* Enable CORB error reporting */
856 #if 0
857 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
858 #endif
859 }
860 
861 /****************************************************************************
862  * void hdac_rirb_init(struct hdac_softc *)
863  *
864  * Initialize the rirb registers for operations but do not start it up yet.
865  * The RIRB engine must not be running when this function is called.
866  ****************************************************************************/
867 static void
868 hdac_rirb_init(struct hdac_softc *sc)
869 {
870 	uint8_t rirbsize;
871 	uint64_t rirbpaddr;
872 
873 	/* Setup the RIRB size. */
874 	switch (sc->rirb_size) {
875 	case 256:
876 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
877 		break;
878 	case 16:
879 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
880 		break;
881 	case 2:
882 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
883 		break;
884 	default:
885 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
886 	}
887 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
888 
889 	/* Setup the RIRB Address in the hdac */
890 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
891 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
892 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
893 
894 	/* Setup the WP and RP */
895 	sc->rirb_rp = 0;
896 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
897 
898 	/* Setup the interrupt threshold */
899 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
900 
901 	/* Enable Overrun and response received reporting */
902 #if 0
903 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
904 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
905 #else
906 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
907 #endif
908 
909 	/*
910 	 * Make sure that the Host CPU cache doesn't contain any dirty
911 	 * cache lines that falls in the rirb. If I understood correctly, it
912 	 * should be sufficient to do this only once as the rirb is purely
913 	 * read-only from now on.
914 	 */
915 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
916 	    BUS_DMASYNC_PREREAD);
917 }
918 
919 /****************************************************************************
920  * void hdac_corb_start(hdac_softc *)
921  *
922  * Startup the corb DMA engine
923  ****************************************************************************/
924 static void
925 hdac_corb_start(struct hdac_softc *sc)
926 {
927 	uint32_t corbctl;
928 
929 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
930 	corbctl |= HDAC_CORBCTL_CORBRUN;
931 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
932 }
933 
934 /****************************************************************************
935  * void hdac_rirb_start(hdac_softc *)
936  *
937  * Startup the rirb DMA engine
938  ****************************************************************************/
939 static void
940 hdac_rirb_start(struct hdac_softc *sc)
941 {
942 	uint32_t rirbctl;
943 
944 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
945 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
946 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
947 }
948 
949 static int
950 hdac_rirb_flush(struct hdac_softc *sc)
951 {
952 	struct hdac_rirb *rirb_base, *rirb;
953 	nid_t cad;
954 	uint32_t resp, resp_ex;
955 	uint8_t rirbwp;
956 	int ret;
957 
958 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
959 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
960 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
961 	    BUS_DMASYNC_POSTREAD);
962 
963 	ret = 0;
964 	while (sc->rirb_rp != rirbwp) {
965 		sc->rirb_rp++;
966 		sc->rirb_rp %= sc->rirb_size;
967 		rirb = &rirb_base[sc->rirb_rp];
968 		resp = le32toh(rirb->response);
969 		resp_ex = le32toh(rirb->response_ex);
970 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
971 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
972 			sc->unsolq[sc->unsolq_wp++] = resp;
973 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
974 			sc->unsolq[sc->unsolq_wp++] = cad;
975 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
976 		} else if (sc->codecs[cad].pending <= 0) {
977 			device_printf(sc->dev, "Unexpected unsolicited "
978 			    "response from address %d: %08x\n", cad, resp);
979 		} else {
980 			sc->codecs[cad].response = resp;
981 			sc->codecs[cad].pending--;
982 		}
983 		ret++;
984 	}
985 
986 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
987 	    BUS_DMASYNC_PREREAD);
988 	return (ret);
989 }
990 
991 static int
992 hdac_unsolq_flush(struct hdac_softc *sc)
993 {
994 	device_t child;
995 	nid_t cad;
996 	uint32_t resp;
997 	int ret = 0;
998 
999 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
1000 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
1001 		while (sc->unsolq_rp != sc->unsolq_wp) {
1002 			resp = sc->unsolq[sc->unsolq_rp++];
1003 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1004 			cad = sc->unsolq[sc->unsolq_rp++];
1005 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1006 			if ((child = sc->codecs[cad].dev) != NULL &&
1007 			    device_is_attached(child))
1008 				HDAC_UNSOL_INTR(child, resp);
1009 			ret++;
1010 		}
1011 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1012 	}
1013 
1014 	return (ret);
1015 }
1016 
1017 /****************************************************************************
1018  * uint32_t hdac_send_command
1019  *
1020  * Wrapper function that sends only one command to a given codec
1021  ****************************************************************************/
1022 static uint32_t
1023 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1024 {
1025 	int timeout;
1026 	uint32_t *corb;
1027 
1028 	hdac_lockassert(sc);
1029 	verb &= ~HDA_CMD_CAD_MASK;
1030 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1031 	sc->codecs[cad].response = HDA_INVALID;
1032 
1033 	sc->codecs[cad].pending++;
1034 	sc->corb_wp++;
1035 	sc->corb_wp %= sc->corb_size;
1036 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1037 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1038 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1039 	corb[sc->corb_wp] = htole32(verb);
1040 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1041 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1042 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1043 
1044 	timeout = 10000;
1045 	do {
1046 		if (hdac_rirb_flush(sc) == 0)
1047 			DELAY(10);
1048 	} while (sc->codecs[cad].pending != 0 && --timeout);
1049 
1050 	if (sc->codecs[cad].pending != 0) {
1051 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1052 		    verb, cad);
1053 		sc->codecs[cad].pending = 0;
1054 	}
1055 
1056 	if (sc->unsolq_rp != sc->unsolq_wp)
1057 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1058 	return (sc->codecs[cad].response);
1059 }
1060 
1061 /****************************************************************************
1062  * Device Methods
1063  ****************************************************************************/
1064 
1065 /****************************************************************************
1066  * int hdac_probe(device_t)
1067  *
1068  * Probe for the presence of an hdac. If none is found, check for a generic
1069  * match using the subclass of the device.
1070  ****************************************************************************/
1071 static int
1072 hdac_probe(device_t dev)
1073 {
1074 	int i, result;
1075 	uint32_t model;
1076 	uint16_t class, subclass;
1077 	char desc[64];
1078 
1079 	model = (uint32_t)pci_get_device(dev) << 16;
1080 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1081 	class = pci_get_class(dev);
1082 	subclass = pci_get_subclass(dev);
1083 
1084 	bzero(desc, sizeof(desc));
1085 	result = ENXIO;
1086 	for (i = 0; i < nitems(hdac_devices); i++) {
1087 		if (hdac_devices[i].model == model) {
1088 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1089 			result = BUS_PROBE_DEFAULT;
1090 			break;
1091 		}
1092 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1093 		    class == PCIC_MULTIMEDIA &&
1094 		    subclass == PCIS_MULTIMEDIA_HDA) {
1095 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1096 			    hdac_devices[i].desc, pci_get_device(dev));
1097 			result = BUS_PROBE_GENERIC;
1098 			break;
1099 		}
1100 	}
1101 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1102 	    subclass == PCIS_MULTIMEDIA_HDA) {
1103 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1104 		result = BUS_PROBE_GENERIC;
1105 	}
1106 	if (result != ENXIO) {
1107 		strlcat(desc, " HDA Controller", sizeof(desc));
1108 		device_set_desc_copy(dev, desc);
1109 	}
1110 
1111 	return (result);
1112 }
1113 
1114 static void
1115 hdac_unsolq_task(void *context, int pending)
1116 {
1117 	struct hdac_softc *sc;
1118 
1119 	sc = (struct hdac_softc *)context;
1120 
1121 	hdac_lock(sc);
1122 	hdac_unsolq_flush(sc);
1123 	hdac_unlock(sc);
1124 }
1125 
1126 /****************************************************************************
1127  * int hdac_attach(device_t)
1128  *
1129  * Attach the device into the kernel. Interrupts usually won't be enabled
1130  * when this function is called. Setup everything that doesn't require
1131  * interrupts and defer probing of codecs until interrupts are enabled.
1132  ****************************************************************************/
1133 static int
1134 hdac_attach(device_t dev)
1135 {
1136 	struct hdac_softc *sc;
1137 	int result;
1138 	int i, devid = -1;
1139 	uint32_t model;
1140 	uint16_t class, subclass;
1141 	uint16_t vendor;
1142 	uint8_t v;
1143 
1144 	sc = device_get_softc(dev);
1145 	HDA_BOOTVERBOSE(
1146 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1147 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1148 		device_printf(dev, "HDA Driver Revision: %s\n",
1149 		    HDA_DRV_TEST_REV);
1150 	);
1151 
1152 	model = (uint32_t)pci_get_device(dev) << 16;
1153 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1154 	class = pci_get_class(dev);
1155 	subclass = pci_get_subclass(dev);
1156 
1157 	for (i = 0; i < nitems(hdac_devices); i++) {
1158 		if (hdac_devices[i].model == model) {
1159 			devid = i;
1160 			break;
1161 		}
1162 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1163 		    class == PCIC_MULTIMEDIA &&
1164 		    subclass == PCIS_MULTIMEDIA_HDA) {
1165 			devid = i;
1166 			break;
1167 		}
1168 	}
1169 
1170 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1171 	sc->dev = dev;
1172 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1173 	callout_init(&sc->poll_callout, 1);
1174 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1175 		sc->codecs[i].dev = NULL;
1176 	if (devid >= 0) {
1177 		sc->quirks_on = hdac_devices[devid].quirks_on;
1178 		sc->quirks_off = hdac_devices[devid].quirks_off;
1179 	} else {
1180 		sc->quirks_on = 0;
1181 		sc->quirks_off = 0;
1182 	}
1183 	if (resource_int_value(device_get_name(dev),
1184 	    device_get_unit(dev), "msi", &i) == 0) {
1185 		if (i == 0)
1186 			sc->quirks_off |= HDAC_QUIRK_MSI;
1187 		else {
1188 			sc->quirks_on |= HDAC_QUIRK_MSI;
1189 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1190 		}
1191 	}
1192 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1193 	HDA_BOOTVERBOSE(
1194 		device_printf(sc->dev,
1195 		    "Config options: on=0x%08x off=0x%08x\n",
1196 		    sc->quirks_on, sc->quirks_off);
1197 	);
1198 	sc->poll_ival = hz;
1199 	if (resource_int_value(device_get_name(dev),
1200 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1201 		sc->polling = 1;
1202 	else
1203 		sc->polling = 0;
1204 
1205 	pci_enable_busmaster(dev);
1206 
1207 	vendor = pci_get_vendor(dev);
1208 	if (vendor == INTEL_VENDORID) {
1209 		/* TCSEL -> TC0 */
1210 		v = pci_read_config(dev, 0x44, 1);
1211 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1212 		HDA_BOOTHVERBOSE(
1213 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1214 			    pci_read_config(dev, 0x44, 1));
1215 		);
1216 	}
1217 
1218 #if defined(__i386__) || defined(__amd64__)
1219 	sc->flags |= HDAC_F_DMA_NOCACHE;
1220 
1221 	if (resource_int_value(device_get_name(dev),
1222 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1223 #else
1224 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1225 #endif
1226 		/*
1227 		 * Try to enable PCIe snoop to avoid messing around with
1228 		 * uncacheable DMA attribute. Since PCIe snoop register
1229 		 * config is pretty much vendor specific, there are no
1230 		 * general solutions on how to enable it, forcing us (even
1231 		 * Microsoft) to enable uncacheable or write combined DMA
1232 		 * by default.
1233 		 *
1234 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1235 		 */
1236 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1237 			if (hdac_pcie_snoop[i].vendor != vendor)
1238 				continue;
1239 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1240 			if (hdac_pcie_snoop[i].reg == 0x00)
1241 				break;
1242 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1243 			if ((v & hdac_pcie_snoop[i].enable) ==
1244 			    hdac_pcie_snoop[i].enable)
1245 				break;
1246 			v &= hdac_pcie_snoop[i].mask;
1247 			v |= hdac_pcie_snoop[i].enable;
1248 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1249 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1250 			if ((v & hdac_pcie_snoop[i].enable) !=
1251 			    hdac_pcie_snoop[i].enable) {
1252 				HDA_BOOTVERBOSE(
1253 					device_printf(dev,
1254 					    "WARNING: Failed to enable PCIe "
1255 					    "snoop!\n");
1256 				);
1257 #if defined(__i386__) || defined(__amd64__)
1258 				sc->flags |= HDAC_F_DMA_NOCACHE;
1259 #endif
1260 			}
1261 			break;
1262 		}
1263 #if defined(__i386__) || defined(__amd64__)
1264 	}
1265 #endif
1266 
1267 	HDA_BOOTHVERBOSE(
1268 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1269 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1270 		    "Uncacheable" : "PCIe snoop", vendor);
1271 	);
1272 
1273 	/* Allocate resources */
1274 	result = hdac_mem_alloc(sc);
1275 	if (result != 0)
1276 		goto hdac_attach_fail;
1277 	result = hdac_irq_alloc(sc);
1278 	if (result != 0)
1279 		goto hdac_attach_fail;
1280 
1281 	/* Get Capabilities */
1282 	result = hdac_get_capabilities(sc);
1283 	if (result != 0)
1284 		goto hdac_attach_fail;
1285 
1286 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1287 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1288 	    sc->corb_size * sizeof(uint32_t));
1289 	if (result != 0)
1290 		goto hdac_attach_fail;
1291 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1292 	    sc->rirb_size * sizeof(struct hdac_rirb));
1293 	if (result != 0)
1294 		goto hdac_attach_fail;
1295 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1296 	    M_HDAC, M_ZERO | M_WAITOK);
1297 	for (i = 0; i < sc->num_ss; i++) {
1298 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1299 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1300 		if (result != 0)
1301 			goto hdac_attach_fail;
1302 	}
1303 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1304 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1305 			HDA_BOOTVERBOSE(
1306 				device_printf(dev, "Failed to "
1307 				    "allocate DMA pos buffer "
1308 				    "(non-fatal)\n");
1309 			);
1310 		} else {
1311 			uint64_t addr = sc->pos_dma.dma_paddr;
1312 
1313 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1314 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1315 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1316 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1317 		}
1318 	}
1319 
1320 	result = bus_dma_tag_create(
1321 	    bus_get_dma_tag(sc->dev),		/* parent */
1322 	    HDA_DMA_ALIGNMENT,			/* alignment */
1323 	    0,					/* boundary */
1324 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1325 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1326 	    BUS_SPACE_MAXADDR,			/* highaddr */
1327 	    NULL,				/* filtfunc */
1328 	    NULL,				/* fistfuncarg */
1329 	    HDA_BUFSZ_MAX,			/* maxsize */
1330 	    1,					/* nsegments */
1331 	    HDA_BUFSZ_MAX,			/* maxsegsz */
1332 	    0,					/* flags */
1333 	    NULL,				/* lockfunc */
1334 	    NULL,				/* lockfuncarg */
1335 	    &sc->chan_dmat);			/* dmat */
1336 	if (result != 0) {
1337 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1338 		     __func__, result);
1339 		goto hdac_attach_fail;
1340 	}
1341 
1342 	/* Quiesce everything */
1343 	HDA_BOOTHVERBOSE(
1344 		device_printf(dev, "Reset controller...\n");
1345 	);
1346 	hdac_reset(sc, true);
1347 
1348 	/* Initialize the CORB and RIRB */
1349 	hdac_corb_init(sc);
1350 	hdac_rirb_init(sc);
1351 
1352 	/* Defer remaining of initialization until interrupts are enabled */
1353 	sc->intrhook.ich_func = hdac_attach2;
1354 	sc->intrhook.ich_arg = (void *)sc;
1355 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1356 		sc->intrhook.ich_func = NULL;
1357 		hdac_attach2((void *)sc);
1358 	}
1359 
1360 	return (0);
1361 
1362 hdac_attach_fail:
1363 	hdac_irq_free(sc);
1364 	if (sc->streams != NULL)
1365 		for (i = 0; i < sc->num_ss; i++)
1366 			hdac_dma_free(sc, &sc->streams[i].bdl);
1367 	free(sc->streams, M_HDAC);
1368 	hdac_dma_free(sc, &sc->rirb_dma);
1369 	hdac_dma_free(sc, &sc->corb_dma);
1370 	hdac_mem_free(sc);
1371 	snd_mtxfree(sc->lock);
1372 
1373 	return (ENXIO);
1374 }
1375 
1376 static int
1377 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1378 {
1379 	struct hdac_softc *sc;
1380 	device_t *devlist;
1381 	device_t dev;
1382 	int devcount, i, err, val;
1383 
1384 	dev = oidp->oid_arg1;
1385 	sc = device_get_softc(dev);
1386 	if (sc == NULL)
1387 		return (EINVAL);
1388 	val = 0;
1389 	err = sysctl_handle_int(oidp, &val, 0, req);
1390 	if (err != 0 || req->newptr == NULL || val == 0)
1391 		return (err);
1392 
1393 	/* XXX: Temporary. For debugging. */
1394 	if (val == 100) {
1395 		hdac_suspend(dev);
1396 		return (0);
1397 	} else if (val == 101) {
1398 		hdac_resume(dev);
1399 		return (0);
1400 	}
1401 
1402 	bus_topo_lock();
1403 
1404 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
1405 		bus_topo_unlock();
1406 		return (err);
1407 	}
1408 
1409 	hdac_lock(sc);
1410 	for (i = 0; i < devcount; i++)
1411 		HDAC_PINDUMP(devlist[i]);
1412 	hdac_unlock(sc);
1413 
1414 	bus_topo_unlock();
1415 
1416 	free(devlist, M_TEMP);
1417 	return (0);
1418 }
1419 
1420 static int
1421 hdac_mdata_rate(uint16_t fmt)
1422 {
1423 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1424 	int rate, bits;
1425 
1426 	if (fmt & (1 << 14))
1427 		rate = 44100;
1428 	else
1429 		rate = 48000;
1430 	rate *= ((fmt >> 11) & 0x07) + 1;
1431 	rate /= ((fmt >> 8) & 0x07) + 1;
1432 	bits = mbits[(fmt >> 4) & 0x03];
1433 	bits *= (fmt & 0x0f) + 1;
1434 	return (rate * bits);
1435 }
1436 
1437 static int
1438 hdac_bdata_rate(uint16_t fmt, int output)
1439 {
1440 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1441 	int rate, bits;
1442 
1443 	rate = 48000;
1444 	rate *= ((fmt >> 11) & 0x07) + 1;
1445 	bits = bbits[(fmt >> 4) & 0x03];
1446 	bits *= (fmt & 0x0f) + 1;
1447 	if (!output)
1448 		bits = ((bits + 7) & ~0x07) + 10;
1449 	return (rate * bits);
1450 }
1451 
1452 static void
1453 hdac_poll_reinit(struct hdac_softc *sc)
1454 {
1455 	int i, pollticks, min = 1000000;
1456 	struct hdac_stream *s;
1457 
1458 	if (sc->polling == 0)
1459 		return;
1460 	if (sc->unsol_registered > 0)
1461 		min = hz / 2;
1462 	for (i = 0; i < sc->num_ss; i++) {
1463 		s = &sc->streams[i];
1464 		if (s->running == 0)
1465 			continue;
1466 		pollticks = ((uint64_t)hz * s->blksz) /
1467 		    (hdac_mdata_rate(s->format) / 8);
1468 		pollticks >>= 1;
1469 		if (pollticks > hz)
1470 			pollticks = hz;
1471 		if (pollticks < 1)
1472 			pollticks = 1;
1473 		if (min > pollticks)
1474 			min = pollticks;
1475 	}
1476 	sc->poll_ival = min;
1477 	if (min == 1000000)
1478 		callout_stop(&sc->poll_callout);
1479 	else
1480 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1481 }
1482 
1483 static int
1484 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1485 {
1486 	struct hdac_softc *sc;
1487 	device_t dev;
1488 	uint32_t ctl;
1489 	int err, val;
1490 
1491 	dev = oidp->oid_arg1;
1492 	sc = device_get_softc(dev);
1493 	if (sc == NULL)
1494 		return (EINVAL);
1495 	hdac_lock(sc);
1496 	val = sc->polling;
1497 	hdac_unlock(sc);
1498 	err = sysctl_handle_int(oidp, &val, 0, req);
1499 
1500 	if (err != 0 || req->newptr == NULL)
1501 		return (err);
1502 	if (val < 0 || val > 1)
1503 		return (EINVAL);
1504 
1505 	hdac_lock(sc);
1506 	if (val != sc->polling) {
1507 		if (val == 0) {
1508 			callout_stop(&sc->poll_callout);
1509 			hdac_unlock(sc);
1510 			callout_drain(&sc->poll_callout);
1511 			hdac_lock(sc);
1512 			sc->polling = 0;
1513 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1514 			ctl |= HDAC_INTCTL_GIE;
1515 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1516 		} else {
1517 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1518 			ctl &= ~HDAC_INTCTL_GIE;
1519 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1520 			sc->polling = 1;
1521 			hdac_poll_reinit(sc);
1522 		}
1523 	}
1524 	hdac_unlock(sc);
1525 
1526 	return (err);
1527 }
1528 
1529 static void
1530 hdac_attach2(void *arg)
1531 {
1532 	struct hdac_softc *sc;
1533 	device_t child;
1534 	uint32_t vendorid, revisionid;
1535 	int i;
1536 	uint16_t statests;
1537 
1538 	sc = (struct hdac_softc *)arg;
1539 
1540 	hdac_lock(sc);
1541 
1542 	/* Remove ourselves from the config hooks */
1543 	if (sc->intrhook.ich_func != NULL) {
1544 		config_intrhook_disestablish(&sc->intrhook);
1545 		sc->intrhook.ich_func = NULL;
1546 	}
1547 
1548 	HDA_BOOTHVERBOSE(
1549 		device_printf(sc->dev, "Starting CORB Engine...\n");
1550 	);
1551 	hdac_corb_start(sc);
1552 	HDA_BOOTHVERBOSE(
1553 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1554 	);
1555 	hdac_rirb_start(sc);
1556 
1557 	/*
1558 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1559 	 * (status change) interrupts.  The documentation says that we
1560 	 * should not make any assumptions about the state of this register
1561 	 * and set it explicitly.
1562 	 * NB: this needs to be done before the interrupt is enabled as
1563 	 * the handler does not expect this interrupt source.
1564 	 */
1565 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1566 
1567 	/*
1568 	 * Read and clear post-reset SDI wake status.
1569 	 * Each set bit corresponds to a codec that came out of reset.
1570 	 */
1571 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1572 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1573 
1574 	HDA_BOOTHVERBOSE(
1575 		device_printf(sc->dev,
1576 		    "Enabling controller interrupt...\n");
1577 	);
1578 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1579 	    HDAC_GCTL_UNSOL);
1580 	if (sc->polling == 0) {
1581 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1582 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1583 	}
1584 	DELAY(1000);
1585 
1586 	HDA_BOOTHVERBOSE(
1587 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1588 	);
1589 	hdac_unlock(sc);
1590 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1591 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1592 			HDA_BOOTHVERBOSE(
1593 				device_printf(sc->dev,
1594 				    "Found CODEC at address %d\n", i);
1595 			);
1596 			hdac_lock(sc);
1597 			vendorid = hdac_send_command(sc, i,
1598 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1599 			revisionid = hdac_send_command(sc, i,
1600 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1601 			hdac_unlock(sc);
1602 			if (vendorid == HDA_INVALID &&
1603 			    revisionid == HDA_INVALID) {
1604 				device_printf(sc->dev,
1605 				    "CODEC at address %d not responding!\n", i);
1606 				continue;
1607 			}
1608 			sc->codecs[i].vendor_id =
1609 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1610 			sc->codecs[i].device_id =
1611 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1612 			sc->codecs[i].revision_id =
1613 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1614 			sc->codecs[i].stepping_id =
1615 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1616 			child = device_add_child(sc->dev, "hdacc", -1);
1617 			if (child == NULL) {
1618 				device_printf(sc->dev,
1619 				    "Failed to add CODEC device\n");
1620 				continue;
1621 			}
1622 			device_set_ivars(child, (void *)(intptr_t)i);
1623 			sc->codecs[i].dev = child;
1624 		}
1625 	}
1626 	bus_generic_attach(sc->dev);
1627 
1628 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1629 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1630 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1631 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1632 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1633 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1634 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1635 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1636 }
1637 
1638 /****************************************************************************
1639  * int hdac_suspend(device_t)
1640  *
1641  * Suspend and power down HDA bus and codecs.
1642  ****************************************************************************/
1643 static int
1644 hdac_suspend(device_t dev)
1645 {
1646 	struct hdac_softc *sc = device_get_softc(dev);
1647 
1648 	HDA_BOOTHVERBOSE(
1649 		device_printf(dev, "Suspend...\n");
1650 	);
1651 	bus_generic_suspend(dev);
1652 
1653 	hdac_lock(sc);
1654 	HDA_BOOTHVERBOSE(
1655 		device_printf(dev, "Reset controller...\n");
1656 	);
1657 	callout_stop(&sc->poll_callout);
1658 	hdac_reset(sc, false);
1659 	hdac_unlock(sc);
1660 	callout_drain(&sc->poll_callout);
1661 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1662 	HDA_BOOTHVERBOSE(
1663 		device_printf(dev, "Suspend done\n");
1664 	);
1665 	return (0);
1666 }
1667 
1668 /****************************************************************************
1669  * int hdac_resume(device_t)
1670  *
1671  * Powerup and restore HDA bus and codecs state.
1672  ****************************************************************************/
1673 static int
1674 hdac_resume(device_t dev)
1675 {
1676 	struct hdac_softc *sc = device_get_softc(dev);
1677 	int error;
1678 
1679 	HDA_BOOTHVERBOSE(
1680 		device_printf(dev, "Resume...\n");
1681 	);
1682 	hdac_lock(sc);
1683 
1684 	/* Quiesce everything */
1685 	HDA_BOOTHVERBOSE(
1686 		device_printf(dev, "Reset controller...\n");
1687 	);
1688 	hdac_reset(sc, true);
1689 
1690 	/* Initialize the CORB and RIRB */
1691 	hdac_corb_init(sc);
1692 	hdac_rirb_init(sc);
1693 
1694 	HDA_BOOTHVERBOSE(
1695 		device_printf(dev, "Starting CORB Engine...\n");
1696 	);
1697 	hdac_corb_start(sc);
1698 	HDA_BOOTHVERBOSE(
1699 		device_printf(dev, "Starting RIRB Engine...\n");
1700 	);
1701 	hdac_rirb_start(sc);
1702 
1703 	/*
1704 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1705 	 * (status change) events.  The documentation says that we should
1706 	 * not make any assumptions about the state of this register and
1707 	 * set it explicitly.
1708 	 * Also, clear HDAC_STATESTS.
1709 	 * NB: this needs to be done before the interrupt is enabled as
1710 	 * the handler does not expect this interrupt source.
1711 	 */
1712 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1713 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1714 
1715 	HDA_BOOTHVERBOSE(
1716 		device_printf(dev, "Enabling controller interrupt...\n");
1717 	);
1718 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1719 	    HDAC_GCTL_UNSOL);
1720 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1721 	DELAY(1000);
1722 	hdac_poll_reinit(sc);
1723 	hdac_unlock(sc);
1724 
1725 	error = bus_generic_resume(dev);
1726 	HDA_BOOTHVERBOSE(
1727 		device_printf(dev, "Resume done\n");
1728 	);
1729 	return (error);
1730 }
1731 
1732 /****************************************************************************
1733  * int hdac_detach(device_t)
1734  *
1735  * Detach and free up resources utilized by the hdac device.
1736  ****************************************************************************/
1737 static int
1738 hdac_detach(device_t dev)
1739 {
1740 	struct hdac_softc *sc = device_get_softc(dev);
1741 	device_t *devlist;
1742 	int cad, i, devcount, error;
1743 
1744 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1745 		return (error);
1746 	for (i = 0; i < devcount; i++) {
1747 		cad = (intptr_t)device_get_ivars(devlist[i]);
1748 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1749 			free(devlist, M_TEMP);
1750 			return (error);
1751 		}
1752 		sc->codecs[cad].dev = NULL;
1753 	}
1754 	free(devlist, M_TEMP);
1755 
1756 	hdac_lock(sc);
1757 	hdac_reset(sc, false);
1758 	hdac_unlock(sc);
1759 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1760 	hdac_irq_free(sc);
1761 
1762 	for (i = 0; i < sc->num_ss; i++)
1763 		hdac_dma_free(sc, &sc->streams[i].bdl);
1764 	free(sc->streams, M_HDAC);
1765 	hdac_dma_free(sc, &sc->pos_dma);
1766 	hdac_dma_free(sc, &sc->rirb_dma);
1767 	hdac_dma_free(sc, &sc->corb_dma);
1768 	if (sc->chan_dmat != NULL) {
1769 		bus_dma_tag_destroy(sc->chan_dmat);
1770 		sc->chan_dmat = NULL;
1771 	}
1772 	hdac_mem_free(sc);
1773 	snd_mtxfree(sc->lock);
1774 	return (0);
1775 }
1776 
1777 static bus_dma_tag_t
1778 hdac_get_dma_tag(device_t dev, device_t child)
1779 {
1780 	struct hdac_softc *sc = device_get_softc(dev);
1781 
1782 	return (sc->chan_dmat);
1783 }
1784 
1785 static int
1786 hdac_print_child(device_t dev, device_t child)
1787 {
1788 	int retval;
1789 
1790 	retval = bus_print_child_header(dev, child);
1791 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1792 	retval += bus_print_child_footer(dev, child);
1793 
1794 	return (retval);
1795 }
1796 
1797 static int
1798 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
1799 {
1800 
1801 	sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1802 	return (0);
1803 }
1804 
1805 static int
1806 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
1807 {
1808 	struct hdac_softc *sc = device_get_softc(dev);
1809 	nid_t cad = (uintptr_t)device_get_ivars(child);
1810 
1811 	sbuf_printf(sb,
1812 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1813 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1814 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1815 	return (0);
1816 }
1817 
1818 static int
1819 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1820 {
1821 	struct hdac_softc *sc = device_get_softc(dev);
1822 	nid_t cad = (uintptr_t)device_get_ivars(child);
1823 
1824 	switch (which) {
1825 	case HDA_IVAR_CODEC_ID:
1826 		*result = cad;
1827 		break;
1828 	case HDA_IVAR_VENDOR_ID:
1829 		*result = sc->codecs[cad].vendor_id;
1830 		break;
1831 	case HDA_IVAR_DEVICE_ID:
1832 		*result = sc->codecs[cad].device_id;
1833 		break;
1834 	case HDA_IVAR_REVISION_ID:
1835 		*result = sc->codecs[cad].revision_id;
1836 		break;
1837 	case HDA_IVAR_STEPPING_ID:
1838 		*result = sc->codecs[cad].stepping_id;
1839 		break;
1840 	case HDA_IVAR_SUBVENDOR_ID:
1841 		*result = pci_get_subvendor(dev);
1842 		break;
1843 	case HDA_IVAR_SUBDEVICE_ID:
1844 		*result = pci_get_subdevice(dev);
1845 		break;
1846 	case HDA_IVAR_DMA_NOCACHE:
1847 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1848 		break;
1849 	case HDA_IVAR_STRIPES_MASK:
1850 		*result = (1 << (1 << sc->num_sdo)) - 1;
1851 		break;
1852 	default:
1853 		return (ENOENT);
1854 	}
1855 	return (0);
1856 }
1857 
1858 static struct mtx *
1859 hdac_get_mtx(device_t dev, device_t child)
1860 {
1861 	struct hdac_softc *sc = device_get_softc(dev);
1862 
1863 	return (sc->lock);
1864 }
1865 
1866 static uint32_t
1867 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1868 {
1869 
1870 	return (hdac_send_command(device_get_softc(dev),
1871 	    (intptr_t)device_get_ivars(child), verb));
1872 }
1873 
1874 static int
1875 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1876 {
1877 	int i, ss;
1878 
1879 	ss = -1;
1880 	/* Allocate ISS/OSS first. */
1881 	if (dir == 0) {
1882 		for (i = 0; i < sc->num_iss; i++) {
1883 			if (sc->streams[i].stream == stream) {
1884 				ss = i;
1885 				break;
1886 			}
1887 		}
1888 	} else {
1889 		for (i = 0; i < sc->num_oss; i++) {
1890 			if (sc->streams[i + sc->num_iss].stream == stream) {
1891 				ss = i + sc->num_iss;
1892 				break;
1893 			}
1894 		}
1895 	}
1896 	/* Fallback to BSS. */
1897 	if (ss == -1) {
1898 		for (i = 0; i < sc->num_bss; i++) {
1899 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1900 			    == stream) {
1901 				ss = i + sc->num_iss + sc->num_oss;
1902 				break;
1903 			}
1904 		}
1905 	}
1906 	return (ss);
1907 }
1908 
1909 static int
1910 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1911     uint32_t **dmapos)
1912 {
1913 	struct hdac_softc *sc = device_get_softc(dev);
1914 	nid_t cad = (uintptr_t)device_get_ivars(child);
1915 	int stream, ss, bw, maxbw, prevbw;
1916 
1917 	/* Look for empty stream. */
1918 	ss = hdac_find_stream(sc, dir, 0);
1919 
1920 	/* Return if found nothing. */
1921 	if (ss < 0)
1922 		return (0);
1923 
1924 	/* Check bus bandwidth. */
1925 	bw = hdac_bdata_rate(format, dir);
1926 	if (dir == 1) {
1927 		bw *= 1 << (sc->num_sdo - stripe);
1928 		prevbw = sc->sdo_bw_used;
1929 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1930 	} else {
1931 		prevbw = sc->codecs[cad].sdi_bw_used;
1932 		maxbw = 48000 * 464;
1933 	}
1934 	HDA_BOOTHVERBOSE(
1935 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1936 		    (bw + prevbw) / 1000, maxbw / 1000,
1937 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1938 	);
1939 	if (bw + prevbw > maxbw)
1940 		return (0);
1941 	if (dir == 1)
1942 		sc->sdo_bw_used += bw;
1943 	else
1944 		sc->codecs[cad].sdi_bw_used += bw;
1945 
1946 	/* Allocate stream number */
1947 	if (ss >= sc->num_iss + sc->num_oss)
1948 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1949 	else if (ss >= sc->num_iss)
1950 		stream = ss - sc->num_iss + 1;
1951 	else
1952 		stream = ss + 1;
1953 
1954 	sc->streams[ss].dev = child;
1955 	sc->streams[ss].dir = dir;
1956 	sc->streams[ss].stream = stream;
1957 	sc->streams[ss].bw = bw;
1958 	sc->streams[ss].format = format;
1959 	sc->streams[ss].stripe = stripe;
1960 	if (dmapos != NULL) {
1961 		if (sc->pos_dma.dma_vaddr != NULL)
1962 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1963 		else
1964 			*dmapos = NULL;
1965 	}
1966 	return (stream);
1967 }
1968 
1969 static void
1970 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1971 {
1972 	struct hdac_softc *sc = device_get_softc(dev);
1973 	nid_t cad = (uintptr_t)device_get_ivars(child);
1974 	int ss;
1975 
1976 	ss = hdac_find_stream(sc, dir, stream);
1977 	KASSERT(ss >= 0,
1978 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1979 	if (dir == 1)
1980 		sc->sdo_bw_used -= sc->streams[ss].bw;
1981 	else
1982 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1983 	sc->streams[ss].stream = 0;
1984 	sc->streams[ss].dev = NULL;
1985 }
1986 
1987 static int
1988 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1989     bus_addr_t buf, int blksz, int blkcnt)
1990 {
1991 	struct hdac_softc *sc = device_get_softc(dev);
1992 	struct hdac_bdle *bdle;
1993 	uint64_t addr;
1994 	int i, ss, off;
1995 	uint32_t ctl;
1996 
1997 	ss = hdac_find_stream(sc, dir, stream);
1998 	KASSERT(ss >= 0,
1999 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
2000 
2001 	addr = (uint64_t)buf;
2002 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
2003 	for (i = 0; i < blkcnt; i++, bdle++) {
2004 		bdle->addrl = htole32((uint32_t)addr);
2005 		bdle->addrh = htole32((uint32_t)(addr >> 32));
2006 		bdle->len = htole32(blksz);
2007 		bdle->ioc = htole32(1);
2008 		addr += blksz;
2009 	}
2010 
2011 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2012 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
2013 
2014 	off = ss << 5;
2015 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
2016 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
2017 	addr = sc->streams[ss].bdl.dma_paddr;
2018 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2019 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2020 
2021 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2022 	if (dir)
2023 		ctl |= HDAC_SDCTL2_DIR;
2024 	else
2025 		ctl &= ~HDAC_SDCTL2_DIR;
2026 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2027 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2028 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2029 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2030 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2031 
2032 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2033 
2034 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2035 	ctl |= 1 << ss;
2036 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2037 
2038 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2039 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2040 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2041 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2042 	    HDAC_SDCTL_RUN;
2043 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2044 
2045 	sc->streams[ss].blksz = blksz;
2046 	sc->streams[ss].running = 1;
2047 	hdac_poll_reinit(sc);
2048 	return (0);
2049 }
2050 
2051 static void
2052 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2053 {
2054 	struct hdac_softc *sc = device_get_softc(dev);
2055 	int ss, off;
2056 	uint32_t ctl;
2057 
2058 	ss = hdac_find_stream(sc, dir, stream);
2059 	KASSERT(ss >= 0,
2060 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2061 
2062 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2063 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2064 
2065 	off = ss << 5;
2066 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2067 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2068 	    HDAC_SDCTL_RUN);
2069 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2070 
2071 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2072 	ctl &= ~(1 << ss);
2073 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2074 
2075 	sc->streams[ss].running = 0;
2076 	hdac_poll_reinit(sc);
2077 }
2078 
2079 static void
2080 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2081 {
2082 	struct hdac_softc *sc = device_get_softc(dev);
2083 	int timeout = 1000;
2084 	int to = timeout;
2085 	int ss, off;
2086 	uint32_t ctl;
2087 
2088 	ss = hdac_find_stream(sc, dir, stream);
2089 	KASSERT(ss >= 0,
2090 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2091 
2092 	off = ss << 5;
2093 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2094 	ctl |= HDAC_SDCTL_SRST;
2095 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2096 	do {
2097 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2098 		if (ctl & HDAC_SDCTL_SRST)
2099 			break;
2100 		DELAY(10);
2101 	} while (--to);
2102 	if (!(ctl & HDAC_SDCTL_SRST))
2103 		device_printf(dev, "Reset setting timeout\n");
2104 	ctl &= ~HDAC_SDCTL_SRST;
2105 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2106 	to = timeout;
2107 	do {
2108 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2109 		if (!(ctl & HDAC_SDCTL_SRST))
2110 			break;
2111 		DELAY(10);
2112 	} while (--to);
2113 	if (ctl & HDAC_SDCTL_SRST)
2114 		device_printf(dev, "Reset timeout!\n");
2115 }
2116 
2117 static uint32_t
2118 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2119 {
2120 	struct hdac_softc *sc = device_get_softc(dev);
2121 	int ss, off;
2122 
2123 	ss = hdac_find_stream(sc, dir, stream);
2124 	KASSERT(ss >= 0,
2125 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2126 
2127 	off = ss << 5;
2128 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2129 }
2130 
2131 static int
2132 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2133 {
2134 	struct hdac_softc *sc = device_get_softc(dev);
2135 
2136 	sc->unsol_registered++;
2137 	hdac_poll_reinit(sc);
2138 	return (tag);
2139 }
2140 
2141 static void
2142 hdac_unsol_free(device_t dev, device_t child, int tag)
2143 {
2144 	struct hdac_softc *sc = device_get_softc(dev);
2145 
2146 	sc->unsol_registered--;
2147 	hdac_poll_reinit(sc);
2148 }
2149 
2150 static device_method_t hdac_methods[] = {
2151 	/* device interface */
2152 	DEVMETHOD(device_probe,		hdac_probe),
2153 	DEVMETHOD(device_attach,	hdac_attach),
2154 	DEVMETHOD(device_detach,	hdac_detach),
2155 	DEVMETHOD(device_suspend,	hdac_suspend),
2156 	DEVMETHOD(device_resume,	hdac_resume),
2157 	/* Bus interface */
2158 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2159 	DEVMETHOD(bus_print_child,	hdac_print_child),
2160 	DEVMETHOD(bus_child_location,	hdac_child_location),
2161 	DEVMETHOD(bus_child_pnpinfo,	hdac_child_pnpinfo_method),
2162 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2163 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2164 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2165 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2166 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2167 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2168 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2169 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2170 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2171 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2172 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2173 	DEVMETHOD_END
2174 };
2175 
2176 static driver_t hdac_driver = {
2177 	"hdac",
2178 	hdac_methods,
2179 	sizeof(struct hdac_softc),
2180 };
2181 
2182 DRIVER_MODULE(snd_hda, pci, hdac_driver, NULL, NULL);
2183