xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
3  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
4  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Intel High Definition Audio (Controller) driver for FreeBSD.
31  */
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_snd.h"
35 #endif
36 
37 #include <dev/sound/pcm/sound.h>
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40 
41 #include <sys/ctype.h>
42 #include <sys/taskqueue.h>
43 
44 #include <dev/sound/pci/hda/hdac_private.h>
45 #include <dev/sound/pci/hda/hdac_reg.h>
46 #include <dev/sound/pci/hda/hda_reg.h>
47 #include <dev/sound/pci/hda/hdac.h>
48 
49 #define HDA_DRV_TEST_REV	"20120126_0002"
50 
51 SND_DECLARE_FILE("$FreeBSD$");
52 
53 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
54 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
55 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
56 #define hdac_lockowned(sc)	mtx_owned((sc)->lock)
57 
58 #define HDAC_QUIRK_64BIT	(1 << 0)
59 #define HDAC_QUIRK_DMAPOS	(1 << 1)
60 #define HDAC_QUIRK_MSI		(1 << 2)
61 
62 static const struct {
63 	char *key;
64 	uint32_t value;
65 } hdac_quirks_tab[] = {
66 	{ "64bit", HDAC_QUIRK_DMAPOS },
67 	{ "dmapos", HDAC_QUIRK_DMAPOS },
68 	{ "msi", HDAC_QUIRK_MSI },
69 };
70 #define HDAC_QUIRKS_TAB_LEN	\
71 		(sizeof(hdac_quirks_tab) / sizeof(hdac_quirks_tab[0]))
72 
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74 
75 static const struct {
76 	uint32_t	model;
77 	char		*desc;
78 	char		quirks_on;
79 	char		quirks_off;
80 } hdac_devices[] = {
81 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
82 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
83 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
84 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
85 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
86 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
87 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
88 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
89 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
90 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
91 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
92 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
93 	{ HDA_INTEL_PCH,     "Intel 5 Series/3400 Series",	0, 0 },
94 	{ HDA_INTEL_PCH2,    "Intel 5 Series/3400 Series",	0, 0 },
95 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
96 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
97 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
98 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
99 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
100 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
101 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
102 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
103 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
104 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
105 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
106 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
107 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
108 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
109 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
110 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
111 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
112 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
113 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
114 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
115 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
116 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
117 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
118 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
119 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
120 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
121 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
122 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
123 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
124 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
125 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
126 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
127 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
128 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
129 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
130 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
131 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
132 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
133 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
134 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
135 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
136 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
137 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
138 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
139 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
140 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
141 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
142 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
143 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
144 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
145 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
146 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
147 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
148 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
149 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
150 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
151 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
152 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
153 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
154 	{ HDA_SIS_966,       "SiS 966",		0, 0 },
155 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
156 	/* Unknown */
157 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
158 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
159 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
160 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
161 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
162 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
163 };
164 #define HDAC_DEVICES_LEN (sizeof(hdac_devices) / sizeof(hdac_devices[0]))
165 
166 static const struct {
167 	uint16_t vendor;
168 	uint8_t reg;
169 	uint8_t mask;
170 	uint8_t enable;
171 } hdac_pcie_snoop[] = {
172 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
173 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
174 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
175 };
176 #define HDAC_PCIESNOOP_LEN	\
177 			(sizeof(hdac_pcie_snoop) / sizeof(hdac_pcie_snoop[0]))
178 
179 /****************************************************************************
180  * Function prototypes
181  ****************************************************************************/
182 static void	hdac_intr_handler(void *);
183 static int	hdac_reset(struct hdac_softc *, int);
184 static int	hdac_get_capabilities(struct hdac_softc *);
185 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
186 static int	hdac_dma_alloc(struct hdac_softc *,
187 					struct hdac_dma *, bus_size_t);
188 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
189 static int	hdac_mem_alloc(struct hdac_softc *);
190 static void	hdac_mem_free(struct hdac_softc *);
191 static int	hdac_irq_alloc(struct hdac_softc *);
192 static void	hdac_irq_free(struct hdac_softc *);
193 static void	hdac_corb_init(struct hdac_softc *);
194 static void	hdac_rirb_init(struct hdac_softc *);
195 static void	hdac_corb_start(struct hdac_softc *);
196 static void	hdac_rirb_start(struct hdac_softc *);
197 
198 static void	hdac_attach2(void *);
199 
200 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
201 
202 static int	hdac_probe(device_t);
203 static int	hdac_attach(device_t);
204 static int	hdac_detach(device_t);
205 static int	hdac_suspend(device_t);
206 static int	hdac_resume(device_t);
207 
208 static int	hdac_rirb_flush(struct hdac_softc *sc);
209 static int	hdac_unsolq_flush(struct hdac_softc *sc);
210 
211 #define hdac_command(a1, a2, a3)	\
212 		hdac_send_command(a1, a3, a2)
213 
214 /* This function surely going to make its way into upper level someday. */
215 static void
216 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
217 {
218 	const char *res = NULL;
219 	int i = 0, j, k, len, inv;
220 
221 	if (resource_string_value(device_get_name(sc->dev),
222 	    device_get_unit(sc->dev), "config", &res) != 0)
223 		return;
224 	if (!(res != NULL && strlen(res) > 0))
225 		return;
226 	HDA_BOOTVERBOSE(
227 		device_printf(sc->dev, "Config options:");
228 	);
229 	for (;;) {
230 		while (res[i] != '\0' &&
231 		    (res[i] == ',' || isspace(res[i]) != 0))
232 			i++;
233 		if (res[i] == '\0') {
234 			HDA_BOOTVERBOSE(
235 				printf("\n");
236 			);
237 			return;
238 		}
239 		j = i;
240 		while (res[j] != '\0' &&
241 		    !(res[j] == ',' || isspace(res[j]) != 0))
242 			j++;
243 		len = j - i;
244 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
245 			inv = 2;
246 		else
247 			inv = 0;
248 		for (k = 0; len > inv && k < HDAC_QUIRKS_TAB_LEN; k++) {
249 			if (strncmp(res + i + inv,
250 			    hdac_quirks_tab[k].key, len - inv) != 0)
251 				continue;
252 			if (len - inv != strlen(hdac_quirks_tab[k].key))
253 				continue;
254 			HDA_BOOTVERBOSE(
255 				printf(" %s%s", (inv != 0) ? "no" : "",
256 				    hdac_quirks_tab[k].key);
257 			);
258 			if (inv == 0) {
259 				*on |= hdac_quirks_tab[k].value;
260 				*on &= ~hdac_quirks_tab[k].value;
261 			} else if (inv != 0) {
262 				*off |= hdac_quirks_tab[k].value;
263 				*off &= ~hdac_quirks_tab[k].value;
264 			}
265 			break;
266 		}
267 		i = j;
268 	}
269 }
270 
271 /****************************************************************************
272  * void hdac_intr_handler(void *)
273  *
274  * Interrupt handler. Processes interrupts received from the hdac.
275  ****************************************************************************/
276 static void
277 hdac_intr_handler(void *context)
278 {
279 	struct hdac_softc *sc;
280 	device_t dev;
281 	uint32_t intsts;
282 	uint8_t rirbsts;
283 	int i;
284 
285 	sc = (struct hdac_softc *)context;
286 	hdac_lock(sc);
287 
288 	/* Do we have anything to do? */
289 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
290 	if ((intsts & HDAC_INTSTS_GIS) == 0) {
291 		hdac_unlock(sc);
292 		return;
293 	}
294 
295 	/* Was this a controller interrupt? */
296 	if (intsts & HDAC_INTSTS_CIS) {
297 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
298 		/* Get as many responses that we can */
299 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
300 			HDAC_WRITE_1(&sc->mem,
301 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
302 			hdac_rirb_flush(sc);
303 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
304 		}
305 		if (sc->unsolq_rp != sc->unsolq_wp)
306 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
307 	}
308 
309 	if (intsts & HDAC_INTSTS_SIS_MASK) {
310 		for (i = 0; i < sc->num_ss; i++) {
311 			if ((intsts & (1 << i)) == 0)
312 				continue;
313 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
314 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
315 			if ((dev = sc->streams[i].dev) != NULL) {
316 				HDAC_STREAM_INTR(dev,
317 				    sc->streams[i].dir, sc->streams[i].stream);
318 			}
319 		}
320 	}
321 
322 	HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
323 	hdac_unlock(sc);
324 }
325 
326 static void
327 hdac_poll_callback(void *arg)
328 {
329 	struct hdac_softc *sc = arg;
330 
331 	if (sc == NULL)
332 		return;
333 
334 	hdac_lock(sc);
335 	if (sc->polling == 0) {
336 		hdac_unlock(sc);
337 		return;
338 	}
339 	callout_reset(&sc->poll_callout, sc->poll_ival,
340 	    hdac_poll_callback, sc);
341 	hdac_unlock(sc);
342 
343 	hdac_intr_handler(sc);
344 }
345 
346 /****************************************************************************
347  * int hdac_reset(hdac_softc *, int)
348  *
349  * Reset the hdac to a quiescent and known state.
350  ****************************************************************************/
351 static int
352 hdac_reset(struct hdac_softc *sc, int wakeup)
353 {
354 	uint32_t gctl;
355 	int count, i;
356 
357 	/*
358 	 * Stop all Streams DMA engine
359 	 */
360 	for (i = 0; i < sc->num_iss; i++)
361 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
362 	for (i = 0; i < sc->num_oss; i++)
363 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
364 	for (i = 0; i < sc->num_bss; i++)
365 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
366 
367 	/*
368 	 * Stop Control DMA engines.
369 	 */
370 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
371 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
372 
373 	/*
374 	 * Reset DMA position buffer.
375 	 */
376 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
377 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
378 
379 	/*
380 	 * Reset the controller. The reset must remain asserted for
381 	 * a minimum of 100us.
382 	 */
383 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
384 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
385 	count = 10000;
386 	do {
387 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
388 		if (!(gctl & HDAC_GCTL_CRST))
389 			break;
390 		DELAY(10);
391 	} while	(--count);
392 	if (gctl & HDAC_GCTL_CRST) {
393 		device_printf(sc->dev, "Unable to put hdac in reset\n");
394 		return (ENXIO);
395 	}
396 
397 	/* If wakeup is not requested - leave the controller in reset state. */
398 	if (!wakeup)
399 		return (0);
400 
401 	DELAY(100);
402 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
403 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
404 	count = 10000;
405 	do {
406 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
407 		if (gctl & HDAC_GCTL_CRST)
408 			break;
409 		DELAY(10);
410 	} while (--count);
411 	if (!(gctl & HDAC_GCTL_CRST)) {
412 		device_printf(sc->dev, "Device stuck in reset\n");
413 		return (ENXIO);
414 	}
415 
416 	/*
417 	 * Wait for codecs to finish their own reset sequence. The delay here
418 	 * should be of 250us but for some reasons, on it's not enough on my
419 	 * computer. Let's use twice as much as necessary to make sure that
420 	 * it's reset properly.
421 	 */
422 	DELAY(1000);
423 
424 	return (0);
425 }
426 
427 
428 /****************************************************************************
429  * int hdac_get_capabilities(struct hdac_softc *);
430  *
431  * Retreive the general capabilities of the hdac;
432  *	Number of Input Streams
433  *	Number of Output Streams
434  *	Number of bidirectional Streams
435  *	64bit ready
436  *	CORB and RIRB sizes
437  ****************************************************************************/
438 static int
439 hdac_get_capabilities(struct hdac_softc *sc)
440 {
441 	uint16_t gcap;
442 	uint8_t corbsize, rirbsize;
443 
444 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
445 	sc->num_iss = HDAC_GCAP_ISS(gcap);
446 	sc->num_oss = HDAC_GCAP_OSS(gcap);
447 	sc->num_bss = HDAC_GCAP_BSS(gcap);
448 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
449 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
450 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
451 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
452 		sc->support_64bit = 1;
453 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
454 		sc->support_64bit = 0;
455 
456 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
457 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
458 	    HDAC_CORBSIZE_CORBSZCAP_256)
459 		sc->corb_size = 256;
460 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
461 	    HDAC_CORBSIZE_CORBSZCAP_16)
462 		sc->corb_size = 16;
463 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
464 	    HDAC_CORBSIZE_CORBSZCAP_2)
465 		sc->corb_size = 2;
466 	else {
467 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
468 		    __func__, corbsize);
469 		return (ENXIO);
470 	}
471 
472 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
473 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
474 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
475 		sc->rirb_size = 256;
476 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
477 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
478 		sc->rirb_size = 16;
479 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
480 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
481 		sc->rirb_size = 2;
482 	else {
483 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
484 		    __func__, rirbsize);
485 		return (ENXIO);
486 	}
487 
488 	HDA_BOOTVERBOSE(
489 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
490 		    "NSDO %d%s, CORB %d, RIRB %d\n",
491 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
492 		    sc->support_64bit ? ", 64bit" : "",
493 		    sc->corb_size, sc->rirb_size);
494 	);
495 
496 	return (0);
497 }
498 
499 
500 /****************************************************************************
501  * void hdac_dma_cb
502  *
503  * This function is called by bus_dmamap_load when the mapping has been
504  * established. We just record the physical address of the mapping into
505  * the struct hdac_dma passed in.
506  ****************************************************************************/
507 static void
508 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
509 {
510 	struct hdac_dma *dma;
511 
512 	if (error == 0) {
513 		dma = (struct hdac_dma *)callback_arg;
514 		dma->dma_paddr = segs[0].ds_addr;
515 	}
516 }
517 
518 
519 /****************************************************************************
520  * int hdac_dma_alloc
521  *
522  * This function allocate and setup a dma region (struct hdac_dma).
523  * It must be freed by a corresponding hdac_dma_free.
524  ****************************************************************************/
525 static int
526 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
527 {
528 	bus_size_t roundsz;
529 	int result;
530 
531 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
532 	bzero(dma, sizeof(*dma));
533 
534 	/*
535 	 * Create a DMA tag
536 	 */
537 	result = bus_dma_tag_create(
538 	    bus_get_dma_tag(sc->dev),		/* parent */
539 	    HDA_DMA_ALIGNMENT,			/* alignment */
540 	    0,					/* boundary */
541 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
542 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
543 	    BUS_SPACE_MAXADDR,			/* highaddr */
544 	    NULL,				/* filtfunc */
545 	    NULL,				/* fistfuncarg */
546 	    roundsz, 				/* maxsize */
547 	    1,					/* nsegments */
548 	    roundsz, 				/* maxsegsz */
549 	    0,					/* flags */
550 	    NULL,				/* lockfunc */
551 	    NULL,				/* lockfuncarg */
552 	    &dma->dma_tag);			/* dmat */
553 	if (result != 0) {
554 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%x)\n",
555 		    __func__, result);
556 		goto hdac_dma_alloc_fail;
557 	}
558 
559 	/*
560 	 * Allocate DMA memory
561 	 */
562 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
563 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
564 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0),
565 	    &dma->dma_map);
566 	if (result != 0) {
567 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%x)\n",
568 		    __func__, result);
569 		goto hdac_dma_alloc_fail;
570 	}
571 
572 	dma->dma_size = roundsz;
573 
574 	/*
575 	 * Map the memory
576 	 */
577 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
578 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
579 	if (result != 0 || dma->dma_paddr == 0) {
580 		if (result == 0)
581 			result = ENOMEM;
582 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%x)\n",
583 		    __func__, result);
584 		goto hdac_dma_alloc_fail;
585 	}
586 
587 	HDA_BOOTHVERBOSE(
588 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
589 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
590 	);
591 
592 	return (0);
593 
594 hdac_dma_alloc_fail:
595 	hdac_dma_free(sc, dma);
596 
597 	return (result);
598 }
599 
600 
601 /****************************************************************************
602  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
603  *
604  * Free a struct dhac_dma that has been previously allocated via the
605  * hdac_dma_alloc function.
606  ****************************************************************************/
607 static void
608 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
609 {
610 	if (dma->dma_map != NULL) {
611 #if 0
612 		/* Flush caches */
613 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
614 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
615 #endif
616 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
617 	}
618 	if (dma->dma_vaddr != NULL) {
619 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
620 		dma->dma_vaddr = NULL;
621 	}
622 	dma->dma_map = NULL;
623 	if (dma->dma_tag != NULL) {
624 		bus_dma_tag_destroy(dma->dma_tag);
625 		dma->dma_tag = NULL;
626 	}
627 	dma->dma_size = 0;
628 }
629 
630 /****************************************************************************
631  * int hdac_mem_alloc(struct hdac_softc *)
632  *
633  * Allocate all the bus resources necessary to speak with the physical
634  * controller.
635  ****************************************************************************/
636 static int
637 hdac_mem_alloc(struct hdac_softc *sc)
638 {
639 	struct hdac_mem *mem;
640 
641 	mem = &sc->mem;
642 	mem->mem_rid = PCIR_BAR(0);
643 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
644 	    &mem->mem_rid, RF_ACTIVE);
645 	if (mem->mem_res == NULL) {
646 		device_printf(sc->dev,
647 		    "%s: Unable to allocate memory resource\n", __func__);
648 		return (ENOMEM);
649 	}
650 	mem->mem_tag = rman_get_bustag(mem->mem_res);
651 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
652 
653 	return (0);
654 }
655 
656 /****************************************************************************
657  * void hdac_mem_free(struct hdac_softc *)
658  *
659  * Free up resources previously allocated by hdac_mem_alloc.
660  ****************************************************************************/
661 static void
662 hdac_mem_free(struct hdac_softc *sc)
663 {
664 	struct hdac_mem *mem;
665 
666 	mem = &sc->mem;
667 	if (mem->mem_res != NULL)
668 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
669 		    mem->mem_res);
670 	mem->mem_res = NULL;
671 }
672 
673 /****************************************************************************
674  * int hdac_irq_alloc(struct hdac_softc *)
675  *
676  * Allocate and setup the resources necessary for interrupt handling.
677  ****************************************************************************/
678 static int
679 hdac_irq_alloc(struct hdac_softc *sc)
680 {
681 	struct hdac_irq *irq;
682 	int result;
683 
684 	irq = &sc->irq;
685 	irq->irq_rid = 0x0;
686 
687 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
688 	    (result = pci_msi_count(sc->dev)) == 1 &&
689 	    pci_alloc_msi(sc->dev, &result) == 0)
690 		irq->irq_rid = 0x1;
691 
692 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
693 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
694 	if (irq->irq_res == NULL) {
695 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
696 		    __func__);
697 		goto hdac_irq_alloc_fail;
698 	}
699 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
700 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
701 	if (result != 0) {
702 		device_printf(sc->dev,
703 		    "%s: Unable to setup interrupt handler (%x)\n",
704 		    __func__, result);
705 		goto hdac_irq_alloc_fail;
706 	}
707 
708 	return (0);
709 
710 hdac_irq_alloc_fail:
711 	hdac_irq_free(sc);
712 
713 	return (ENXIO);
714 }
715 
716 /****************************************************************************
717  * void hdac_irq_free(struct hdac_softc *)
718  *
719  * Free up resources previously allocated by hdac_irq_alloc.
720  ****************************************************************************/
721 static void
722 hdac_irq_free(struct hdac_softc *sc)
723 {
724 	struct hdac_irq *irq;
725 
726 	irq = &sc->irq;
727 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
728 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
729 	if (irq->irq_res != NULL)
730 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
731 		    irq->irq_res);
732 	if (irq->irq_rid == 0x1)
733 		pci_release_msi(sc->dev);
734 	irq->irq_handle = NULL;
735 	irq->irq_res = NULL;
736 	irq->irq_rid = 0x0;
737 }
738 
739 /****************************************************************************
740  * void hdac_corb_init(struct hdac_softc *)
741  *
742  * Initialize the corb registers for operations but do not start it up yet.
743  * The CORB engine must not be running when this function is called.
744  ****************************************************************************/
745 static void
746 hdac_corb_init(struct hdac_softc *sc)
747 {
748 	uint8_t corbsize;
749 	uint64_t corbpaddr;
750 
751 	/* Setup the CORB size. */
752 	switch (sc->corb_size) {
753 	case 256:
754 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
755 		break;
756 	case 16:
757 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
758 		break;
759 	case 2:
760 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
761 		break;
762 	default:
763 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
764 	}
765 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
766 
767 	/* Setup the CORB Address in the hdac */
768 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
769 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
770 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
771 
772 	/* Set the WP and RP */
773 	sc->corb_wp = 0;
774 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
775 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
776 	/*
777 	 * The HDA specification indicates that the CORBRPRST bit will always
778 	 * read as zero. Unfortunately, it seems that at least the 82801G
779 	 * doesn't reset the bit to zero, which stalls the corb engine.
780 	 * manually reset the bit to zero before continuing.
781 	 */
782 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
783 
784 	/* Enable CORB error reporting */
785 #if 0
786 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
787 #endif
788 }
789 
790 /****************************************************************************
791  * void hdac_rirb_init(struct hdac_softc *)
792  *
793  * Initialize the rirb registers for operations but do not start it up yet.
794  * The RIRB engine must not be running when this function is called.
795  ****************************************************************************/
796 static void
797 hdac_rirb_init(struct hdac_softc *sc)
798 {
799 	uint8_t rirbsize;
800 	uint64_t rirbpaddr;
801 
802 	/* Setup the RIRB size. */
803 	switch (sc->rirb_size) {
804 	case 256:
805 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
806 		break;
807 	case 16:
808 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
809 		break;
810 	case 2:
811 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
812 		break;
813 	default:
814 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
815 	}
816 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
817 
818 	/* Setup the RIRB Address in the hdac */
819 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
820 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
821 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
822 
823 	/* Setup the WP and RP */
824 	sc->rirb_rp = 0;
825 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
826 
827 	/* Setup the interrupt threshold */
828 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
829 
830 	/* Enable Overrun and response received reporting */
831 #if 0
832 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
833 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
834 #else
835 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
836 #endif
837 
838 #if 0
839 	/*
840 	 * Make sure that the Host CPU cache doesn't contain any dirty
841 	 * cache lines that falls in the rirb. If I understood correctly, it
842 	 * should be sufficient to do this only once as the rirb is purely
843 	 * read-only from now on.
844 	 */
845 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
846 	    BUS_DMASYNC_PREREAD);
847 #endif
848 }
849 
850 /****************************************************************************
851  * void hdac_corb_start(hdac_softc *)
852  *
853  * Startup the corb DMA engine
854  ****************************************************************************/
855 static void
856 hdac_corb_start(struct hdac_softc *sc)
857 {
858 	uint32_t corbctl;
859 
860 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
861 	corbctl |= HDAC_CORBCTL_CORBRUN;
862 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
863 }
864 
865 /****************************************************************************
866  * void hdac_rirb_start(hdac_softc *)
867  *
868  * Startup the rirb DMA engine
869  ****************************************************************************/
870 static void
871 hdac_rirb_start(struct hdac_softc *sc)
872 {
873 	uint32_t rirbctl;
874 
875 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
876 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
877 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
878 }
879 
880 static int
881 hdac_rirb_flush(struct hdac_softc *sc)
882 {
883 	struct hdac_rirb *rirb_base, *rirb;
884 	nid_t cad;
885 	uint32_t resp;
886 	uint8_t rirbwp;
887 	int ret;
888 
889 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
890 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
891 #if 0
892 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
893 	    BUS_DMASYNC_POSTREAD);
894 #endif
895 
896 	ret = 0;
897 	while (sc->rirb_rp != rirbwp) {
898 		sc->rirb_rp++;
899 		sc->rirb_rp %= sc->rirb_size;
900 		rirb = &rirb_base[sc->rirb_rp];
901 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(rirb->response_ex);
902 		resp = rirb->response;
903 		if (rirb->response_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
904 			sc->unsolq[sc->unsolq_wp++] = resp;
905 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
906 			sc->unsolq[sc->unsolq_wp++] = cad;
907 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
908 		} else if (sc->codecs[cad].pending <= 0) {
909 			device_printf(sc->dev, "Unexpected unsolicited "
910 			    "response from address %d: %08x\n", cad, resp);
911 		} else {
912 			sc->codecs[cad].response = resp;
913 			sc->codecs[cad].pending--;
914 		}
915 		ret++;
916 	}
917 	return (ret);
918 }
919 
920 static int
921 hdac_unsolq_flush(struct hdac_softc *sc)
922 {
923 	device_t child;
924 	nid_t cad;
925 	uint32_t resp;
926 	int ret = 0;
927 
928 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
929 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
930 		while (sc->unsolq_rp != sc->unsolq_wp) {
931 			resp = sc->unsolq[sc->unsolq_rp++];
932 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
933 			cad = sc->unsolq[sc->unsolq_rp++];
934 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
935 			if ((child = sc->codecs[cad].dev) != NULL)
936 				HDAC_UNSOL_INTR(child, resp);
937 			ret++;
938 		}
939 		sc->unsolq_st = HDAC_UNSOLQ_READY;
940 	}
941 
942 	return (ret);
943 }
944 
945 /****************************************************************************
946  * uint32_t hdac_command_sendone_internal
947  *
948  * Wrapper function that sends only one command to a given codec
949  ****************************************************************************/
950 static uint32_t
951 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
952 {
953 	int timeout;
954 	uint32_t *corb;
955 
956 	if (!hdac_lockowned(sc))
957 		device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
958 	verb &= ~HDA_CMD_CAD_MASK;
959 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
960 	sc->codecs[cad].response = HDA_INVALID;
961 
962 	sc->codecs[cad].pending++;
963 	sc->corb_wp++;
964 	sc->corb_wp %= sc->corb_size;
965 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
966 #if 0
967 	bus_dmamap_sync(sc->corb_dma.dma_tag,
968 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
969 #endif
970 	corb[sc->corb_wp] = verb;
971 #if 0
972 	bus_dmamap_sync(sc->corb_dma.dma_tag,
973 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
974 #endif
975 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
976 
977 	timeout = 10000;
978 	do {
979 		if (hdac_rirb_flush(sc) == 0)
980 			DELAY(10);
981 	} while (sc->codecs[cad].pending != 0 && --timeout);
982 
983 	if (sc->codecs[cad].pending != 0) {
984 		device_printf(sc->dev, "Command timeout on address %d\n", cad);
985 		sc->codecs[cad].pending = 0;
986 	}
987 
988 	if (sc->unsolq_rp != sc->unsolq_wp)
989 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
990 	return (sc->codecs[cad].response);
991 }
992 
993 /****************************************************************************
994  * Device Methods
995  ****************************************************************************/
996 
997 /****************************************************************************
998  * int hdac_probe(device_t)
999  *
1000  * Probe for the presence of an hdac. If none is found, check for a generic
1001  * match using the subclass of the device.
1002  ****************************************************************************/
1003 static int
1004 hdac_probe(device_t dev)
1005 {
1006 	int i, result;
1007 	uint32_t model;
1008 	uint16_t class, subclass;
1009 	char desc[64];
1010 
1011 	model = (uint32_t)pci_get_device(dev) << 16;
1012 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1013 	class = pci_get_class(dev);
1014 	subclass = pci_get_subclass(dev);
1015 
1016 	bzero(desc, sizeof(desc));
1017 	result = ENXIO;
1018 	for (i = 0; i < HDAC_DEVICES_LEN; i++) {
1019 		if (hdac_devices[i].model == model) {
1020 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1021 			result = BUS_PROBE_DEFAULT;
1022 			break;
1023 		}
1024 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1025 		    class == PCIC_MULTIMEDIA &&
1026 		    subclass == PCIS_MULTIMEDIA_HDA) {
1027 			snprintf(desc, sizeof(desc),
1028 			    "%s (0x%04x)",
1029 			    hdac_devices[i].desc, pci_get_device(dev));
1030 			result = BUS_PROBE_GENERIC;
1031 			break;
1032 		}
1033 	}
1034 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1035 	    subclass == PCIS_MULTIMEDIA_HDA) {
1036 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1037 		result = BUS_PROBE_GENERIC;
1038 	}
1039 	if (result != ENXIO) {
1040 		strlcat(desc, " HDA Controller", sizeof(desc));
1041 		device_set_desc_copy(dev, desc);
1042 	}
1043 
1044 	return (result);
1045 }
1046 
1047 static void
1048 hdac_unsolq_task(void *context, int pending)
1049 {
1050 	struct hdac_softc *sc;
1051 
1052 	sc = (struct hdac_softc *)context;
1053 
1054 	hdac_lock(sc);
1055 	hdac_unsolq_flush(sc);
1056 	hdac_unlock(sc);
1057 }
1058 
1059 /****************************************************************************
1060  * int hdac_attach(device_t)
1061  *
1062  * Attach the device into the kernel. Interrupts usually won't be enabled
1063  * when this function is called. Setup everything that doesn't require
1064  * interrupts and defer probing of codecs until interrupts are enabled.
1065  ****************************************************************************/
1066 static int
1067 hdac_attach(device_t dev)
1068 {
1069 	struct hdac_softc *sc;
1070 	int result;
1071 	int i, devid = -1;
1072 	uint32_t model;
1073 	uint16_t class, subclass;
1074 	uint16_t vendor;
1075 	uint8_t v;
1076 
1077 	sc = device_get_softc(dev);
1078 	HDA_BOOTVERBOSE(
1079 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1080 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1081 		device_printf(dev, "HDA Driver Revision: %s\n",
1082 		    HDA_DRV_TEST_REV);
1083 	);
1084 
1085 	model = (uint32_t)pci_get_device(dev) << 16;
1086 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1087 	class = pci_get_class(dev);
1088 	subclass = pci_get_subclass(dev);
1089 
1090 	for (i = 0; i < HDAC_DEVICES_LEN; i++) {
1091 		if (hdac_devices[i].model == model) {
1092 			devid = i;
1093 			break;
1094 		}
1095 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1096 		    class == PCIC_MULTIMEDIA &&
1097 		    subclass == PCIS_MULTIMEDIA_HDA) {
1098 			devid = i;
1099 			break;
1100 		}
1101 	}
1102 
1103 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1104 	sc->dev = dev;
1105 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1106 	callout_init(&sc->poll_callout, CALLOUT_MPSAFE);
1107 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1108 		sc->codecs[i].dev = NULL;
1109 	if (devid >= 0) {
1110 		sc->quirks_on = hdac_devices[devid].quirks_on;
1111 		sc->quirks_off = hdac_devices[devid].quirks_off;
1112 	} else {
1113 		sc->quirks_on = 0;
1114 		sc->quirks_off = 0;
1115 	}
1116 	if (resource_int_value(device_get_name(dev),
1117 	    device_get_unit(dev), "msi", &i) == 0) {
1118 		if (i == 0)
1119 			sc->quirks_off |= HDAC_QUIRK_MSI;
1120 		else {
1121 			sc->quirks_on |= HDAC_QUIRK_MSI;
1122 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1123 		}
1124 	}
1125 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1126 	HDA_BOOTVERBOSE(
1127 		device_printf(sc->dev,
1128 		    "Config options: on=0x%08x off=0x%08x\n",
1129 		    sc->quirks_on, sc->quirks_off);
1130 	);
1131 	sc->poll_ival = hz;
1132 	if (resource_int_value(device_get_name(dev),
1133 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1134 		sc->polling = 1;
1135 	else
1136 		sc->polling = 0;
1137 
1138 	pci_enable_busmaster(dev);
1139 
1140 	vendor = pci_get_vendor(dev);
1141 	if (vendor == INTEL_VENDORID) {
1142 		/* TCSEL -> TC0 */
1143 		v = pci_read_config(dev, 0x44, 1);
1144 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1145 		HDA_BOOTHVERBOSE(
1146 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1147 			    pci_read_config(dev, 0x44, 1));
1148 		);
1149 	}
1150 
1151 #if defined(__i386__) || defined(__amd64__)
1152 	sc->flags |= HDAC_F_DMA_NOCACHE;
1153 
1154 	if (resource_int_value(device_get_name(dev),
1155 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1156 #else
1157 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1158 #endif
1159 		/*
1160 		 * Try to enable PCIe snoop to avoid messing around with
1161 		 * uncacheable DMA attribute. Since PCIe snoop register
1162 		 * config is pretty much vendor specific, there are no
1163 		 * general solutions on how to enable it, forcing us (even
1164 		 * Microsoft) to enable uncacheable or write combined DMA
1165 		 * by default.
1166 		 *
1167 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1168 		 */
1169 		for (i = 0; i < HDAC_PCIESNOOP_LEN; i++) {
1170 			if (hdac_pcie_snoop[i].vendor != vendor)
1171 				continue;
1172 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1173 			if (hdac_pcie_snoop[i].reg == 0x00)
1174 				break;
1175 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1176 			if ((v & hdac_pcie_snoop[i].enable) ==
1177 			    hdac_pcie_snoop[i].enable)
1178 				break;
1179 			v &= hdac_pcie_snoop[i].mask;
1180 			v |= hdac_pcie_snoop[i].enable;
1181 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1182 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1183 			if ((v & hdac_pcie_snoop[i].enable) !=
1184 			    hdac_pcie_snoop[i].enable) {
1185 				HDA_BOOTVERBOSE(
1186 					device_printf(dev,
1187 					    "WARNING: Failed to enable PCIe "
1188 					    "snoop!\n");
1189 				);
1190 #if defined(__i386__) || defined(__amd64__)
1191 				sc->flags |= HDAC_F_DMA_NOCACHE;
1192 #endif
1193 			}
1194 			break;
1195 		}
1196 #if defined(__i386__) || defined(__amd64__)
1197 	}
1198 #endif
1199 
1200 	HDA_BOOTHVERBOSE(
1201 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1202 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1203 		    "Uncacheable" : "PCIe snoop", vendor);
1204 	);
1205 
1206 	/* Allocate resources */
1207 	result = hdac_mem_alloc(sc);
1208 	if (result != 0)
1209 		goto hdac_attach_fail;
1210 	result = hdac_irq_alloc(sc);
1211 	if (result != 0)
1212 		goto hdac_attach_fail;
1213 
1214 	/* Get Capabilities */
1215 	result = hdac_get_capabilities(sc);
1216 	if (result != 0)
1217 		goto hdac_attach_fail;
1218 
1219 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1220 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1221 	    sc->corb_size * sizeof(uint32_t));
1222 	if (result != 0)
1223 		goto hdac_attach_fail;
1224 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1225 	    sc->rirb_size * sizeof(struct hdac_rirb));
1226 	if (result != 0)
1227 		goto hdac_attach_fail;
1228 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1229 	    M_HDAC, M_ZERO | M_WAITOK);
1230 	for (i = 0; i < sc->num_ss; i++) {
1231 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1232 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1233 		if (result != 0)
1234 			goto hdac_attach_fail;
1235 	}
1236 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1237 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1238 			HDA_BOOTVERBOSE(
1239 				device_printf(dev, "Failed to "
1240 				    "allocate DMA pos buffer "
1241 				    "(non-fatal)\n");
1242 			);
1243 		} else {
1244 			uint64_t addr = sc->pos_dma.dma_paddr;
1245 
1246 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1247 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1248 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1249 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1250 		}
1251 	}
1252 
1253 	result = bus_dma_tag_create(
1254 	    bus_get_dma_tag(sc->dev),		/* parent */
1255 	    HDA_DMA_ALIGNMENT,			/* alignment */
1256 	    0,					/* boundary */
1257 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1258 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1259 	    BUS_SPACE_MAXADDR,			/* highaddr */
1260 	    NULL,				/* filtfunc */
1261 	    NULL,				/* fistfuncarg */
1262 	    HDA_BUFSZ_MAX, 			/* maxsize */
1263 	    1,					/* nsegments */
1264 	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1265 	    0,					/* flags */
1266 	    NULL,				/* lockfunc */
1267 	    NULL,				/* lockfuncarg */
1268 	    &sc->chan_dmat);			/* dmat */
1269 	if (result != 0) {
1270 		device_printf(dev, "%s: bus_dma_tag_create failed (%x)\n",
1271 		     __func__, result);
1272 		goto hdac_attach_fail;
1273 	}
1274 
1275 	/* Quiesce everything */
1276 	HDA_BOOTHVERBOSE(
1277 		device_printf(dev, "Reset controller...\n");
1278 	);
1279 	hdac_reset(sc, 1);
1280 
1281 	/* Initialize the CORB and RIRB */
1282 	hdac_corb_init(sc);
1283 	hdac_rirb_init(sc);
1284 
1285 	/* Defer remaining of initialization until interrupts are enabled */
1286 	sc->intrhook.ich_func = hdac_attach2;
1287 	sc->intrhook.ich_arg = (void *)sc;
1288 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1289 		sc->intrhook.ich_func = NULL;
1290 		hdac_attach2((void *)sc);
1291 	}
1292 
1293 	return (0);
1294 
1295 hdac_attach_fail:
1296 	hdac_irq_free(sc);
1297 	for (i = 0; i < sc->num_ss; i++)
1298 		hdac_dma_free(sc, &sc->streams[i].bdl);
1299 	free(sc->streams, M_HDAC);
1300 	hdac_dma_free(sc, &sc->rirb_dma);
1301 	hdac_dma_free(sc, &sc->corb_dma);
1302 	hdac_mem_free(sc);
1303 	snd_mtxfree(sc->lock);
1304 
1305 	return (ENXIO);
1306 }
1307 
1308 static int
1309 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1310 {
1311 	struct hdac_softc *sc;
1312 	device_t *devlist;
1313 	device_t dev;
1314 	int devcount, i, err, val;
1315 
1316 	dev = oidp->oid_arg1;
1317 	sc = device_get_softc(dev);
1318 	if (sc == NULL)
1319 		return (EINVAL);
1320 	val = 0;
1321 	err = sysctl_handle_int(oidp, &val, 0, req);
1322 	if (err != 0 || req->newptr == NULL || val == 0)
1323 		return (err);
1324 
1325 	/* XXX: Temporary. For debugging. */
1326 	if (val == 100) {
1327 		hdac_suspend(dev);
1328 		return (0);
1329 	} else if (val == 101) {
1330 		hdac_resume(dev);
1331 		return (0);
1332 	}
1333 
1334 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1335 		return (err);
1336 	hdac_lock(sc);
1337 	for (i = 0; i < devcount; i++)
1338 		HDAC_PINDUMP(devlist[i]);
1339 	hdac_unlock(sc);
1340 	free(devlist, M_TEMP);
1341 	return (0);
1342 }
1343 
1344 static int
1345 hdac_mdata_rate(uint16_t fmt)
1346 {
1347 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1348 	int rate, bits;
1349 
1350 	if (fmt & (1 << 14))
1351 		rate = 44100;
1352 	else
1353 		rate = 48000;
1354 	rate *= ((fmt >> 11) & 0x07) + 1;
1355 	rate /= ((fmt >> 8) & 0x07) + 1;
1356 	bits = mbits[(fmt >> 4) & 0x03];
1357 	bits *= (fmt & 0x0f) + 1;
1358 	return (rate * bits);
1359 }
1360 
1361 static int
1362 hdac_bdata_rate(uint16_t fmt, int output)
1363 {
1364 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1365 	int rate, bits;
1366 
1367 	rate = 48000;
1368 	rate *= ((fmt >> 11) & 0x07) + 1;
1369 	bits = bbits[(fmt >> 4) & 0x03];
1370 	bits *= (fmt & 0x0f) + 1;
1371 	if (!output)
1372 		bits = ((bits + 7) & ~0x07) + 10;
1373 	return (rate * bits);
1374 }
1375 
1376 static void
1377 hdac_poll_reinit(struct hdac_softc *sc)
1378 {
1379 	int i, pollticks, min = 1000000;
1380 	struct hdac_stream *s;
1381 
1382 	if (sc->polling == 0)
1383 		return;
1384 	if (sc->unsol_registered > 0)
1385 		min = hz / 2;
1386 	for (i = 0; i < sc->num_ss; i++) {
1387 		s = &sc->streams[i];
1388 		if (s->running == 0)
1389 			continue;
1390 		pollticks = ((uint64_t)hz * s->blksz) /
1391 		    (hdac_mdata_rate(s->format) / 8);
1392 		pollticks >>= 1;
1393 		if (pollticks > hz)
1394 			pollticks = hz;
1395 		if (pollticks < 1) {
1396 			HDA_BOOTVERBOSE(
1397 				device_printf(sc->dev,
1398 				    "poll interval < 1 tick !\n");
1399 			);
1400 			pollticks = 1;
1401 		}
1402 		if (min > pollticks)
1403 			min = pollticks;
1404 	}
1405 	HDA_BOOTVERBOSE(
1406 		device_printf(sc->dev,
1407 		    "poll interval %d -> %d ticks\n",
1408 		    sc->poll_ival, min);
1409 	);
1410 	sc->poll_ival = min;
1411 	if (min == 1000000)
1412 		callout_stop(&sc->poll_callout);
1413 	else
1414 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1415 }
1416 
1417 static int
1418 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1419 {
1420 	struct hdac_softc *sc;
1421 	device_t dev;
1422 	uint32_t ctl;
1423 	int err, val;
1424 
1425 	dev = oidp->oid_arg1;
1426 	sc = device_get_softc(dev);
1427 	if (sc == NULL)
1428 		return (EINVAL);
1429 	hdac_lock(sc);
1430 	val = sc->polling;
1431 	hdac_unlock(sc);
1432 	err = sysctl_handle_int(oidp, &val, 0, req);
1433 
1434 	if (err != 0 || req->newptr == NULL)
1435 		return (err);
1436 	if (val < 0 || val > 1)
1437 		return (EINVAL);
1438 
1439 	hdac_lock(sc);
1440 	if (val != sc->polling) {
1441 		if (val == 0) {
1442 			callout_stop(&sc->poll_callout);
1443 			hdac_unlock(sc);
1444 			callout_drain(&sc->poll_callout);
1445 			hdac_lock(sc);
1446 			sc->polling = 0;
1447 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1448 			ctl |= HDAC_INTCTL_GIE;
1449 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1450 		} else {
1451 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1452 			ctl &= ~HDAC_INTCTL_GIE;
1453 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1454 			sc->polling = 1;
1455 			hdac_poll_reinit(sc);
1456 		}
1457 	}
1458 	hdac_unlock(sc);
1459 
1460 	return (err);
1461 }
1462 
1463 static void
1464 hdac_attach2(void *arg)
1465 {
1466 	struct hdac_softc *sc;
1467 	device_t child;
1468 	uint32_t vendorid, revisionid;
1469 	int i;
1470 	uint16_t statests;
1471 
1472 	sc = (struct hdac_softc *)arg;
1473 
1474 	hdac_lock(sc);
1475 
1476 	/* Remove ourselves from the config hooks */
1477 	if (sc->intrhook.ich_func != NULL) {
1478 		config_intrhook_disestablish(&sc->intrhook);
1479 		sc->intrhook.ich_func = NULL;
1480 	}
1481 
1482 	HDA_BOOTHVERBOSE(
1483 		device_printf(sc->dev, "Starting CORB Engine...\n");
1484 	);
1485 	hdac_corb_start(sc);
1486 	HDA_BOOTHVERBOSE(
1487 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1488 	);
1489 	hdac_rirb_start(sc);
1490 	HDA_BOOTHVERBOSE(
1491 		device_printf(sc->dev,
1492 		    "Enabling controller interrupt...\n");
1493 	);
1494 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1495 	    HDAC_GCTL_UNSOL);
1496 	if (sc->polling == 0) {
1497 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1498 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1499 	}
1500 	DELAY(1000);
1501 
1502 	HDA_BOOTHVERBOSE(
1503 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1504 	);
1505 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1506 	hdac_unlock(sc);
1507 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1508 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1509 			HDA_BOOTHVERBOSE(
1510 				device_printf(sc->dev,
1511 				    "Found CODEC at address %d\n", i);
1512 			);
1513 			hdac_lock(sc);
1514 			vendorid = hdac_send_command(sc, i,
1515 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1516 			revisionid = hdac_send_command(sc, i,
1517 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1518 			hdac_unlock(sc);
1519 			if (vendorid == HDA_INVALID &&
1520 			    revisionid == HDA_INVALID) {
1521 				device_printf(sc->dev,
1522 				    "CODEC is not responding!\n");
1523 				continue;
1524 			}
1525 			sc->codecs[i].vendor_id =
1526 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1527 			sc->codecs[i].device_id =
1528 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1529 			sc->codecs[i].revision_id =
1530 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1531 			sc->codecs[i].stepping_id =
1532 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1533 			child = device_add_child(sc->dev, "hdacc", -1);
1534 			if (child == NULL) {
1535 				device_printf(sc->dev,
1536 				    "Failed to add CODEC device\n");
1537 				continue;
1538 			}
1539 			device_set_ivars(child, (void *)(intptr_t)i);
1540 			sc->codecs[i].dev = child;
1541 		}
1542 	}
1543 	bus_generic_attach(sc->dev);
1544 
1545 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1546 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1547 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1548 	    sysctl_hdac_pindump, "I", "Dump pin states/data");
1549 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1550 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1551 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1552 	    sysctl_hdac_polling, "I", "Enable polling mode");
1553 }
1554 
1555 /****************************************************************************
1556  * int hdac_suspend(device_t)
1557  *
1558  * Suspend and power down HDA bus and codecs.
1559  ****************************************************************************/
1560 static int
1561 hdac_suspend(device_t dev)
1562 {
1563 	struct hdac_softc *sc = device_get_softc(dev);
1564 
1565 	HDA_BOOTHVERBOSE(
1566 		device_printf(dev, "Suspend...\n");
1567 	);
1568 	bus_generic_suspend(dev);
1569 
1570 	hdac_lock(sc);
1571 	HDA_BOOTHVERBOSE(
1572 		device_printf(dev, "Reset controller...\n");
1573 	);
1574 	callout_stop(&sc->poll_callout);
1575 	hdac_reset(sc, 0);
1576 	hdac_unlock(sc);
1577 	callout_drain(&sc->poll_callout);
1578 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1579 	HDA_BOOTHVERBOSE(
1580 		device_printf(dev, "Suspend done\n");
1581 	);
1582 	return (0);
1583 }
1584 
1585 /****************************************************************************
1586  * int hdac_resume(device_t)
1587  *
1588  * Powerup and restore HDA bus and codecs state.
1589  ****************************************************************************/
1590 static int
1591 hdac_resume(device_t dev)
1592 {
1593 	struct hdac_softc *sc = device_get_softc(dev);
1594 	int error;
1595 
1596 	HDA_BOOTHVERBOSE(
1597 		device_printf(dev, "Resume...\n");
1598 	);
1599 	hdac_lock(sc);
1600 
1601 	/* Quiesce everything */
1602 	HDA_BOOTHVERBOSE(
1603 		device_printf(dev, "Reset controller...\n");
1604 	);
1605 	hdac_reset(sc, 1);
1606 
1607 	/* Initialize the CORB and RIRB */
1608 	hdac_corb_init(sc);
1609 	hdac_rirb_init(sc);
1610 
1611 	HDA_BOOTHVERBOSE(
1612 		device_printf(dev, "Starting CORB Engine...\n");
1613 	);
1614 	hdac_corb_start(sc);
1615 	HDA_BOOTHVERBOSE(
1616 		device_printf(dev, "Starting RIRB Engine...\n");
1617 	);
1618 	hdac_rirb_start(sc);
1619 	HDA_BOOTHVERBOSE(
1620 		device_printf(dev, "Enabling controller interrupt...\n");
1621 	);
1622 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1623 	    HDAC_GCTL_UNSOL);
1624 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1625 	DELAY(1000);
1626 	hdac_poll_reinit(sc);
1627 	hdac_unlock(sc);
1628 
1629 	error = bus_generic_resume(dev);
1630 	HDA_BOOTHVERBOSE(
1631 		device_printf(dev, "Resume done\n");
1632 	);
1633 	return (error);
1634 }
1635 
1636 /****************************************************************************
1637  * int hdac_detach(device_t)
1638  *
1639  * Detach and free up resources utilized by the hdac device.
1640  ****************************************************************************/
1641 static int
1642 hdac_detach(device_t dev)
1643 {
1644 	struct hdac_softc *sc = device_get_softc(dev);
1645 	device_t *devlist;
1646 	int cad, i, devcount, error;
1647 
1648 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1649 		return (error);
1650 	for (i = 0; i < devcount; i++) {
1651 		cad = (intptr_t)device_get_ivars(devlist[i]);
1652 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1653 			free(devlist, M_TEMP);
1654 			return (error);
1655 		}
1656 		sc->codecs[cad].dev = NULL;
1657 	}
1658 	free(devlist, M_TEMP);
1659 
1660 	hdac_lock(sc);
1661 	hdac_reset(sc, 0);
1662 	hdac_unlock(sc);
1663 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1664 	hdac_irq_free(sc);
1665 
1666 	for (i = 0; i < sc->num_ss; i++)
1667 		hdac_dma_free(sc, &sc->streams[i].bdl);
1668 	free(sc->streams, M_HDAC);
1669 	hdac_dma_free(sc, &sc->pos_dma);
1670 	hdac_dma_free(sc, &sc->rirb_dma);
1671 	hdac_dma_free(sc, &sc->corb_dma);
1672 	if (sc->chan_dmat != NULL) {
1673 		bus_dma_tag_destroy(sc->chan_dmat);
1674 		sc->chan_dmat = NULL;
1675 	}
1676 	hdac_mem_free(sc);
1677 	snd_mtxfree(sc->lock);
1678 	return (0);
1679 }
1680 
1681 static bus_dma_tag_t
1682 hdac_get_dma_tag(device_t dev, device_t child)
1683 {
1684 	struct hdac_softc *sc = device_get_softc(dev);
1685 
1686 	return (sc->chan_dmat);
1687 }
1688 
1689 static int
1690 hdac_print_child(device_t dev, device_t child)
1691 {
1692 	int retval;
1693 
1694 	retval = bus_print_child_header(dev, child);
1695 	retval += printf(" at cad %d",
1696 	    (int)(intptr_t)device_get_ivars(child));
1697 	retval += bus_print_child_footer(dev, child);
1698 
1699 	return (retval);
1700 }
1701 
1702 static int
1703 hdac_child_location_str(device_t dev, device_t child, char *buf,
1704     size_t buflen)
1705 {
1706 
1707 	snprintf(buf, buflen, "cad=%d",
1708 	    (int)(intptr_t)device_get_ivars(child));
1709 	return (0);
1710 }
1711 
1712 static int
1713 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1714     size_t buflen)
1715 {
1716 	struct hdac_softc *sc = device_get_softc(dev);
1717 	nid_t cad = (uintptr_t)device_get_ivars(child);
1718 
1719 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
1720 	    "stepping=0x%02x",
1721 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1722 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1723 	return (0);
1724 }
1725 
1726 static int
1727 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1728 {
1729 	struct hdac_softc *sc = device_get_softc(dev);
1730 	nid_t cad = (uintptr_t)device_get_ivars(child);
1731 
1732 	switch (which) {
1733 	case HDA_IVAR_CODEC_ID:
1734 		*result = cad;
1735 		break;
1736 	case HDA_IVAR_VENDOR_ID:
1737 		*result = sc->codecs[cad].vendor_id;
1738 		break;
1739 	case HDA_IVAR_DEVICE_ID:
1740 		*result = sc->codecs[cad].device_id;
1741 		break;
1742 	case HDA_IVAR_REVISION_ID:
1743 		*result = sc->codecs[cad].revision_id;
1744 		break;
1745 	case HDA_IVAR_STEPPING_ID:
1746 		*result = sc->codecs[cad].stepping_id;
1747 		break;
1748 	case HDA_IVAR_SUBVENDOR_ID:
1749 		*result = pci_get_subvendor(dev);
1750 		break;
1751 	case HDA_IVAR_SUBDEVICE_ID:
1752 		*result = pci_get_subdevice(dev);
1753 		break;
1754 	case HDA_IVAR_DMA_NOCACHE:
1755 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1756 		break;
1757 	default:
1758 		return (ENOENT);
1759 	}
1760 	return (0);
1761 }
1762 
1763 static struct mtx *
1764 hdac_get_mtx(device_t dev, device_t child)
1765 {
1766 	struct hdac_softc *sc = device_get_softc(dev);
1767 
1768 	return (sc->lock);
1769 }
1770 
1771 static uint32_t
1772 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1773 {
1774 
1775 	return (hdac_send_command(device_get_softc(dev),
1776 	    (intptr_t)device_get_ivars(child), verb));
1777 }
1778 
1779 static int
1780 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1781 {
1782 	int i, ss;
1783 
1784 	ss = -1;
1785 	/* Allocate ISS/BSS first. */
1786 	if (dir == 0) {
1787 		for (i = 0; i < sc->num_iss; i++) {
1788 			if (sc->streams[i].stream == stream) {
1789 				ss = i;
1790 				break;
1791 			}
1792 		}
1793 	} else {
1794 		for (i = 0; i < sc->num_oss; i++) {
1795 			if (sc->streams[i + sc->num_iss].stream == stream) {
1796 				ss = i + sc->num_iss;
1797 				break;
1798 			}
1799 		}
1800 	}
1801 	/* Fallback to BSS. */
1802 	if (ss == -1) {
1803 		for (i = 0; i < sc->num_bss; i++) {
1804 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1805 			    == stream) {
1806 				ss = i + sc->num_iss + sc->num_oss;
1807 				break;
1808 			}
1809 		}
1810 	}
1811 	return (ss);
1812 }
1813 
1814 static int
1815 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1816     uint32_t **dmapos)
1817 {
1818 	struct hdac_softc *sc = device_get_softc(dev);
1819 	nid_t cad = (uintptr_t)device_get_ivars(child);
1820 	int stream, ss, bw, maxbw, prevbw;
1821 
1822 	/* Look for empty stream. */
1823 	ss = hdac_find_stream(sc, dir, 0);
1824 
1825 	/* Return if found nothing. */
1826 	if (ss < 0)
1827 		return (0);
1828 
1829 	/* Check bus bandwidth. */
1830 	bw = hdac_bdata_rate(format, dir);
1831 	if (dir == 1) {
1832 		bw *= 1 << (sc->num_sdo - stripe);
1833 		prevbw = sc->sdo_bw_used;
1834 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1835 	} else {
1836 		prevbw = sc->codecs[cad].sdi_bw_used;
1837 		maxbw = 48000 * 464;
1838 	}
1839 	HDA_BOOTHVERBOSE(
1840 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1841 		    (bw + prevbw) / 1000, maxbw / 1000,
1842 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1843 	);
1844 	if (bw + prevbw > maxbw)
1845 		return (0);
1846 	if (dir == 1)
1847 		sc->sdo_bw_used += bw;
1848 	else
1849 		sc->codecs[cad].sdi_bw_used += bw;
1850 
1851 	/* Allocate stream number */
1852 	if (ss >= sc->num_iss + sc->num_oss)
1853 		stream = 15 - (ss - sc->num_iss + sc->num_oss);
1854 	else if (ss >= sc->num_iss)
1855 		stream = ss - sc->num_iss + 1;
1856 	else
1857 		stream = ss + 1;
1858 
1859 	sc->streams[ss].dev = child;
1860 	sc->streams[ss].dir = dir;
1861 	sc->streams[ss].stream = stream;
1862 	sc->streams[ss].bw = bw;
1863 	sc->streams[ss].format = format;
1864 	sc->streams[ss].stripe = stripe;
1865 	if (dmapos != NULL) {
1866 		if (sc->pos_dma.dma_vaddr != NULL)
1867 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1868 		else
1869 			*dmapos = NULL;
1870 	}
1871 	return (stream);
1872 }
1873 
1874 static void
1875 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1876 {
1877 	struct hdac_softc *sc = device_get_softc(dev);
1878 	nid_t cad = (uintptr_t)device_get_ivars(child);
1879 	int ss;
1880 
1881 	ss = hdac_find_stream(sc, dir, stream);
1882 	KASSERT(ss >= 0,
1883 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1884 	if (dir == 1)
1885 		sc->sdo_bw_used -= sc->streams[ss].bw;
1886 	else
1887 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1888 	sc->streams[ss].stream = 0;
1889 	sc->streams[ss].dev = NULL;
1890 }
1891 
1892 static int
1893 hdac_stream_start(device_t dev, device_t child,
1894     int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
1895 {
1896 	struct hdac_softc *sc = device_get_softc(dev);
1897 	struct hdac_bdle *bdle;
1898 	uint64_t addr;
1899 	int i, ss, off;
1900 	uint32_t ctl;
1901 
1902 	ss = hdac_find_stream(sc, dir, stream);
1903 	KASSERT(ss >= 0,
1904 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1905 
1906 	addr = (uint64_t)buf;
1907 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1908 	for (i = 0; i < blkcnt; i++, bdle++) {
1909 		bdle->addrl = (uint32_t)addr;
1910 		bdle->addrh = (uint32_t)(addr >> 32);
1911 		bdle->len = blksz;
1912 		bdle->ioc = 1;
1913 		addr += blksz;
1914 	}
1915 
1916 	off = ss << 5;
1917 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1918 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1919 	addr = sc->streams[ss].bdl.dma_paddr;
1920 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1921 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1922 
1923 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1924 	if (dir)
1925 		ctl |= HDAC_SDCTL2_DIR;
1926 	else
1927 		ctl &= ~HDAC_SDCTL2_DIR;
1928 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
1929 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1930 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1931 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1932 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1933 
1934 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1935 
1936 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1937 	ctl |= 1 << ss;
1938 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1939 
1940 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1941 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1942 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1943 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1944 	    HDAC_SDCTL_RUN;
1945 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1946 
1947 	sc->streams[ss].blksz = blksz;
1948 	sc->streams[ss].running = 1;
1949 	hdac_poll_reinit(sc);
1950 	return (0);
1951 }
1952 
1953 static void
1954 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1955 {
1956 	struct hdac_softc *sc = device_get_softc(dev);
1957 	int ss, off;
1958 	uint32_t ctl;
1959 
1960 	ss = hdac_find_stream(sc, dir, stream);
1961 	KASSERT(ss >= 0,
1962 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1963 
1964 	off = ss << 5;
1965 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1966 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1967 	    HDAC_SDCTL_RUN);
1968 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1969 
1970 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1971 	ctl &= ~(1 << ss);
1972 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1973 
1974 	sc->streams[ss].running = 0;
1975 	hdac_poll_reinit(sc);
1976 }
1977 
1978 static void
1979 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
1980 {
1981 	struct hdac_softc *sc = device_get_softc(dev);
1982 	int timeout = 1000;
1983 	int to = timeout;
1984 	int ss, off;
1985 	uint32_t ctl;
1986 
1987 	ss = hdac_find_stream(sc, dir, stream);
1988 	KASSERT(ss >= 0,
1989 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
1990 
1991 	off = ss << 5;
1992 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1993 	ctl |= HDAC_SDCTL_SRST;
1994 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1995 	do {
1996 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1997 		if (ctl & HDAC_SDCTL_SRST)
1998 			break;
1999 		DELAY(10);
2000 	} while (--to);
2001 	if (!(ctl & HDAC_SDCTL_SRST))
2002 		device_printf(dev, "Reset setting timeout\n");
2003 	ctl &= ~HDAC_SDCTL_SRST;
2004 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2005 	to = timeout;
2006 	do {
2007 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2008 		if (!(ctl & HDAC_SDCTL_SRST))
2009 			break;
2010 		DELAY(10);
2011 	} while (--to);
2012 	if (ctl & HDAC_SDCTL_SRST)
2013 		device_printf(dev, "Reset timeout!\n");
2014 }
2015 
2016 static uint32_t
2017 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2018 {
2019 	struct hdac_softc *sc = device_get_softc(dev);
2020 	int ss, off;
2021 
2022 	ss = hdac_find_stream(sc, dir, stream);
2023 	KASSERT(ss >= 0,
2024 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2025 
2026 	off = ss << 5;
2027 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2028 }
2029 
2030 static int
2031 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2032 {
2033 	struct hdac_softc *sc = device_get_softc(dev);
2034 
2035 	sc->unsol_registered++;
2036 	hdac_poll_reinit(sc);
2037 	return (tag);
2038 }
2039 
2040 static void
2041 hdac_unsol_free(device_t dev, device_t child, int tag)
2042 {
2043 	struct hdac_softc *sc = device_get_softc(dev);
2044 
2045 	sc->unsol_registered--;
2046 	hdac_poll_reinit(sc);
2047 }
2048 
2049 static device_method_t hdac_methods[] = {
2050 	/* device interface */
2051 	DEVMETHOD(device_probe,		hdac_probe),
2052 	DEVMETHOD(device_attach,	hdac_attach),
2053 	DEVMETHOD(device_detach,	hdac_detach),
2054 	DEVMETHOD(device_suspend,	hdac_suspend),
2055 	DEVMETHOD(device_resume,	hdac_resume),
2056 	/* Bus interface */
2057 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2058 	DEVMETHOD(bus_print_child,	hdac_print_child),
2059 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2060 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2061 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2062 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2063 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2064 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2065 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2066 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2067 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2068 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2069 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2070 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2071 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2072 	{ 0, 0 }
2073 };
2074 
2075 static driver_t hdac_driver = {
2076 	"hdac",
2077 	hdac_methods,
2078 	sizeof(struct hdac_softc),
2079 };
2080 
2081 static devclass_t hdac_devclass;
2082 
2083 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, 0, 0);
2084