1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca> 5 * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org> 6 * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * Intel High Definition Audio (Controller) driver for FreeBSD. 33 */ 34 35 #ifdef HAVE_KERNEL_OPTION_HEADERS 36 #include "opt_snd.h" 37 #endif 38 39 #include <dev/sound/pcm/sound.h> 40 #include <dev/pci/pcireg.h> 41 #include <dev/pci/pcivar.h> 42 43 #include <sys/ctype.h> 44 #include <sys/endian.h> 45 #include <sys/taskqueue.h> 46 47 #include <dev/sound/pci/hda/hdac_private.h> 48 #include <dev/sound/pci/hda/hdac_reg.h> 49 #include <dev/sound/pci/hda/hda_reg.h> 50 #include <dev/sound/pci/hda/hdac.h> 51 52 #define HDA_DRV_TEST_REV "20120126_0002" 53 54 #define hdac_lock(sc) snd_mtxlock((sc)->lock) 55 #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) 56 #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) 57 58 #define HDAC_QUIRK_64BIT (1 << 0) 59 #define HDAC_QUIRK_DMAPOS (1 << 1) 60 #define HDAC_QUIRK_MSI (1 << 2) 61 62 static const struct { 63 const char *key; 64 uint32_t value; 65 } hdac_quirks_tab[] = { 66 { "64bit", HDAC_QUIRK_64BIT }, 67 { "dmapos", HDAC_QUIRK_DMAPOS }, 68 { "msi", HDAC_QUIRK_MSI }, 69 }; 70 71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller"); 72 73 static const struct { 74 uint32_t model; 75 const char *desc; 76 char quirks_on; 77 char quirks_off; 78 } hdac_devices[] = { 79 { HDA_INTEL_OAK, "Intel Oaktrail", 0, 0 }, 80 { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, 81 { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, 82 { HDA_INTEL_BAY, "Intel BayTrail", 0, 0 }, 83 { HDA_INTEL_HSW1, "Intel Haswell", 0, 0 }, 84 { HDA_INTEL_HSW2, "Intel Haswell", 0, 0 }, 85 { HDA_INTEL_HSW3, "Intel Haswell", 0, 0 }, 86 { HDA_INTEL_BDW1, "Intel Broadwell", 0, 0 }, 87 { HDA_INTEL_BDW2, "Intel Broadwell", 0, 0 }, 88 { HDA_INTEL_BXTNT, "Intel Broxton-T", 0, 0 }, 89 { HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 }, 90 { HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 }, 91 { HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 }, 92 { HDA_INTEL_BR, "Intel Braswell", 0, 0 }, 93 { HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 }, 94 { HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 }, 95 { HDA_INTEL_WCPT, "Intel Wildcat Point", 0, 0 }, 96 { HDA_INTEL_WELLS1, "Intel Wellsburg", 0, 0 }, 97 { HDA_INTEL_WELLS2, "Intel Wellsburg", 0, 0 }, 98 { HDA_INTEL_LPTLP1, "Intel Lynx Point-LP", 0, 0 }, 99 { HDA_INTEL_LPTLP2, "Intel Lynx Point-LP", 0, 0 }, 100 { HDA_INTEL_SRPTLP, "Intel Sunrise Point-LP", 0, 0 }, 101 { HDA_INTEL_KBLKLP, "Intel Kaby Lake-LP", 0, 0 }, 102 { HDA_INTEL_SRPT, "Intel Sunrise Point", 0, 0 }, 103 { HDA_INTEL_KBLK, "Intel Kaby Lake", 0, 0 }, 104 { HDA_INTEL_KBLKH, "Intel Kaby Lake-H", 0, 0 }, 105 { HDA_INTEL_CFLK, "Intel Coffee Lake", 0, 0 }, 106 { HDA_INTEL_CMLKS, "Intel Comet Lake-S", 0, 0 }, 107 { HDA_INTEL_CNLK, "Intel Cannon Lake", 0, 0 }, 108 { HDA_INTEL_ICLK, "Intel Ice Lake", 0, 0 }, 109 { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, 110 { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, 111 { HDA_INTEL_TGLK, "Intel Tiger Lake", 0, 0 }, 112 { HDA_INTEL_TGLKH, "Intel Tiger Lake-H", 0, 0 }, 113 { HDA_INTEL_GMLK, "Intel Gemini Lake", 0, 0 }, 114 { HDA_INTEL_ALLK, "Intel Alder Lake", 0, 0 }, 115 { HDA_INTEL_ALLKM, "Intel Alder Lake-M", 0, 0 }, 116 { HDA_INTEL_ALLKN, "Intel Alder Lake-N", 0, 0 }, 117 { HDA_INTEL_ALLKP1, "Intel Alder Lake-P", 0, 0 }, 118 { HDA_INTEL_ALLKP2, "Intel Alder Lake-P", 0, 0 }, 119 { HDA_INTEL_ALLKPS, "Intel Alder Lake-PS", 0, 0 }, 120 { HDA_INTEL_RPTLK1, "Intel Raptor Lake-P", 0, 0 }, 121 { HDA_INTEL_RPTLK2, "Intel Raptor Lake-P", 0, 0 }, 122 { HDA_INTEL_MTL, "Intel Meteor Lake-P", 0, 0 }, 123 { HDA_INTEL_ARLS, "Intel Arrow Lake-S", 0, 0 }, 124 { HDA_INTEL_ARL, "Intel Arrow Lake", 0, 0 }, 125 { HDA_INTEL_LNLP, "Intel Lunar Lake-P", 0, 0 }, 126 { HDA_INTEL_82801F, "Intel 82801F", 0, 0 }, 127 { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 }, 128 { HDA_INTEL_82801G, "Intel 82801G", 0, 0 }, 129 { HDA_INTEL_82801H, "Intel 82801H", 0, 0 }, 130 { HDA_INTEL_82801I, "Intel 82801I", 0, 0 }, 131 { HDA_INTEL_JLK, "Intel Jasper Lake", 0, 0 }, 132 { HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 }, 133 { HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 }, 134 { HDA_INTEL_PCH, "Intel Ibex Peak", 0, 0 }, 135 { HDA_INTEL_PCH2, "Intel Ibex Peak", 0, 0 }, 136 { HDA_INTEL_ELLK, "Intel Elkhart Lake", 0, 0 }, 137 { HDA_INTEL_JLK2, "Intel Jasper Lake", 0, 0 }, 138 { HDA_INTEL_BXTNP, "Intel Broxton-P", 0, 0 }, 139 { HDA_INTEL_SCH, "Intel SCH", 0, 0 }, 140 { HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI }, 141 { HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI }, 142 { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 }, 143 { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 }, 144 { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 }, 145 { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 }, 146 { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 }, 147 { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 }, 148 { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 }, 149 { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 }, 150 { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 151 { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 152 { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 153 { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 154 { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 }, 155 { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 }, 156 { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 }, 157 { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 }, 158 { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 }, 159 { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 }, 160 { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 }, 161 { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 }, 162 { HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI }, 163 { HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI }, 164 { HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI }, 165 { HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI }, 166 { HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI }, 167 { HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI }, 168 { HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI }, 169 { HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI }, 170 { HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 }, 171 { HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 172 { HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 173 { HDA_ATI_SB450, "ATI SB450", 0, 0 }, 174 { HDA_ATI_SB600, "ATI SB600", 0, 0 }, 175 { HDA_ATI_RS600, "ATI RS600", 0, 0 }, 176 { HDA_ATI_RS690, "ATI RS690", 0, 0 }, 177 { HDA_ATI_RS780, "ATI RS780", 0, 0 }, 178 { HDA_ATI_RS880, "ATI RS880", 0, 0 }, 179 { HDA_ATI_R600, "ATI R600", 0, 0 }, 180 { HDA_ATI_RV610, "ATI RV610", 0, 0 }, 181 { HDA_ATI_RV620, "ATI RV620", 0, 0 }, 182 { HDA_ATI_RV630, "ATI RV630", 0, 0 }, 183 { HDA_ATI_RV635, "ATI RV635", 0, 0 }, 184 { HDA_ATI_RV710, "ATI RV710", 0, 0 }, 185 { HDA_ATI_RV730, "ATI RV730", 0, 0 }, 186 { HDA_ATI_RV740, "ATI RV740", 0, 0 }, 187 { HDA_ATI_RV770, "ATI RV770", 0, 0 }, 188 { HDA_ATI_RV810, "ATI RV810", 0, 0 }, 189 { HDA_ATI_RV830, "ATI RV830", 0, 0 }, 190 { HDA_ATI_RV840, "ATI RV840", 0, 0 }, 191 { HDA_ATI_RV870, "ATI RV870", 0, 0 }, 192 { HDA_ATI_RV910, "ATI RV910", 0, 0 }, 193 { HDA_ATI_RV930, "ATI RV930", 0, 0 }, 194 { HDA_ATI_RV940, "ATI RV940", 0, 0 }, 195 { HDA_ATI_RV970, "ATI RV970", 0, 0 }, 196 { HDA_ATI_R1000, "ATI R1000", 0, 0 }, 197 { HDA_ATI_OLAND, "ATI Oland", 0, 0 }, 198 { HDA_ATI_KABINI, "ATI Kabini", 0, 0 }, 199 { HDA_ATI_TRINITY, "ATI Trinity", 0, 0 }, 200 { HDA_AMD_X370, "AMD X370", 0, 0 }, 201 { HDA_AMD_X570, "AMD X570", 0, 0 }, 202 { HDA_AMD_STONEY, "AMD Stoney", 0, 0 }, 203 { HDA_AMD_RAVEN, "AMD Raven", 0, 0 }, 204 { HDA_AMD_HUDSON2, "AMD Hudson-2", 0, 0 }, 205 { HDA_RDC_M3010, "RDC M3010", 0, 0 }, 206 { HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 }, 207 { HDA_VMWARE, "VMware", 0, 0 }, 208 { HDA_SIS_966, "SiS 966/968", 0, 0 }, 209 { HDA_ULI_M5461, "ULI M5461", 0, 0 }, 210 { HDA_CREATIVE_SB1570, "Creative SB Audigy FX", 0, HDAC_QUIRK_64BIT }, 211 /* Unknown */ 212 { HDA_INTEL_ALL, "Intel", 0, 0 }, 213 { HDA_NVIDIA_ALL, "NVIDIA", 0, 0 }, 214 { HDA_ATI_ALL, "ATI", 0, 0 }, 215 { HDA_AMD_ALL, "AMD", 0, 0 }, 216 { HDA_CREATIVE_ALL, "Creative", 0, 0 }, 217 { HDA_VIA_ALL, "VIA", 0, 0 }, 218 { HDA_VMWARE_ALL, "VMware", 0, 0 }, 219 { HDA_SIS_ALL, "SiS", 0, 0 }, 220 { HDA_ULI_ALL, "ULI", 0, 0 }, 221 }; 222 223 static const struct { 224 uint16_t vendor; 225 uint8_t reg; 226 uint8_t mask; 227 uint8_t enable; 228 } hdac_pcie_snoop[] = { 229 { INTEL_VENDORID, 0x00, 0x00, 0x00 }, 230 { ATI_VENDORID, 0x42, 0xf8, 0x02 }, 231 { AMD_VENDORID, 0x42, 0xf8, 0x02 }, 232 { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, 233 }; 234 235 /**************************************************************************** 236 * Function prototypes 237 ****************************************************************************/ 238 static void hdac_intr_handler(void *); 239 static int hdac_reset(struct hdac_softc *, bool); 240 static int hdac_get_capabilities(struct hdac_softc *); 241 static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); 242 static int hdac_dma_alloc(struct hdac_softc *, 243 struct hdac_dma *, bus_size_t); 244 static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); 245 static int hdac_mem_alloc(struct hdac_softc *); 246 static void hdac_mem_free(struct hdac_softc *); 247 static int hdac_irq_alloc(struct hdac_softc *); 248 static void hdac_irq_free(struct hdac_softc *); 249 static void hdac_corb_init(struct hdac_softc *); 250 static void hdac_rirb_init(struct hdac_softc *); 251 static void hdac_corb_start(struct hdac_softc *); 252 static void hdac_rirb_start(struct hdac_softc *); 253 254 static void hdac_attach2(void *); 255 256 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t); 257 258 static int hdac_probe(device_t); 259 static int hdac_attach(device_t); 260 static int hdac_detach(device_t); 261 static int hdac_suspend(device_t); 262 static int hdac_resume(device_t); 263 264 static int hdac_rirb_flush(struct hdac_softc *sc); 265 static int hdac_unsolq_flush(struct hdac_softc *sc); 266 267 /* This function surely going to make its way into upper level someday. */ 268 static void 269 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) 270 { 271 const char *res = NULL; 272 int i = 0, j, k, len, inv; 273 274 if (resource_string_value(device_get_name(sc->dev), 275 device_get_unit(sc->dev), "config", &res) != 0) 276 return; 277 if (!(res != NULL && strlen(res) > 0)) 278 return; 279 HDA_BOOTVERBOSE( 280 device_printf(sc->dev, "Config options:"); 281 ); 282 for (;;) { 283 while (res[i] != '\0' && 284 (res[i] == ',' || isspace(res[i]) != 0)) 285 i++; 286 if (res[i] == '\0') { 287 HDA_BOOTVERBOSE( 288 printf("\n"); 289 ); 290 return; 291 } 292 j = i; 293 while (res[j] != '\0' && 294 !(res[j] == ',' || isspace(res[j]) != 0)) 295 j++; 296 len = j - i; 297 if (len > 2 && strncmp(res + i, "no", 2) == 0) 298 inv = 2; 299 else 300 inv = 0; 301 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) { 302 if (strncmp(res + i + inv, 303 hdac_quirks_tab[k].key, len - inv) != 0) 304 continue; 305 if (len - inv != strlen(hdac_quirks_tab[k].key)) 306 continue; 307 HDA_BOOTVERBOSE( 308 printf(" %s%s", (inv != 0) ? "no" : "", 309 hdac_quirks_tab[k].key); 310 ); 311 if (inv == 0) { 312 *on |= hdac_quirks_tab[k].value; 313 *off &= ~hdac_quirks_tab[k].value; 314 } else if (inv != 0) { 315 *off |= hdac_quirks_tab[k].value; 316 *on &= ~hdac_quirks_tab[k].value; 317 } 318 break; 319 } 320 i = j; 321 } 322 } 323 324 static void 325 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts) 326 { 327 device_t dev; 328 uint8_t rirbsts; 329 int i; 330 331 /* Was this a controller interrupt? */ 332 if (intsts & HDAC_INTSTS_CIS) { 333 /* 334 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then 335 * we will need to check and clear HDAC_STATESTS. 336 * That event is used to report codec status changes such as 337 * a reset or a wake-up event. 338 */ 339 /* 340 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we 341 * will need to check and clear HDAC_CORBSTS_CMEI in 342 * HDAC_CORBSTS. 343 * That event is used to report CORB memory errors. 344 */ 345 /* 346 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we 347 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in 348 * HDAC_RIRBSTS. 349 * That event is used to report response FIFO overruns. 350 */ 351 352 /* Get as many responses that we can */ 353 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 354 while (rirbsts & HDAC_RIRBSTS_RINTFL) { 355 HDAC_WRITE_1(&sc->mem, 356 HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); 357 hdac_rirb_flush(sc); 358 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 359 } 360 if (sc->unsolq_rp != sc->unsolq_wp) 361 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 362 } 363 364 if (intsts & HDAC_INTSTS_SIS_MASK) { 365 for (i = 0; i < sc->num_ss; i++) { 366 if ((intsts & (1 << i)) == 0) 367 continue; 368 HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS, 369 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 370 if ((dev = sc->streams[i].dev) != NULL) { 371 HDAC_STREAM_INTR(dev, 372 sc->streams[i].dir, sc->streams[i].stream); 373 } 374 } 375 } 376 } 377 378 /**************************************************************************** 379 * void hdac_intr_handler(void *) 380 * 381 * Interrupt handler. Processes interrupts received from the hdac. 382 ****************************************************************************/ 383 static void 384 hdac_intr_handler(void *context) 385 { 386 struct hdac_softc *sc; 387 uint32_t intsts; 388 389 sc = (struct hdac_softc *)context; 390 391 /* 392 * Loop until HDAC_INTSTS_GIS gets clear. 393 * It is plausible that hardware interrupts a host only when GIS goes 394 * from zero to one. GIS is formed by OR-ing multiple hardware 395 * statuses, so it's possible that a previously cleared status gets set 396 * again while another status has not been cleared yet. Thus, there 397 * will be no new interrupt as GIS always stayed set. If we don't 398 * re-examine GIS then we can leave it set and never get an interrupt 399 * again. 400 */ 401 hdac_lock(sc); 402 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 403 while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) { 404 hdac_one_intr(sc, intsts); 405 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 406 } 407 hdac_unlock(sc); 408 } 409 410 static void 411 hdac_poll_callback(void *arg) 412 { 413 struct hdac_softc *sc = arg; 414 415 if (sc == NULL) 416 return; 417 418 hdac_lock(sc); 419 if (sc->polling == 0) { 420 hdac_unlock(sc); 421 return; 422 } 423 callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc); 424 hdac_unlock(sc); 425 426 hdac_intr_handler(sc); 427 } 428 429 /**************************************************************************** 430 * int hdac_reset(hdac_softc *, bool) 431 * 432 * Reset the hdac to a quiescent and known state. 433 ****************************************************************************/ 434 static int 435 hdac_reset(struct hdac_softc *sc, bool wakeup) 436 { 437 uint32_t gctl; 438 int count, i; 439 440 /* 441 * Stop all Streams DMA engine 442 */ 443 for (i = 0; i < sc->num_iss; i++) 444 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); 445 for (i = 0; i < sc->num_oss; i++) 446 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); 447 for (i = 0; i < sc->num_bss; i++) 448 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); 449 450 /* 451 * Stop Control DMA engines. 452 */ 453 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); 454 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); 455 456 /* 457 * Reset DMA position buffer. 458 */ 459 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); 460 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); 461 462 /* 463 * Reset the controller. The reset must remain asserted for 464 * a minimum of 100us. 465 */ 466 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 467 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); 468 count = 10000; 469 do { 470 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 471 if (!(gctl & HDAC_GCTL_CRST)) 472 break; 473 DELAY(10); 474 } while (--count); 475 if (gctl & HDAC_GCTL_CRST) { 476 device_printf(sc->dev, "Unable to put hdac in reset\n"); 477 return (ENXIO); 478 } 479 480 /* If wakeup is not requested - leave the controller in reset state. */ 481 if (!wakeup) 482 return (0); 483 484 DELAY(100); 485 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 486 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); 487 count = 10000; 488 do { 489 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 490 if (gctl & HDAC_GCTL_CRST) 491 break; 492 DELAY(10); 493 } while (--count); 494 if (!(gctl & HDAC_GCTL_CRST)) { 495 device_printf(sc->dev, "Device stuck in reset\n"); 496 return (ENXIO); 497 } 498 499 /* 500 * Wait for codecs to finish their own reset sequence. The delay here 501 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery). 502 */ 503 DELAY(1000); 504 505 return (0); 506 } 507 508 /**************************************************************************** 509 * int hdac_get_capabilities(struct hdac_softc *); 510 * 511 * Retreive the general capabilities of the hdac; 512 * Number of Input Streams 513 * Number of Output Streams 514 * Number of bidirectional Streams 515 * 64bit ready 516 * CORB and RIRB sizes 517 ****************************************************************************/ 518 static int 519 hdac_get_capabilities(struct hdac_softc *sc) 520 { 521 uint16_t gcap; 522 uint8_t corbsize, rirbsize; 523 524 gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); 525 sc->num_iss = HDAC_GCAP_ISS(gcap); 526 sc->num_oss = HDAC_GCAP_OSS(gcap); 527 sc->num_bss = HDAC_GCAP_BSS(gcap); 528 sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss; 529 sc->num_sdo = HDAC_GCAP_NSDO(gcap); 530 sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0; 531 if (sc->quirks_on & HDAC_QUIRK_64BIT) 532 sc->support_64bit = 1; 533 else if (sc->quirks_off & HDAC_QUIRK_64BIT) 534 sc->support_64bit = 0; 535 536 corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); 537 if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == 538 HDAC_CORBSIZE_CORBSZCAP_256) 539 sc->corb_size = 256; 540 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == 541 HDAC_CORBSIZE_CORBSZCAP_16) 542 sc->corb_size = 16; 543 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == 544 HDAC_CORBSIZE_CORBSZCAP_2) 545 sc->corb_size = 2; 546 else { 547 device_printf(sc->dev, "%s: Invalid corb size (%x)\n", 548 __func__, corbsize); 549 return (ENXIO); 550 } 551 552 rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); 553 if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == 554 HDAC_RIRBSIZE_RIRBSZCAP_256) 555 sc->rirb_size = 256; 556 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == 557 HDAC_RIRBSIZE_RIRBSZCAP_16) 558 sc->rirb_size = 16; 559 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == 560 HDAC_RIRBSIZE_RIRBSZCAP_2) 561 sc->rirb_size = 2; 562 else { 563 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", 564 __func__, rirbsize); 565 return (ENXIO); 566 } 567 568 HDA_BOOTVERBOSE( 569 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " 570 "NSDO %d%s, CORB %d, RIRB %d\n", 571 sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, 572 sc->support_64bit ? ", 64bit" : "", 573 sc->corb_size, sc->rirb_size); 574 ); 575 576 return (0); 577 } 578 579 /**************************************************************************** 580 * void hdac_dma_cb 581 * 582 * This function is called by bus_dmamap_load when the mapping has been 583 * established. We just record the physical address of the mapping into 584 * the struct hdac_dma passed in. 585 ****************************************************************************/ 586 static void 587 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) 588 { 589 struct hdac_dma *dma; 590 591 if (error == 0) { 592 dma = (struct hdac_dma *)callback_arg; 593 dma->dma_paddr = segs[0].ds_addr; 594 } 595 } 596 597 /**************************************************************************** 598 * int hdac_dma_alloc 599 * 600 * This function allocate and setup a dma region (struct hdac_dma). 601 * It must be freed by a corresponding hdac_dma_free. 602 ****************************************************************************/ 603 static int 604 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) 605 { 606 bus_size_t roundsz; 607 int result; 608 609 roundsz = roundup2(size, HDA_DMA_ALIGNMENT); 610 bzero(dma, sizeof(*dma)); 611 612 /* 613 * Create a DMA tag 614 */ 615 result = bus_dma_tag_create( 616 bus_get_dma_tag(sc->dev), /* parent */ 617 HDA_DMA_ALIGNMENT, /* alignment */ 618 0, /* boundary */ 619 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 620 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 621 BUS_SPACE_MAXADDR, /* highaddr */ 622 NULL, /* filtfunc */ 623 NULL, /* fistfuncarg */ 624 roundsz, /* maxsize */ 625 1, /* nsegments */ 626 roundsz, /* maxsegsz */ 627 0, /* flags */ 628 NULL, /* lockfunc */ 629 NULL, /* lockfuncarg */ 630 &dma->dma_tag); /* dmat */ 631 if (result != 0) { 632 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n", 633 __func__, result); 634 goto hdac_dma_alloc_fail; 635 } 636 637 /* 638 * Allocate DMA memory 639 */ 640 result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, 641 BUS_DMA_NOWAIT | BUS_DMA_ZERO | 642 ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 643 BUS_DMA_COHERENT), 644 &dma->dma_map); 645 if (result != 0) { 646 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n", 647 __func__, result); 648 goto hdac_dma_alloc_fail; 649 } 650 651 dma->dma_size = roundsz; 652 653 /* 654 * Map the memory 655 */ 656 result = bus_dmamap_load(dma->dma_tag, dma->dma_map, 657 (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); 658 if (result != 0 || dma->dma_paddr == 0) { 659 if (result == 0) 660 result = ENOMEM; 661 device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n", 662 __func__, result); 663 goto hdac_dma_alloc_fail; 664 } 665 666 HDA_BOOTHVERBOSE( 667 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", 668 __func__, (uintmax_t)size, (uintmax_t)roundsz); 669 ); 670 671 return (0); 672 673 hdac_dma_alloc_fail: 674 hdac_dma_free(sc, dma); 675 676 return (result); 677 } 678 679 /**************************************************************************** 680 * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) 681 * 682 * Free a struct hdac_dma that has been previously allocated via the 683 * hdac_dma_alloc function. 684 ****************************************************************************/ 685 static void 686 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) 687 { 688 if (dma->dma_paddr != 0) { 689 /* Flush caches */ 690 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 691 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 692 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 693 dma->dma_paddr = 0; 694 } 695 if (dma->dma_vaddr != NULL) { 696 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 697 dma->dma_vaddr = NULL; 698 } 699 if (dma->dma_tag != NULL) { 700 bus_dma_tag_destroy(dma->dma_tag); 701 dma->dma_tag = NULL; 702 } 703 dma->dma_size = 0; 704 } 705 706 /**************************************************************************** 707 * int hdac_mem_alloc(struct hdac_softc *) 708 * 709 * Allocate all the bus resources necessary to speak with the physical 710 * controller. 711 ****************************************************************************/ 712 static int 713 hdac_mem_alloc(struct hdac_softc *sc) 714 { 715 struct hdac_mem *mem; 716 717 mem = &sc->mem; 718 mem->mem_rid = PCIR_BAR(0); 719 mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 720 &mem->mem_rid, RF_ACTIVE); 721 if (mem->mem_res == NULL) { 722 device_printf(sc->dev, 723 "%s: Unable to allocate memory resource\n", __func__); 724 return (ENOMEM); 725 } 726 mem->mem_tag = rman_get_bustag(mem->mem_res); 727 mem->mem_handle = rman_get_bushandle(mem->mem_res); 728 729 return (0); 730 } 731 732 /**************************************************************************** 733 * void hdac_mem_free(struct hdac_softc *) 734 * 735 * Free up resources previously allocated by hdac_mem_alloc. 736 ****************************************************************************/ 737 static void 738 hdac_mem_free(struct hdac_softc *sc) 739 { 740 struct hdac_mem *mem; 741 742 mem = &sc->mem; 743 if (mem->mem_res != NULL) 744 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, 745 mem->mem_res); 746 mem->mem_res = NULL; 747 } 748 749 /**************************************************************************** 750 * int hdac_irq_alloc(struct hdac_softc *) 751 * 752 * Allocate and setup the resources necessary for interrupt handling. 753 ****************************************************************************/ 754 static int 755 hdac_irq_alloc(struct hdac_softc *sc) 756 { 757 struct hdac_irq *irq; 758 int result; 759 760 irq = &sc->irq; 761 irq->irq_rid = 0x0; 762 763 if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 && 764 (result = pci_msi_count(sc->dev)) == 1 && 765 pci_alloc_msi(sc->dev, &result) == 0) 766 irq->irq_rid = 0x1; 767 768 irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, 769 &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); 770 if (irq->irq_res == NULL) { 771 device_printf(sc->dev, "%s: Unable to allocate irq\n", 772 __func__); 773 goto hdac_irq_alloc_fail; 774 } 775 result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, 776 NULL, hdac_intr_handler, sc, &irq->irq_handle); 777 if (result != 0) { 778 device_printf(sc->dev, 779 "%s: Unable to setup interrupt handler (%d)\n", 780 __func__, result); 781 goto hdac_irq_alloc_fail; 782 } 783 784 return (0); 785 786 hdac_irq_alloc_fail: 787 hdac_irq_free(sc); 788 789 return (ENXIO); 790 } 791 792 /**************************************************************************** 793 * void hdac_irq_free(struct hdac_softc *) 794 * 795 * Free up resources previously allocated by hdac_irq_alloc. 796 ****************************************************************************/ 797 static void 798 hdac_irq_free(struct hdac_softc *sc) 799 { 800 struct hdac_irq *irq; 801 802 irq = &sc->irq; 803 if (irq->irq_res != NULL && irq->irq_handle != NULL) 804 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); 805 if (irq->irq_res != NULL) 806 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, 807 irq->irq_res); 808 if (irq->irq_rid == 0x1) 809 pci_release_msi(sc->dev); 810 irq->irq_handle = NULL; 811 irq->irq_res = NULL; 812 irq->irq_rid = 0x0; 813 } 814 815 /**************************************************************************** 816 * void hdac_corb_init(struct hdac_softc *) 817 * 818 * Initialize the corb registers for operations but do not start it up yet. 819 * The CORB engine must not be running when this function is called. 820 ****************************************************************************/ 821 static void 822 hdac_corb_init(struct hdac_softc *sc) 823 { 824 uint8_t corbsize; 825 uint64_t corbpaddr; 826 827 /* Setup the CORB size. */ 828 switch (sc->corb_size) { 829 case 256: 830 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); 831 break; 832 case 16: 833 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); 834 break; 835 case 2: 836 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); 837 break; 838 default: 839 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); 840 } 841 HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); 842 843 /* Setup the CORB Address in the hdac */ 844 corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; 845 HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); 846 HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); 847 848 /* Set the WP and RP */ 849 sc->corb_wp = 0; 850 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 851 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); 852 /* 853 * The HDA specification indicates that the CORBRPRST bit will always 854 * read as zero. Unfortunately, it seems that at least the 82801G 855 * doesn't reset the bit to zero, which stalls the corb engine. 856 * manually reset the bit to zero before continuing. 857 */ 858 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); 859 860 /* Enable CORB error reporting */ 861 #if 0 862 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); 863 #endif 864 } 865 866 /**************************************************************************** 867 * void hdac_rirb_init(struct hdac_softc *) 868 * 869 * Initialize the rirb registers for operations but do not start it up yet. 870 * The RIRB engine must not be running when this function is called. 871 ****************************************************************************/ 872 static void 873 hdac_rirb_init(struct hdac_softc *sc) 874 { 875 uint8_t rirbsize; 876 uint64_t rirbpaddr; 877 878 /* Setup the RIRB size. */ 879 switch (sc->rirb_size) { 880 case 256: 881 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); 882 break; 883 case 16: 884 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); 885 break; 886 case 2: 887 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); 888 break; 889 default: 890 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); 891 } 892 HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); 893 894 /* Setup the RIRB Address in the hdac */ 895 rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; 896 HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); 897 HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); 898 899 /* Setup the WP and RP */ 900 sc->rirb_rp = 0; 901 HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); 902 903 /* Setup the interrupt threshold */ 904 HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); 905 906 /* Enable Overrun and response received reporting */ 907 #if 0 908 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 909 HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); 910 #else 911 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); 912 #endif 913 914 /* 915 * Make sure that the Host CPU cache doesn't contain any dirty 916 * cache lines that falls in the rirb. If I understood correctly, it 917 * should be sufficient to do this only once as the rirb is purely 918 * read-only from now on. 919 */ 920 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 921 BUS_DMASYNC_PREREAD); 922 } 923 924 /**************************************************************************** 925 * void hdac_corb_start(hdac_softc *) 926 * 927 * Startup the corb DMA engine 928 ****************************************************************************/ 929 static void 930 hdac_corb_start(struct hdac_softc *sc) 931 { 932 uint32_t corbctl; 933 934 corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); 935 corbctl |= HDAC_CORBCTL_CORBRUN; 936 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); 937 } 938 939 /**************************************************************************** 940 * void hdac_rirb_start(hdac_softc *) 941 * 942 * Startup the rirb DMA engine 943 ****************************************************************************/ 944 static void 945 hdac_rirb_start(struct hdac_softc *sc) 946 { 947 uint32_t rirbctl; 948 949 rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); 950 rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; 951 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); 952 } 953 954 static int 955 hdac_rirb_flush(struct hdac_softc *sc) 956 { 957 struct hdac_rirb *rirb_base, *rirb; 958 nid_t cad; 959 uint32_t resp, resp_ex; 960 uint8_t rirbwp; 961 int ret; 962 963 rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; 964 rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); 965 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 966 BUS_DMASYNC_POSTREAD); 967 968 ret = 0; 969 while (sc->rirb_rp != rirbwp) { 970 sc->rirb_rp++; 971 sc->rirb_rp %= sc->rirb_size; 972 rirb = &rirb_base[sc->rirb_rp]; 973 resp = le32toh(rirb->response); 974 resp_ex = le32toh(rirb->response_ex); 975 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex); 976 if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { 977 sc->unsolq[sc->unsolq_wp++] = resp; 978 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 979 sc->unsolq[sc->unsolq_wp++] = cad; 980 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 981 } else if (sc->codecs[cad].pending <= 0) { 982 device_printf(sc->dev, "Unexpected unsolicited " 983 "response from address %d: %08x\n", cad, resp); 984 } else { 985 sc->codecs[cad].response = resp; 986 sc->codecs[cad].pending--; 987 } 988 ret++; 989 } 990 991 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 992 BUS_DMASYNC_PREREAD); 993 return (ret); 994 } 995 996 static int 997 hdac_unsolq_flush(struct hdac_softc *sc) 998 { 999 device_t child; 1000 nid_t cad; 1001 uint32_t resp; 1002 int ret = 0; 1003 1004 if (sc->unsolq_st == HDAC_UNSOLQ_READY) { 1005 sc->unsolq_st = HDAC_UNSOLQ_BUSY; 1006 while (sc->unsolq_rp != sc->unsolq_wp) { 1007 resp = sc->unsolq[sc->unsolq_rp++]; 1008 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 1009 cad = sc->unsolq[sc->unsolq_rp++]; 1010 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 1011 if ((child = sc->codecs[cad].dev) != NULL && 1012 device_is_attached(child)) 1013 HDAC_UNSOL_INTR(child, resp); 1014 ret++; 1015 } 1016 sc->unsolq_st = HDAC_UNSOLQ_READY; 1017 } 1018 1019 return (ret); 1020 } 1021 1022 /**************************************************************************** 1023 * uint32_t hdac_send_command 1024 * 1025 * Wrapper function that sends only one command to a given codec 1026 ****************************************************************************/ 1027 static uint32_t 1028 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb) 1029 { 1030 int timeout; 1031 uint32_t *corb; 1032 1033 hdac_lockassert(sc); 1034 verb &= ~HDA_CMD_CAD_MASK; 1035 verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT; 1036 sc->codecs[cad].response = HDA_INVALID; 1037 1038 sc->codecs[cad].pending++; 1039 sc->corb_wp++; 1040 sc->corb_wp %= sc->corb_size; 1041 corb = (uint32_t *)sc->corb_dma.dma_vaddr; 1042 bus_dmamap_sync(sc->corb_dma.dma_tag, 1043 sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); 1044 corb[sc->corb_wp] = htole32(verb); 1045 bus_dmamap_sync(sc->corb_dma.dma_tag, 1046 sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); 1047 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 1048 1049 timeout = 10000; 1050 do { 1051 if (hdac_rirb_flush(sc) == 0) 1052 DELAY(10); 1053 } while (sc->codecs[cad].pending != 0 && --timeout); 1054 1055 if (sc->codecs[cad].pending != 0) { 1056 device_printf(sc->dev, "Command 0x%08x timeout on address %d\n", 1057 verb, cad); 1058 sc->codecs[cad].pending = 0; 1059 } 1060 1061 if (sc->unsolq_rp != sc->unsolq_wp) 1062 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 1063 return (sc->codecs[cad].response); 1064 } 1065 1066 /**************************************************************************** 1067 * Device Methods 1068 ****************************************************************************/ 1069 1070 /**************************************************************************** 1071 * int hdac_probe(device_t) 1072 * 1073 * Probe for the presence of an hdac. If none is found, check for a generic 1074 * match using the subclass of the device. 1075 ****************************************************************************/ 1076 static int 1077 hdac_probe(device_t dev) 1078 { 1079 int i, result; 1080 uint32_t model; 1081 uint16_t class, subclass; 1082 char desc[64]; 1083 1084 model = (uint32_t)pci_get_device(dev) << 16; 1085 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1086 class = pci_get_class(dev); 1087 subclass = pci_get_subclass(dev); 1088 1089 bzero(desc, sizeof(desc)); 1090 result = ENXIO; 1091 for (i = 0; i < nitems(hdac_devices); i++) { 1092 if (hdac_devices[i].model == model) { 1093 strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); 1094 result = BUS_PROBE_DEFAULT; 1095 break; 1096 } 1097 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1098 class == PCIC_MULTIMEDIA && 1099 subclass == PCIS_MULTIMEDIA_HDA) { 1100 snprintf(desc, sizeof(desc), "%s (0x%04x)", 1101 hdac_devices[i].desc, pci_get_device(dev)); 1102 result = BUS_PROBE_GENERIC; 1103 break; 1104 } 1105 } 1106 if (result == ENXIO && class == PCIC_MULTIMEDIA && 1107 subclass == PCIS_MULTIMEDIA_HDA) { 1108 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model); 1109 result = BUS_PROBE_GENERIC; 1110 } 1111 if (result != ENXIO) 1112 device_set_descf(dev, "%s HDA Controller", desc); 1113 1114 return (result); 1115 } 1116 1117 static void 1118 hdac_unsolq_task(void *context, int pending) 1119 { 1120 struct hdac_softc *sc; 1121 1122 sc = (struct hdac_softc *)context; 1123 1124 hdac_lock(sc); 1125 hdac_unsolq_flush(sc); 1126 hdac_unlock(sc); 1127 } 1128 1129 /**************************************************************************** 1130 * int hdac_attach(device_t) 1131 * 1132 * Attach the device into the kernel. Interrupts usually won't be enabled 1133 * when this function is called. Setup everything that doesn't require 1134 * interrupts and defer probing of codecs until interrupts are enabled. 1135 ****************************************************************************/ 1136 static int 1137 hdac_attach(device_t dev) 1138 { 1139 struct hdac_softc *sc; 1140 int result; 1141 int i, devid = -1; 1142 uint32_t model; 1143 uint16_t class, subclass; 1144 uint16_t vendor; 1145 uint8_t v; 1146 1147 sc = device_get_softc(dev); 1148 HDA_BOOTVERBOSE( 1149 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n", 1150 pci_get_subvendor(dev), pci_get_subdevice(dev)); 1151 device_printf(dev, "HDA Driver Revision: %s\n", 1152 HDA_DRV_TEST_REV); 1153 ); 1154 1155 model = (uint32_t)pci_get_device(dev) << 16; 1156 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1157 class = pci_get_class(dev); 1158 subclass = pci_get_subclass(dev); 1159 1160 for (i = 0; i < nitems(hdac_devices); i++) { 1161 if (hdac_devices[i].model == model) { 1162 devid = i; 1163 break; 1164 } 1165 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1166 class == PCIC_MULTIMEDIA && 1167 subclass == PCIS_MULTIMEDIA_HDA) { 1168 devid = i; 1169 break; 1170 } 1171 } 1172 1173 sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex"); 1174 sc->dev = dev; 1175 TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); 1176 callout_init(&sc->poll_callout, 1); 1177 for (i = 0; i < HDAC_CODEC_MAX; i++) 1178 sc->codecs[i].dev = NULL; 1179 if (devid >= 0) { 1180 sc->quirks_on = hdac_devices[devid].quirks_on; 1181 sc->quirks_off = hdac_devices[devid].quirks_off; 1182 } else { 1183 sc->quirks_on = 0; 1184 sc->quirks_off = 0; 1185 } 1186 if (resource_int_value(device_get_name(dev), 1187 device_get_unit(dev), "msi", &i) == 0) { 1188 if (i == 0) 1189 sc->quirks_off |= HDAC_QUIRK_MSI; 1190 else { 1191 sc->quirks_on |= HDAC_QUIRK_MSI; 1192 sc->quirks_off |= ~HDAC_QUIRK_MSI; 1193 } 1194 } 1195 hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off); 1196 HDA_BOOTVERBOSE( 1197 device_printf(sc->dev, 1198 "Config options: on=0x%08x off=0x%08x\n", 1199 sc->quirks_on, sc->quirks_off); 1200 ); 1201 sc->poll_ival = hz; 1202 if (resource_int_value(device_get_name(dev), 1203 device_get_unit(dev), "polling", &i) == 0 && i != 0) 1204 sc->polling = 1; 1205 else 1206 sc->polling = 0; 1207 1208 pci_enable_busmaster(dev); 1209 1210 vendor = pci_get_vendor(dev); 1211 if (vendor == INTEL_VENDORID) { 1212 /* TCSEL -> TC0 */ 1213 v = pci_read_config(dev, 0x44, 1); 1214 pci_write_config(dev, 0x44, v & 0xf8, 1); 1215 HDA_BOOTHVERBOSE( 1216 device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, 1217 pci_read_config(dev, 0x44, 1)); 1218 ); 1219 } 1220 1221 #if defined(__i386__) || defined(__amd64__) 1222 sc->flags |= HDAC_F_DMA_NOCACHE; 1223 1224 if (resource_int_value(device_get_name(dev), 1225 device_get_unit(dev), "snoop", &i) == 0 && i != 0) { 1226 #else 1227 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1228 #endif 1229 /* 1230 * Try to enable PCIe snoop to avoid messing around with 1231 * uncacheable DMA attribute. Since PCIe snoop register 1232 * config is pretty much vendor specific, there are no 1233 * general solutions on how to enable it, forcing us (even 1234 * Microsoft) to enable uncacheable or write combined DMA 1235 * by default. 1236 * 1237 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx 1238 */ 1239 for (i = 0; i < nitems(hdac_pcie_snoop); i++) { 1240 if (hdac_pcie_snoop[i].vendor != vendor) 1241 continue; 1242 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1243 if (hdac_pcie_snoop[i].reg == 0x00) 1244 break; 1245 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1246 if ((v & hdac_pcie_snoop[i].enable) == 1247 hdac_pcie_snoop[i].enable) 1248 break; 1249 v &= hdac_pcie_snoop[i].mask; 1250 v |= hdac_pcie_snoop[i].enable; 1251 pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); 1252 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1253 if ((v & hdac_pcie_snoop[i].enable) != 1254 hdac_pcie_snoop[i].enable) { 1255 HDA_BOOTVERBOSE( 1256 device_printf(dev, 1257 "WARNING: Failed to enable PCIe " 1258 "snoop!\n"); 1259 ); 1260 #if defined(__i386__) || defined(__amd64__) 1261 sc->flags |= HDAC_F_DMA_NOCACHE; 1262 #endif 1263 } 1264 break; 1265 } 1266 #if defined(__i386__) || defined(__amd64__) 1267 } 1268 #endif 1269 1270 HDA_BOOTHVERBOSE( 1271 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", 1272 (sc->flags & HDAC_F_DMA_NOCACHE) ? 1273 "Uncacheable" : "PCIe snoop", vendor); 1274 ); 1275 1276 /* Allocate resources */ 1277 result = hdac_mem_alloc(sc); 1278 if (result != 0) 1279 goto hdac_attach_fail; 1280 1281 /* Get Capabilities */ 1282 result = hdac_get_capabilities(sc); 1283 if (result != 0) 1284 goto hdac_attach_fail; 1285 1286 /* Allocate CORB, RIRB, POS and BDLs dma memory */ 1287 result = hdac_dma_alloc(sc, &sc->corb_dma, 1288 sc->corb_size * sizeof(uint32_t)); 1289 if (result != 0) 1290 goto hdac_attach_fail; 1291 result = hdac_dma_alloc(sc, &sc->rirb_dma, 1292 sc->rirb_size * sizeof(struct hdac_rirb)); 1293 if (result != 0) 1294 goto hdac_attach_fail; 1295 sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss, 1296 M_HDAC, M_ZERO | M_WAITOK); 1297 for (i = 0; i < sc->num_ss; i++) { 1298 result = hdac_dma_alloc(sc, &sc->streams[i].bdl, 1299 sizeof(struct hdac_bdle) * HDA_BDL_MAX); 1300 if (result != 0) 1301 goto hdac_attach_fail; 1302 } 1303 if (sc->quirks_on & HDAC_QUIRK_DMAPOS) { 1304 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) { 1305 HDA_BOOTVERBOSE( 1306 device_printf(dev, "Failed to " 1307 "allocate DMA pos buffer " 1308 "(non-fatal)\n"); 1309 ); 1310 } else { 1311 uint64_t addr = sc->pos_dma.dma_paddr; 1312 1313 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32); 1314 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 1315 (addr & HDAC_DPLBASE_DPLBASE_MASK) | 1316 HDAC_DPLBASE_DPLBASE_DMAPBE); 1317 } 1318 } 1319 1320 result = bus_dma_tag_create( 1321 bus_get_dma_tag(sc->dev), /* parent */ 1322 HDA_DMA_ALIGNMENT, /* alignment */ 1323 0, /* boundary */ 1324 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 1325 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1326 BUS_SPACE_MAXADDR, /* highaddr */ 1327 NULL, /* filtfunc */ 1328 NULL, /* fistfuncarg */ 1329 HDA_BUFSZ_MAX, /* maxsize */ 1330 1, /* nsegments */ 1331 HDA_BUFSZ_MAX, /* maxsegsz */ 1332 0, /* flags */ 1333 NULL, /* lockfunc */ 1334 NULL, /* lockfuncarg */ 1335 &sc->chan_dmat); /* dmat */ 1336 if (result != 0) { 1337 device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n", 1338 __func__, result); 1339 goto hdac_attach_fail; 1340 } 1341 1342 /* Quiesce everything */ 1343 HDA_BOOTHVERBOSE( 1344 device_printf(dev, "Reset controller...\n"); 1345 ); 1346 hdac_reset(sc, true); 1347 1348 /* Initialize the CORB and RIRB */ 1349 hdac_corb_init(sc); 1350 hdac_rirb_init(sc); 1351 1352 result = hdac_irq_alloc(sc); 1353 if (result != 0) 1354 goto hdac_attach_fail; 1355 1356 /* Defer remaining of initialization until interrupts are enabled */ 1357 sc->intrhook.ich_func = hdac_attach2; 1358 sc->intrhook.ich_arg = (void *)sc; 1359 if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { 1360 sc->intrhook.ich_func = NULL; 1361 hdac_attach2((void *)sc); 1362 } 1363 1364 return (0); 1365 1366 hdac_attach_fail: 1367 hdac_irq_free(sc); 1368 if (sc->streams != NULL) 1369 for (i = 0; i < sc->num_ss; i++) 1370 hdac_dma_free(sc, &sc->streams[i].bdl); 1371 free(sc->streams, M_HDAC); 1372 hdac_dma_free(sc, &sc->rirb_dma); 1373 hdac_dma_free(sc, &sc->corb_dma); 1374 hdac_mem_free(sc); 1375 snd_mtxfree(sc->lock); 1376 1377 return (ENXIO); 1378 } 1379 1380 static int 1381 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) 1382 { 1383 struct hdac_softc *sc; 1384 device_t *devlist; 1385 device_t dev; 1386 int devcount, i, err, val; 1387 1388 dev = oidp->oid_arg1; 1389 sc = device_get_softc(dev); 1390 if (sc == NULL) 1391 return (EINVAL); 1392 val = 0; 1393 err = sysctl_handle_int(oidp, &val, 0, req); 1394 if (err != 0 || req->newptr == NULL || val == 0) 1395 return (err); 1396 1397 /* XXX: Temporary. For debugging. */ 1398 if (val == 100) { 1399 hdac_suspend(dev); 1400 return (0); 1401 } else if (val == 101) { 1402 hdac_resume(dev); 1403 return (0); 1404 } 1405 1406 bus_topo_lock(); 1407 1408 if ((err = device_get_children(dev, &devlist, &devcount)) != 0) { 1409 bus_topo_unlock(); 1410 return (err); 1411 } 1412 1413 hdac_lock(sc); 1414 for (i = 0; i < devcount; i++) 1415 HDAC_PINDUMP(devlist[i]); 1416 hdac_unlock(sc); 1417 1418 bus_topo_unlock(); 1419 1420 free(devlist, M_TEMP); 1421 return (0); 1422 } 1423 1424 static int 1425 hdac_mdata_rate(uint16_t fmt) 1426 { 1427 static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 }; 1428 int rate, bits; 1429 1430 if (fmt & (1 << 14)) 1431 rate = 44100; 1432 else 1433 rate = 48000; 1434 rate *= ((fmt >> 11) & 0x07) + 1; 1435 rate /= ((fmt >> 8) & 0x07) + 1; 1436 bits = mbits[(fmt >> 4) & 0x03]; 1437 bits *= (fmt & 0x0f) + 1; 1438 return (rate * bits); 1439 } 1440 1441 static int 1442 hdac_bdata_rate(uint16_t fmt, int output) 1443 { 1444 static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; 1445 int rate, bits; 1446 1447 rate = 48000; 1448 rate *= ((fmt >> 11) & 0x07) + 1; 1449 bits = bbits[(fmt >> 4) & 0x03]; 1450 bits *= (fmt & 0x0f) + 1; 1451 if (!output) 1452 bits = ((bits + 7) & ~0x07) + 10; 1453 return (rate * bits); 1454 } 1455 1456 static void 1457 hdac_poll_reinit(struct hdac_softc *sc) 1458 { 1459 int i, pollticks, min = 1000000; 1460 struct hdac_stream *s; 1461 1462 if (sc->polling == 0) 1463 return; 1464 if (sc->unsol_registered > 0) 1465 min = hz / 2; 1466 for (i = 0; i < sc->num_ss; i++) { 1467 s = &sc->streams[i]; 1468 if (s->running == 0) 1469 continue; 1470 pollticks = ((uint64_t)hz * s->blksz) / 1471 (hdac_mdata_rate(s->format) / 8); 1472 pollticks >>= 1; 1473 if (pollticks > hz) 1474 pollticks = hz; 1475 if (pollticks < 1) 1476 pollticks = 1; 1477 if (min > pollticks) 1478 min = pollticks; 1479 } 1480 sc->poll_ival = min; 1481 if (min == 1000000) 1482 callout_stop(&sc->poll_callout); 1483 else 1484 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc); 1485 } 1486 1487 static int 1488 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) 1489 { 1490 struct hdac_softc *sc; 1491 device_t dev; 1492 uint32_t ctl; 1493 int err, val; 1494 1495 dev = oidp->oid_arg1; 1496 sc = device_get_softc(dev); 1497 if (sc == NULL) 1498 return (EINVAL); 1499 hdac_lock(sc); 1500 val = sc->polling; 1501 hdac_unlock(sc); 1502 err = sysctl_handle_int(oidp, &val, 0, req); 1503 1504 if (err != 0 || req->newptr == NULL) 1505 return (err); 1506 if (val < 0 || val > 1) 1507 return (EINVAL); 1508 1509 hdac_lock(sc); 1510 if (val != sc->polling) { 1511 if (val == 0) { 1512 callout_stop(&sc->poll_callout); 1513 hdac_unlock(sc); 1514 callout_drain(&sc->poll_callout); 1515 hdac_lock(sc); 1516 sc->polling = 0; 1517 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1518 ctl |= HDAC_INTCTL_GIE; 1519 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1520 } else { 1521 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1522 ctl &= ~HDAC_INTCTL_GIE; 1523 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1524 sc->polling = 1; 1525 hdac_poll_reinit(sc); 1526 } 1527 } 1528 hdac_unlock(sc); 1529 1530 return (err); 1531 } 1532 1533 static void 1534 hdac_attach2(void *arg) 1535 { 1536 struct hdac_softc *sc; 1537 device_t child; 1538 uint32_t vendorid, revisionid; 1539 int i; 1540 uint16_t statests; 1541 1542 sc = (struct hdac_softc *)arg; 1543 1544 hdac_lock(sc); 1545 1546 /* Remove ourselves from the config hooks */ 1547 if (sc->intrhook.ich_func != NULL) { 1548 config_intrhook_disestablish(&sc->intrhook); 1549 sc->intrhook.ich_func = NULL; 1550 } 1551 1552 HDA_BOOTHVERBOSE( 1553 device_printf(sc->dev, "Starting CORB Engine...\n"); 1554 ); 1555 hdac_corb_start(sc); 1556 HDA_BOOTHVERBOSE( 1557 device_printf(sc->dev, "Starting RIRB Engine...\n"); 1558 ); 1559 hdac_rirb_start(sc); 1560 1561 /* 1562 * Clear HDAC_WAKEEN as at present we have no use for SDI wake 1563 * (status change) interrupts. The documentation says that we 1564 * should not make any assumptions about the state of this register 1565 * and set it explicitly. 1566 * NB: this needs to be done before the interrupt is enabled as 1567 * the handler does not expect this interrupt source. 1568 */ 1569 HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); 1570 1571 /* 1572 * Read and clear post-reset SDI wake status. 1573 * Each set bit corresponds to a codec that came out of reset. 1574 */ 1575 statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); 1576 HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests); 1577 1578 HDA_BOOTHVERBOSE( 1579 device_printf(sc->dev, 1580 "Enabling controller interrupt...\n"); 1581 ); 1582 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1583 HDAC_GCTL_UNSOL); 1584 if (sc->polling == 0) { 1585 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, 1586 HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1587 } 1588 DELAY(1000); 1589 1590 HDA_BOOTHVERBOSE( 1591 device_printf(sc->dev, "Scanning HDA codecs ...\n"); 1592 ); 1593 hdac_unlock(sc); 1594 for (i = 0; i < HDAC_CODEC_MAX; i++) { 1595 if (HDAC_STATESTS_SDIWAKE(statests, i)) { 1596 HDA_BOOTHVERBOSE( 1597 device_printf(sc->dev, 1598 "Found CODEC at address %d\n", i); 1599 ); 1600 hdac_lock(sc); 1601 vendorid = hdac_send_command(sc, i, 1602 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID)); 1603 revisionid = hdac_send_command(sc, i, 1604 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID)); 1605 hdac_unlock(sc); 1606 if (vendorid == HDA_INVALID && 1607 revisionid == HDA_INVALID) { 1608 device_printf(sc->dev, 1609 "CODEC at address %d not responding!\n", i); 1610 continue; 1611 } 1612 sc->codecs[i].vendor_id = 1613 HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); 1614 sc->codecs[i].device_id = 1615 HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); 1616 sc->codecs[i].revision_id = 1617 HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); 1618 sc->codecs[i].stepping_id = 1619 HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); 1620 child = device_add_child(sc->dev, "hdacc", -1); 1621 if (child == NULL) { 1622 device_printf(sc->dev, 1623 "Failed to add CODEC device\n"); 1624 continue; 1625 } 1626 device_set_ivars(child, (void *)(intptr_t)i); 1627 sc->codecs[i].dev = child; 1628 } 1629 } 1630 bus_generic_attach(sc->dev); 1631 1632 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1633 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1634 "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, 1635 sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data"); 1636 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1637 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1638 "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, 1639 sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode"); 1640 } 1641 1642 /**************************************************************************** 1643 * int hdac_suspend(device_t) 1644 * 1645 * Suspend and power down HDA bus and codecs. 1646 ****************************************************************************/ 1647 static int 1648 hdac_suspend(device_t dev) 1649 { 1650 struct hdac_softc *sc = device_get_softc(dev); 1651 1652 HDA_BOOTHVERBOSE( 1653 device_printf(dev, "Suspend...\n"); 1654 ); 1655 bus_generic_suspend(dev); 1656 1657 hdac_lock(sc); 1658 HDA_BOOTHVERBOSE( 1659 device_printf(dev, "Reset controller...\n"); 1660 ); 1661 callout_stop(&sc->poll_callout); 1662 hdac_reset(sc, false); 1663 hdac_unlock(sc); 1664 callout_drain(&sc->poll_callout); 1665 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1666 HDA_BOOTHVERBOSE( 1667 device_printf(dev, "Suspend done\n"); 1668 ); 1669 return (0); 1670 } 1671 1672 /**************************************************************************** 1673 * int hdac_resume(device_t) 1674 * 1675 * Powerup and restore HDA bus and codecs state. 1676 ****************************************************************************/ 1677 static int 1678 hdac_resume(device_t dev) 1679 { 1680 struct hdac_softc *sc = device_get_softc(dev); 1681 int error; 1682 1683 HDA_BOOTHVERBOSE( 1684 device_printf(dev, "Resume...\n"); 1685 ); 1686 hdac_lock(sc); 1687 1688 /* Quiesce everything */ 1689 HDA_BOOTHVERBOSE( 1690 device_printf(dev, "Reset controller...\n"); 1691 ); 1692 hdac_reset(sc, true); 1693 1694 /* Initialize the CORB and RIRB */ 1695 hdac_corb_init(sc); 1696 hdac_rirb_init(sc); 1697 1698 HDA_BOOTHVERBOSE( 1699 device_printf(dev, "Starting CORB Engine...\n"); 1700 ); 1701 hdac_corb_start(sc); 1702 HDA_BOOTHVERBOSE( 1703 device_printf(dev, "Starting RIRB Engine...\n"); 1704 ); 1705 hdac_rirb_start(sc); 1706 1707 /* 1708 * Clear HDAC_WAKEEN as at present we have no use for SDI wake 1709 * (status change) events. The documentation says that we should 1710 * not make any assumptions about the state of this register and 1711 * set it explicitly. 1712 * Also, clear HDAC_STATESTS. 1713 * NB: this needs to be done before the interrupt is enabled as 1714 * the handler does not expect this interrupt source. 1715 */ 1716 HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); 1717 HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK); 1718 1719 HDA_BOOTHVERBOSE( 1720 device_printf(dev, "Enabling controller interrupt...\n"); 1721 ); 1722 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1723 HDAC_GCTL_UNSOL); 1724 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1725 DELAY(1000); 1726 hdac_poll_reinit(sc); 1727 hdac_unlock(sc); 1728 1729 error = bus_generic_resume(dev); 1730 HDA_BOOTHVERBOSE( 1731 device_printf(dev, "Resume done\n"); 1732 ); 1733 return (error); 1734 } 1735 1736 /**************************************************************************** 1737 * int hdac_detach(device_t) 1738 * 1739 * Detach and free up resources utilized by the hdac device. 1740 ****************************************************************************/ 1741 static int 1742 hdac_detach(device_t dev) 1743 { 1744 struct hdac_softc *sc = device_get_softc(dev); 1745 device_t *devlist; 1746 int cad, i, devcount, error; 1747 1748 if ((error = device_get_children(dev, &devlist, &devcount)) != 0) 1749 return (error); 1750 for (i = 0; i < devcount; i++) { 1751 cad = (intptr_t)device_get_ivars(devlist[i]); 1752 if ((error = device_delete_child(dev, devlist[i])) != 0) { 1753 free(devlist, M_TEMP); 1754 return (error); 1755 } 1756 sc->codecs[cad].dev = NULL; 1757 } 1758 free(devlist, M_TEMP); 1759 1760 hdac_lock(sc); 1761 hdac_reset(sc, false); 1762 hdac_unlock(sc); 1763 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1764 hdac_irq_free(sc); 1765 1766 for (i = 0; i < sc->num_ss; i++) 1767 hdac_dma_free(sc, &sc->streams[i].bdl); 1768 free(sc->streams, M_HDAC); 1769 hdac_dma_free(sc, &sc->pos_dma); 1770 hdac_dma_free(sc, &sc->rirb_dma); 1771 hdac_dma_free(sc, &sc->corb_dma); 1772 if (sc->chan_dmat != NULL) { 1773 bus_dma_tag_destroy(sc->chan_dmat); 1774 sc->chan_dmat = NULL; 1775 } 1776 hdac_mem_free(sc); 1777 snd_mtxfree(sc->lock); 1778 return (0); 1779 } 1780 1781 static bus_dma_tag_t 1782 hdac_get_dma_tag(device_t dev, device_t child) 1783 { 1784 struct hdac_softc *sc = device_get_softc(dev); 1785 1786 return (sc->chan_dmat); 1787 } 1788 1789 static int 1790 hdac_print_child(device_t dev, device_t child) 1791 { 1792 int retval; 1793 1794 retval = bus_print_child_header(dev, child); 1795 retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child)); 1796 retval += bus_print_child_footer(dev, child); 1797 1798 return (retval); 1799 } 1800 1801 static int 1802 hdac_child_location(device_t dev, device_t child, struct sbuf *sb) 1803 { 1804 1805 sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child)); 1806 return (0); 1807 } 1808 1809 static int 1810 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb) 1811 { 1812 struct hdac_softc *sc = device_get_softc(dev); 1813 nid_t cad = (uintptr_t)device_get_ivars(child); 1814 1815 sbuf_printf(sb, 1816 "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x", 1817 sc->codecs[cad].vendor_id, sc->codecs[cad].device_id, 1818 sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id); 1819 return (0); 1820 } 1821 1822 static int 1823 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1824 { 1825 struct hdac_softc *sc = device_get_softc(dev); 1826 nid_t cad = (uintptr_t)device_get_ivars(child); 1827 1828 switch (which) { 1829 case HDA_IVAR_CODEC_ID: 1830 *result = cad; 1831 break; 1832 case HDA_IVAR_VENDOR_ID: 1833 *result = sc->codecs[cad].vendor_id; 1834 break; 1835 case HDA_IVAR_DEVICE_ID: 1836 *result = sc->codecs[cad].device_id; 1837 break; 1838 case HDA_IVAR_REVISION_ID: 1839 *result = sc->codecs[cad].revision_id; 1840 break; 1841 case HDA_IVAR_STEPPING_ID: 1842 *result = sc->codecs[cad].stepping_id; 1843 break; 1844 case HDA_IVAR_SUBVENDOR_ID: 1845 *result = pci_get_subvendor(dev); 1846 break; 1847 case HDA_IVAR_SUBDEVICE_ID: 1848 *result = pci_get_subdevice(dev); 1849 break; 1850 case HDA_IVAR_DMA_NOCACHE: 1851 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0; 1852 break; 1853 case HDA_IVAR_STRIPES_MASK: 1854 *result = (1 << (1 << sc->num_sdo)) - 1; 1855 break; 1856 default: 1857 return (ENOENT); 1858 } 1859 return (0); 1860 } 1861 1862 static struct mtx * 1863 hdac_get_mtx(device_t dev, device_t child) 1864 { 1865 struct hdac_softc *sc = device_get_softc(dev); 1866 1867 return (sc->lock); 1868 } 1869 1870 static uint32_t 1871 hdac_codec_command(device_t dev, device_t child, uint32_t verb) 1872 { 1873 1874 return (hdac_send_command(device_get_softc(dev), 1875 (intptr_t)device_get_ivars(child), verb)); 1876 } 1877 1878 static int 1879 hdac_find_stream(struct hdac_softc *sc, int dir, int stream) 1880 { 1881 int i, ss; 1882 1883 ss = -1; 1884 /* Allocate ISS/OSS first. */ 1885 if (dir == 0) { 1886 for (i = 0; i < sc->num_iss; i++) { 1887 if (sc->streams[i].stream == stream) { 1888 ss = i; 1889 break; 1890 } 1891 } 1892 } else { 1893 for (i = 0; i < sc->num_oss; i++) { 1894 if (sc->streams[i + sc->num_iss].stream == stream) { 1895 ss = i + sc->num_iss; 1896 break; 1897 } 1898 } 1899 } 1900 /* Fallback to BSS. */ 1901 if (ss == -1) { 1902 for (i = 0; i < sc->num_bss; i++) { 1903 if (sc->streams[i + sc->num_iss + sc->num_oss].stream 1904 == stream) { 1905 ss = i + sc->num_iss + sc->num_oss; 1906 break; 1907 } 1908 } 1909 } 1910 return (ss); 1911 } 1912 1913 static int 1914 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, 1915 uint32_t **dmapos) 1916 { 1917 struct hdac_softc *sc = device_get_softc(dev); 1918 nid_t cad = (uintptr_t)device_get_ivars(child); 1919 int stream, ss, bw, maxbw, prevbw; 1920 1921 /* Look for empty stream. */ 1922 ss = hdac_find_stream(sc, dir, 0); 1923 1924 /* Return if found nothing. */ 1925 if (ss < 0) 1926 return (0); 1927 1928 /* Check bus bandwidth. */ 1929 bw = hdac_bdata_rate(format, dir); 1930 if (dir == 1) { 1931 bw *= 1 << (sc->num_sdo - stripe); 1932 prevbw = sc->sdo_bw_used; 1933 maxbw = 48000 * 960 * (1 << sc->num_sdo); 1934 } else { 1935 prevbw = sc->codecs[cad].sdi_bw_used; 1936 maxbw = 48000 * 464; 1937 } 1938 HDA_BOOTHVERBOSE( 1939 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n", 1940 (bw + prevbw) / 1000, maxbw / 1000, 1941 bw + prevbw > maxbw ? " -- OVERFLOW!" : ""); 1942 ); 1943 if (bw + prevbw > maxbw) 1944 return (0); 1945 if (dir == 1) 1946 sc->sdo_bw_used += bw; 1947 else 1948 sc->codecs[cad].sdi_bw_used += bw; 1949 1950 /* Allocate stream number */ 1951 if (ss >= sc->num_iss + sc->num_oss) 1952 stream = 15 - (ss - sc->num_iss - sc->num_oss); 1953 else if (ss >= sc->num_iss) 1954 stream = ss - sc->num_iss + 1; 1955 else 1956 stream = ss + 1; 1957 1958 sc->streams[ss].dev = child; 1959 sc->streams[ss].dir = dir; 1960 sc->streams[ss].stream = stream; 1961 sc->streams[ss].bw = bw; 1962 sc->streams[ss].format = format; 1963 sc->streams[ss].stripe = stripe; 1964 if (dmapos != NULL) { 1965 if (sc->pos_dma.dma_vaddr != NULL) 1966 *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8); 1967 else 1968 *dmapos = NULL; 1969 } 1970 return (stream); 1971 } 1972 1973 static void 1974 hdac_stream_free(device_t dev, device_t child, int dir, int stream) 1975 { 1976 struct hdac_softc *sc = device_get_softc(dev); 1977 nid_t cad = (uintptr_t)device_get_ivars(child); 1978 int ss; 1979 1980 ss = hdac_find_stream(sc, dir, stream); 1981 KASSERT(ss >= 0, 1982 ("Free for not allocated stream (%d/%d)\n", dir, stream)); 1983 if (dir == 1) 1984 sc->sdo_bw_used -= sc->streams[ss].bw; 1985 else 1986 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw; 1987 sc->streams[ss].stream = 0; 1988 sc->streams[ss].dev = NULL; 1989 } 1990 1991 static int 1992 hdac_stream_start(device_t dev, device_t child, int dir, int stream, 1993 bus_addr_t buf, int blksz, int blkcnt) 1994 { 1995 struct hdac_softc *sc = device_get_softc(dev); 1996 struct hdac_bdle *bdle; 1997 uint64_t addr; 1998 int i, ss, off; 1999 uint32_t ctl; 2000 2001 ss = hdac_find_stream(sc, dir, stream); 2002 KASSERT(ss >= 0, 2003 ("Start for not allocated stream (%d/%d)\n", dir, stream)); 2004 2005 addr = (uint64_t)buf; 2006 bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr; 2007 for (i = 0; i < blkcnt; i++, bdle++) { 2008 bdle->addrl = htole32((uint32_t)addr); 2009 bdle->addrh = htole32((uint32_t)(addr >> 32)); 2010 bdle->len = htole32(blksz); 2011 bdle->ioc = htole32(1); 2012 addr += blksz; 2013 } 2014 2015 bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, 2016 sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE); 2017 2018 off = ss << 5; 2019 HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt); 2020 HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1); 2021 addr = sc->streams[ss].bdl.dma_paddr; 2022 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr); 2023 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); 2024 2025 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2); 2026 if (dir) 2027 ctl |= HDAC_SDCTL2_DIR; 2028 else 2029 ctl &= ~HDAC_SDCTL2_DIR; 2030 ctl &= ~HDAC_SDCTL2_STRM_MASK; 2031 ctl |= stream << HDAC_SDCTL2_STRM_SHIFT; 2032 ctl &= ~HDAC_SDCTL2_STRIPE_MASK; 2033 ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT; 2034 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl); 2035 2036 HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format); 2037 2038 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 2039 ctl |= 1 << ss; 2040 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 2041 2042 HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS, 2043 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 2044 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2045 ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 2046 HDAC_SDCTL_RUN; 2047 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2048 2049 sc->streams[ss].blksz = blksz; 2050 sc->streams[ss].running = 1; 2051 hdac_poll_reinit(sc); 2052 return (0); 2053 } 2054 2055 static void 2056 hdac_stream_stop(device_t dev, device_t child, int dir, int stream) 2057 { 2058 struct hdac_softc *sc = device_get_softc(dev); 2059 int ss, off; 2060 uint32_t ctl; 2061 2062 ss = hdac_find_stream(sc, dir, stream); 2063 KASSERT(ss >= 0, 2064 ("Stop for not allocated stream (%d/%d)\n", dir, stream)); 2065 2066 bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, 2067 sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE); 2068 2069 off = ss << 5; 2070 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2071 ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 2072 HDAC_SDCTL_RUN); 2073 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2074 2075 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 2076 ctl &= ~(1 << ss); 2077 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 2078 2079 sc->streams[ss].running = 0; 2080 hdac_poll_reinit(sc); 2081 } 2082 2083 static void 2084 hdac_stream_reset(device_t dev, device_t child, int dir, int stream) 2085 { 2086 struct hdac_softc *sc = device_get_softc(dev); 2087 int timeout = 1000; 2088 int to = timeout; 2089 int ss, off; 2090 uint32_t ctl; 2091 2092 ss = hdac_find_stream(sc, dir, stream); 2093 KASSERT(ss >= 0, 2094 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2095 2096 off = ss << 5; 2097 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2098 ctl |= HDAC_SDCTL_SRST; 2099 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2100 do { 2101 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2102 if (ctl & HDAC_SDCTL_SRST) 2103 break; 2104 DELAY(10); 2105 } while (--to); 2106 if (!(ctl & HDAC_SDCTL_SRST)) 2107 device_printf(dev, "Reset setting timeout\n"); 2108 ctl &= ~HDAC_SDCTL_SRST; 2109 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2110 to = timeout; 2111 do { 2112 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2113 if (!(ctl & HDAC_SDCTL_SRST)) 2114 break; 2115 DELAY(10); 2116 } while (--to); 2117 if (ctl & HDAC_SDCTL_SRST) 2118 device_printf(dev, "Reset timeout!\n"); 2119 } 2120 2121 static uint32_t 2122 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream) 2123 { 2124 struct hdac_softc *sc = device_get_softc(dev); 2125 int ss, off; 2126 2127 ss = hdac_find_stream(sc, dir, stream); 2128 KASSERT(ss >= 0, 2129 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2130 2131 off = ss << 5; 2132 return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB)); 2133 } 2134 2135 static int 2136 hdac_unsol_alloc(device_t dev, device_t child, int tag) 2137 { 2138 struct hdac_softc *sc = device_get_softc(dev); 2139 2140 sc->unsol_registered++; 2141 hdac_poll_reinit(sc); 2142 return (tag); 2143 } 2144 2145 static void 2146 hdac_unsol_free(device_t dev, device_t child, int tag) 2147 { 2148 struct hdac_softc *sc = device_get_softc(dev); 2149 2150 sc->unsol_registered--; 2151 hdac_poll_reinit(sc); 2152 } 2153 2154 static device_method_t hdac_methods[] = { 2155 /* device interface */ 2156 DEVMETHOD(device_probe, hdac_probe), 2157 DEVMETHOD(device_attach, hdac_attach), 2158 DEVMETHOD(device_detach, hdac_detach), 2159 DEVMETHOD(device_suspend, hdac_suspend), 2160 DEVMETHOD(device_resume, hdac_resume), 2161 /* Bus interface */ 2162 DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag), 2163 DEVMETHOD(bus_print_child, hdac_print_child), 2164 DEVMETHOD(bus_child_location, hdac_child_location), 2165 DEVMETHOD(bus_child_pnpinfo, hdac_child_pnpinfo_method), 2166 DEVMETHOD(bus_read_ivar, hdac_read_ivar), 2167 DEVMETHOD(hdac_get_mtx, hdac_get_mtx), 2168 DEVMETHOD(hdac_codec_command, hdac_codec_command), 2169 DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc), 2170 DEVMETHOD(hdac_stream_free, hdac_stream_free), 2171 DEVMETHOD(hdac_stream_start, hdac_stream_start), 2172 DEVMETHOD(hdac_stream_stop, hdac_stream_stop), 2173 DEVMETHOD(hdac_stream_reset, hdac_stream_reset), 2174 DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr), 2175 DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc), 2176 DEVMETHOD(hdac_unsol_free, hdac_unsol_free), 2177 DEVMETHOD_END 2178 }; 2179 2180 static driver_t hdac_driver = { 2181 "hdac", 2182 hdac_methods, 2183 sizeof(struct hdac_softc), 2184 }; 2185 2186 DRIVER_MODULE(snd_hda, pci, hdac_driver, NULL, NULL); 2187