1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca> 5 * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org> 6 * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 /* 32 * Intel High Definition Audio (Controller) driver for FreeBSD. 33 */ 34 35 #ifdef HAVE_KERNEL_OPTION_HEADERS 36 #include "opt_snd.h" 37 #endif 38 39 #include <dev/sound/pcm/sound.h> 40 #include <dev/pci/pcireg.h> 41 #include <dev/pci/pcivar.h> 42 43 #include <sys/ctype.h> 44 #include <sys/endian.h> 45 #include <sys/taskqueue.h> 46 47 #include <dev/sound/pci/hda/hdac_private.h> 48 #include <dev/sound/pci/hda/hdac_reg.h> 49 #include <dev/sound/pci/hda/hda_reg.h> 50 #include <dev/sound/pci/hda/hdac.h> 51 52 #define HDA_DRV_TEST_REV "20120126_0002" 53 54 SND_DECLARE_FILE("$FreeBSD$"); 55 56 #define hdac_lock(sc) snd_mtxlock((sc)->lock) 57 #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) 58 #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) 59 60 #define HDAC_QUIRK_64BIT (1 << 0) 61 #define HDAC_QUIRK_DMAPOS (1 << 1) 62 #define HDAC_QUIRK_MSI (1 << 2) 63 64 static const struct { 65 const char *key; 66 uint32_t value; 67 } hdac_quirks_tab[] = { 68 { "64bit", HDAC_QUIRK_64BIT }, 69 { "dmapos", HDAC_QUIRK_DMAPOS }, 70 { "msi", HDAC_QUIRK_MSI }, 71 }; 72 73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller"); 74 75 static const struct { 76 uint32_t model; 77 const char *desc; 78 char quirks_on; 79 char quirks_off; 80 } hdac_devices[] = { 81 { HDA_INTEL_OAK, "Intel Oaktrail", 0, 0 }, 82 { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, 83 { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, 84 { HDA_INTEL_BAY, "Intel BayTrail", 0, 0 }, 85 { HDA_INTEL_HSW1, "Intel Haswell", 0, 0 }, 86 { HDA_INTEL_HSW2, "Intel Haswell", 0, 0 }, 87 { HDA_INTEL_HSW3, "Intel Haswell", 0, 0 }, 88 { HDA_INTEL_BDW1, "Intel Broadwell", 0, 0 }, 89 { HDA_INTEL_BDW2, "Intel Broadwell", 0, 0 }, 90 { HDA_INTEL_BXTNT, "Intel Broxton-T", 0, 0 }, 91 { HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 }, 92 { HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 }, 93 { HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 }, 94 { HDA_INTEL_BR, "Intel Braswell", 0, 0 }, 95 { HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 }, 96 { HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 }, 97 { HDA_INTEL_WCPT, "Intel Wildcat Point", 0, 0 }, 98 { HDA_INTEL_WELLS1, "Intel Wellsburg", 0, 0 }, 99 { HDA_INTEL_WELLS2, "Intel Wellsburg", 0, 0 }, 100 { HDA_INTEL_LPTLP1, "Intel Lynx Point-LP", 0, 0 }, 101 { HDA_INTEL_LPTLP2, "Intel Lynx Point-LP", 0, 0 }, 102 { HDA_INTEL_SRPTLP, "Intel Sunrise Point-LP", 0, 0 }, 103 { HDA_INTEL_KBLKLP, "Intel Kaby Lake-LP", 0, 0 }, 104 { HDA_INTEL_SRPT, "Intel Sunrise Point", 0, 0 }, 105 { HDA_INTEL_KBLK, "Intel Kaby Lake", 0, 0 }, 106 { HDA_INTEL_KBLKH, "Intel Kaby Lake-H", 0, 0 }, 107 { HDA_INTEL_CFLK, "Intel Coffee Lake", 0, 0 }, 108 { HDA_INTEL_CMLKS, "Intel Comet Lake-S", 0, 0 }, 109 { HDA_INTEL_CNLK, "Intel Cannon Lake", 0, 0 }, 110 { HDA_INTEL_ICLK, "Intel Ice Lake", 0, 0 }, 111 { HDA_INTEL_CMLKLP, "Intel Comet Lake-LP", 0, 0 }, 112 { HDA_INTEL_CMLKH, "Intel Comet Lake-H", 0, 0 }, 113 { HDA_INTEL_TGLK, "Intel Tiger Lake", 0, 0 }, 114 { HDA_INTEL_GMLK, "Intel Gemini Lake", 0, 0 }, 115 { HDA_INTEL_82801F, "Intel 82801F", 0, 0 }, 116 { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 }, 117 { HDA_INTEL_82801G, "Intel 82801G", 0, 0 }, 118 { HDA_INTEL_82801H, "Intel 82801H", 0, 0 }, 119 { HDA_INTEL_82801I, "Intel 82801I", 0, 0 }, 120 { HDA_INTEL_JLK, "Intel Jasper Lake", 0, 0 }, 121 { HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 }, 122 { HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 }, 123 { HDA_INTEL_PCH, "Intel Ibex Peak", 0, 0 }, 124 { HDA_INTEL_PCH2, "Intel Ibex Peak", 0, 0 }, 125 { HDA_INTEL_ELLK, "Intel Elkhart Lake", 0, 0 }, 126 { HDA_INTEL_JLK2, "Intel Jasper Lake", 0, 0 }, 127 { HDA_INTEL_BXTNP, "Intel Broxton-P", 0, 0 }, 128 { HDA_INTEL_SCH, "Intel SCH", 0, 0 }, 129 { HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI }, 130 { HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI }, 131 { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 }, 132 { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 }, 133 { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 }, 134 { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 }, 135 { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 }, 136 { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 }, 137 { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 }, 138 { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 }, 139 { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 140 { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 141 { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 142 { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 143 { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 }, 144 { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 }, 145 { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 }, 146 { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 }, 147 { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 }, 148 { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 }, 149 { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 }, 150 { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 }, 151 { HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI }, 152 { HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI }, 153 { HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI }, 154 { HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI }, 155 { HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI }, 156 { HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI }, 157 { HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI }, 158 { HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI }, 159 { HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 }, 160 { HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 161 { HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 162 { HDA_ATI_SB450, "ATI SB450", 0, 0 }, 163 { HDA_ATI_SB600, "ATI SB600", 0, 0 }, 164 { HDA_ATI_RS600, "ATI RS600", 0, 0 }, 165 { HDA_ATI_RS690, "ATI RS690", 0, 0 }, 166 { HDA_ATI_RS780, "ATI RS780", 0, 0 }, 167 { HDA_ATI_R600, "ATI R600", 0, 0 }, 168 { HDA_ATI_RV610, "ATI RV610", 0, 0 }, 169 { HDA_ATI_RV620, "ATI RV620", 0, 0 }, 170 { HDA_ATI_RV630, "ATI RV630", 0, 0 }, 171 { HDA_ATI_RV635, "ATI RV635", 0, 0 }, 172 { HDA_ATI_RV710, "ATI RV710", 0, 0 }, 173 { HDA_ATI_RV730, "ATI RV730", 0, 0 }, 174 { HDA_ATI_RV740, "ATI RV740", 0, 0 }, 175 { HDA_ATI_RV770, "ATI RV770", 0, 0 }, 176 { HDA_ATI_RV810, "ATI RV810", 0, 0 }, 177 { HDA_ATI_RV830, "ATI RV830", 0, 0 }, 178 { HDA_ATI_RV840, "ATI RV840", 0, 0 }, 179 { HDA_ATI_RV870, "ATI RV870", 0, 0 }, 180 { HDA_ATI_RV910, "ATI RV910", 0, 0 }, 181 { HDA_ATI_RV930, "ATI RV930", 0, 0 }, 182 { HDA_ATI_RV940, "ATI RV940", 0, 0 }, 183 { HDA_ATI_RV970, "ATI RV970", 0, 0 }, 184 { HDA_ATI_R1000, "ATI R1000", 0, 0 }, 185 { HDA_AMD_X370, "AMD X370", 0, 0 }, 186 { HDA_AMD_X570, "AMD X570", 0, 0 }, 187 { HDA_AMD_STONEY, "AMD Stoney", 0, 0 }, 188 { HDA_AMD_RAVEN, "AMD Raven", 0, 0 }, 189 { HDA_AMD_HUDSON2, "AMD Hudson-2", 0, 0 }, 190 { HDA_RDC_M3010, "RDC M3010", 0, 0 }, 191 { HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 }, 192 { HDA_SIS_966, "SiS 966/968", 0, 0 }, 193 { HDA_ULI_M5461, "ULI M5461", 0, 0 }, 194 /* Unknown */ 195 { HDA_INTEL_ALL, "Intel", 0, 0 }, 196 { HDA_NVIDIA_ALL, "NVIDIA", 0, 0 }, 197 { HDA_ATI_ALL, "ATI", 0, 0 }, 198 { HDA_AMD_ALL, "AMD", 0, 0 }, 199 { HDA_CREATIVE_ALL, "Creative", 0, 0 }, 200 { HDA_VIA_ALL, "VIA", 0, 0 }, 201 { HDA_SIS_ALL, "SiS", 0, 0 }, 202 { HDA_ULI_ALL, "ULI", 0, 0 }, 203 }; 204 205 static const struct { 206 uint16_t vendor; 207 uint8_t reg; 208 uint8_t mask; 209 uint8_t enable; 210 } hdac_pcie_snoop[] = { 211 { INTEL_VENDORID, 0x00, 0x00, 0x00 }, 212 { ATI_VENDORID, 0x42, 0xf8, 0x02 }, 213 { AMD_VENDORID, 0x42, 0xf8, 0x02 }, 214 { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, 215 }; 216 217 /**************************************************************************** 218 * Function prototypes 219 ****************************************************************************/ 220 static void hdac_intr_handler(void *); 221 static int hdac_reset(struct hdac_softc *, bool); 222 static int hdac_get_capabilities(struct hdac_softc *); 223 static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); 224 static int hdac_dma_alloc(struct hdac_softc *, 225 struct hdac_dma *, bus_size_t); 226 static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); 227 static int hdac_mem_alloc(struct hdac_softc *); 228 static void hdac_mem_free(struct hdac_softc *); 229 static int hdac_irq_alloc(struct hdac_softc *); 230 static void hdac_irq_free(struct hdac_softc *); 231 static void hdac_corb_init(struct hdac_softc *); 232 static void hdac_rirb_init(struct hdac_softc *); 233 static void hdac_corb_start(struct hdac_softc *); 234 static void hdac_rirb_start(struct hdac_softc *); 235 236 static void hdac_attach2(void *); 237 238 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t); 239 240 static int hdac_probe(device_t); 241 static int hdac_attach(device_t); 242 static int hdac_detach(device_t); 243 static int hdac_suspend(device_t); 244 static int hdac_resume(device_t); 245 246 static int hdac_rirb_flush(struct hdac_softc *sc); 247 static int hdac_unsolq_flush(struct hdac_softc *sc); 248 249 /* This function surely going to make its way into upper level someday. */ 250 static void 251 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) 252 { 253 const char *res = NULL; 254 int i = 0, j, k, len, inv; 255 256 if (resource_string_value(device_get_name(sc->dev), 257 device_get_unit(sc->dev), "config", &res) != 0) 258 return; 259 if (!(res != NULL && strlen(res) > 0)) 260 return; 261 HDA_BOOTVERBOSE( 262 device_printf(sc->dev, "Config options:"); 263 ); 264 for (;;) { 265 while (res[i] != '\0' && 266 (res[i] == ',' || isspace(res[i]) != 0)) 267 i++; 268 if (res[i] == '\0') { 269 HDA_BOOTVERBOSE( 270 printf("\n"); 271 ); 272 return; 273 } 274 j = i; 275 while (res[j] != '\0' && 276 !(res[j] == ',' || isspace(res[j]) != 0)) 277 j++; 278 len = j - i; 279 if (len > 2 && strncmp(res + i, "no", 2) == 0) 280 inv = 2; 281 else 282 inv = 0; 283 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) { 284 if (strncmp(res + i + inv, 285 hdac_quirks_tab[k].key, len - inv) != 0) 286 continue; 287 if (len - inv != strlen(hdac_quirks_tab[k].key)) 288 continue; 289 HDA_BOOTVERBOSE( 290 printf(" %s%s", (inv != 0) ? "no" : "", 291 hdac_quirks_tab[k].key); 292 ); 293 if (inv == 0) { 294 *on |= hdac_quirks_tab[k].value; 295 *off &= ~hdac_quirks_tab[k].value; 296 } else if (inv != 0) { 297 *off |= hdac_quirks_tab[k].value; 298 *on &= ~hdac_quirks_tab[k].value; 299 } 300 break; 301 } 302 i = j; 303 } 304 } 305 306 static void 307 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts) 308 { 309 device_t dev; 310 uint8_t rirbsts; 311 int i; 312 313 /* Was this a controller interrupt? */ 314 if (intsts & HDAC_INTSTS_CIS) { 315 /* 316 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then 317 * we will need to check and clear HDAC_STATESTS. 318 * That event is used to report codec status changes such as 319 * a reset or a wake-up event. 320 */ 321 /* 322 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we 323 * will need to check and clear HDAC_CORBSTS_CMEI in 324 * HDAC_CORBSTS. 325 * That event is used to report CORB memory errors. 326 */ 327 /* 328 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we 329 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in 330 * HDAC_RIRBSTS. 331 * That event is used to report response FIFO overruns. 332 */ 333 334 /* Get as many responses that we can */ 335 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 336 while (rirbsts & HDAC_RIRBSTS_RINTFL) { 337 HDAC_WRITE_1(&sc->mem, 338 HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); 339 hdac_rirb_flush(sc); 340 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 341 } 342 if (sc->unsolq_rp != sc->unsolq_wp) 343 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 344 } 345 346 if (intsts & HDAC_INTSTS_SIS_MASK) { 347 for (i = 0; i < sc->num_ss; i++) { 348 if ((intsts & (1 << i)) == 0) 349 continue; 350 HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS, 351 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 352 if ((dev = sc->streams[i].dev) != NULL) { 353 HDAC_STREAM_INTR(dev, 354 sc->streams[i].dir, sc->streams[i].stream); 355 } 356 } 357 } 358 } 359 360 /**************************************************************************** 361 * void hdac_intr_handler(void *) 362 * 363 * Interrupt handler. Processes interrupts received from the hdac. 364 ****************************************************************************/ 365 static void 366 hdac_intr_handler(void *context) 367 { 368 struct hdac_softc *sc; 369 uint32_t intsts; 370 371 sc = (struct hdac_softc *)context; 372 373 /* 374 * Loop until HDAC_INTSTS_GIS gets clear. 375 * It is plausible that hardware interrupts a host only when GIS goes 376 * from zero to one. GIS is formed by OR-ing multiple hardware 377 * statuses, so it's possible that a previously cleared status gets set 378 * again while another status has not been cleared yet. Thus, there 379 * will be no new interrupt as GIS always stayed set. If we don't 380 * re-examine GIS then we can leave it set and never get an interrupt 381 * again. 382 */ 383 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 384 while ((intsts & HDAC_INTSTS_GIS) != 0) { 385 hdac_lock(sc); 386 hdac_one_intr(sc, intsts); 387 hdac_unlock(sc); 388 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 389 } 390 } 391 392 static void 393 hdac_poll_callback(void *arg) 394 { 395 struct hdac_softc *sc = arg; 396 397 if (sc == NULL) 398 return; 399 400 hdac_lock(sc); 401 if (sc->polling == 0) { 402 hdac_unlock(sc); 403 return; 404 } 405 callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc); 406 hdac_unlock(sc); 407 408 hdac_intr_handler(sc); 409 } 410 411 /**************************************************************************** 412 * int hdac_reset(hdac_softc *, bool) 413 * 414 * Reset the hdac to a quiescent and known state. 415 ****************************************************************************/ 416 static int 417 hdac_reset(struct hdac_softc *sc, bool wakeup) 418 { 419 uint32_t gctl; 420 int count, i; 421 422 /* 423 * Stop all Streams DMA engine 424 */ 425 for (i = 0; i < sc->num_iss; i++) 426 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); 427 for (i = 0; i < sc->num_oss; i++) 428 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); 429 for (i = 0; i < sc->num_bss; i++) 430 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); 431 432 /* 433 * Stop Control DMA engines. 434 */ 435 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); 436 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); 437 438 /* 439 * Reset DMA position buffer. 440 */ 441 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); 442 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); 443 444 /* 445 * Reset the controller. The reset must remain asserted for 446 * a minimum of 100us. 447 */ 448 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 449 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); 450 count = 10000; 451 do { 452 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 453 if (!(gctl & HDAC_GCTL_CRST)) 454 break; 455 DELAY(10); 456 } while (--count); 457 if (gctl & HDAC_GCTL_CRST) { 458 device_printf(sc->dev, "Unable to put hdac in reset\n"); 459 return (ENXIO); 460 } 461 462 /* If wakeup is not requested - leave the controller in reset state. */ 463 if (!wakeup) 464 return (0); 465 466 DELAY(100); 467 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 468 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); 469 count = 10000; 470 do { 471 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 472 if (gctl & HDAC_GCTL_CRST) 473 break; 474 DELAY(10); 475 } while (--count); 476 if (!(gctl & HDAC_GCTL_CRST)) { 477 device_printf(sc->dev, "Device stuck in reset\n"); 478 return (ENXIO); 479 } 480 481 /* 482 * Wait for codecs to finish their own reset sequence. The delay here 483 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery). 484 */ 485 DELAY(1000); 486 487 return (0); 488 } 489 490 /**************************************************************************** 491 * int hdac_get_capabilities(struct hdac_softc *); 492 * 493 * Retreive the general capabilities of the hdac; 494 * Number of Input Streams 495 * Number of Output Streams 496 * Number of bidirectional Streams 497 * 64bit ready 498 * CORB and RIRB sizes 499 ****************************************************************************/ 500 static int 501 hdac_get_capabilities(struct hdac_softc *sc) 502 { 503 uint16_t gcap; 504 uint8_t corbsize, rirbsize; 505 506 gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); 507 sc->num_iss = HDAC_GCAP_ISS(gcap); 508 sc->num_oss = HDAC_GCAP_OSS(gcap); 509 sc->num_bss = HDAC_GCAP_BSS(gcap); 510 sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss; 511 sc->num_sdo = HDAC_GCAP_NSDO(gcap); 512 sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0; 513 if (sc->quirks_on & HDAC_QUIRK_64BIT) 514 sc->support_64bit = 1; 515 else if (sc->quirks_off & HDAC_QUIRK_64BIT) 516 sc->support_64bit = 0; 517 518 corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); 519 if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == 520 HDAC_CORBSIZE_CORBSZCAP_256) 521 sc->corb_size = 256; 522 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == 523 HDAC_CORBSIZE_CORBSZCAP_16) 524 sc->corb_size = 16; 525 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == 526 HDAC_CORBSIZE_CORBSZCAP_2) 527 sc->corb_size = 2; 528 else { 529 device_printf(sc->dev, "%s: Invalid corb size (%x)\n", 530 __func__, corbsize); 531 return (ENXIO); 532 } 533 534 rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); 535 if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == 536 HDAC_RIRBSIZE_RIRBSZCAP_256) 537 sc->rirb_size = 256; 538 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == 539 HDAC_RIRBSIZE_RIRBSZCAP_16) 540 sc->rirb_size = 16; 541 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == 542 HDAC_RIRBSIZE_RIRBSZCAP_2) 543 sc->rirb_size = 2; 544 else { 545 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", 546 __func__, rirbsize); 547 return (ENXIO); 548 } 549 550 HDA_BOOTVERBOSE( 551 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " 552 "NSDO %d%s, CORB %d, RIRB %d\n", 553 sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, 554 sc->support_64bit ? ", 64bit" : "", 555 sc->corb_size, sc->rirb_size); 556 ); 557 558 return (0); 559 } 560 561 /**************************************************************************** 562 * void hdac_dma_cb 563 * 564 * This function is called by bus_dmamap_load when the mapping has been 565 * established. We just record the physical address of the mapping into 566 * the struct hdac_dma passed in. 567 ****************************************************************************/ 568 static void 569 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) 570 { 571 struct hdac_dma *dma; 572 573 if (error == 0) { 574 dma = (struct hdac_dma *)callback_arg; 575 dma->dma_paddr = segs[0].ds_addr; 576 } 577 } 578 579 /**************************************************************************** 580 * int hdac_dma_alloc 581 * 582 * This function allocate and setup a dma region (struct hdac_dma). 583 * It must be freed by a corresponding hdac_dma_free. 584 ****************************************************************************/ 585 static int 586 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) 587 { 588 bus_size_t roundsz; 589 int result; 590 591 roundsz = roundup2(size, HDA_DMA_ALIGNMENT); 592 bzero(dma, sizeof(*dma)); 593 594 /* 595 * Create a DMA tag 596 */ 597 result = bus_dma_tag_create( 598 bus_get_dma_tag(sc->dev), /* parent */ 599 HDA_DMA_ALIGNMENT, /* alignment */ 600 0, /* boundary */ 601 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 602 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 603 BUS_SPACE_MAXADDR, /* highaddr */ 604 NULL, /* filtfunc */ 605 NULL, /* fistfuncarg */ 606 roundsz, /* maxsize */ 607 1, /* nsegments */ 608 roundsz, /* maxsegsz */ 609 0, /* flags */ 610 NULL, /* lockfunc */ 611 NULL, /* lockfuncarg */ 612 &dma->dma_tag); /* dmat */ 613 if (result != 0) { 614 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n", 615 __func__, result); 616 goto hdac_dma_alloc_fail; 617 } 618 619 /* 620 * Allocate DMA memory 621 */ 622 result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, 623 BUS_DMA_NOWAIT | BUS_DMA_ZERO | 624 ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 625 BUS_DMA_COHERENT), 626 &dma->dma_map); 627 if (result != 0) { 628 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n", 629 __func__, result); 630 goto hdac_dma_alloc_fail; 631 } 632 633 dma->dma_size = roundsz; 634 635 /* 636 * Map the memory 637 */ 638 result = bus_dmamap_load(dma->dma_tag, dma->dma_map, 639 (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); 640 if (result != 0 || dma->dma_paddr == 0) { 641 if (result == 0) 642 result = ENOMEM; 643 device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n", 644 __func__, result); 645 goto hdac_dma_alloc_fail; 646 } 647 648 HDA_BOOTHVERBOSE( 649 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", 650 __func__, (uintmax_t)size, (uintmax_t)roundsz); 651 ); 652 653 return (0); 654 655 hdac_dma_alloc_fail: 656 hdac_dma_free(sc, dma); 657 658 return (result); 659 } 660 661 /**************************************************************************** 662 * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) 663 * 664 * Free a struct hdac_dma that has been previously allocated via the 665 * hdac_dma_alloc function. 666 ****************************************************************************/ 667 static void 668 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) 669 { 670 if (dma->dma_paddr != 0) { 671 /* Flush caches */ 672 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 673 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 674 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 675 dma->dma_paddr = 0; 676 } 677 if (dma->dma_vaddr != NULL) { 678 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 679 dma->dma_vaddr = NULL; 680 } 681 if (dma->dma_tag != NULL) { 682 bus_dma_tag_destroy(dma->dma_tag); 683 dma->dma_tag = NULL; 684 } 685 dma->dma_size = 0; 686 } 687 688 /**************************************************************************** 689 * int hdac_mem_alloc(struct hdac_softc *) 690 * 691 * Allocate all the bus resources necessary to speak with the physical 692 * controller. 693 ****************************************************************************/ 694 static int 695 hdac_mem_alloc(struct hdac_softc *sc) 696 { 697 struct hdac_mem *mem; 698 699 mem = &sc->mem; 700 mem->mem_rid = PCIR_BAR(0); 701 mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 702 &mem->mem_rid, RF_ACTIVE); 703 if (mem->mem_res == NULL) { 704 device_printf(sc->dev, 705 "%s: Unable to allocate memory resource\n", __func__); 706 return (ENOMEM); 707 } 708 mem->mem_tag = rman_get_bustag(mem->mem_res); 709 mem->mem_handle = rman_get_bushandle(mem->mem_res); 710 711 return (0); 712 } 713 714 /**************************************************************************** 715 * void hdac_mem_free(struct hdac_softc *) 716 * 717 * Free up resources previously allocated by hdac_mem_alloc. 718 ****************************************************************************/ 719 static void 720 hdac_mem_free(struct hdac_softc *sc) 721 { 722 struct hdac_mem *mem; 723 724 mem = &sc->mem; 725 if (mem->mem_res != NULL) 726 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, 727 mem->mem_res); 728 mem->mem_res = NULL; 729 } 730 731 /**************************************************************************** 732 * int hdac_irq_alloc(struct hdac_softc *) 733 * 734 * Allocate and setup the resources necessary for interrupt handling. 735 ****************************************************************************/ 736 static int 737 hdac_irq_alloc(struct hdac_softc *sc) 738 { 739 struct hdac_irq *irq; 740 int result; 741 742 irq = &sc->irq; 743 irq->irq_rid = 0x0; 744 745 if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 && 746 (result = pci_msi_count(sc->dev)) == 1 && 747 pci_alloc_msi(sc->dev, &result) == 0) 748 irq->irq_rid = 0x1; 749 750 irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, 751 &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); 752 if (irq->irq_res == NULL) { 753 device_printf(sc->dev, "%s: Unable to allocate irq\n", 754 __func__); 755 goto hdac_irq_alloc_fail; 756 } 757 result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, 758 NULL, hdac_intr_handler, sc, &irq->irq_handle); 759 if (result != 0) { 760 device_printf(sc->dev, 761 "%s: Unable to setup interrupt handler (%d)\n", 762 __func__, result); 763 goto hdac_irq_alloc_fail; 764 } 765 766 return (0); 767 768 hdac_irq_alloc_fail: 769 hdac_irq_free(sc); 770 771 return (ENXIO); 772 } 773 774 /**************************************************************************** 775 * void hdac_irq_free(struct hdac_softc *) 776 * 777 * Free up resources previously allocated by hdac_irq_alloc. 778 ****************************************************************************/ 779 static void 780 hdac_irq_free(struct hdac_softc *sc) 781 { 782 struct hdac_irq *irq; 783 784 irq = &sc->irq; 785 if (irq->irq_res != NULL && irq->irq_handle != NULL) 786 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); 787 if (irq->irq_res != NULL) 788 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, 789 irq->irq_res); 790 if (irq->irq_rid == 0x1) 791 pci_release_msi(sc->dev); 792 irq->irq_handle = NULL; 793 irq->irq_res = NULL; 794 irq->irq_rid = 0x0; 795 } 796 797 /**************************************************************************** 798 * void hdac_corb_init(struct hdac_softc *) 799 * 800 * Initialize the corb registers for operations but do not start it up yet. 801 * The CORB engine must not be running when this function is called. 802 ****************************************************************************/ 803 static void 804 hdac_corb_init(struct hdac_softc *sc) 805 { 806 uint8_t corbsize; 807 uint64_t corbpaddr; 808 809 /* Setup the CORB size. */ 810 switch (sc->corb_size) { 811 case 256: 812 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); 813 break; 814 case 16: 815 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); 816 break; 817 case 2: 818 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); 819 break; 820 default: 821 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); 822 } 823 HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); 824 825 /* Setup the CORB Address in the hdac */ 826 corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; 827 HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); 828 HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); 829 830 /* Set the WP and RP */ 831 sc->corb_wp = 0; 832 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 833 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); 834 /* 835 * The HDA specification indicates that the CORBRPRST bit will always 836 * read as zero. Unfortunately, it seems that at least the 82801G 837 * doesn't reset the bit to zero, which stalls the corb engine. 838 * manually reset the bit to zero before continuing. 839 */ 840 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); 841 842 /* Enable CORB error reporting */ 843 #if 0 844 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); 845 #endif 846 } 847 848 /**************************************************************************** 849 * void hdac_rirb_init(struct hdac_softc *) 850 * 851 * Initialize the rirb registers for operations but do not start it up yet. 852 * The RIRB engine must not be running when this function is called. 853 ****************************************************************************/ 854 static void 855 hdac_rirb_init(struct hdac_softc *sc) 856 { 857 uint8_t rirbsize; 858 uint64_t rirbpaddr; 859 860 /* Setup the RIRB size. */ 861 switch (sc->rirb_size) { 862 case 256: 863 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); 864 break; 865 case 16: 866 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); 867 break; 868 case 2: 869 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); 870 break; 871 default: 872 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); 873 } 874 HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); 875 876 /* Setup the RIRB Address in the hdac */ 877 rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; 878 HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); 879 HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); 880 881 /* Setup the WP and RP */ 882 sc->rirb_rp = 0; 883 HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); 884 885 /* Setup the interrupt threshold */ 886 HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); 887 888 /* Enable Overrun and response received reporting */ 889 #if 0 890 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 891 HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); 892 #else 893 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); 894 #endif 895 896 /* 897 * Make sure that the Host CPU cache doesn't contain any dirty 898 * cache lines that falls in the rirb. If I understood correctly, it 899 * should be sufficient to do this only once as the rirb is purely 900 * read-only from now on. 901 */ 902 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 903 BUS_DMASYNC_PREREAD); 904 } 905 906 /**************************************************************************** 907 * void hdac_corb_start(hdac_softc *) 908 * 909 * Startup the corb DMA engine 910 ****************************************************************************/ 911 static void 912 hdac_corb_start(struct hdac_softc *sc) 913 { 914 uint32_t corbctl; 915 916 corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); 917 corbctl |= HDAC_CORBCTL_CORBRUN; 918 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); 919 } 920 921 /**************************************************************************** 922 * void hdac_rirb_start(hdac_softc *) 923 * 924 * Startup the rirb DMA engine 925 ****************************************************************************/ 926 static void 927 hdac_rirb_start(struct hdac_softc *sc) 928 { 929 uint32_t rirbctl; 930 931 rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); 932 rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; 933 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); 934 } 935 936 static int 937 hdac_rirb_flush(struct hdac_softc *sc) 938 { 939 struct hdac_rirb *rirb_base, *rirb; 940 nid_t cad; 941 uint32_t resp, resp_ex; 942 uint8_t rirbwp; 943 int ret; 944 945 rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; 946 rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); 947 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 948 BUS_DMASYNC_POSTREAD); 949 950 ret = 0; 951 while (sc->rirb_rp != rirbwp) { 952 sc->rirb_rp++; 953 sc->rirb_rp %= sc->rirb_size; 954 rirb = &rirb_base[sc->rirb_rp]; 955 resp = le32toh(rirb->response); 956 resp_ex = le32toh(rirb->response_ex); 957 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex); 958 if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { 959 sc->unsolq[sc->unsolq_wp++] = resp; 960 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 961 sc->unsolq[sc->unsolq_wp++] = cad; 962 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 963 } else if (sc->codecs[cad].pending <= 0) { 964 device_printf(sc->dev, "Unexpected unsolicited " 965 "response from address %d: %08x\n", cad, resp); 966 } else { 967 sc->codecs[cad].response = resp; 968 sc->codecs[cad].pending--; 969 } 970 ret++; 971 } 972 973 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 974 BUS_DMASYNC_PREREAD); 975 return (ret); 976 } 977 978 static int 979 hdac_unsolq_flush(struct hdac_softc *sc) 980 { 981 device_t child; 982 nid_t cad; 983 uint32_t resp; 984 int ret = 0; 985 986 if (sc->unsolq_st == HDAC_UNSOLQ_READY) { 987 sc->unsolq_st = HDAC_UNSOLQ_BUSY; 988 while (sc->unsolq_rp != sc->unsolq_wp) { 989 resp = sc->unsolq[sc->unsolq_rp++]; 990 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 991 cad = sc->unsolq[sc->unsolq_rp++]; 992 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 993 if ((child = sc->codecs[cad].dev) != NULL && 994 device_is_attached(child)) 995 HDAC_UNSOL_INTR(child, resp); 996 ret++; 997 } 998 sc->unsolq_st = HDAC_UNSOLQ_READY; 999 } 1000 1001 return (ret); 1002 } 1003 1004 /**************************************************************************** 1005 * uint32_t hdac_send_command 1006 * 1007 * Wrapper function that sends only one command to a given codec 1008 ****************************************************************************/ 1009 static uint32_t 1010 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb) 1011 { 1012 int timeout; 1013 uint32_t *corb; 1014 1015 hdac_lockassert(sc); 1016 verb &= ~HDA_CMD_CAD_MASK; 1017 verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT; 1018 sc->codecs[cad].response = HDA_INVALID; 1019 1020 sc->codecs[cad].pending++; 1021 sc->corb_wp++; 1022 sc->corb_wp %= sc->corb_size; 1023 corb = (uint32_t *)sc->corb_dma.dma_vaddr; 1024 bus_dmamap_sync(sc->corb_dma.dma_tag, 1025 sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); 1026 corb[sc->corb_wp] = htole32(verb); 1027 bus_dmamap_sync(sc->corb_dma.dma_tag, 1028 sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); 1029 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 1030 1031 timeout = 10000; 1032 do { 1033 if (hdac_rirb_flush(sc) == 0) 1034 DELAY(10); 1035 } while (sc->codecs[cad].pending != 0 && --timeout); 1036 1037 if (sc->codecs[cad].pending != 0) { 1038 device_printf(sc->dev, "Command 0x%08x timeout on address %d\n", 1039 verb, cad); 1040 sc->codecs[cad].pending = 0; 1041 } 1042 1043 if (sc->unsolq_rp != sc->unsolq_wp) 1044 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 1045 return (sc->codecs[cad].response); 1046 } 1047 1048 /**************************************************************************** 1049 * Device Methods 1050 ****************************************************************************/ 1051 1052 /**************************************************************************** 1053 * int hdac_probe(device_t) 1054 * 1055 * Probe for the presence of an hdac. If none is found, check for a generic 1056 * match using the subclass of the device. 1057 ****************************************************************************/ 1058 static int 1059 hdac_probe(device_t dev) 1060 { 1061 int i, result; 1062 uint32_t model; 1063 uint16_t class, subclass; 1064 char desc[64]; 1065 1066 model = (uint32_t)pci_get_device(dev) << 16; 1067 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1068 class = pci_get_class(dev); 1069 subclass = pci_get_subclass(dev); 1070 1071 bzero(desc, sizeof(desc)); 1072 result = ENXIO; 1073 for (i = 0; i < nitems(hdac_devices); i++) { 1074 if (hdac_devices[i].model == model) { 1075 strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); 1076 result = BUS_PROBE_DEFAULT; 1077 break; 1078 } 1079 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1080 class == PCIC_MULTIMEDIA && 1081 subclass == PCIS_MULTIMEDIA_HDA) { 1082 snprintf(desc, sizeof(desc), "%s (0x%04x)", 1083 hdac_devices[i].desc, pci_get_device(dev)); 1084 result = BUS_PROBE_GENERIC; 1085 break; 1086 } 1087 } 1088 if (result == ENXIO && class == PCIC_MULTIMEDIA && 1089 subclass == PCIS_MULTIMEDIA_HDA) { 1090 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model); 1091 result = BUS_PROBE_GENERIC; 1092 } 1093 if (result != ENXIO) { 1094 strlcat(desc, " HDA Controller", sizeof(desc)); 1095 device_set_desc_copy(dev, desc); 1096 } 1097 1098 return (result); 1099 } 1100 1101 static void 1102 hdac_unsolq_task(void *context, int pending) 1103 { 1104 struct hdac_softc *sc; 1105 1106 sc = (struct hdac_softc *)context; 1107 1108 hdac_lock(sc); 1109 hdac_unsolq_flush(sc); 1110 hdac_unlock(sc); 1111 } 1112 1113 /**************************************************************************** 1114 * int hdac_attach(device_t) 1115 * 1116 * Attach the device into the kernel. Interrupts usually won't be enabled 1117 * when this function is called. Setup everything that doesn't require 1118 * interrupts and defer probing of codecs until interrupts are enabled. 1119 ****************************************************************************/ 1120 static int 1121 hdac_attach(device_t dev) 1122 { 1123 struct hdac_softc *sc; 1124 int result; 1125 int i, devid = -1; 1126 uint32_t model; 1127 uint16_t class, subclass; 1128 uint16_t vendor; 1129 uint8_t v; 1130 1131 sc = device_get_softc(dev); 1132 HDA_BOOTVERBOSE( 1133 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n", 1134 pci_get_subvendor(dev), pci_get_subdevice(dev)); 1135 device_printf(dev, "HDA Driver Revision: %s\n", 1136 HDA_DRV_TEST_REV); 1137 ); 1138 1139 model = (uint32_t)pci_get_device(dev) << 16; 1140 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1141 class = pci_get_class(dev); 1142 subclass = pci_get_subclass(dev); 1143 1144 for (i = 0; i < nitems(hdac_devices); i++) { 1145 if (hdac_devices[i].model == model) { 1146 devid = i; 1147 break; 1148 } 1149 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1150 class == PCIC_MULTIMEDIA && 1151 subclass == PCIS_MULTIMEDIA_HDA) { 1152 devid = i; 1153 break; 1154 } 1155 } 1156 1157 sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex"); 1158 sc->dev = dev; 1159 TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); 1160 callout_init(&sc->poll_callout, 1); 1161 for (i = 0; i < HDAC_CODEC_MAX; i++) 1162 sc->codecs[i].dev = NULL; 1163 if (devid >= 0) { 1164 sc->quirks_on = hdac_devices[devid].quirks_on; 1165 sc->quirks_off = hdac_devices[devid].quirks_off; 1166 } else { 1167 sc->quirks_on = 0; 1168 sc->quirks_off = 0; 1169 } 1170 if (resource_int_value(device_get_name(dev), 1171 device_get_unit(dev), "msi", &i) == 0) { 1172 if (i == 0) 1173 sc->quirks_off |= HDAC_QUIRK_MSI; 1174 else { 1175 sc->quirks_on |= HDAC_QUIRK_MSI; 1176 sc->quirks_off |= ~HDAC_QUIRK_MSI; 1177 } 1178 } 1179 hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off); 1180 HDA_BOOTVERBOSE( 1181 device_printf(sc->dev, 1182 "Config options: on=0x%08x off=0x%08x\n", 1183 sc->quirks_on, sc->quirks_off); 1184 ); 1185 sc->poll_ival = hz; 1186 if (resource_int_value(device_get_name(dev), 1187 device_get_unit(dev), "polling", &i) == 0 && i != 0) 1188 sc->polling = 1; 1189 else 1190 sc->polling = 0; 1191 1192 pci_enable_busmaster(dev); 1193 1194 vendor = pci_get_vendor(dev); 1195 if (vendor == INTEL_VENDORID) { 1196 /* TCSEL -> TC0 */ 1197 v = pci_read_config(dev, 0x44, 1); 1198 pci_write_config(dev, 0x44, v & 0xf8, 1); 1199 HDA_BOOTHVERBOSE( 1200 device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, 1201 pci_read_config(dev, 0x44, 1)); 1202 ); 1203 } 1204 1205 #if defined(__i386__) || defined(__amd64__) 1206 sc->flags |= HDAC_F_DMA_NOCACHE; 1207 1208 if (resource_int_value(device_get_name(dev), 1209 device_get_unit(dev), "snoop", &i) == 0 && i != 0) { 1210 #else 1211 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1212 #endif 1213 /* 1214 * Try to enable PCIe snoop to avoid messing around with 1215 * uncacheable DMA attribute. Since PCIe snoop register 1216 * config is pretty much vendor specific, there are no 1217 * general solutions on how to enable it, forcing us (even 1218 * Microsoft) to enable uncacheable or write combined DMA 1219 * by default. 1220 * 1221 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx 1222 */ 1223 for (i = 0; i < nitems(hdac_pcie_snoop); i++) { 1224 if (hdac_pcie_snoop[i].vendor != vendor) 1225 continue; 1226 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1227 if (hdac_pcie_snoop[i].reg == 0x00) 1228 break; 1229 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1230 if ((v & hdac_pcie_snoop[i].enable) == 1231 hdac_pcie_snoop[i].enable) 1232 break; 1233 v &= hdac_pcie_snoop[i].mask; 1234 v |= hdac_pcie_snoop[i].enable; 1235 pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); 1236 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1237 if ((v & hdac_pcie_snoop[i].enable) != 1238 hdac_pcie_snoop[i].enable) { 1239 HDA_BOOTVERBOSE( 1240 device_printf(dev, 1241 "WARNING: Failed to enable PCIe " 1242 "snoop!\n"); 1243 ); 1244 #if defined(__i386__) || defined(__amd64__) 1245 sc->flags |= HDAC_F_DMA_NOCACHE; 1246 #endif 1247 } 1248 break; 1249 } 1250 #if defined(__i386__) || defined(__amd64__) 1251 } 1252 #endif 1253 1254 HDA_BOOTHVERBOSE( 1255 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", 1256 (sc->flags & HDAC_F_DMA_NOCACHE) ? 1257 "Uncacheable" : "PCIe snoop", vendor); 1258 ); 1259 1260 /* Allocate resources */ 1261 result = hdac_mem_alloc(sc); 1262 if (result != 0) 1263 goto hdac_attach_fail; 1264 result = hdac_irq_alloc(sc); 1265 if (result != 0) 1266 goto hdac_attach_fail; 1267 1268 /* Get Capabilities */ 1269 result = hdac_get_capabilities(sc); 1270 if (result != 0) 1271 goto hdac_attach_fail; 1272 1273 /* Allocate CORB, RIRB, POS and BDLs dma memory */ 1274 result = hdac_dma_alloc(sc, &sc->corb_dma, 1275 sc->corb_size * sizeof(uint32_t)); 1276 if (result != 0) 1277 goto hdac_attach_fail; 1278 result = hdac_dma_alloc(sc, &sc->rirb_dma, 1279 sc->rirb_size * sizeof(struct hdac_rirb)); 1280 if (result != 0) 1281 goto hdac_attach_fail; 1282 sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss, 1283 M_HDAC, M_ZERO | M_WAITOK); 1284 for (i = 0; i < sc->num_ss; i++) { 1285 result = hdac_dma_alloc(sc, &sc->streams[i].bdl, 1286 sizeof(struct hdac_bdle) * HDA_BDL_MAX); 1287 if (result != 0) 1288 goto hdac_attach_fail; 1289 } 1290 if (sc->quirks_on & HDAC_QUIRK_DMAPOS) { 1291 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) { 1292 HDA_BOOTVERBOSE( 1293 device_printf(dev, "Failed to " 1294 "allocate DMA pos buffer " 1295 "(non-fatal)\n"); 1296 ); 1297 } else { 1298 uint64_t addr = sc->pos_dma.dma_paddr; 1299 1300 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32); 1301 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 1302 (addr & HDAC_DPLBASE_DPLBASE_MASK) | 1303 HDAC_DPLBASE_DPLBASE_DMAPBE); 1304 } 1305 } 1306 1307 result = bus_dma_tag_create( 1308 bus_get_dma_tag(sc->dev), /* parent */ 1309 HDA_DMA_ALIGNMENT, /* alignment */ 1310 0, /* boundary */ 1311 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 1312 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1313 BUS_SPACE_MAXADDR, /* highaddr */ 1314 NULL, /* filtfunc */ 1315 NULL, /* fistfuncarg */ 1316 HDA_BUFSZ_MAX, /* maxsize */ 1317 1, /* nsegments */ 1318 HDA_BUFSZ_MAX, /* maxsegsz */ 1319 0, /* flags */ 1320 NULL, /* lockfunc */ 1321 NULL, /* lockfuncarg */ 1322 &sc->chan_dmat); /* dmat */ 1323 if (result != 0) { 1324 device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n", 1325 __func__, result); 1326 goto hdac_attach_fail; 1327 } 1328 1329 /* Quiesce everything */ 1330 HDA_BOOTHVERBOSE( 1331 device_printf(dev, "Reset controller...\n"); 1332 ); 1333 hdac_reset(sc, true); 1334 1335 /* Initialize the CORB and RIRB */ 1336 hdac_corb_init(sc); 1337 hdac_rirb_init(sc); 1338 1339 /* Defer remaining of initialization until interrupts are enabled */ 1340 sc->intrhook.ich_func = hdac_attach2; 1341 sc->intrhook.ich_arg = (void *)sc; 1342 if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { 1343 sc->intrhook.ich_func = NULL; 1344 hdac_attach2((void *)sc); 1345 } 1346 1347 return (0); 1348 1349 hdac_attach_fail: 1350 hdac_irq_free(sc); 1351 if (sc->streams != NULL) 1352 for (i = 0; i < sc->num_ss; i++) 1353 hdac_dma_free(sc, &sc->streams[i].bdl); 1354 free(sc->streams, M_HDAC); 1355 hdac_dma_free(sc, &sc->rirb_dma); 1356 hdac_dma_free(sc, &sc->corb_dma); 1357 hdac_mem_free(sc); 1358 snd_mtxfree(sc->lock); 1359 1360 return (ENXIO); 1361 } 1362 1363 static int 1364 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) 1365 { 1366 struct hdac_softc *sc; 1367 device_t *devlist; 1368 device_t dev; 1369 int devcount, i, err, val; 1370 1371 dev = oidp->oid_arg1; 1372 sc = device_get_softc(dev); 1373 if (sc == NULL) 1374 return (EINVAL); 1375 val = 0; 1376 err = sysctl_handle_int(oidp, &val, 0, req); 1377 if (err != 0 || req->newptr == NULL || val == 0) 1378 return (err); 1379 1380 /* XXX: Temporary. For debugging. */ 1381 if (val == 100) { 1382 hdac_suspend(dev); 1383 return (0); 1384 } else if (val == 101) { 1385 hdac_resume(dev); 1386 return (0); 1387 } 1388 1389 if ((err = device_get_children(dev, &devlist, &devcount)) != 0) 1390 return (err); 1391 hdac_lock(sc); 1392 for (i = 0; i < devcount; i++) 1393 HDAC_PINDUMP(devlist[i]); 1394 hdac_unlock(sc); 1395 free(devlist, M_TEMP); 1396 return (0); 1397 } 1398 1399 static int 1400 hdac_mdata_rate(uint16_t fmt) 1401 { 1402 static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 }; 1403 int rate, bits; 1404 1405 if (fmt & (1 << 14)) 1406 rate = 44100; 1407 else 1408 rate = 48000; 1409 rate *= ((fmt >> 11) & 0x07) + 1; 1410 rate /= ((fmt >> 8) & 0x07) + 1; 1411 bits = mbits[(fmt >> 4) & 0x03]; 1412 bits *= (fmt & 0x0f) + 1; 1413 return (rate * bits); 1414 } 1415 1416 static int 1417 hdac_bdata_rate(uint16_t fmt, int output) 1418 { 1419 static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; 1420 int rate, bits; 1421 1422 rate = 48000; 1423 rate *= ((fmt >> 11) & 0x07) + 1; 1424 bits = bbits[(fmt >> 4) & 0x03]; 1425 bits *= (fmt & 0x0f) + 1; 1426 if (!output) 1427 bits = ((bits + 7) & ~0x07) + 10; 1428 return (rate * bits); 1429 } 1430 1431 static void 1432 hdac_poll_reinit(struct hdac_softc *sc) 1433 { 1434 int i, pollticks, min = 1000000; 1435 struct hdac_stream *s; 1436 1437 if (sc->polling == 0) 1438 return; 1439 if (sc->unsol_registered > 0) 1440 min = hz / 2; 1441 for (i = 0; i < sc->num_ss; i++) { 1442 s = &sc->streams[i]; 1443 if (s->running == 0) 1444 continue; 1445 pollticks = ((uint64_t)hz * s->blksz) / 1446 (hdac_mdata_rate(s->format) / 8); 1447 pollticks >>= 1; 1448 if (pollticks > hz) 1449 pollticks = hz; 1450 if (pollticks < 1) 1451 pollticks = 1; 1452 if (min > pollticks) 1453 min = pollticks; 1454 } 1455 sc->poll_ival = min; 1456 if (min == 1000000) 1457 callout_stop(&sc->poll_callout); 1458 else 1459 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc); 1460 } 1461 1462 static int 1463 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) 1464 { 1465 struct hdac_softc *sc; 1466 device_t dev; 1467 uint32_t ctl; 1468 int err, val; 1469 1470 dev = oidp->oid_arg1; 1471 sc = device_get_softc(dev); 1472 if (sc == NULL) 1473 return (EINVAL); 1474 hdac_lock(sc); 1475 val = sc->polling; 1476 hdac_unlock(sc); 1477 err = sysctl_handle_int(oidp, &val, 0, req); 1478 1479 if (err != 0 || req->newptr == NULL) 1480 return (err); 1481 if (val < 0 || val > 1) 1482 return (EINVAL); 1483 1484 hdac_lock(sc); 1485 if (val != sc->polling) { 1486 if (val == 0) { 1487 callout_stop(&sc->poll_callout); 1488 hdac_unlock(sc); 1489 callout_drain(&sc->poll_callout); 1490 hdac_lock(sc); 1491 sc->polling = 0; 1492 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1493 ctl |= HDAC_INTCTL_GIE; 1494 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1495 } else { 1496 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1497 ctl &= ~HDAC_INTCTL_GIE; 1498 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1499 sc->polling = 1; 1500 hdac_poll_reinit(sc); 1501 } 1502 } 1503 hdac_unlock(sc); 1504 1505 return (err); 1506 } 1507 1508 static void 1509 hdac_attach2(void *arg) 1510 { 1511 struct hdac_softc *sc; 1512 device_t child; 1513 uint32_t vendorid, revisionid; 1514 int i; 1515 uint16_t statests; 1516 1517 sc = (struct hdac_softc *)arg; 1518 1519 hdac_lock(sc); 1520 1521 /* Remove ourselves from the config hooks */ 1522 if (sc->intrhook.ich_func != NULL) { 1523 config_intrhook_disestablish(&sc->intrhook); 1524 sc->intrhook.ich_func = NULL; 1525 } 1526 1527 HDA_BOOTHVERBOSE( 1528 device_printf(sc->dev, "Starting CORB Engine...\n"); 1529 ); 1530 hdac_corb_start(sc); 1531 HDA_BOOTHVERBOSE( 1532 device_printf(sc->dev, "Starting RIRB Engine...\n"); 1533 ); 1534 hdac_rirb_start(sc); 1535 1536 /* 1537 * Clear HDAC_WAKEEN as at present we have no use for SDI wake 1538 * (status change) interrupts. The documentation says that we 1539 * should not make any assumptions about the state of this register 1540 * and set it explicitly. 1541 * NB: this needs to be done before the interrupt is enabled as 1542 * the handler does not expect this interrupt source. 1543 */ 1544 HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); 1545 1546 /* 1547 * Read and clear post-reset SDI wake status. 1548 * Each set bit corresponds to a codec that came out of reset. 1549 */ 1550 statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); 1551 HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests); 1552 1553 HDA_BOOTHVERBOSE( 1554 device_printf(sc->dev, 1555 "Enabling controller interrupt...\n"); 1556 ); 1557 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1558 HDAC_GCTL_UNSOL); 1559 if (sc->polling == 0) { 1560 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, 1561 HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1562 } 1563 DELAY(1000); 1564 1565 HDA_BOOTHVERBOSE( 1566 device_printf(sc->dev, "Scanning HDA codecs ...\n"); 1567 ); 1568 hdac_unlock(sc); 1569 for (i = 0; i < HDAC_CODEC_MAX; i++) { 1570 if (HDAC_STATESTS_SDIWAKE(statests, i)) { 1571 HDA_BOOTHVERBOSE( 1572 device_printf(sc->dev, 1573 "Found CODEC at address %d\n", i); 1574 ); 1575 hdac_lock(sc); 1576 vendorid = hdac_send_command(sc, i, 1577 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID)); 1578 revisionid = hdac_send_command(sc, i, 1579 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID)); 1580 hdac_unlock(sc); 1581 if (vendorid == HDA_INVALID && 1582 revisionid == HDA_INVALID) { 1583 device_printf(sc->dev, 1584 "CODEC at address %d not responding!\n", i); 1585 continue; 1586 } 1587 sc->codecs[i].vendor_id = 1588 HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); 1589 sc->codecs[i].device_id = 1590 HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); 1591 sc->codecs[i].revision_id = 1592 HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); 1593 sc->codecs[i].stepping_id = 1594 HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); 1595 child = device_add_child(sc->dev, "hdacc", -1); 1596 if (child == NULL) { 1597 device_printf(sc->dev, 1598 "Failed to add CODEC device\n"); 1599 continue; 1600 } 1601 device_set_ivars(child, (void *)(intptr_t)i); 1602 sc->codecs[i].dev = child; 1603 } 1604 } 1605 bus_generic_attach(sc->dev); 1606 1607 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1608 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1609 "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev, 1610 sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data"); 1611 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1612 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1613 "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev, 1614 sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode"); 1615 } 1616 1617 /**************************************************************************** 1618 * int hdac_suspend(device_t) 1619 * 1620 * Suspend and power down HDA bus and codecs. 1621 ****************************************************************************/ 1622 static int 1623 hdac_suspend(device_t dev) 1624 { 1625 struct hdac_softc *sc = device_get_softc(dev); 1626 1627 HDA_BOOTHVERBOSE( 1628 device_printf(dev, "Suspend...\n"); 1629 ); 1630 bus_generic_suspend(dev); 1631 1632 hdac_lock(sc); 1633 HDA_BOOTHVERBOSE( 1634 device_printf(dev, "Reset controller...\n"); 1635 ); 1636 callout_stop(&sc->poll_callout); 1637 hdac_reset(sc, false); 1638 hdac_unlock(sc); 1639 callout_drain(&sc->poll_callout); 1640 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1641 HDA_BOOTHVERBOSE( 1642 device_printf(dev, "Suspend done\n"); 1643 ); 1644 return (0); 1645 } 1646 1647 /**************************************************************************** 1648 * int hdac_resume(device_t) 1649 * 1650 * Powerup and restore HDA bus and codecs state. 1651 ****************************************************************************/ 1652 static int 1653 hdac_resume(device_t dev) 1654 { 1655 struct hdac_softc *sc = device_get_softc(dev); 1656 int error; 1657 1658 HDA_BOOTHVERBOSE( 1659 device_printf(dev, "Resume...\n"); 1660 ); 1661 hdac_lock(sc); 1662 1663 /* Quiesce everything */ 1664 HDA_BOOTHVERBOSE( 1665 device_printf(dev, "Reset controller...\n"); 1666 ); 1667 hdac_reset(sc, true); 1668 1669 /* Initialize the CORB and RIRB */ 1670 hdac_corb_init(sc); 1671 hdac_rirb_init(sc); 1672 1673 HDA_BOOTHVERBOSE( 1674 device_printf(dev, "Starting CORB Engine...\n"); 1675 ); 1676 hdac_corb_start(sc); 1677 HDA_BOOTHVERBOSE( 1678 device_printf(dev, "Starting RIRB Engine...\n"); 1679 ); 1680 hdac_rirb_start(sc); 1681 1682 /* 1683 * Clear HDAC_WAKEEN as at present we have no use for SDI wake 1684 * (status change) events. The documentation says that we should 1685 * not make any assumptions about the state of this register and 1686 * set it explicitly. 1687 * Also, clear HDAC_STATESTS. 1688 * NB: this needs to be done before the interrupt is enabled as 1689 * the handler does not expect this interrupt source. 1690 */ 1691 HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0); 1692 HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK); 1693 1694 HDA_BOOTHVERBOSE( 1695 device_printf(dev, "Enabling controller interrupt...\n"); 1696 ); 1697 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1698 HDAC_GCTL_UNSOL); 1699 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1700 DELAY(1000); 1701 hdac_poll_reinit(sc); 1702 hdac_unlock(sc); 1703 1704 error = bus_generic_resume(dev); 1705 HDA_BOOTHVERBOSE( 1706 device_printf(dev, "Resume done\n"); 1707 ); 1708 return (error); 1709 } 1710 1711 /**************************************************************************** 1712 * int hdac_detach(device_t) 1713 * 1714 * Detach and free up resources utilized by the hdac device. 1715 ****************************************************************************/ 1716 static int 1717 hdac_detach(device_t dev) 1718 { 1719 struct hdac_softc *sc = device_get_softc(dev); 1720 device_t *devlist; 1721 int cad, i, devcount, error; 1722 1723 if ((error = device_get_children(dev, &devlist, &devcount)) != 0) 1724 return (error); 1725 for (i = 0; i < devcount; i++) { 1726 cad = (intptr_t)device_get_ivars(devlist[i]); 1727 if ((error = device_delete_child(dev, devlist[i])) != 0) { 1728 free(devlist, M_TEMP); 1729 return (error); 1730 } 1731 sc->codecs[cad].dev = NULL; 1732 } 1733 free(devlist, M_TEMP); 1734 1735 hdac_lock(sc); 1736 hdac_reset(sc, false); 1737 hdac_unlock(sc); 1738 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1739 hdac_irq_free(sc); 1740 1741 for (i = 0; i < sc->num_ss; i++) 1742 hdac_dma_free(sc, &sc->streams[i].bdl); 1743 free(sc->streams, M_HDAC); 1744 hdac_dma_free(sc, &sc->pos_dma); 1745 hdac_dma_free(sc, &sc->rirb_dma); 1746 hdac_dma_free(sc, &sc->corb_dma); 1747 if (sc->chan_dmat != NULL) { 1748 bus_dma_tag_destroy(sc->chan_dmat); 1749 sc->chan_dmat = NULL; 1750 } 1751 hdac_mem_free(sc); 1752 snd_mtxfree(sc->lock); 1753 return (0); 1754 } 1755 1756 static bus_dma_tag_t 1757 hdac_get_dma_tag(device_t dev, device_t child) 1758 { 1759 struct hdac_softc *sc = device_get_softc(dev); 1760 1761 return (sc->chan_dmat); 1762 } 1763 1764 static int 1765 hdac_print_child(device_t dev, device_t child) 1766 { 1767 int retval; 1768 1769 retval = bus_print_child_header(dev, child); 1770 retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child)); 1771 retval += bus_print_child_footer(dev, child); 1772 1773 return (retval); 1774 } 1775 1776 static int 1777 hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen) 1778 { 1779 1780 snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child)); 1781 return (0); 1782 } 1783 1784 static int 1785 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 1786 size_t buflen) 1787 { 1788 struct hdac_softc *sc = device_get_softc(dev); 1789 nid_t cad = (uintptr_t)device_get_ivars(child); 1790 1791 snprintf(buf, buflen, 1792 "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x", 1793 sc->codecs[cad].vendor_id, sc->codecs[cad].device_id, 1794 sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id); 1795 return (0); 1796 } 1797 1798 static int 1799 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1800 { 1801 struct hdac_softc *sc = device_get_softc(dev); 1802 nid_t cad = (uintptr_t)device_get_ivars(child); 1803 1804 switch (which) { 1805 case HDA_IVAR_CODEC_ID: 1806 *result = cad; 1807 break; 1808 case HDA_IVAR_VENDOR_ID: 1809 *result = sc->codecs[cad].vendor_id; 1810 break; 1811 case HDA_IVAR_DEVICE_ID: 1812 *result = sc->codecs[cad].device_id; 1813 break; 1814 case HDA_IVAR_REVISION_ID: 1815 *result = sc->codecs[cad].revision_id; 1816 break; 1817 case HDA_IVAR_STEPPING_ID: 1818 *result = sc->codecs[cad].stepping_id; 1819 break; 1820 case HDA_IVAR_SUBVENDOR_ID: 1821 *result = pci_get_subvendor(dev); 1822 break; 1823 case HDA_IVAR_SUBDEVICE_ID: 1824 *result = pci_get_subdevice(dev); 1825 break; 1826 case HDA_IVAR_DMA_NOCACHE: 1827 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0; 1828 break; 1829 case HDA_IVAR_STRIPES_MASK: 1830 *result = (1 << (1 << sc->num_sdo)) - 1; 1831 break; 1832 default: 1833 return (ENOENT); 1834 } 1835 return (0); 1836 } 1837 1838 static struct mtx * 1839 hdac_get_mtx(device_t dev, device_t child) 1840 { 1841 struct hdac_softc *sc = device_get_softc(dev); 1842 1843 return (sc->lock); 1844 } 1845 1846 static uint32_t 1847 hdac_codec_command(device_t dev, device_t child, uint32_t verb) 1848 { 1849 1850 return (hdac_send_command(device_get_softc(dev), 1851 (intptr_t)device_get_ivars(child), verb)); 1852 } 1853 1854 static int 1855 hdac_find_stream(struct hdac_softc *sc, int dir, int stream) 1856 { 1857 int i, ss; 1858 1859 ss = -1; 1860 /* Allocate ISS/OSS first. */ 1861 if (dir == 0) { 1862 for (i = 0; i < sc->num_iss; i++) { 1863 if (sc->streams[i].stream == stream) { 1864 ss = i; 1865 break; 1866 } 1867 } 1868 } else { 1869 for (i = 0; i < sc->num_oss; i++) { 1870 if (sc->streams[i + sc->num_iss].stream == stream) { 1871 ss = i + sc->num_iss; 1872 break; 1873 } 1874 } 1875 } 1876 /* Fallback to BSS. */ 1877 if (ss == -1) { 1878 for (i = 0; i < sc->num_bss; i++) { 1879 if (sc->streams[i + sc->num_iss + sc->num_oss].stream 1880 == stream) { 1881 ss = i + sc->num_iss + sc->num_oss; 1882 break; 1883 } 1884 } 1885 } 1886 return (ss); 1887 } 1888 1889 static int 1890 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, 1891 uint32_t **dmapos) 1892 { 1893 struct hdac_softc *sc = device_get_softc(dev); 1894 nid_t cad = (uintptr_t)device_get_ivars(child); 1895 int stream, ss, bw, maxbw, prevbw; 1896 1897 /* Look for empty stream. */ 1898 ss = hdac_find_stream(sc, dir, 0); 1899 1900 /* Return if found nothing. */ 1901 if (ss < 0) 1902 return (0); 1903 1904 /* Check bus bandwidth. */ 1905 bw = hdac_bdata_rate(format, dir); 1906 if (dir == 1) { 1907 bw *= 1 << (sc->num_sdo - stripe); 1908 prevbw = sc->sdo_bw_used; 1909 maxbw = 48000 * 960 * (1 << sc->num_sdo); 1910 } else { 1911 prevbw = sc->codecs[cad].sdi_bw_used; 1912 maxbw = 48000 * 464; 1913 } 1914 HDA_BOOTHVERBOSE( 1915 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n", 1916 (bw + prevbw) / 1000, maxbw / 1000, 1917 bw + prevbw > maxbw ? " -- OVERFLOW!" : ""); 1918 ); 1919 if (bw + prevbw > maxbw) 1920 return (0); 1921 if (dir == 1) 1922 sc->sdo_bw_used += bw; 1923 else 1924 sc->codecs[cad].sdi_bw_used += bw; 1925 1926 /* Allocate stream number */ 1927 if (ss >= sc->num_iss + sc->num_oss) 1928 stream = 15 - (ss - sc->num_iss - sc->num_oss); 1929 else if (ss >= sc->num_iss) 1930 stream = ss - sc->num_iss + 1; 1931 else 1932 stream = ss + 1; 1933 1934 sc->streams[ss].dev = child; 1935 sc->streams[ss].dir = dir; 1936 sc->streams[ss].stream = stream; 1937 sc->streams[ss].bw = bw; 1938 sc->streams[ss].format = format; 1939 sc->streams[ss].stripe = stripe; 1940 if (dmapos != NULL) { 1941 if (sc->pos_dma.dma_vaddr != NULL) 1942 *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8); 1943 else 1944 *dmapos = NULL; 1945 } 1946 return (stream); 1947 } 1948 1949 static void 1950 hdac_stream_free(device_t dev, device_t child, int dir, int stream) 1951 { 1952 struct hdac_softc *sc = device_get_softc(dev); 1953 nid_t cad = (uintptr_t)device_get_ivars(child); 1954 int ss; 1955 1956 ss = hdac_find_stream(sc, dir, stream); 1957 KASSERT(ss >= 0, 1958 ("Free for not allocated stream (%d/%d)\n", dir, stream)); 1959 if (dir == 1) 1960 sc->sdo_bw_used -= sc->streams[ss].bw; 1961 else 1962 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw; 1963 sc->streams[ss].stream = 0; 1964 sc->streams[ss].dev = NULL; 1965 } 1966 1967 static int 1968 hdac_stream_start(device_t dev, device_t child, int dir, int stream, 1969 bus_addr_t buf, int blksz, int blkcnt) 1970 { 1971 struct hdac_softc *sc = device_get_softc(dev); 1972 struct hdac_bdle *bdle; 1973 uint64_t addr; 1974 int i, ss, off; 1975 uint32_t ctl; 1976 1977 ss = hdac_find_stream(sc, dir, stream); 1978 KASSERT(ss >= 0, 1979 ("Start for not allocated stream (%d/%d)\n", dir, stream)); 1980 1981 addr = (uint64_t)buf; 1982 bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr; 1983 for (i = 0; i < blkcnt; i++, bdle++) { 1984 bdle->addrl = htole32((uint32_t)addr); 1985 bdle->addrh = htole32((uint32_t)(addr >> 32)); 1986 bdle->len = htole32(blksz); 1987 bdle->ioc = htole32(1); 1988 addr += blksz; 1989 } 1990 1991 bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, 1992 sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE); 1993 1994 off = ss << 5; 1995 HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt); 1996 HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1); 1997 addr = sc->streams[ss].bdl.dma_paddr; 1998 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr); 1999 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); 2000 2001 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2); 2002 if (dir) 2003 ctl |= HDAC_SDCTL2_DIR; 2004 else 2005 ctl &= ~HDAC_SDCTL2_DIR; 2006 ctl &= ~HDAC_SDCTL2_STRM_MASK; 2007 ctl |= stream << HDAC_SDCTL2_STRM_SHIFT; 2008 ctl &= ~HDAC_SDCTL2_STRIPE_MASK; 2009 ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT; 2010 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl); 2011 2012 HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format); 2013 2014 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 2015 ctl |= 1 << ss; 2016 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 2017 2018 HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS, 2019 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 2020 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2021 ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 2022 HDAC_SDCTL_RUN; 2023 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2024 2025 sc->streams[ss].blksz = blksz; 2026 sc->streams[ss].running = 1; 2027 hdac_poll_reinit(sc); 2028 return (0); 2029 } 2030 2031 static void 2032 hdac_stream_stop(device_t dev, device_t child, int dir, int stream) 2033 { 2034 struct hdac_softc *sc = device_get_softc(dev); 2035 int ss, off; 2036 uint32_t ctl; 2037 2038 ss = hdac_find_stream(sc, dir, stream); 2039 KASSERT(ss >= 0, 2040 ("Stop for not allocated stream (%d/%d)\n", dir, stream)); 2041 2042 bus_dmamap_sync(sc->streams[ss].bdl.dma_tag, 2043 sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE); 2044 2045 off = ss << 5; 2046 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2047 ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 2048 HDAC_SDCTL_RUN); 2049 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2050 2051 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 2052 ctl &= ~(1 << ss); 2053 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 2054 2055 sc->streams[ss].running = 0; 2056 hdac_poll_reinit(sc); 2057 } 2058 2059 static void 2060 hdac_stream_reset(device_t dev, device_t child, int dir, int stream) 2061 { 2062 struct hdac_softc *sc = device_get_softc(dev); 2063 int timeout = 1000; 2064 int to = timeout; 2065 int ss, off; 2066 uint32_t ctl; 2067 2068 ss = hdac_find_stream(sc, dir, stream); 2069 KASSERT(ss >= 0, 2070 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2071 2072 off = ss << 5; 2073 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2074 ctl |= HDAC_SDCTL_SRST; 2075 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2076 do { 2077 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2078 if (ctl & HDAC_SDCTL_SRST) 2079 break; 2080 DELAY(10); 2081 } while (--to); 2082 if (!(ctl & HDAC_SDCTL_SRST)) 2083 device_printf(dev, "Reset setting timeout\n"); 2084 ctl &= ~HDAC_SDCTL_SRST; 2085 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2086 to = timeout; 2087 do { 2088 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2089 if (!(ctl & HDAC_SDCTL_SRST)) 2090 break; 2091 DELAY(10); 2092 } while (--to); 2093 if (ctl & HDAC_SDCTL_SRST) 2094 device_printf(dev, "Reset timeout!\n"); 2095 } 2096 2097 static uint32_t 2098 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream) 2099 { 2100 struct hdac_softc *sc = device_get_softc(dev); 2101 int ss, off; 2102 2103 ss = hdac_find_stream(sc, dir, stream); 2104 KASSERT(ss >= 0, 2105 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2106 2107 off = ss << 5; 2108 return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB)); 2109 } 2110 2111 static int 2112 hdac_unsol_alloc(device_t dev, device_t child, int tag) 2113 { 2114 struct hdac_softc *sc = device_get_softc(dev); 2115 2116 sc->unsol_registered++; 2117 hdac_poll_reinit(sc); 2118 return (tag); 2119 } 2120 2121 static void 2122 hdac_unsol_free(device_t dev, device_t child, int tag) 2123 { 2124 struct hdac_softc *sc = device_get_softc(dev); 2125 2126 sc->unsol_registered--; 2127 hdac_poll_reinit(sc); 2128 } 2129 2130 static device_method_t hdac_methods[] = { 2131 /* device interface */ 2132 DEVMETHOD(device_probe, hdac_probe), 2133 DEVMETHOD(device_attach, hdac_attach), 2134 DEVMETHOD(device_detach, hdac_detach), 2135 DEVMETHOD(device_suspend, hdac_suspend), 2136 DEVMETHOD(device_resume, hdac_resume), 2137 /* Bus interface */ 2138 DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag), 2139 DEVMETHOD(bus_print_child, hdac_print_child), 2140 DEVMETHOD(bus_child_location_str, hdac_child_location_str), 2141 DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method), 2142 DEVMETHOD(bus_read_ivar, hdac_read_ivar), 2143 DEVMETHOD(hdac_get_mtx, hdac_get_mtx), 2144 DEVMETHOD(hdac_codec_command, hdac_codec_command), 2145 DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc), 2146 DEVMETHOD(hdac_stream_free, hdac_stream_free), 2147 DEVMETHOD(hdac_stream_start, hdac_stream_start), 2148 DEVMETHOD(hdac_stream_stop, hdac_stream_stop), 2149 DEVMETHOD(hdac_stream_reset, hdac_stream_reset), 2150 DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr), 2151 DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc), 2152 DEVMETHOD(hdac_unsol_free, hdac_unsol_free), 2153 DEVMETHOD_END 2154 }; 2155 2156 static driver_t hdac_driver = { 2157 "hdac", 2158 hdac_methods, 2159 sizeof(struct hdac_softc), 2160 }; 2161 2162 static devclass_t hdac_devclass; 2163 2164 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL); 2165