xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision 99db5849f7506e765c43f4e69a7105cc888e8d5e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 
60 #define HDAC_QUIRK_64BIT	(1 << 0)
61 #define HDAC_QUIRK_DMAPOS	(1 << 1)
62 #define HDAC_QUIRK_MSI		(1 << 2)
63 
64 static const struct {
65 	const char *key;
66 	uint32_t value;
67 } hdac_quirks_tab[] = {
68 	{ "64bit", HDAC_QUIRK_64BIT },
69 	{ "dmapos", HDAC_QUIRK_DMAPOS },
70 	{ "msi", HDAC_QUIRK_MSI },
71 };
72 
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74 
75 static const struct {
76 	uint32_t	model;
77 	const char	*desc;
78 	char		quirks_on;
79 	char		quirks_off;
80 } hdac_devices[] = {
81 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
82 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
83 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
84 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
85 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
88 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
90 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
91 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
92 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
94 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
95 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
96 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
97 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
98 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
99 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
100 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
101 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
102 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
103 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
104 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
105 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
106 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
107 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
108 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
109 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
110 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
111 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
112 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
113 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
114 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
115 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
116 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
117 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
118 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
119 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
120 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
121 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
122 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
123 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
124 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
125 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
126 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
127 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
128 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
129 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
130 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
131 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
132 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
133 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
134 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
135 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
136 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
137 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
138 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
139 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
140 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
141 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
142 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
143 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
144 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
145 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
146 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
147 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
148 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
149 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
150 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
151 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
152 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
153 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
154 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
155 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
156 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
157 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
158 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
159 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
160 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
161 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
162 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
163 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
164 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
165 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
166 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
167 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
168 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
169 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
170 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
171 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
172 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
173 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
174 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
175 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
176 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
177 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
178 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
179 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
180 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
181 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
182 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
183 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
184 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
185 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
186 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
187 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
188 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
189 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
190 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
191 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
192 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
193 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
194 	/* Unknown */
195 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
196 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
197 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
198 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
199 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
200 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
201 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
202 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
203 };
204 
205 static const struct {
206 	uint16_t vendor;
207 	uint8_t reg;
208 	uint8_t mask;
209 	uint8_t enable;
210 } hdac_pcie_snoop[] = {
211 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
212 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
213 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
214 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
215 };
216 
217 /****************************************************************************
218  * Function prototypes
219  ****************************************************************************/
220 static void	hdac_intr_handler(void *);
221 static int	hdac_reset(struct hdac_softc *, bool);
222 static int	hdac_get_capabilities(struct hdac_softc *);
223 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
224 static int	hdac_dma_alloc(struct hdac_softc *,
225 					struct hdac_dma *, bus_size_t);
226 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
227 static int	hdac_mem_alloc(struct hdac_softc *);
228 static void	hdac_mem_free(struct hdac_softc *);
229 static int	hdac_irq_alloc(struct hdac_softc *);
230 static void	hdac_irq_free(struct hdac_softc *);
231 static void	hdac_corb_init(struct hdac_softc *);
232 static void	hdac_rirb_init(struct hdac_softc *);
233 static void	hdac_corb_start(struct hdac_softc *);
234 static void	hdac_rirb_start(struct hdac_softc *);
235 
236 static void	hdac_attach2(void *);
237 
238 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
239 
240 static int	hdac_probe(device_t);
241 static int	hdac_attach(device_t);
242 static int	hdac_detach(device_t);
243 static int	hdac_suspend(device_t);
244 static int	hdac_resume(device_t);
245 
246 static int	hdac_rirb_flush(struct hdac_softc *sc);
247 static int	hdac_unsolq_flush(struct hdac_softc *sc);
248 
249 /* This function surely going to make its way into upper level someday. */
250 static void
251 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
252 {
253 	const char *res = NULL;
254 	int i = 0, j, k, len, inv;
255 
256 	if (resource_string_value(device_get_name(sc->dev),
257 	    device_get_unit(sc->dev), "config", &res) != 0)
258 		return;
259 	if (!(res != NULL && strlen(res) > 0))
260 		return;
261 	HDA_BOOTVERBOSE(
262 		device_printf(sc->dev, "Config options:");
263 	);
264 	for (;;) {
265 		while (res[i] != '\0' &&
266 		    (res[i] == ',' || isspace(res[i]) != 0))
267 			i++;
268 		if (res[i] == '\0') {
269 			HDA_BOOTVERBOSE(
270 				printf("\n");
271 			);
272 			return;
273 		}
274 		j = i;
275 		while (res[j] != '\0' &&
276 		    !(res[j] == ',' || isspace(res[j]) != 0))
277 			j++;
278 		len = j - i;
279 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
280 			inv = 2;
281 		else
282 			inv = 0;
283 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
284 			if (strncmp(res + i + inv,
285 			    hdac_quirks_tab[k].key, len - inv) != 0)
286 				continue;
287 			if (len - inv != strlen(hdac_quirks_tab[k].key))
288 				continue;
289 			HDA_BOOTVERBOSE(
290 				printf(" %s%s", (inv != 0) ? "no" : "",
291 				    hdac_quirks_tab[k].key);
292 			);
293 			if (inv == 0) {
294 				*on |= hdac_quirks_tab[k].value;
295 				*off &= ~hdac_quirks_tab[k].value;
296 			} else if (inv != 0) {
297 				*off |= hdac_quirks_tab[k].value;
298 				*on &= ~hdac_quirks_tab[k].value;
299 			}
300 			break;
301 		}
302 		i = j;
303 	}
304 }
305 
306 static void
307 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
308 {
309 	device_t dev;
310 	uint8_t rirbsts;
311 	int i;
312 
313 	/* Was this a controller interrupt? */
314 	if (intsts & HDAC_INTSTS_CIS) {
315 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
316 		/* Get as many responses that we can */
317 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
318 			HDAC_WRITE_1(&sc->mem,
319 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
320 			hdac_rirb_flush(sc);
321 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
322 		}
323 		if (sc->unsolq_rp != sc->unsolq_wp)
324 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
325 	}
326 
327 	if (intsts & HDAC_INTSTS_SIS_MASK) {
328 		for (i = 0; i < sc->num_ss; i++) {
329 			if ((intsts & (1 << i)) == 0)
330 				continue;
331 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
332 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
333 			if ((dev = sc->streams[i].dev) != NULL) {
334 				HDAC_STREAM_INTR(dev,
335 				    sc->streams[i].dir, sc->streams[i].stream);
336 			}
337 		}
338 	}
339 }
340 
341 /****************************************************************************
342  * void hdac_intr_handler(void *)
343  *
344  * Interrupt handler. Processes interrupts received from the hdac.
345  ****************************************************************************/
346 static void
347 hdac_intr_handler(void *context)
348 {
349 	struct hdac_softc *sc;
350 	uint32_t intsts;
351 
352 	sc = (struct hdac_softc *)context;
353 
354 	/*
355 	 * Loop until HDAC_INTSTS_GIS gets clear.
356 	 * It is plausible that hardware interrupts a host only when GIS goes
357 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
358 	 * statuses, so it's possible that a previously cleared status gets set
359 	 * again while another status has not been cleared yet.  Thus, there
360 	 * will be no new interrupt as GIS always stayed set.  If we don't
361 	 * re-examine GIS then we can leave it set and never get an interrupt
362 	 * again.
363 	 */
364 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
365 	while ((intsts & HDAC_INTSTS_GIS) != 0) {
366 		hdac_lock(sc);
367 		hdac_one_intr(sc, intsts);
368 		hdac_unlock(sc);
369 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
370 	}
371 }
372 
373 static void
374 hdac_poll_callback(void *arg)
375 {
376 	struct hdac_softc *sc = arg;
377 
378 	if (sc == NULL)
379 		return;
380 
381 	hdac_lock(sc);
382 	if (sc->polling == 0) {
383 		hdac_unlock(sc);
384 		return;
385 	}
386 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
387 	hdac_unlock(sc);
388 
389 	hdac_intr_handler(sc);
390 }
391 
392 /****************************************************************************
393  * int hdac_reset(hdac_softc *, bool)
394  *
395  * Reset the hdac to a quiescent and known state.
396  ****************************************************************************/
397 static int
398 hdac_reset(struct hdac_softc *sc, bool wakeup)
399 {
400 	uint32_t gctl;
401 	int count, i;
402 
403 	/*
404 	 * Stop all Streams DMA engine
405 	 */
406 	for (i = 0; i < sc->num_iss; i++)
407 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
408 	for (i = 0; i < sc->num_oss; i++)
409 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
410 	for (i = 0; i < sc->num_bss; i++)
411 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
412 
413 	/*
414 	 * Stop Control DMA engines.
415 	 */
416 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
417 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
418 
419 	/*
420 	 * Reset DMA position buffer.
421 	 */
422 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
423 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
424 
425 	/*
426 	 * Reset the controller. The reset must remain asserted for
427 	 * a minimum of 100us.
428 	 */
429 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
430 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
431 	count = 10000;
432 	do {
433 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
434 		if (!(gctl & HDAC_GCTL_CRST))
435 			break;
436 		DELAY(10);
437 	} while (--count);
438 	if (gctl & HDAC_GCTL_CRST) {
439 		device_printf(sc->dev, "Unable to put hdac in reset\n");
440 		return (ENXIO);
441 	}
442 
443 	/* If wakeup is not requested - leave the controller in reset state. */
444 	if (!wakeup)
445 		return (0);
446 
447 	DELAY(100);
448 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
449 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
450 	count = 10000;
451 	do {
452 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
453 		if (gctl & HDAC_GCTL_CRST)
454 			break;
455 		DELAY(10);
456 	} while (--count);
457 	if (!(gctl & HDAC_GCTL_CRST)) {
458 		device_printf(sc->dev, "Device stuck in reset\n");
459 		return (ENXIO);
460 	}
461 
462 	/*
463 	 * Wait for codecs to finish their own reset sequence. The delay here
464 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
465 	 */
466 	DELAY(1000);
467 
468 	return (0);
469 }
470 
471 /****************************************************************************
472  * int hdac_get_capabilities(struct hdac_softc *);
473  *
474  * Retreive the general capabilities of the hdac;
475  *	Number of Input Streams
476  *	Number of Output Streams
477  *	Number of bidirectional Streams
478  *	64bit ready
479  *	CORB and RIRB sizes
480  ****************************************************************************/
481 static int
482 hdac_get_capabilities(struct hdac_softc *sc)
483 {
484 	uint16_t gcap;
485 	uint8_t corbsize, rirbsize;
486 
487 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
488 	sc->num_iss = HDAC_GCAP_ISS(gcap);
489 	sc->num_oss = HDAC_GCAP_OSS(gcap);
490 	sc->num_bss = HDAC_GCAP_BSS(gcap);
491 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
492 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
493 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
494 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
495 		sc->support_64bit = 1;
496 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
497 		sc->support_64bit = 0;
498 
499 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
500 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
501 	    HDAC_CORBSIZE_CORBSZCAP_256)
502 		sc->corb_size = 256;
503 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
504 	    HDAC_CORBSIZE_CORBSZCAP_16)
505 		sc->corb_size = 16;
506 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
507 	    HDAC_CORBSIZE_CORBSZCAP_2)
508 		sc->corb_size = 2;
509 	else {
510 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
511 		    __func__, corbsize);
512 		return (ENXIO);
513 	}
514 
515 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
516 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
517 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
518 		sc->rirb_size = 256;
519 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
520 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
521 		sc->rirb_size = 16;
522 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
523 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
524 		sc->rirb_size = 2;
525 	else {
526 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
527 		    __func__, rirbsize);
528 		return (ENXIO);
529 	}
530 
531 	HDA_BOOTVERBOSE(
532 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
533 		    "NSDO %d%s, CORB %d, RIRB %d\n",
534 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
535 		    sc->support_64bit ? ", 64bit" : "",
536 		    sc->corb_size, sc->rirb_size);
537 	);
538 
539 	return (0);
540 }
541 
542 
543 /****************************************************************************
544  * void hdac_dma_cb
545  *
546  * This function is called by bus_dmamap_load when the mapping has been
547  * established. We just record the physical address of the mapping into
548  * the struct hdac_dma passed in.
549  ****************************************************************************/
550 static void
551 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
552 {
553 	struct hdac_dma *dma;
554 
555 	if (error == 0) {
556 		dma = (struct hdac_dma *)callback_arg;
557 		dma->dma_paddr = segs[0].ds_addr;
558 	}
559 }
560 
561 
562 /****************************************************************************
563  * int hdac_dma_alloc
564  *
565  * This function allocate and setup a dma region (struct hdac_dma).
566  * It must be freed by a corresponding hdac_dma_free.
567  ****************************************************************************/
568 static int
569 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
570 {
571 	bus_size_t roundsz;
572 	int result;
573 
574 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
575 	bzero(dma, sizeof(*dma));
576 
577 	/*
578 	 * Create a DMA tag
579 	 */
580 	result = bus_dma_tag_create(
581 	    bus_get_dma_tag(sc->dev),		/* parent */
582 	    HDA_DMA_ALIGNMENT,			/* alignment */
583 	    0,					/* boundary */
584 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
585 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
586 	    BUS_SPACE_MAXADDR,			/* highaddr */
587 	    NULL,				/* filtfunc */
588 	    NULL,				/* fistfuncarg */
589 	    roundsz, 				/* maxsize */
590 	    1,					/* nsegments */
591 	    roundsz, 				/* maxsegsz */
592 	    0,					/* flags */
593 	    NULL,				/* lockfunc */
594 	    NULL,				/* lockfuncarg */
595 	    &dma->dma_tag);			/* dmat */
596 	if (result != 0) {
597 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
598 		    __func__, result);
599 		goto hdac_dma_alloc_fail;
600 	}
601 
602 	/*
603 	 * Allocate DMA memory
604 	 */
605 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
606 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
607 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
608 	     BUS_DMA_COHERENT),
609 	    &dma->dma_map);
610 	if (result != 0) {
611 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
612 		    __func__, result);
613 		goto hdac_dma_alloc_fail;
614 	}
615 
616 	dma->dma_size = roundsz;
617 
618 	/*
619 	 * Map the memory
620 	 */
621 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
622 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
623 	if (result != 0 || dma->dma_paddr == 0) {
624 		if (result == 0)
625 			result = ENOMEM;
626 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
627 		    __func__, result);
628 		goto hdac_dma_alloc_fail;
629 	}
630 
631 	HDA_BOOTHVERBOSE(
632 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
633 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
634 	);
635 
636 	return (0);
637 
638 hdac_dma_alloc_fail:
639 	hdac_dma_free(sc, dma);
640 
641 	return (result);
642 }
643 
644 /****************************************************************************
645  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
646  *
647  * Free a struct hdac_dma that has been previously allocated via the
648  * hdac_dma_alloc function.
649  ****************************************************************************/
650 static void
651 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
652 {
653 	if (dma->dma_paddr != 0) {
654 		/* Flush caches */
655 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
656 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
657 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
658 		dma->dma_paddr = 0;
659 	}
660 	if (dma->dma_vaddr != NULL) {
661 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
662 		dma->dma_vaddr = NULL;
663 	}
664 	if (dma->dma_tag != NULL) {
665 		bus_dma_tag_destroy(dma->dma_tag);
666 		dma->dma_tag = NULL;
667 	}
668 	dma->dma_size = 0;
669 }
670 
671 /****************************************************************************
672  * int hdac_mem_alloc(struct hdac_softc *)
673  *
674  * Allocate all the bus resources necessary to speak with the physical
675  * controller.
676  ****************************************************************************/
677 static int
678 hdac_mem_alloc(struct hdac_softc *sc)
679 {
680 	struct hdac_mem *mem;
681 
682 	mem = &sc->mem;
683 	mem->mem_rid = PCIR_BAR(0);
684 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
685 	    &mem->mem_rid, RF_ACTIVE);
686 	if (mem->mem_res == NULL) {
687 		device_printf(sc->dev,
688 		    "%s: Unable to allocate memory resource\n", __func__);
689 		return (ENOMEM);
690 	}
691 	mem->mem_tag = rman_get_bustag(mem->mem_res);
692 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
693 
694 	return (0);
695 }
696 
697 /****************************************************************************
698  * void hdac_mem_free(struct hdac_softc *)
699  *
700  * Free up resources previously allocated by hdac_mem_alloc.
701  ****************************************************************************/
702 static void
703 hdac_mem_free(struct hdac_softc *sc)
704 {
705 	struct hdac_mem *mem;
706 
707 	mem = &sc->mem;
708 	if (mem->mem_res != NULL)
709 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
710 		    mem->mem_res);
711 	mem->mem_res = NULL;
712 }
713 
714 /****************************************************************************
715  * int hdac_irq_alloc(struct hdac_softc *)
716  *
717  * Allocate and setup the resources necessary for interrupt handling.
718  ****************************************************************************/
719 static int
720 hdac_irq_alloc(struct hdac_softc *sc)
721 {
722 	struct hdac_irq *irq;
723 	int result;
724 
725 	irq = &sc->irq;
726 	irq->irq_rid = 0x0;
727 
728 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
729 	    (result = pci_msi_count(sc->dev)) == 1 &&
730 	    pci_alloc_msi(sc->dev, &result) == 0)
731 		irq->irq_rid = 0x1;
732 
733 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
734 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
735 	if (irq->irq_res == NULL) {
736 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
737 		    __func__);
738 		goto hdac_irq_alloc_fail;
739 	}
740 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
741 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
742 	if (result != 0) {
743 		device_printf(sc->dev,
744 		    "%s: Unable to setup interrupt handler (%d)\n",
745 		    __func__, result);
746 		goto hdac_irq_alloc_fail;
747 	}
748 
749 	return (0);
750 
751 hdac_irq_alloc_fail:
752 	hdac_irq_free(sc);
753 
754 	return (ENXIO);
755 }
756 
757 /****************************************************************************
758  * void hdac_irq_free(struct hdac_softc *)
759  *
760  * Free up resources previously allocated by hdac_irq_alloc.
761  ****************************************************************************/
762 static void
763 hdac_irq_free(struct hdac_softc *sc)
764 {
765 	struct hdac_irq *irq;
766 
767 	irq = &sc->irq;
768 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
769 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
770 	if (irq->irq_res != NULL)
771 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
772 		    irq->irq_res);
773 	if (irq->irq_rid == 0x1)
774 		pci_release_msi(sc->dev);
775 	irq->irq_handle = NULL;
776 	irq->irq_res = NULL;
777 	irq->irq_rid = 0x0;
778 }
779 
780 /****************************************************************************
781  * void hdac_corb_init(struct hdac_softc *)
782  *
783  * Initialize the corb registers for operations but do not start it up yet.
784  * The CORB engine must not be running when this function is called.
785  ****************************************************************************/
786 static void
787 hdac_corb_init(struct hdac_softc *sc)
788 {
789 	uint8_t corbsize;
790 	uint64_t corbpaddr;
791 
792 	/* Setup the CORB size. */
793 	switch (sc->corb_size) {
794 	case 256:
795 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
796 		break;
797 	case 16:
798 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
799 		break;
800 	case 2:
801 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
802 		break;
803 	default:
804 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
805 	}
806 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
807 
808 	/* Setup the CORB Address in the hdac */
809 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
810 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
811 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
812 
813 	/* Set the WP and RP */
814 	sc->corb_wp = 0;
815 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
816 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
817 	/*
818 	 * The HDA specification indicates that the CORBRPRST bit will always
819 	 * read as zero. Unfortunately, it seems that at least the 82801G
820 	 * doesn't reset the bit to zero, which stalls the corb engine.
821 	 * manually reset the bit to zero before continuing.
822 	 */
823 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
824 
825 	/* Enable CORB error reporting */
826 #if 0
827 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
828 #endif
829 }
830 
831 /****************************************************************************
832  * void hdac_rirb_init(struct hdac_softc *)
833  *
834  * Initialize the rirb registers for operations but do not start it up yet.
835  * The RIRB engine must not be running when this function is called.
836  ****************************************************************************/
837 static void
838 hdac_rirb_init(struct hdac_softc *sc)
839 {
840 	uint8_t rirbsize;
841 	uint64_t rirbpaddr;
842 
843 	/* Setup the RIRB size. */
844 	switch (sc->rirb_size) {
845 	case 256:
846 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
847 		break;
848 	case 16:
849 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
850 		break;
851 	case 2:
852 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
853 		break;
854 	default:
855 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
856 	}
857 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
858 
859 	/* Setup the RIRB Address in the hdac */
860 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
861 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
862 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
863 
864 	/* Setup the WP and RP */
865 	sc->rirb_rp = 0;
866 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
867 
868 	/* Setup the interrupt threshold */
869 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
870 
871 	/* Enable Overrun and response received reporting */
872 #if 0
873 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
874 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
875 #else
876 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
877 #endif
878 
879 	/*
880 	 * Make sure that the Host CPU cache doesn't contain any dirty
881 	 * cache lines that falls in the rirb. If I understood correctly, it
882 	 * should be sufficient to do this only once as the rirb is purely
883 	 * read-only from now on.
884 	 */
885 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
886 	    BUS_DMASYNC_PREREAD);
887 }
888 
889 /****************************************************************************
890  * void hdac_corb_start(hdac_softc *)
891  *
892  * Startup the corb DMA engine
893  ****************************************************************************/
894 static void
895 hdac_corb_start(struct hdac_softc *sc)
896 {
897 	uint32_t corbctl;
898 
899 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
900 	corbctl |= HDAC_CORBCTL_CORBRUN;
901 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
902 }
903 
904 /****************************************************************************
905  * void hdac_rirb_start(hdac_softc *)
906  *
907  * Startup the rirb DMA engine
908  ****************************************************************************/
909 static void
910 hdac_rirb_start(struct hdac_softc *sc)
911 {
912 	uint32_t rirbctl;
913 
914 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
915 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
916 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
917 }
918 
919 static int
920 hdac_rirb_flush(struct hdac_softc *sc)
921 {
922 	struct hdac_rirb *rirb_base, *rirb;
923 	nid_t cad;
924 	uint32_t resp, resp_ex;
925 	uint8_t rirbwp;
926 	int ret;
927 
928 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
929 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
930 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
931 	    BUS_DMASYNC_POSTREAD);
932 
933 	ret = 0;
934 	while (sc->rirb_rp != rirbwp) {
935 		sc->rirb_rp++;
936 		sc->rirb_rp %= sc->rirb_size;
937 		rirb = &rirb_base[sc->rirb_rp];
938 		resp = le32toh(rirb->response);
939 		resp_ex = le32toh(rirb->response_ex);
940 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
941 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
942 			sc->unsolq[sc->unsolq_wp++] = resp;
943 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
944 			sc->unsolq[sc->unsolq_wp++] = cad;
945 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
946 		} else if (sc->codecs[cad].pending <= 0) {
947 			device_printf(sc->dev, "Unexpected unsolicited "
948 			    "response from address %d: %08x\n", cad, resp);
949 		} else {
950 			sc->codecs[cad].response = resp;
951 			sc->codecs[cad].pending--;
952 		}
953 		ret++;
954 	}
955 
956 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
957 	    BUS_DMASYNC_PREREAD);
958 	return (ret);
959 }
960 
961 static int
962 hdac_unsolq_flush(struct hdac_softc *sc)
963 {
964 	device_t child;
965 	nid_t cad;
966 	uint32_t resp;
967 	int ret = 0;
968 
969 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
970 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
971 		while (sc->unsolq_rp != sc->unsolq_wp) {
972 			resp = sc->unsolq[sc->unsolq_rp++];
973 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
974 			cad = sc->unsolq[sc->unsolq_rp++];
975 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
976 			if ((child = sc->codecs[cad].dev) != NULL)
977 				HDAC_UNSOL_INTR(child, resp);
978 			ret++;
979 		}
980 		sc->unsolq_st = HDAC_UNSOLQ_READY;
981 	}
982 
983 	return (ret);
984 }
985 
986 /****************************************************************************
987  * uint32_t hdac_send_command
988  *
989  * Wrapper function that sends only one command to a given codec
990  ****************************************************************************/
991 static uint32_t
992 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
993 {
994 	int timeout;
995 	uint32_t *corb;
996 
997 	hdac_lockassert(sc);
998 	verb &= ~HDA_CMD_CAD_MASK;
999 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1000 	sc->codecs[cad].response = HDA_INVALID;
1001 
1002 	sc->codecs[cad].pending++;
1003 	sc->corb_wp++;
1004 	sc->corb_wp %= sc->corb_size;
1005 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1006 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1007 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1008 	corb[sc->corb_wp] = htole32(verb);
1009 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1010 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1011 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1012 
1013 	timeout = 10000;
1014 	do {
1015 		if (hdac_rirb_flush(sc) == 0)
1016 			DELAY(10);
1017 	} while (sc->codecs[cad].pending != 0 && --timeout);
1018 
1019 	if (sc->codecs[cad].pending != 0) {
1020 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1021 		    verb, cad);
1022 		sc->codecs[cad].pending = 0;
1023 	}
1024 
1025 	if (sc->unsolq_rp != sc->unsolq_wp)
1026 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1027 	return (sc->codecs[cad].response);
1028 }
1029 
1030 /****************************************************************************
1031  * Device Methods
1032  ****************************************************************************/
1033 
1034 /****************************************************************************
1035  * int hdac_probe(device_t)
1036  *
1037  * Probe for the presence of an hdac. If none is found, check for a generic
1038  * match using the subclass of the device.
1039  ****************************************************************************/
1040 static int
1041 hdac_probe(device_t dev)
1042 {
1043 	int i, result;
1044 	uint32_t model;
1045 	uint16_t class, subclass;
1046 	char desc[64];
1047 
1048 	model = (uint32_t)pci_get_device(dev) << 16;
1049 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1050 	class = pci_get_class(dev);
1051 	subclass = pci_get_subclass(dev);
1052 
1053 	bzero(desc, sizeof(desc));
1054 	result = ENXIO;
1055 	for (i = 0; i < nitems(hdac_devices); i++) {
1056 		if (hdac_devices[i].model == model) {
1057 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1058 			result = BUS_PROBE_DEFAULT;
1059 			break;
1060 		}
1061 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1062 		    class == PCIC_MULTIMEDIA &&
1063 		    subclass == PCIS_MULTIMEDIA_HDA) {
1064 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1065 			    hdac_devices[i].desc, pci_get_device(dev));
1066 			result = BUS_PROBE_GENERIC;
1067 			break;
1068 		}
1069 	}
1070 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1071 	    subclass == PCIS_MULTIMEDIA_HDA) {
1072 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1073 		result = BUS_PROBE_GENERIC;
1074 	}
1075 	if (result != ENXIO) {
1076 		strlcat(desc, " HDA Controller", sizeof(desc));
1077 		device_set_desc_copy(dev, desc);
1078 	}
1079 
1080 	return (result);
1081 }
1082 
1083 static void
1084 hdac_unsolq_task(void *context, int pending)
1085 {
1086 	struct hdac_softc *sc;
1087 
1088 	sc = (struct hdac_softc *)context;
1089 
1090 	hdac_lock(sc);
1091 	hdac_unsolq_flush(sc);
1092 	hdac_unlock(sc);
1093 }
1094 
1095 /****************************************************************************
1096  * int hdac_attach(device_t)
1097  *
1098  * Attach the device into the kernel. Interrupts usually won't be enabled
1099  * when this function is called. Setup everything that doesn't require
1100  * interrupts and defer probing of codecs until interrupts are enabled.
1101  ****************************************************************************/
1102 static int
1103 hdac_attach(device_t dev)
1104 {
1105 	struct hdac_softc *sc;
1106 	int result;
1107 	int i, devid = -1;
1108 	uint32_t model;
1109 	uint16_t class, subclass;
1110 	uint16_t vendor;
1111 	uint8_t v;
1112 
1113 	sc = device_get_softc(dev);
1114 	HDA_BOOTVERBOSE(
1115 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1116 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1117 		device_printf(dev, "HDA Driver Revision: %s\n",
1118 		    HDA_DRV_TEST_REV);
1119 	);
1120 
1121 	model = (uint32_t)pci_get_device(dev) << 16;
1122 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1123 	class = pci_get_class(dev);
1124 	subclass = pci_get_subclass(dev);
1125 
1126 	for (i = 0; i < nitems(hdac_devices); i++) {
1127 		if (hdac_devices[i].model == model) {
1128 			devid = i;
1129 			break;
1130 		}
1131 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1132 		    class == PCIC_MULTIMEDIA &&
1133 		    subclass == PCIS_MULTIMEDIA_HDA) {
1134 			devid = i;
1135 			break;
1136 		}
1137 	}
1138 
1139 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1140 	sc->dev = dev;
1141 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1142 	callout_init(&sc->poll_callout, 1);
1143 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1144 		sc->codecs[i].dev = NULL;
1145 	if (devid >= 0) {
1146 		sc->quirks_on = hdac_devices[devid].quirks_on;
1147 		sc->quirks_off = hdac_devices[devid].quirks_off;
1148 	} else {
1149 		sc->quirks_on = 0;
1150 		sc->quirks_off = 0;
1151 	}
1152 	if (resource_int_value(device_get_name(dev),
1153 	    device_get_unit(dev), "msi", &i) == 0) {
1154 		if (i == 0)
1155 			sc->quirks_off |= HDAC_QUIRK_MSI;
1156 		else {
1157 			sc->quirks_on |= HDAC_QUIRK_MSI;
1158 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1159 		}
1160 	}
1161 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1162 	HDA_BOOTVERBOSE(
1163 		device_printf(sc->dev,
1164 		    "Config options: on=0x%08x off=0x%08x\n",
1165 		    sc->quirks_on, sc->quirks_off);
1166 	);
1167 	sc->poll_ival = hz;
1168 	if (resource_int_value(device_get_name(dev),
1169 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1170 		sc->polling = 1;
1171 	else
1172 		sc->polling = 0;
1173 
1174 	pci_enable_busmaster(dev);
1175 
1176 	vendor = pci_get_vendor(dev);
1177 	if (vendor == INTEL_VENDORID) {
1178 		/* TCSEL -> TC0 */
1179 		v = pci_read_config(dev, 0x44, 1);
1180 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1181 		HDA_BOOTHVERBOSE(
1182 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1183 			    pci_read_config(dev, 0x44, 1));
1184 		);
1185 	}
1186 
1187 #if defined(__i386__) || defined(__amd64__)
1188 	sc->flags |= HDAC_F_DMA_NOCACHE;
1189 
1190 	if (resource_int_value(device_get_name(dev),
1191 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1192 #else
1193 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1194 #endif
1195 		/*
1196 		 * Try to enable PCIe snoop to avoid messing around with
1197 		 * uncacheable DMA attribute. Since PCIe snoop register
1198 		 * config is pretty much vendor specific, there are no
1199 		 * general solutions on how to enable it, forcing us (even
1200 		 * Microsoft) to enable uncacheable or write combined DMA
1201 		 * by default.
1202 		 *
1203 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1204 		 */
1205 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1206 			if (hdac_pcie_snoop[i].vendor != vendor)
1207 				continue;
1208 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1209 			if (hdac_pcie_snoop[i].reg == 0x00)
1210 				break;
1211 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1212 			if ((v & hdac_pcie_snoop[i].enable) ==
1213 			    hdac_pcie_snoop[i].enable)
1214 				break;
1215 			v &= hdac_pcie_snoop[i].mask;
1216 			v |= hdac_pcie_snoop[i].enable;
1217 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1218 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1219 			if ((v & hdac_pcie_snoop[i].enable) !=
1220 			    hdac_pcie_snoop[i].enable) {
1221 				HDA_BOOTVERBOSE(
1222 					device_printf(dev,
1223 					    "WARNING: Failed to enable PCIe "
1224 					    "snoop!\n");
1225 				);
1226 #if defined(__i386__) || defined(__amd64__)
1227 				sc->flags |= HDAC_F_DMA_NOCACHE;
1228 #endif
1229 			}
1230 			break;
1231 		}
1232 #if defined(__i386__) || defined(__amd64__)
1233 	}
1234 #endif
1235 
1236 	HDA_BOOTHVERBOSE(
1237 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1238 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1239 		    "Uncacheable" : "PCIe snoop", vendor);
1240 	);
1241 
1242 	/* Allocate resources */
1243 	result = hdac_mem_alloc(sc);
1244 	if (result != 0)
1245 		goto hdac_attach_fail;
1246 	result = hdac_irq_alloc(sc);
1247 	if (result != 0)
1248 		goto hdac_attach_fail;
1249 
1250 	/* Get Capabilities */
1251 	result = hdac_get_capabilities(sc);
1252 	if (result != 0)
1253 		goto hdac_attach_fail;
1254 
1255 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1256 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1257 	    sc->corb_size * sizeof(uint32_t));
1258 	if (result != 0)
1259 		goto hdac_attach_fail;
1260 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1261 	    sc->rirb_size * sizeof(struct hdac_rirb));
1262 	if (result != 0)
1263 		goto hdac_attach_fail;
1264 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1265 	    M_HDAC, M_ZERO | M_WAITOK);
1266 	for (i = 0; i < sc->num_ss; i++) {
1267 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1268 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1269 		if (result != 0)
1270 			goto hdac_attach_fail;
1271 	}
1272 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1273 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1274 			HDA_BOOTVERBOSE(
1275 				device_printf(dev, "Failed to "
1276 				    "allocate DMA pos buffer "
1277 				    "(non-fatal)\n");
1278 			);
1279 		} else {
1280 			uint64_t addr = sc->pos_dma.dma_paddr;
1281 
1282 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1283 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1284 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1285 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1286 		}
1287 	}
1288 
1289 	result = bus_dma_tag_create(
1290 	    bus_get_dma_tag(sc->dev),		/* parent */
1291 	    HDA_DMA_ALIGNMENT,			/* alignment */
1292 	    0,					/* boundary */
1293 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1294 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1295 	    BUS_SPACE_MAXADDR,			/* highaddr */
1296 	    NULL,				/* filtfunc */
1297 	    NULL,				/* fistfuncarg */
1298 	    HDA_BUFSZ_MAX, 			/* maxsize */
1299 	    1,					/* nsegments */
1300 	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1301 	    0,					/* flags */
1302 	    NULL,				/* lockfunc */
1303 	    NULL,				/* lockfuncarg */
1304 	    &sc->chan_dmat);			/* dmat */
1305 	if (result != 0) {
1306 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1307 		     __func__, result);
1308 		goto hdac_attach_fail;
1309 	}
1310 
1311 	/* Quiesce everything */
1312 	HDA_BOOTHVERBOSE(
1313 		device_printf(dev, "Reset controller...\n");
1314 	);
1315 	hdac_reset(sc, true);
1316 
1317 	/* Initialize the CORB and RIRB */
1318 	hdac_corb_init(sc);
1319 	hdac_rirb_init(sc);
1320 
1321 	/* Defer remaining of initialization until interrupts are enabled */
1322 	sc->intrhook.ich_func = hdac_attach2;
1323 	sc->intrhook.ich_arg = (void *)sc;
1324 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1325 		sc->intrhook.ich_func = NULL;
1326 		hdac_attach2((void *)sc);
1327 	}
1328 
1329 	return (0);
1330 
1331 hdac_attach_fail:
1332 	hdac_irq_free(sc);
1333 	if (sc->streams != NULL)
1334 		for (i = 0; i < sc->num_ss; i++)
1335 			hdac_dma_free(sc, &sc->streams[i].bdl);
1336 	free(sc->streams, M_HDAC);
1337 	hdac_dma_free(sc, &sc->rirb_dma);
1338 	hdac_dma_free(sc, &sc->corb_dma);
1339 	hdac_mem_free(sc);
1340 	snd_mtxfree(sc->lock);
1341 
1342 	return (ENXIO);
1343 }
1344 
1345 static int
1346 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1347 {
1348 	struct hdac_softc *sc;
1349 	device_t *devlist;
1350 	device_t dev;
1351 	int devcount, i, err, val;
1352 
1353 	dev = oidp->oid_arg1;
1354 	sc = device_get_softc(dev);
1355 	if (sc == NULL)
1356 		return (EINVAL);
1357 	val = 0;
1358 	err = sysctl_handle_int(oidp, &val, 0, req);
1359 	if (err != 0 || req->newptr == NULL || val == 0)
1360 		return (err);
1361 
1362 	/* XXX: Temporary. For debugging. */
1363 	if (val == 100) {
1364 		hdac_suspend(dev);
1365 		return (0);
1366 	} else if (val == 101) {
1367 		hdac_resume(dev);
1368 		return (0);
1369 	}
1370 
1371 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1372 		return (err);
1373 	hdac_lock(sc);
1374 	for (i = 0; i < devcount; i++)
1375 		HDAC_PINDUMP(devlist[i]);
1376 	hdac_unlock(sc);
1377 	free(devlist, M_TEMP);
1378 	return (0);
1379 }
1380 
1381 static int
1382 hdac_mdata_rate(uint16_t fmt)
1383 {
1384 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1385 	int rate, bits;
1386 
1387 	if (fmt & (1 << 14))
1388 		rate = 44100;
1389 	else
1390 		rate = 48000;
1391 	rate *= ((fmt >> 11) & 0x07) + 1;
1392 	rate /= ((fmt >> 8) & 0x07) + 1;
1393 	bits = mbits[(fmt >> 4) & 0x03];
1394 	bits *= (fmt & 0x0f) + 1;
1395 	return (rate * bits);
1396 }
1397 
1398 static int
1399 hdac_bdata_rate(uint16_t fmt, int output)
1400 {
1401 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1402 	int rate, bits;
1403 
1404 	rate = 48000;
1405 	rate *= ((fmt >> 11) & 0x07) + 1;
1406 	bits = bbits[(fmt >> 4) & 0x03];
1407 	bits *= (fmt & 0x0f) + 1;
1408 	if (!output)
1409 		bits = ((bits + 7) & ~0x07) + 10;
1410 	return (rate * bits);
1411 }
1412 
1413 static void
1414 hdac_poll_reinit(struct hdac_softc *sc)
1415 {
1416 	int i, pollticks, min = 1000000;
1417 	struct hdac_stream *s;
1418 
1419 	if (sc->polling == 0)
1420 		return;
1421 	if (sc->unsol_registered > 0)
1422 		min = hz / 2;
1423 	for (i = 0; i < sc->num_ss; i++) {
1424 		s = &sc->streams[i];
1425 		if (s->running == 0)
1426 			continue;
1427 		pollticks = ((uint64_t)hz * s->blksz) /
1428 		    (hdac_mdata_rate(s->format) / 8);
1429 		pollticks >>= 1;
1430 		if (pollticks > hz)
1431 			pollticks = hz;
1432 		if (pollticks < 1)
1433 			pollticks = 1;
1434 		if (min > pollticks)
1435 			min = pollticks;
1436 	}
1437 	sc->poll_ival = min;
1438 	if (min == 1000000)
1439 		callout_stop(&sc->poll_callout);
1440 	else
1441 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1442 }
1443 
1444 static int
1445 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1446 {
1447 	struct hdac_softc *sc;
1448 	device_t dev;
1449 	uint32_t ctl;
1450 	int err, val;
1451 
1452 	dev = oidp->oid_arg1;
1453 	sc = device_get_softc(dev);
1454 	if (sc == NULL)
1455 		return (EINVAL);
1456 	hdac_lock(sc);
1457 	val = sc->polling;
1458 	hdac_unlock(sc);
1459 	err = sysctl_handle_int(oidp, &val, 0, req);
1460 
1461 	if (err != 0 || req->newptr == NULL)
1462 		return (err);
1463 	if (val < 0 || val > 1)
1464 		return (EINVAL);
1465 
1466 	hdac_lock(sc);
1467 	if (val != sc->polling) {
1468 		if (val == 0) {
1469 			callout_stop(&sc->poll_callout);
1470 			hdac_unlock(sc);
1471 			callout_drain(&sc->poll_callout);
1472 			hdac_lock(sc);
1473 			sc->polling = 0;
1474 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1475 			ctl |= HDAC_INTCTL_GIE;
1476 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1477 		} else {
1478 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1479 			ctl &= ~HDAC_INTCTL_GIE;
1480 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1481 			sc->polling = 1;
1482 			hdac_poll_reinit(sc);
1483 		}
1484 	}
1485 	hdac_unlock(sc);
1486 
1487 	return (err);
1488 }
1489 
1490 static void
1491 hdac_attach2(void *arg)
1492 {
1493 	struct hdac_softc *sc;
1494 	device_t child;
1495 	uint32_t vendorid, revisionid;
1496 	int i;
1497 	uint16_t statests;
1498 
1499 	sc = (struct hdac_softc *)arg;
1500 
1501 	hdac_lock(sc);
1502 
1503 	/* Remove ourselves from the config hooks */
1504 	if (sc->intrhook.ich_func != NULL) {
1505 		config_intrhook_disestablish(&sc->intrhook);
1506 		sc->intrhook.ich_func = NULL;
1507 	}
1508 
1509 	HDA_BOOTHVERBOSE(
1510 		device_printf(sc->dev, "Starting CORB Engine...\n");
1511 	);
1512 	hdac_corb_start(sc);
1513 	HDA_BOOTHVERBOSE(
1514 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1515 	);
1516 	hdac_rirb_start(sc);
1517 	HDA_BOOTHVERBOSE(
1518 		device_printf(sc->dev,
1519 		    "Enabling controller interrupt...\n");
1520 	);
1521 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1522 	    HDAC_GCTL_UNSOL);
1523 	if (sc->polling == 0) {
1524 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1525 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1526 	}
1527 	DELAY(1000);
1528 
1529 	HDA_BOOTHVERBOSE(
1530 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1531 	);
1532 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1533 	hdac_unlock(sc);
1534 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1535 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1536 			HDA_BOOTHVERBOSE(
1537 				device_printf(sc->dev,
1538 				    "Found CODEC at address %d\n", i);
1539 			);
1540 			hdac_lock(sc);
1541 			vendorid = hdac_send_command(sc, i,
1542 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1543 			revisionid = hdac_send_command(sc, i,
1544 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1545 			hdac_unlock(sc);
1546 			if (vendorid == HDA_INVALID &&
1547 			    revisionid == HDA_INVALID) {
1548 				device_printf(sc->dev,
1549 				    "CODEC at address %d not responding!\n", i);
1550 				continue;
1551 			}
1552 			sc->codecs[i].vendor_id =
1553 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1554 			sc->codecs[i].device_id =
1555 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1556 			sc->codecs[i].revision_id =
1557 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1558 			sc->codecs[i].stepping_id =
1559 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1560 			child = device_add_child(sc->dev, "hdacc", -1);
1561 			if (child == NULL) {
1562 				device_printf(sc->dev,
1563 				    "Failed to add CODEC device\n");
1564 				continue;
1565 			}
1566 			device_set_ivars(child, (void *)(intptr_t)i);
1567 			sc->codecs[i].dev = child;
1568 		}
1569 	}
1570 	bus_generic_attach(sc->dev);
1571 
1572 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1573 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1574 	    "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1575 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1576 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1577 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1578 	    "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
1579 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1580 }
1581 
1582 /****************************************************************************
1583  * int hdac_suspend(device_t)
1584  *
1585  * Suspend and power down HDA bus and codecs.
1586  ****************************************************************************/
1587 static int
1588 hdac_suspend(device_t dev)
1589 {
1590 	struct hdac_softc *sc = device_get_softc(dev);
1591 
1592 	HDA_BOOTHVERBOSE(
1593 		device_printf(dev, "Suspend...\n");
1594 	);
1595 	bus_generic_suspend(dev);
1596 
1597 	hdac_lock(sc);
1598 	HDA_BOOTHVERBOSE(
1599 		device_printf(dev, "Reset controller...\n");
1600 	);
1601 	callout_stop(&sc->poll_callout);
1602 	hdac_reset(sc, false);
1603 	hdac_unlock(sc);
1604 	callout_drain(&sc->poll_callout);
1605 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1606 	HDA_BOOTHVERBOSE(
1607 		device_printf(dev, "Suspend done\n");
1608 	);
1609 	return (0);
1610 }
1611 
1612 /****************************************************************************
1613  * int hdac_resume(device_t)
1614  *
1615  * Powerup and restore HDA bus and codecs state.
1616  ****************************************************************************/
1617 static int
1618 hdac_resume(device_t dev)
1619 {
1620 	struct hdac_softc *sc = device_get_softc(dev);
1621 	int error;
1622 
1623 	HDA_BOOTHVERBOSE(
1624 		device_printf(dev, "Resume...\n");
1625 	);
1626 	hdac_lock(sc);
1627 
1628 	/* Quiesce everything */
1629 	HDA_BOOTHVERBOSE(
1630 		device_printf(dev, "Reset controller...\n");
1631 	);
1632 	hdac_reset(sc, true);
1633 
1634 	/* Initialize the CORB and RIRB */
1635 	hdac_corb_init(sc);
1636 	hdac_rirb_init(sc);
1637 
1638 	HDA_BOOTHVERBOSE(
1639 		device_printf(dev, "Starting CORB Engine...\n");
1640 	);
1641 	hdac_corb_start(sc);
1642 	HDA_BOOTHVERBOSE(
1643 		device_printf(dev, "Starting RIRB Engine...\n");
1644 	);
1645 	hdac_rirb_start(sc);
1646 	HDA_BOOTHVERBOSE(
1647 		device_printf(dev, "Enabling controller interrupt...\n");
1648 	);
1649 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1650 	    HDAC_GCTL_UNSOL);
1651 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1652 	DELAY(1000);
1653 	hdac_poll_reinit(sc);
1654 	hdac_unlock(sc);
1655 
1656 	error = bus_generic_resume(dev);
1657 	HDA_BOOTHVERBOSE(
1658 		device_printf(dev, "Resume done\n");
1659 	);
1660 	return (error);
1661 }
1662 
1663 /****************************************************************************
1664  * int hdac_detach(device_t)
1665  *
1666  * Detach and free up resources utilized by the hdac device.
1667  ****************************************************************************/
1668 static int
1669 hdac_detach(device_t dev)
1670 {
1671 	struct hdac_softc *sc = device_get_softc(dev);
1672 	device_t *devlist;
1673 	int cad, i, devcount, error;
1674 
1675 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1676 		return (error);
1677 	for (i = 0; i < devcount; i++) {
1678 		cad = (intptr_t)device_get_ivars(devlist[i]);
1679 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1680 			free(devlist, M_TEMP);
1681 			return (error);
1682 		}
1683 		sc->codecs[cad].dev = NULL;
1684 	}
1685 	free(devlist, M_TEMP);
1686 
1687 	hdac_lock(sc);
1688 	hdac_reset(sc, false);
1689 	hdac_unlock(sc);
1690 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1691 	hdac_irq_free(sc);
1692 
1693 	for (i = 0; i < sc->num_ss; i++)
1694 		hdac_dma_free(sc, &sc->streams[i].bdl);
1695 	free(sc->streams, M_HDAC);
1696 	hdac_dma_free(sc, &sc->pos_dma);
1697 	hdac_dma_free(sc, &sc->rirb_dma);
1698 	hdac_dma_free(sc, &sc->corb_dma);
1699 	if (sc->chan_dmat != NULL) {
1700 		bus_dma_tag_destroy(sc->chan_dmat);
1701 		sc->chan_dmat = NULL;
1702 	}
1703 	hdac_mem_free(sc);
1704 	snd_mtxfree(sc->lock);
1705 	return (0);
1706 }
1707 
1708 static bus_dma_tag_t
1709 hdac_get_dma_tag(device_t dev, device_t child)
1710 {
1711 	struct hdac_softc *sc = device_get_softc(dev);
1712 
1713 	return (sc->chan_dmat);
1714 }
1715 
1716 static int
1717 hdac_print_child(device_t dev, device_t child)
1718 {
1719 	int retval;
1720 
1721 	retval = bus_print_child_header(dev, child);
1722 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1723 	retval += bus_print_child_footer(dev, child);
1724 
1725 	return (retval);
1726 }
1727 
1728 static int
1729 hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen)
1730 {
1731 
1732 	snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1733 	return (0);
1734 }
1735 
1736 static int
1737 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1738     size_t buflen)
1739 {
1740 	struct hdac_softc *sc = device_get_softc(dev);
1741 	nid_t cad = (uintptr_t)device_get_ivars(child);
1742 
1743 	snprintf(buf, buflen,
1744 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1745 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1746 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1747 	return (0);
1748 }
1749 
1750 static int
1751 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1752 {
1753 	struct hdac_softc *sc = device_get_softc(dev);
1754 	nid_t cad = (uintptr_t)device_get_ivars(child);
1755 
1756 	switch (which) {
1757 	case HDA_IVAR_CODEC_ID:
1758 		*result = cad;
1759 		break;
1760 	case HDA_IVAR_VENDOR_ID:
1761 		*result = sc->codecs[cad].vendor_id;
1762 		break;
1763 	case HDA_IVAR_DEVICE_ID:
1764 		*result = sc->codecs[cad].device_id;
1765 		break;
1766 	case HDA_IVAR_REVISION_ID:
1767 		*result = sc->codecs[cad].revision_id;
1768 		break;
1769 	case HDA_IVAR_STEPPING_ID:
1770 		*result = sc->codecs[cad].stepping_id;
1771 		break;
1772 	case HDA_IVAR_SUBVENDOR_ID:
1773 		*result = pci_get_subvendor(dev);
1774 		break;
1775 	case HDA_IVAR_SUBDEVICE_ID:
1776 		*result = pci_get_subdevice(dev);
1777 		break;
1778 	case HDA_IVAR_DMA_NOCACHE:
1779 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1780 		break;
1781 	case HDA_IVAR_STRIPES_MASK:
1782 		*result = (1 << (1 << sc->num_sdo)) - 1;
1783 		break;
1784 	default:
1785 		return (ENOENT);
1786 	}
1787 	return (0);
1788 }
1789 
1790 static struct mtx *
1791 hdac_get_mtx(device_t dev, device_t child)
1792 {
1793 	struct hdac_softc *sc = device_get_softc(dev);
1794 
1795 	return (sc->lock);
1796 }
1797 
1798 static uint32_t
1799 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1800 {
1801 
1802 	return (hdac_send_command(device_get_softc(dev),
1803 	    (intptr_t)device_get_ivars(child), verb));
1804 }
1805 
1806 static int
1807 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1808 {
1809 	int i, ss;
1810 
1811 	ss = -1;
1812 	/* Allocate ISS/OSS first. */
1813 	if (dir == 0) {
1814 		for (i = 0; i < sc->num_iss; i++) {
1815 			if (sc->streams[i].stream == stream) {
1816 				ss = i;
1817 				break;
1818 			}
1819 		}
1820 	} else {
1821 		for (i = 0; i < sc->num_oss; i++) {
1822 			if (sc->streams[i + sc->num_iss].stream == stream) {
1823 				ss = i + sc->num_iss;
1824 				break;
1825 			}
1826 		}
1827 	}
1828 	/* Fallback to BSS. */
1829 	if (ss == -1) {
1830 		for (i = 0; i < sc->num_bss; i++) {
1831 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1832 			    == stream) {
1833 				ss = i + sc->num_iss + sc->num_oss;
1834 				break;
1835 			}
1836 		}
1837 	}
1838 	return (ss);
1839 }
1840 
1841 static int
1842 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1843     uint32_t **dmapos)
1844 {
1845 	struct hdac_softc *sc = device_get_softc(dev);
1846 	nid_t cad = (uintptr_t)device_get_ivars(child);
1847 	int stream, ss, bw, maxbw, prevbw;
1848 
1849 	/* Look for empty stream. */
1850 	ss = hdac_find_stream(sc, dir, 0);
1851 
1852 	/* Return if found nothing. */
1853 	if (ss < 0)
1854 		return (0);
1855 
1856 	/* Check bus bandwidth. */
1857 	bw = hdac_bdata_rate(format, dir);
1858 	if (dir == 1) {
1859 		bw *= 1 << (sc->num_sdo - stripe);
1860 		prevbw = sc->sdo_bw_used;
1861 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1862 	} else {
1863 		prevbw = sc->codecs[cad].sdi_bw_used;
1864 		maxbw = 48000 * 464;
1865 	}
1866 	HDA_BOOTHVERBOSE(
1867 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1868 		    (bw + prevbw) / 1000, maxbw / 1000,
1869 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1870 	);
1871 	if (bw + prevbw > maxbw)
1872 		return (0);
1873 	if (dir == 1)
1874 		sc->sdo_bw_used += bw;
1875 	else
1876 		sc->codecs[cad].sdi_bw_used += bw;
1877 
1878 	/* Allocate stream number */
1879 	if (ss >= sc->num_iss + sc->num_oss)
1880 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1881 	else if (ss >= sc->num_iss)
1882 		stream = ss - sc->num_iss + 1;
1883 	else
1884 		stream = ss + 1;
1885 
1886 	sc->streams[ss].dev = child;
1887 	sc->streams[ss].dir = dir;
1888 	sc->streams[ss].stream = stream;
1889 	sc->streams[ss].bw = bw;
1890 	sc->streams[ss].format = format;
1891 	sc->streams[ss].stripe = stripe;
1892 	if (dmapos != NULL) {
1893 		if (sc->pos_dma.dma_vaddr != NULL)
1894 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1895 		else
1896 			*dmapos = NULL;
1897 	}
1898 	return (stream);
1899 }
1900 
1901 static void
1902 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1903 {
1904 	struct hdac_softc *sc = device_get_softc(dev);
1905 	nid_t cad = (uintptr_t)device_get_ivars(child);
1906 	int ss;
1907 
1908 	ss = hdac_find_stream(sc, dir, stream);
1909 	KASSERT(ss >= 0,
1910 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1911 	if (dir == 1)
1912 		sc->sdo_bw_used -= sc->streams[ss].bw;
1913 	else
1914 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1915 	sc->streams[ss].stream = 0;
1916 	sc->streams[ss].dev = NULL;
1917 }
1918 
1919 static int
1920 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1921     bus_addr_t buf, int blksz, int blkcnt)
1922 {
1923 	struct hdac_softc *sc = device_get_softc(dev);
1924 	struct hdac_bdle *bdle;
1925 	uint64_t addr;
1926 	int i, ss, off;
1927 	uint32_t ctl;
1928 
1929 	ss = hdac_find_stream(sc, dir, stream);
1930 	KASSERT(ss >= 0,
1931 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1932 
1933 	addr = (uint64_t)buf;
1934 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1935 	for (i = 0; i < blkcnt; i++, bdle++) {
1936 		bdle->addrl = htole32((uint32_t)addr);
1937 		bdle->addrh = htole32((uint32_t)(addr >> 32));
1938 		bdle->len = htole32(blksz);
1939 		bdle->ioc = htole32(1);
1940 		addr += blksz;
1941 	}
1942 
1943 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1944 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1945 
1946 	off = ss << 5;
1947 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1948 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1949 	addr = sc->streams[ss].bdl.dma_paddr;
1950 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1951 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1952 
1953 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1954 	if (dir)
1955 		ctl |= HDAC_SDCTL2_DIR;
1956 	else
1957 		ctl &= ~HDAC_SDCTL2_DIR;
1958 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
1959 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1960 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1961 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1962 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1963 
1964 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1965 
1966 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1967 	ctl |= 1 << ss;
1968 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1969 
1970 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1971 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1972 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1973 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1974 	    HDAC_SDCTL_RUN;
1975 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1976 
1977 	sc->streams[ss].blksz = blksz;
1978 	sc->streams[ss].running = 1;
1979 	hdac_poll_reinit(sc);
1980 	return (0);
1981 }
1982 
1983 static void
1984 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1985 {
1986 	struct hdac_softc *sc = device_get_softc(dev);
1987 	int ss, off;
1988 	uint32_t ctl;
1989 
1990 	ss = hdac_find_stream(sc, dir, stream);
1991 	KASSERT(ss >= 0,
1992 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1993 
1994 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1995 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
1996 
1997 	off = ss << 5;
1998 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1999 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2000 	    HDAC_SDCTL_RUN);
2001 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2002 
2003 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2004 	ctl &= ~(1 << ss);
2005 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2006 
2007 	sc->streams[ss].running = 0;
2008 	hdac_poll_reinit(sc);
2009 }
2010 
2011 static void
2012 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2013 {
2014 	struct hdac_softc *sc = device_get_softc(dev);
2015 	int timeout = 1000;
2016 	int to = timeout;
2017 	int ss, off;
2018 	uint32_t ctl;
2019 
2020 	ss = hdac_find_stream(sc, dir, stream);
2021 	KASSERT(ss >= 0,
2022 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2023 
2024 	off = ss << 5;
2025 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2026 	ctl |= HDAC_SDCTL_SRST;
2027 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2028 	do {
2029 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2030 		if (ctl & HDAC_SDCTL_SRST)
2031 			break;
2032 		DELAY(10);
2033 	} while (--to);
2034 	if (!(ctl & HDAC_SDCTL_SRST))
2035 		device_printf(dev, "Reset setting timeout\n");
2036 	ctl &= ~HDAC_SDCTL_SRST;
2037 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2038 	to = timeout;
2039 	do {
2040 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2041 		if (!(ctl & HDAC_SDCTL_SRST))
2042 			break;
2043 		DELAY(10);
2044 	} while (--to);
2045 	if (ctl & HDAC_SDCTL_SRST)
2046 		device_printf(dev, "Reset timeout!\n");
2047 }
2048 
2049 static uint32_t
2050 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2051 {
2052 	struct hdac_softc *sc = device_get_softc(dev);
2053 	int ss, off;
2054 
2055 	ss = hdac_find_stream(sc, dir, stream);
2056 	KASSERT(ss >= 0,
2057 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2058 
2059 	off = ss << 5;
2060 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2061 }
2062 
2063 static int
2064 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2065 {
2066 	struct hdac_softc *sc = device_get_softc(dev);
2067 
2068 	sc->unsol_registered++;
2069 	hdac_poll_reinit(sc);
2070 	return (tag);
2071 }
2072 
2073 static void
2074 hdac_unsol_free(device_t dev, device_t child, int tag)
2075 {
2076 	struct hdac_softc *sc = device_get_softc(dev);
2077 
2078 	sc->unsol_registered--;
2079 	hdac_poll_reinit(sc);
2080 }
2081 
2082 static device_method_t hdac_methods[] = {
2083 	/* device interface */
2084 	DEVMETHOD(device_probe,		hdac_probe),
2085 	DEVMETHOD(device_attach,	hdac_attach),
2086 	DEVMETHOD(device_detach,	hdac_detach),
2087 	DEVMETHOD(device_suspend,	hdac_suspend),
2088 	DEVMETHOD(device_resume,	hdac_resume),
2089 	/* Bus interface */
2090 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2091 	DEVMETHOD(bus_print_child,	hdac_print_child),
2092 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2093 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2094 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2095 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2096 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2097 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2098 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2099 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2100 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2101 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2102 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2103 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2104 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2105 	DEVMETHOD_END
2106 };
2107 
2108 static driver_t hdac_driver = {
2109 	"hdac",
2110 	hdac_methods,
2111 	sizeof(struct hdac_softc),
2112 };
2113 
2114 static devclass_t hdac_devclass;
2115 
2116 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2117