1 /*- 2 * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca> 3 * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org> 4 * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Intel High Definition Audio (Controller) driver for FreeBSD. 31 */ 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_snd.h" 35 #endif 36 37 #include <dev/sound/pcm/sound.h> 38 #include <dev/pci/pcireg.h> 39 #include <dev/pci/pcivar.h> 40 41 #include <sys/ctype.h> 42 #include <sys/taskqueue.h> 43 44 #include <dev/sound/pci/hda/hdac_private.h> 45 #include <dev/sound/pci/hda/hdac_reg.h> 46 #include <dev/sound/pci/hda/hda_reg.h> 47 #include <dev/sound/pci/hda/hdac.h> 48 49 #define HDA_DRV_TEST_REV "20120126_0002" 50 51 SND_DECLARE_FILE("$FreeBSD$"); 52 53 #define hdac_lock(sc) snd_mtxlock((sc)->lock) 54 #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) 55 #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) 56 #define hdac_lockowned(sc) mtx_owned((sc)->lock) 57 58 #define HDAC_QUIRK_64BIT (1 << 0) 59 #define HDAC_QUIRK_DMAPOS (1 << 1) 60 #define HDAC_QUIRK_MSI (1 << 2) 61 62 static const struct { 63 char *key; 64 uint32_t value; 65 } hdac_quirks_tab[] = { 66 { "64bit", HDAC_QUIRK_DMAPOS }, 67 { "dmapos", HDAC_QUIRK_DMAPOS }, 68 { "msi", HDAC_QUIRK_MSI }, 69 }; 70 #define HDAC_QUIRKS_TAB_LEN \ 71 (sizeof(hdac_quirks_tab) / sizeof(hdac_quirks_tab[0])) 72 73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller"); 74 75 static const struct { 76 uint32_t model; 77 char *desc; 78 char quirks_on; 79 char quirks_off; 80 } hdac_devices[] = { 81 { HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 }, 82 { HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 }, 83 { HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 }, 84 { HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 }, 85 { HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 }, 86 { HDA_INTEL_82801F, "Intel 82801F", 0, 0 }, 87 { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 }, 88 { HDA_INTEL_82801G, "Intel 82801G", 0, 0 }, 89 { HDA_INTEL_82801H, "Intel 82801H", 0, 0 }, 90 { HDA_INTEL_82801I, "Intel 82801I", 0, 0 }, 91 { HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 }, 92 { HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 }, 93 { HDA_INTEL_PCH, "Intel 5 Series/3400 Series", 0, 0 }, 94 { HDA_INTEL_PCH2, "Intel 5 Series/3400 Series", 0, 0 }, 95 { HDA_INTEL_SCH, "Intel SCH", 0, 0 }, 96 { HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI }, 97 { HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI }, 98 { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 }, 99 { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 }, 100 { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 }, 101 { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 }, 102 { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 }, 103 { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 }, 104 { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 }, 105 { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 }, 106 { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 107 { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 108 { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 109 { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 110 { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 }, 111 { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 }, 112 { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 }, 113 { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 }, 114 { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 }, 115 { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 }, 116 { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 }, 117 { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 }, 118 { HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI }, 119 { HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI }, 120 { HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI }, 121 { HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI }, 122 { HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI }, 123 { HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI }, 124 { HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI }, 125 { HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI }, 126 { HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 }, 127 { HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 128 { HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 129 { HDA_ATI_SB450, "ATI SB450", 0, 0 }, 130 { HDA_ATI_SB600, "ATI SB600", 0, 0 }, 131 { HDA_ATI_RS600, "ATI RS600", 0, 0 }, 132 { HDA_ATI_RS690, "ATI RS690", 0, 0 }, 133 { HDA_ATI_RS780, "ATI RS780", 0, 0 }, 134 { HDA_ATI_R600, "ATI R600", 0, 0 }, 135 { HDA_ATI_RV610, "ATI RV610", 0, 0 }, 136 { HDA_ATI_RV620, "ATI RV620", 0, 0 }, 137 { HDA_ATI_RV630, "ATI RV630", 0, 0 }, 138 { HDA_ATI_RV635, "ATI RV635", 0, 0 }, 139 { HDA_ATI_RV710, "ATI RV710", 0, 0 }, 140 { HDA_ATI_RV730, "ATI RV730", 0, 0 }, 141 { HDA_ATI_RV740, "ATI RV740", 0, 0 }, 142 { HDA_ATI_RV770, "ATI RV770", 0, 0 }, 143 { HDA_ATI_RV810, "ATI RV810", 0, 0 }, 144 { HDA_ATI_RV830, "ATI RV830", 0, 0 }, 145 { HDA_ATI_RV840, "ATI RV840", 0, 0 }, 146 { HDA_ATI_RV870, "ATI RV870", 0, 0 }, 147 { HDA_ATI_RV910, "ATI RV910", 0, 0 }, 148 { HDA_ATI_RV930, "ATI RV930", 0, 0 }, 149 { HDA_ATI_RV940, "ATI RV940", 0, 0 }, 150 { HDA_ATI_RV970, "ATI RV970", 0, 0 }, 151 { HDA_ATI_R1000, "ATI R1000", 0, 0 }, 152 { HDA_RDC_M3010, "RDC M3010", 0, 0 }, 153 { HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 }, 154 { HDA_SIS_966, "SiS 966", 0, 0 }, 155 { HDA_ULI_M5461, "ULI M5461", 0, 0 }, 156 /* Unknown */ 157 { HDA_INTEL_ALL, "Intel", 0, 0 }, 158 { HDA_NVIDIA_ALL, "NVIDIA", 0, 0 }, 159 { HDA_ATI_ALL, "ATI", 0, 0 }, 160 { HDA_VIA_ALL, "VIA", 0, 0 }, 161 { HDA_SIS_ALL, "SiS", 0, 0 }, 162 { HDA_ULI_ALL, "ULI", 0, 0 }, 163 }; 164 #define HDAC_DEVICES_LEN (sizeof(hdac_devices) / sizeof(hdac_devices[0])) 165 166 static const struct { 167 uint16_t vendor; 168 uint8_t reg; 169 uint8_t mask; 170 uint8_t enable; 171 } hdac_pcie_snoop[] = { 172 { INTEL_VENDORID, 0x00, 0x00, 0x00 }, 173 { ATI_VENDORID, 0x42, 0xf8, 0x02 }, 174 { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, 175 }; 176 #define HDAC_PCIESNOOP_LEN \ 177 (sizeof(hdac_pcie_snoop) / sizeof(hdac_pcie_snoop[0])) 178 179 /**************************************************************************** 180 * Function prototypes 181 ****************************************************************************/ 182 static void hdac_intr_handler(void *); 183 static int hdac_reset(struct hdac_softc *, int); 184 static int hdac_get_capabilities(struct hdac_softc *); 185 static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); 186 static int hdac_dma_alloc(struct hdac_softc *, 187 struct hdac_dma *, bus_size_t); 188 static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); 189 static int hdac_mem_alloc(struct hdac_softc *); 190 static void hdac_mem_free(struct hdac_softc *); 191 static int hdac_irq_alloc(struct hdac_softc *); 192 static void hdac_irq_free(struct hdac_softc *); 193 static void hdac_corb_init(struct hdac_softc *); 194 static void hdac_rirb_init(struct hdac_softc *); 195 static void hdac_corb_start(struct hdac_softc *); 196 static void hdac_rirb_start(struct hdac_softc *); 197 198 static void hdac_attach2(void *); 199 200 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t); 201 202 static int hdac_probe(device_t); 203 static int hdac_attach(device_t); 204 static int hdac_detach(device_t); 205 static int hdac_suspend(device_t); 206 static int hdac_resume(device_t); 207 208 static int hdac_rirb_flush(struct hdac_softc *sc); 209 static int hdac_unsolq_flush(struct hdac_softc *sc); 210 211 #define hdac_command(a1, a2, a3) \ 212 hdac_send_command(a1, a3, a2) 213 214 /* This function surely going to make its way into upper level someday. */ 215 static void 216 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) 217 { 218 const char *res = NULL; 219 int i = 0, j, k, len, inv; 220 221 if (resource_string_value(device_get_name(sc->dev), 222 device_get_unit(sc->dev), "config", &res) != 0) 223 return; 224 if (!(res != NULL && strlen(res) > 0)) 225 return; 226 HDA_BOOTVERBOSE( 227 device_printf(sc->dev, "Config options:"); 228 ); 229 for (;;) { 230 while (res[i] != '\0' && 231 (res[i] == ',' || isspace(res[i]) != 0)) 232 i++; 233 if (res[i] == '\0') { 234 HDA_BOOTVERBOSE( 235 printf("\n"); 236 ); 237 return; 238 } 239 j = i; 240 while (res[j] != '\0' && 241 !(res[j] == ',' || isspace(res[j]) != 0)) 242 j++; 243 len = j - i; 244 if (len > 2 && strncmp(res + i, "no", 2) == 0) 245 inv = 2; 246 else 247 inv = 0; 248 for (k = 0; len > inv && k < HDAC_QUIRKS_TAB_LEN; k++) { 249 if (strncmp(res + i + inv, 250 hdac_quirks_tab[k].key, len - inv) != 0) 251 continue; 252 if (len - inv != strlen(hdac_quirks_tab[k].key)) 253 continue; 254 HDA_BOOTVERBOSE( 255 printf(" %s%s", (inv != 0) ? "no" : "", 256 hdac_quirks_tab[k].key); 257 ); 258 if (inv == 0) { 259 *on |= hdac_quirks_tab[k].value; 260 *on &= ~hdac_quirks_tab[k].value; 261 } else if (inv != 0) { 262 *off |= hdac_quirks_tab[k].value; 263 *off &= ~hdac_quirks_tab[k].value; 264 } 265 break; 266 } 267 i = j; 268 } 269 } 270 271 /**************************************************************************** 272 * void hdac_intr_handler(void *) 273 * 274 * Interrupt handler. Processes interrupts received from the hdac. 275 ****************************************************************************/ 276 static void 277 hdac_intr_handler(void *context) 278 { 279 struct hdac_softc *sc; 280 device_t dev; 281 uint32_t intsts; 282 uint8_t rirbsts; 283 int i; 284 285 sc = (struct hdac_softc *)context; 286 hdac_lock(sc); 287 288 /* Do we have anything to do? */ 289 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 290 if ((intsts & HDAC_INTSTS_GIS) == 0) { 291 hdac_unlock(sc); 292 return; 293 } 294 295 /* Was this a controller interrupt? */ 296 if (intsts & HDAC_INTSTS_CIS) { 297 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 298 /* Get as many responses that we can */ 299 while (rirbsts & HDAC_RIRBSTS_RINTFL) { 300 HDAC_WRITE_1(&sc->mem, 301 HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); 302 hdac_rirb_flush(sc); 303 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 304 } 305 if (sc->unsolq_rp != sc->unsolq_wp) 306 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 307 } 308 309 if (intsts & HDAC_INTSTS_SIS_MASK) { 310 for (i = 0; i < sc->num_ss; i++) { 311 if ((intsts & (1 << i)) == 0) 312 continue; 313 HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS, 314 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS ); 315 if ((dev = sc->streams[i].dev) != NULL) { 316 HDAC_STREAM_INTR(dev, 317 sc->streams[i].dir, sc->streams[i].stream); 318 } 319 } 320 } 321 322 HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts); 323 hdac_unlock(sc); 324 } 325 326 static void 327 hdac_poll_callback(void *arg) 328 { 329 struct hdac_softc *sc = arg; 330 331 if (sc == NULL) 332 return; 333 334 hdac_lock(sc); 335 if (sc->polling == 0) { 336 hdac_unlock(sc); 337 return; 338 } 339 callout_reset(&sc->poll_callout, sc->poll_ival, 340 hdac_poll_callback, sc); 341 hdac_unlock(sc); 342 343 hdac_intr_handler(sc); 344 } 345 346 /**************************************************************************** 347 * int hdac_reset(hdac_softc *, int) 348 * 349 * Reset the hdac to a quiescent and known state. 350 ****************************************************************************/ 351 static int 352 hdac_reset(struct hdac_softc *sc, int wakeup) 353 { 354 uint32_t gctl; 355 int count, i; 356 357 /* 358 * Stop all Streams DMA engine 359 */ 360 for (i = 0; i < sc->num_iss; i++) 361 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); 362 for (i = 0; i < sc->num_oss; i++) 363 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); 364 for (i = 0; i < sc->num_bss; i++) 365 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); 366 367 /* 368 * Stop Control DMA engines. 369 */ 370 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); 371 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); 372 373 /* 374 * Reset DMA position buffer. 375 */ 376 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); 377 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); 378 379 /* 380 * Reset the controller. The reset must remain asserted for 381 * a minimum of 100us. 382 */ 383 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 384 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); 385 count = 10000; 386 do { 387 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 388 if (!(gctl & HDAC_GCTL_CRST)) 389 break; 390 DELAY(10); 391 } while (--count); 392 if (gctl & HDAC_GCTL_CRST) { 393 device_printf(sc->dev, "Unable to put hdac in reset\n"); 394 return (ENXIO); 395 } 396 397 /* If wakeup is not requested - leave the controller in reset state. */ 398 if (!wakeup) 399 return (0); 400 401 DELAY(100); 402 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 403 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); 404 count = 10000; 405 do { 406 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 407 if (gctl & HDAC_GCTL_CRST) 408 break; 409 DELAY(10); 410 } while (--count); 411 if (!(gctl & HDAC_GCTL_CRST)) { 412 device_printf(sc->dev, "Device stuck in reset\n"); 413 return (ENXIO); 414 } 415 416 /* 417 * Wait for codecs to finish their own reset sequence. The delay here 418 * should be of 250us but for some reasons, on it's not enough on my 419 * computer. Let's use twice as much as necessary to make sure that 420 * it's reset properly. 421 */ 422 DELAY(1000); 423 424 return (0); 425 } 426 427 428 /**************************************************************************** 429 * int hdac_get_capabilities(struct hdac_softc *); 430 * 431 * Retreive the general capabilities of the hdac; 432 * Number of Input Streams 433 * Number of Output Streams 434 * Number of bidirectional Streams 435 * 64bit ready 436 * CORB and RIRB sizes 437 ****************************************************************************/ 438 static int 439 hdac_get_capabilities(struct hdac_softc *sc) 440 { 441 uint16_t gcap; 442 uint8_t corbsize, rirbsize; 443 444 gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); 445 sc->num_iss = HDAC_GCAP_ISS(gcap); 446 sc->num_oss = HDAC_GCAP_OSS(gcap); 447 sc->num_bss = HDAC_GCAP_BSS(gcap); 448 sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss; 449 sc->num_sdo = HDAC_GCAP_NSDO(gcap); 450 sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0; 451 if (sc->quirks_on & HDAC_QUIRK_64BIT) 452 sc->support_64bit = 1; 453 else if (sc->quirks_off & HDAC_QUIRK_64BIT) 454 sc->support_64bit = 0; 455 456 corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); 457 if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == 458 HDAC_CORBSIZE_CORBSZCAP_256) 459 sc->corb_size = 256; 460 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == 461 HDAC_CORBSIZE_CORBSZCAP_16) 462 sc->corb_size = 16; 463 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == 464 HDAC_CORBSIZE_CORBSZCAP_2) 465 sc->corb_size = 2; 466 else { 467 device_printf(sc->dev, "%s: Invalid corb size (%x)\n", 468 __func__, corbsize); 469 return (ENXIO); 470 } 471 472 rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); 473 if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == 474 HDAC_RIRBSIZE_RIRBSZCAP_256) 475 sc->rirb_size = 256; 476 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == 477 HDAC_RIRBSIZE_RIRBSZCAP_16) 478 sc->rirb_size = 16; 479 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == 480 HDAC_RIRBSIZE_RIRBSZCAP_2) 481 sc->rirb_size = 2; 482 else { 483 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", 484 __func__, rirbsize); 485 return (ENXIO); 486 } 487 488 HDA_BOOTVERBOSE( 489 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " 490 "NSDO %d%s, CORB %d, RIRB %d\n", 491 sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, 492 sc->support_64bit ? ", 64bit" : "", 493 sc->corb_size, sc->rirb_size); 494 ); 495 496 return (0); 497 } 498 499 500 /**************************************************************************** 501 * void hdac_dma_cb 502 * 503 * This function is called by bus_dmamap_load when the mapping has been 504 * established. We just record the physical address of the mapping into 505 * the struct hdac_dma passed in. 506 ****************************************************************************/ 507 static void 508 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) 509 { 510 struct hdac_dma *dma; 511 512 if (error == 0) { 513 dma = (struct hdac_dma *)callback_arg; 514 dma->dma_paddr = segs[0].ds_addr; 515 } 516 } 517 518 519 /**************************************************************************** 520 * int hdac_dma_alloc 521 * 522 * This function allocate and setup a dma region (struct hdac_dma). 523 * It must be freed by a corresponding hdac_dma_free. 524 ****************************************************************************/ 525 static int 526 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) 527 { 528 bus_size_t roundsz; 529 int result; 530 531 roundsz = roundup2(size, HDA_DMA_ALIGNMENT); 532 bzero(dma, sizeof(*dma)); 533 534 /* 535 * Create a DMA tag 536 */ 537 result = bus_dma_tag_create( 538 bus_get_dma_tag(sc->dev), /* parent */ 539 HDA_DMA_ALIGNMENT, /* alignment */ 540 0, /* boundary */ 541 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 542 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 543 BUS_SPACE_MAXADDR, /* highaddr */ 544 NULL, /* filtfunc */ 545 NULL, /* fistfuncarg */ 546 roundsz, /* maxsize */ 547 1, /* nsegments */ 548 roundsz, /* maxsegsz */ 549 0, /* flags */ 550 NULL, /* lockfunc */ 551 NULL, /* lockfuncarg */ 552 &dma->dma_tag); /* dmat */ 553 if (result != 0) { 554 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%x)\n", 555 __func__, result); 556 goto hdac_dma_alloc_fail; 557 } 558 559 /* 560 * Allocate DMA memory 561 */ 562 result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, 563 BUS_DMA_NOWAIT | BUS_DMA_ZERO | 564 ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0), 565 &dma->dma_map); 566 if (result != 0) { 567 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%x)\n", 568 __func__, result); 569 goto hdac_dma_alloc_fail; 570 } 571 572 dma->dma_size = roundsz; 573 574 /* 575 * Map the memory 576 */ 577 result = bus_dmamap_load(dma->dma_tag, dma->dma_map, 578 (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); 579 if (result != 0 || dma->dma_paddr == 0) { 580 if (result == 0) 581 result = ENOMEM; 582 device_printf(sc->dev, "%s: bus_dmamem_load failed (%x)\n", 583 __func__, result); 584 goto hdac_dma_alloc_fail; 585 } 586 587 HDA_BOOTHVERBOSE( 588 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", 589 __func__, (uintmax_t)size, (uintmax_t)roundsz); 590 ); 591 592 return (0); 593 594 hdac_dma_alloc_fail: 595 hdac_dma_free(sc, dma); 596 597 return (result); 598 } 599 600 601 /**************************************************************************** 602 * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) 603 * 604 * Free a struct dhac_dma that has been previously allocated via the 605 * hdac_dma_alloc function. 606 ****************************************************************************/ 607 static void 608 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) 609 { 610 if (dma->dma_map != NULL) { 611 #if 0 612 /* Flush caches */ 613 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 614 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 615 #endif 616 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 617 } 618 if (dma->dma_vaddr != NULL) { 619 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 620 dma->dma_vaddr = NULL; 621 } 622 dma->dma_map = NULL; 623 if (dma->dma_tag != NULL) { 624 bus_dma_tag_destroy(dma->dma_tag); 625 dma->dma_tag = NULL; 626 } 627 dma->dma_size = 0; 628 } 629 630 /**************************************************************************** 631 * int hdac_mem_alloc(struct hdac_softc *) 632 * 633 * Allocate all the bus resources necessary to speak with the physical 634 * controller. 635 ****************************************************************************/ 636 static int 637 hdac_mem_alloc(struct hdac_softc *sc) 638 { 639 struct hdac_mem *mem; 640 641 mem = &sc->mem; 642 mem->mem_rid = PCIR_BAR(0); 643 mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 644 &mem->mem_rid, RF_ACTIVE); 645 if (mem->mem_res == NULL) { 646 device_printf(sc->dev, 647 "%s: Unable to allocate memory resource\n", __func__); 648 return (ENOMEM); 649 } 650 mem->mem_tag = rman_get_bustag(mem->mem_res); 651 mem->mem_handle = rman_get_bushandle(mem->mem_res); 652 653 return (0); 654 } 655 656 /**************************************************************************** 657 * void hdac_mem_free(struct hdac_softc *) 658 * 659 * Free up resources previously allocated by hdac_mem_alloc. 660 ****************************************************************************/ 661 static void 662 hdac_mem_free(struct hdac_softc *sc) 663 { 664 struct hdac_mem *mem; 665 666 mem = &sc->mem; 667 if (mem->mem_res != NULL) 668 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, 669 mem->mem_res); 670 mem->mem_res = NULL; 671 } 672 673 /**************************************************************************** 674 * int hdac_irq_alloc(struct hdac_softc *) 675 * 676 * Allocate and setup the resources necessary for interrupt handling. 677 ****************************************************************************/ 678 static int 679 hdac_irq_alloc(struct hdac_softc *sc) 680 { 681 struct hdac_irq *irq; 682 int result; 683 684 irq = &sc->irq; 685 irq->irq_rid = 0x0; 686 687 if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 && 688 (result = pci_msi_count(sc->dev)) == 1 && 689 pci_alloc_msi(sc->dev, &result) == 0) 690 irq->irq_rid = 0x1; 691 692 irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, 693 &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); 694 if (irq->irq_res == NULL) { 695 device_printf(sc->dev, "%s: Unable to allocate irq\n", 696 __func__); 697 goto hdac_irq_alloc_fail; 698 } 699 result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, 700 NULL, hdac_intr_handler, sc, &irq->irq_handle); 701 if (result != 0) { 702 device_printf(sc->dev, 703 "%s: Unable to setup interrupt handler (%x)\n", 704 __func__, result); 705 goto hdac_irq_alloc_fail; 706 } 707 708 return (0); 709 710 hdac_irq_alloc_fail: 711 hdac_irq_free(sc); 712 713 return (ENXIO); 714 } 715 716 /**************************************************************************** 717 * void hdac_irq_free(struct hdac_softc *) 718 * 719 * Free up resources previously allocated by hdac_irq_alloc. 720 ****************************************************************************/ 721 static void 722 hdac_irq_free(struct hdac_softc *sc) 723 { 724 struct hdac_irq *irq; 725 726 irq = &sc->irq; 727 if (irq->irq_res != NULL && irq->irq_handle != NULL) 728 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); 729 if (irq->irq_res != NULL) 730 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, 731 irq->irq_res); 732 if (irq->irq_rid == 0x1) 733 pci_release_msi(sc->dev); 734 irq->irq_handle = NULL; 735 irq->irq_res = NULL; 736 irq->irq_rid = 0x0; 737 } 738 739 /**************************************************************************** 740 * void hdac_corb_init(struct hdac_softc *) 741 * 742 * Initialize the corb registers for operations but do not start it up yet. 743 * The CORB engine must not be running when this function is called. 744 ****************************************************************************/ 745 static void 746 hdac_corb_init(struct hdac_softc *sc) 747 { 748 uint8_t corbsize; 749 uint64_t corbpaddr; 750 751 /* Setup the CORB size. */ 752 switch (sc->corb_size) { 753 case 256: 754 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); 755 break; 756 case 16: 757 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); 758 break; 759 case 2: 760 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); 761 break; 762 default: 763 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); 764 } 765 HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); 766 767 /* Setup the CORB Address in the hdac */ 768 corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; 769 HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); 770 HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); 771 772 /* Set the WP and RP */ 773 sc->corb_wp = 0; 774 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 775 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); 776 /* 777 * The HDA specification indicates that the CORBRPRST bit will always 778 * read as zero. Unfortunately, it seems that at least the 82801G 779 * doesn't reset the bit to zero, which stalls the corb engine. 780 * manually reset the bit to zero before continuing. 781 */ 782 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); 783 784 /* Enable CORB error reporting */ 785 #if 0 786 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); 787 #endif 788 } 789 790 /**************************************************************************** 791 * void hdac_rirb_init(struct hdac_softc *) 792 * 793 * Initialize the rirb registers for operations but do not start it up yet. 794 * The RIRB engine must not be running when this function is called. 795 ****************************************************************************/ 796 static void 797 hdac_rirb_init(struct hdac_softc *sc) 798 { 799 uint8_t rirbsize; 800 uint64_t rirbpaddr; 801 802 /* Setup the RIRB size. */ 803 switch (sc->rirb_size) { 804 case 256: 805 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); 806 break; 807 case 16: 808 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); 809 break; 810 case 2: 811 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); 812 break; 813 default: 814 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); 815 } 816 HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); 817 818 /* Setup the RIRB Address in the hdac */ 819 rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; 820 HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); 821 HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); 822 823 /* Setup the WP and RP */ 824 sc->rirb_rp = 0; 825 HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); 826 827 /* Setup the interrupt threshold */ 828 HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); 829 830 /* Enable Overrun and response received reporting */ 831 #if 0 832 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 833 HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); 834 #else 835 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); 836 #endif 837 838 #if 0 839 /* 840 * Make sure that the Host CPU cache doesn't contain any dirty 841 * cache lines that falls in the rirb. If I understood correctly, it 842 * should be sufficient to do this only once as the rirb is purely 843 * read-only from now on. 844 */ 845 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 846 BUS_DMASYNC_PREREAD); 847 #endif 848 } 849 850 /**************************************************************************** 851 * void hdac_corb_start(hdac_softc *) 852 * 853 * Startup the corb DMA engine 854 ****************************************************************************/ 855 static void 856 hdac_corb_start(struct hdac_softc *sc) 857 { 858 uint32_t corbctl; 859 860 corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); 861 corbctl |= HDAC_CORBCTL_CORBRUN; 862 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); 863 } 864 865 /**************************************************************************** 866 * void hdac_rirb_start(hdac_softc *) 867 * 868 * Startup the rirb DMA engine 869 ****************************************************************************/ 870 static void 871 hdac_rirb_start(struct hdac_softc *sc) 872 { 873 uint32_t rirbctl; 874 875 rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); 876 rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; 877 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); 878 } 879 880 static int 881 hdac_rirb_flush(struct hdac_softc *sc) 882 { 883 struct hdac_rirb *rirb_base, *rirb; 884 nid_t cad; 885 uint32_t resp; 886 uint8_t rirbwp; 887 int ret; 888 889 rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; 890 rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); 891 #if 0 892 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 893 BUS_DMASYNC_POSTREAD); 894 #endif 895 896 ret = 0; 897 while (sc->rirb_rp != rirbwp) { 898 sc->rirb_rp++; 899 sc->rirb_rp %= sc->rirb_size; 900 rirb = &rirb_base[sc->rirb_rp]; 901 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(rirb->response_ex); 902 resp = rirb->response; 903 if (rirb->response_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { 904 sc->unsolq[sc->unsolq_wp++] = resp; 905 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 906 sc->unsolq[sc->unsolq_wp++] = cad; 907 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 908 } else if (sc->codecs[cad].pending <= 0) { 909 device_printf(sc->dev, "Unexpected unsolicited " 910 "response from address %d: %08x\n", cad, resp); 911 } else { 912 sc->codecs[cad].response = resp; 913 sc->codecs[cad].pending--; 914 } 915 ret++; 916 } 917 return (ret); 918 } 919 920 static int 921 hdac_unsolq_flush(struct hdac_softc *sc) 922 { 923 device_t child; 924 nid_t cad; 925 uint32_t resp; 926 int ret = 0; 927 928 if (sc->unsolq_st == HDAC_UNSOLQ_READY) { 929 sc->unsolq_st = HDAC_UNSOLQ_BUSY; 930 while (sc->unsolq_rp != sc->unsolq_wp) { 931 resp = sc->unsolq[sc->unsolq_rp++]; 932 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 933 cad = sc->unsolq[sc->unsolq_rp++]; 934 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 935 if ((child = sc->codecs[cad].dev) != NULL) 936 HDAC_UNSOL_INTR(child, resp); 937 ret++; 938 } 939 sc->unsolq_st = HDAC_UNSOLQ_READY; 940 } 941 942 return (ret); 943 } 944 945 /**************************************************************************** 946 * uint32_t hdac_command_sendone_internal 947 * 948 * Wrapper function that sends only one command to a given codec 949 ****************************************************************************/ 950 static uint32_t 951 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb) 952 { 953 int timeout; 954 uint32_t *corb; 955 956 if (!hdac_lockowned(sc)) 957 device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n"); 958 verb &= ~HDA_CMD_CAD_MASK; 959 verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT; 960 sc->codecs[cad].response = HDA_INVALID; 961 962 sc->codecs[cad].pending++; 963 sc->corb_wp++; 964 sc->corb_wp %= sc->corb_size; 965 corb = (uint32_t *)sc->corb_dma.dma_vaddr; 966 #if 0 967 bus_dmamap_sync(sc->corb_dma.dma_tag, 968 sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); 969 #endif 970 corb[sc->corb_wp] = verb; 971 #if 0 972 bus_dmamap_sync(sc->corb_dma.dma_tag, 973 sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); 974 #endif 975 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 976 977 timeout = 10000; 978 do { 979 if (hdac_rirb_flush(sc) == 0) 980 DELAY(10); 981 } while (sc->codecs[cad].pending != 0 && --timeout); 982 983 if (sc->codecs[cad].pending != 0) { 984 device_printf(sc->dev, "Command timeout on address %d\n", cad); 985 sc->codecs[cad].pending = 0; 986 } 987 988 if (sc->unsolq_rp != sc->unsolq_wp) 989 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 990 return (sc->codecs[cad].response); 991 } 992 993 /**************************************************************************** 994 * Device Methods 995 ****************************************************************************/ 996 997 /**************************************************************************** 998 * int hdac_probe(device_t) 999 * 1000 * Probe for the presence of an hdac. If none is found, check for a generic 1001 * match using the subclass of the device. 1002 ****************************************************************************/ 1003 static int 1004 hdac_probe(device_t dev) 1005 { 1006 int i, result; 1007 uint32_t model; 1008 uint16_t class, subclass; 1009 char desc[64]; 1010 1011 model = (uint32_t)pci_get_device(dev) << 16; 1012 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1013 class = pci_get_class(dev); 1014 subclass = pci_get_subclass(dev); 1015 1016 bzero(desc, sizeof(desc)); 1017 result = ENXIO; 1018 for (i = 0; i < HDAC_DEVICES_LEN; i++) { 1019 if (hdac_devices[i].model == model) { 1020 strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); 1021 result = BUS_PROBE_DEFAULT; 1022 break; 1023 } 1024 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1025 class == PCIC_MULTIMEDIA && 1026 subclass == PCIS_MULTIMEDIA_HDA) { 1027 snprintf(desc, sizeof(desc), 1028 "%s (0x%04x)", 1029 hdac_devices[i].desc, pci_get_device(dev)); 1030 result = BUS_PROBE_GENERIC; 1031 break; 1032 } 1033 } 1034 if (result == ENXIO && class == PCIC_MULTIMEDIA && 1035 subclass == PCIS_MULTIMEDIA_HDA) { 1036 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model); 1037 result = BUS_PROBE_GENERIC; 1038 } 1039 if (result != ENXIO) { 1040 strlcat(desc, " HDA Controller", sizeof(desc)); 1041 device_set_desc_copy(dev, desc); 1042 } 1043 1044 return (result); 1045 } 1046 1047 static void 1048 hdac_unsolq_task(void *context, int pending) 1049 { 1050 struct hdac_softc *sc; 1051 1052 sc = (struct hdac_softc *)context; 1053 1054 hdac_lock(sc); 1055 hdac_unsolq_flush(sc); 1056 hdac_unlock(sc); 1057 } 1058 1059 /**************************************************************************** 1060 * int hdac_attach(device_t) 1061 * 1062 * Attach the device into the kernel. Interrupts usually won't be enabled 1063 * when this function is called. Setup everything that doesn't require 1064 * interrupts and defer probing of codecs until interrupts are enabled. 1065 ****************************************************************************/ 1066 static int 1067 hdac_attach(device_t dev) 1068 { 1069 struct hdac_softc *sc; 1070 int result; 1071 int i, devid = -1; 1072 uint32_t model; 1073 uint16_t class, subclass; 1074 uint16_t vendor; 1075 uint8_t v; 1076 1077 sc = device_get_softc(dev); 1078 HDA_BOOTVERBOSE( 1079 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n", 1080 pci_get_subvendor(dev), pci_get_subdevice(dev)); 1081 device_printf(dev, "HDA Driver Revision: %s\n", 1082 HDA_DRV_TEST_REV); 1083 ); 1084 1085 model = (uint32_t)pci_get_device(dev) << 16; 1086 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1087 class = pci_get_class(dev); 1088 subclass = pci_get_subclass(dev); 1089 1090 for (i = 0; i < HDAC_DEVICES_LEN; i++) { 1091 if (hdac_devices[i].model == model) { 1092 devid = i; 1093 break; 1094 } 1095 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1096 class == PCIC_MULTIMEDIA && 1097 subclass == PCIS_MULTIMEDIA_HDA) { 1098 devid = i; 1099 break; 1100 } 1101 } 1102 1103 sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex"); 1104 sc->dev = dev; 1105 TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); 1106 callout_init(&sc->poll_callout, CALLOUT_MPSAFE); 1107 for (i = 0; i < HDAC_CODEC_MAX; i++) 1108 sc->codecs[i].dev = NULL; 1109 if (devid >= 0) { 1110 sc->quirks_on = hdac_devices[devid].quirks_on; 1111 sc->quirks_off = hdac_devices[devid].quirks_off; 1112 } else { 1113 sc->quirks_on = 0; 1114 sc->quirks_off = 0; 1115 } 1116 if (resource_int_value(device_get_name(dev), 1117 device_get_unit(dev), "msi", &i) == 0) { 1118 if (i == 0) 1119 sc->quirks_off |= HDAC_QUIRK_MSI; 1120 else { 1121 sc->quirks_on |= HDAC_QUIRK_MSI; 1122 sc->quirks_off |= ~HDAC_QUIRK_MSI; 1123 } 1124 } 1125 hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off); 1126 HDA_BOOTVERBOSE( 1127 device_printf(sc->dev, 1128 "Config options: on=0x%08x off=0x%08x\n", 1129 sc->quirks_on, sc->quirks_off); 1130 ); 1131 sc->poll_ival = hz; 1132 if (resource_int_value(device_get_name(dev), 1133 device_get_unit(dev), "polling", &i) == 0 && i != 0) 1134 sc->polling = 1; 1135 else 1136 sc->polling = 0; 1137 1138 pci_enable_busmaster(dev); 1139 1140 vendor = pci_get_vendor(dev); 1141 if (vendor == INTEL_VENDORID) { 1142 /* TCSEL -> TC0 */ 1143 v = pci_read_config(dev, 0x44, 1); 1144 pci_write_config(dev, 0x44, v & 0xf8, 1); 1145 HDA_BOOTHVERBOSE( 1146 device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, 1147 pci_read_config(dev, 0x44, 1)); 1148 ); 1149 } 1150 1151 #if defined(__i386__) || defined(__amd64__) 1152 sc->flags |= HDAC_F_DMA_NOCACHE; 1153 1154 if (resource_int_value(device_get_name(dev), 1155 device_get_unit(dev), "snoop", &i) == 0 && i != 0) { 1156 #else 1157 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1158 #endif 1159 /* 1160 * Try to enable PCIe snoop to avoid messing around with 1161 * uncacheable DMA attribute. Since PCIe snoop register 1162 * config is pretty much vendor specific, there are no 1163 * general solutions on how to enable it, forcing us (even 1164 * Microsoft) to enable uncacheable or write combined DMA 1165 * by default. 1166 * 1167 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx 1168 */ 1169 for (i = 0; i < HDAC_PCIESNOOP_LEN; i++) { 1170 if (hdac_pcie_snoop[i].vendor != vendor) 1171 continue; 1172 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1173 if (hdac_pcie_snoop[i].reg == 0x00) 1174 break; 1175 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1176 if ((v & hdac_pcie_snoop[i].enable) == 1177 hdac_pcie_snoop[i].enable) 1178 break; 1179 v &= hdac_pcie_snoop[i].mask; 1180 v |= hdac_pcie_snoop[i].enable; 1181 pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); 1182 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1183 if ((v & hdac_pcie_snoop[i].enable) != 1184 hdac_pcie_snoop[i].enable) { 1185 HDA_BOOTVERBOSE( 1186 device_printf(dev, 1187 "WARNING: Failed to enable PCIe " 1188 "snoop!\n"); 1189 ); 1190 #if defined(__i386__) || defined(__amd64__) 1191 sc->flags |= HDAC_F_DMA_NOCACHE; 1192 #endif 1193 } 1194 break; 1195 } 1196 #if defined(__i386__) || defined(__amd64__) 1197 } 1198 #endif 1199 1200 HDA_BOOTHVERBOSE( 1201 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", 1202 (sc->flags & HDAC_F_DMA_NOCACHE) ? 1203 "Uncacheable" : "PCIe snoop", vendor); 1204 ); 1205 1206 /* Allocate resources */ 1207 result = hdac_mem_alloc(sc); 1208 if (result != 0) 1209 goto hdac_attach_fail; 1210 result = hdac_irq_alloc(sc); 1211 if (result != 0) 1212 goto hdac_attach_fail; 1213 1214 /* Get Capabilities */ 1215 result = hdac_get_capabilities(sc); 1216 if (result != 0) 1217 goto hdac_attach_fail; 1218 1219 /* Allocate CORB, RIRB, POS and BDLs dma memory */ 1220 result = hdac_dma_alloc(sc, &sc->corb_dma, 1221 sc->corb_size * sizeof(uint32_t)); 1222 if (result != 0) 1223 goto hdac_attach_fail; 1224 result = hdac_dma_alloc(sc, &sc->rirb_dma, 1225 sc->rirb_size * sizeof(struct hdac_rirb)); 1226 if (result != 0) 1227 goto hdac_attach_fail; 1228 sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss, 1229 M_HDAC, M_ZERO | M_WAITOK); 1230 for (i = 0; i < sc->num_ss; i++) { 1231 result = hdac_dma_alloc(sc, &sc->streams[i].bdl, 1232 sizeof(struct hdac_bdle) * HDA_BDL_MAX); 1233 if (result != 0) 1234 goto hdac_attach_fail; 1235 } 1236 if (sc->quirks_on & HDAC_QUIRK_DMAPOS) { 1237 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) { 1238 HDA_BOOTVERBOSE( 1239 device_printf(dev, "Failed to " 1240 "allocate DMA pos buffer " 1241 "(non-fatal)\n"); 1242 ); 1243 } else { 1244 uint64_t addr = sc->pos_dma.dma_paddr; 1245 1246 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32); 1247 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 1248 (addr & HDAC_DPLBASE_DPLBASE_MASK) | 1249 HDAC_DPLBASE_DPLBASE_DMAPBE); 1250 } 1251 } 1252 1253 result = bus_dma_tag_create( 1254 bus_get_dma_tag(sc->dev), /* parent */ 1255 HDA_DMA_ALIGNMENT, /* alignment */ 1256 0, /* boundary */ 1257 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 1258 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1259 BUS_SPACE_MAXADDR, /* highaddr */ 1260 NULL, /* filtfunc */ 1261 NULL, /* fistfuncarg */ 1262 HDA_BUFSZ_MAX, /* maxsize */ 1263 1, /* nsegments */ 1264 HDA_BUFSZ_MAX, /* maxsegsz */ 1265 0, /* flags */ 1266 NULL, /* lockfunc */ 1267 NULL, /* lockfuncarg */ 1268 &sc->chan_dmat); /* dmat */ 1269 if (result != 0) { 1270 device_printf(dev, "%s: bus_dma_tag_create failed (%x)\n", 1271 __func__, result); 1272 goto hdac_attach_fail; 1273 } 1274 1275 /* Quiesce everything */ 1276 HDA_BOOTHVERBOSE( 1277 device_printf(dev, "Reset controller...\n"); 1278 ); 1279 hdac_reset(sc, 1); 1280 1281 /* Initialize the CORB and RIRB */ 1282 hdac_corb_init(sc); 1283 hdac_rirb_init(sc); 1284 1285 /* Defer remaining of initialization until interrupts are enabled */ 1286 sc->intrhook.ich_func = hdac_attach2; 1287 sc->intrhook.ich_arg = (void *)sc; 1288 if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { 1289 sc->intrhook.ich_func = NULL; 1290 hdac_attach2((void *)sc); 1291 } 1292 1293 return (0); 1294 1295 hdac_attach_fail: 1296 hdac_irq_free(sc); 1297 for (i = 0; i < sc->num_ss; i++) 1298 hdac_dma_free(sc, &sc->streams[i].bdl); 1299 free(sc->streams, M_HDAC); 1300 hdac_dma_free(sc, &sc->rirb_dma); 1301 hdac_dma_free(sc, &sc->corb_dma); 1302 hdac_mem_free(sc); 1303 snd_mtxfree(sc->lock); 1304 1305 return (ENXIO); 1306 } 1307 1308 static int 1309 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) 1310 { 1311 struct hdac_softc *sc; 1312 device_t *devlist; 1313 device_t dev; 1314 int devcount, i, err, val; 1315 1316 dev = oidp->oid_arg1; 1317 sc = device_get_softc(dev); 1318 if (sc == NULL) 1319 return (EINVAL); 1320 val = 0; 1321 err = sysctl_handle_int(oidp, &val, 0, req); 1322 if (err != 0 || req->newptr == NULL || val == 0) 1323 return (err); 1324 1325 /* XXX: Temporary. For debugging. */ 1326 if (val == 100) { 1327 hdac_suspend(dev); 1328 return (0); 1329 } else if (val == 101) { 1330 hdac_resume(dev); 1331 return (0); 1332 } 1333 1334 if ((err = device_get_children(dev, &devlist, &devcount)) != 0) 1335 return (err); 1336 hdac_lock(sc); 1337 for (i = 0; i < devcount; i++) 1338 HDAC_PINDUMP(devlist[i]); 1339 hdac_unlock(sc); 1340 free(devlist, M_TEMP); 1341 return (0); 1342 } 1343 1344 static int 1345 hdac_mdata_rate(uint16_t fmt) 1346 { 1347 static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 }; 1348 int rate, bits; 1349 1350 if (fmt & (1 << 14)) 1351 rate = 44100; 1352 else 1353 rate = 48000; 1354 rate *= ((fmt >> 11) & 0x07) + 1; 1355 rate /= ((fmt >> 8) & 0x07) + 1; 1356 bits = mbits[(fmt >> 4) & 0x03]; 1357 bits *= (fmt & 0x0f) + 1; 1358 return (rate * bits); 1359 } 1360 1361 static int 1362 hdac_bdata_rate(uint16_t fmt, int output) 1363 { 1364 static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; 1365 int rate, bits; 1366 1367 rate = 48000; 1368 rate *= ((fmt >> 11) & 0x07) + 1; 1369 bits = bbits[(fmt >> 4) & 0x03]; 1370 bits *= (fmt & 0x0f) + 1; 1371 if (!output) 1372 bits = ((bits + 7) & ~0x07) + 10; 1373 return (rate * bits); 1374 } 1375 1376 static void 1377 hdac_poll_reinit(struct hdac_softc *sc) 1378 { 1379 int i, pollticks, min = 1000000; 1380 struct hdac_stream *s; 1381 1382 if (sc->polling == 0) 1383 return; 1384 if (sc->unsol_registered > 0) 1385 min = hz / 2; 1386 for (i = 0; i < sc->num_ss; i++) { 1387 s = &sc->streams[i]; 1388 if (s->running == 0) 1389 continue; 1390 pollticks = ((uint64_t)hz * s->blksz) / 1391 (hdac_mdata_rate(s->format) / 8); 1392 pollticks >>= 1; 1393 if (pollticks > hz) 1394 pollticks = hz; 1395 if (pollticks < 1) { 1396 HDA_BOOTVERBOSE( 1397 device_printf(sc->dev, 1398 "poll interval < 1 tick !\n"); 1399 ); 1400 pollticks = 1; 1401 } 1402 if (min > pollticks) 1403 min = pollticks; 1404 } 1405 HDA_BOOTVERBOSE( 1406 device_printf(sc->dev, 1407 "poll interval %d -> %d ticks\n", 1408 sc->poll_ival, min); 1409 ); 1410 sc->poll_ival = min; 1411 if (min == 1000000) 1412 callout_stop(&sc->poll_callout); 1413 else 1414 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc); 1415 } 1416 1417 static int 1418 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) 1419 { 1420 struct hdac_softc *sc; 1421 device_t dev; 1422 uint32_t ctl; 1423 int err, val; 1424 1425 dev = oidp->oid_arg1; 1426 sc = device_get_softc(dev); 1427 if (sc == NULL) 1428 return (EINVAL); 1429 hdac_lock(sc); 1430 val = sc->polling; 1431 hdac_unlock(sc); 1432 err = sysctl_handle_int(oidp, &val, 0, req); 1433 1434 if (err != 0 || req->newptr == NULL) 1435 return (err); 1436 if (val < 0 || val > 1) 1437 return (EINVAL); 1438 1439 hdac_lock(sc); 1440 if (val != sc->polling) { 1441 if (val == 0) { 1442 callout_stop(&sc->poll_callout); 1443 hdac_unlock(sc); 1444 callout_drain(&sc->poll_callout); 1445 hdac_lock(sc); 1446 sc->polling = 0; 1447 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1448 ctl |= HDAC_INTCTL_GIE; 1449 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1450 } else { 1451 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1452 ctl &= ~HDAC_INTCTL_GIE; 1453 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1454 sc->polling = 1; 1455 hdac_poll_reinit(sc); 1456 } 1457 } 1458 hdac_unlock(sc); 1459 1460 return (err); 1461 } 1462 1463 static void 1464 hdac_attach2(void *arg) 1465 { 1466 struct hdac_softc *sc; 1467 device_t child; 1468 uint32_t vendorid, revisionid; 1469 int i; 1470 uint16_t statests; 1471 1472 sc = (struct hdac_softc *)arg; 1473 1474 hdac_lock(sc); 1475 1476 /* Remove ourselves from the config hooks */ 1477 if (sc->intrhook.ich_func != NULL) { 1478 config_intrhook_disestablish(&sc->intrhook); 1479 sc->intrhook.ich_func = NULL; 1480 } 1481 1482 HDA_BOOTHVERBOSE( 1483 device_printf(sc->dev, "Starting CORB Engine...\n"); 1484 ); 1485 hdac_corb_start(sc); 1486 HDA_BOOTHVERBOSE( 1487 device_printf(sc->dev, "Starting RIRB Engine...\n"); 1488 ); 1489 hdac_rirb_start(sc); 1490 HDA_BOOTHVERBOSE( 1491 device_printf(sc->dev, 1492 "Enabling controller interrupt...\n"); 1493 ); 1494 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1495 HDAC_GCTL_UNSOL); 1496 if (sc->polling == 0) { 1497 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, 1498 HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1499 } 1500 DELAY(1000); 1501 1502 HDA_BOOTHVERBOSE( 1503 device_printf(sc->dev, "Scanning HDA codecs ...\n"); 1504 ); 1505 statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); 1506 hdac_unlock(sc); 1507 for (i = 0; i < HDAC_CODEC_MAX; i++) { 1508 if (HDAC_STATESTS_SDIWAKE(statests, i)) { 1509 HDA_BOOTHVERBOSE( 1510 device_printf(sc->dev, 1511 "Found CODEC at address %d\n", i); 1512 ); 1513 hdac_lock(sc); 1514 vendorid = hdac_send_command(sc, i, 1515 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID)); 1516 revisionid = hdac_send_command(sc, i, 1517 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID)); 1518 hdac_unlock(sc); 1519 if (vendorid == HDA_INVALID && 1520 revisionid == HDA_INVALID) { 1521 device_printf(sc->dev, 1522 "CODEC is not responding!\n"); 1523 continue; 1524 } 1525 sc->codecs[i].vendor_id = 1526 HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); 1527 sc->codecs[i].device_id = 1528 HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); 1529 sc->codecs[i].revision_id = 1530 HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); 1531 sc->codecs[i].stepping_id = 1532 HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); 1533 child = device_add_child(sc->dev, "hdacc", -1); 1534 if (child == NULL) { 1535 device_printf(sc->dev, 1536 "Failed to add CODEC device\n"); 1537 continue; 1538 } 1539 device_set_ivars(child, (void *)(intptr_t)i); 1540 sc->codecs[i].dev = child; 1541 } 1542 } 1543 bus_generic_attach(sc->dev); 1544 1545 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1546 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1547 "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), 1548 sysctl_hdac_pindump, "I", "Dump pin states/data"); 1549 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1550 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1551 "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), 1552 sysctl_hdac_polling, "I", "Enable polling mode"); 1553 } 1554 1555 /**************************************************************************** 1556 * int hdac_suspend(device_t) 1557 * 1558 * Suspend and power down HDA bus and codecs. 1559 ****************************************************************************/ 1560 static int 1561 hdac_suspend(device_t dev) 1562 { 1563 struct hdac_softc *sc = device_get_softc(dev); 1564 1565 HDA_BOOTHVERBOSE( 1566 device_printf(dev, "Suspend...\n"); 1567 ); 1568 bus_generic_suspend(dev); 1569 1570 hdac_lock(sc); 1571 HDA_BOOTHVERBOSE( 1572 device_printf(dev, "Reset controller...\n"); 1573 ); 1574 callout_stop(&sc->poll_callout); 1575 hdac_reset(sc, 0); 1576 hdac_unlock(sc); 1577 callout_drain(&sc->poll_callout); 1578 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1579 HDA_BOOTHVERBOSE( 1580 device_printf(dev, "Suspend done\n"); 1581 ); 1582 return (0); 1583 } 1584 1585 /**************************************************************************** 1586 * int hdac_resume(device_t) 1587 * 1588 * Powerup and restore HDA bus and codecs state. 1589 ****************************************************************************/ 1590 static int 1591 hdac_resume(device_t dev) 1592 { 1593 struct hdac_softc *sc = device_get_softc(dev); 1594 int error; 1595 1596 HDA_BOOTHVERBOSE( 1597 device_printf(dev, "Resume...\n"); 1598 ); 1599 hdac_lock(sc); 1600 1601 /* Quiesce everything */ 1602 HDA_BOOTHVERBOSE( 1603 device_printf(dev, "Reset controller...\n"); 1604 ); 1605 hdac_reset(sc, 1); 1606 1607 /* Initialize the CORB and RIRB */ 1608 hdac_corb_init(sc); 1609 hdac_rirb_init(sc); 1610 1611 HDA_BOOTHVERBOSE( 1612 device_printf(dev, "Starting CORB Engine...\n"); 1613 ); 1614 hdac_corb_start(sc); 1615 HDA_BOOTHVERBOSE( 1616 device_printf(dev, "Starting RIRB Engine...\n"); 1617 ); 1618 hdac_rirb_start(sc); 1619 HDA_BOOTHVERBOSE( 1620 device_printf(dev, "Enabling controller interrupt...\n"); 1621 ); 1622 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1623 HDAC_GCTL_UNSOL); 1624 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1625 DELAY(1000); 1626 hdac_poll_reinit(sc); 1627 hdac_unlock(sc); 1628 1629 error = bus_generic_resume(dev); 1630 HDA_BOOTHVERBOSE( 1631 device_printf(dev, "Resume done\n"); 1632 ); 1633 return (error); 1634 } 1635 1636 /**************************************************************************** 1637 * int hdac_detach(device_t) 1638 * 1639 * Detach and free up resources utilized by the hdac device. 1640 ****************************************************************************/ 1641 static int 1642 hdac_detach(device_t dev) 1643 { 1644 struct hdac_softc *sc = device_get_softc(dev); 1645 device_t *devlist; 1646 int cad, i, devcount, error; 1647 1648 if ((error = device_get_children(dev, &devlist, &devcount)) != 0) 1649 return (error); 1650 for (i = 0; i < devcount; i++) { 1651 cad = (intptr_t)device_get_ivars(devlist[i]); 1652 if ((error = device_delete_child(dev, devlist[i])) != 0) { 1653 free(devlist, M_TEMP); 1654 return (error); 1655 } 1656 sc->codecs[cad].dev = NULL; 1657 } 1658 free(devlist, M_TEMP); 1659 1660 hdac_lock(sc); 1661 hdac_reset(sc, 0); 1662 hdac_unlock(sc); 1663 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1664 hdac_irq_free(sc); 1665 1666 for (i = 0; i < sc->num_ss; i++) 1667 hdac_dma_free(sc, &sc->streams[i].bdl); 1668 free(sc->streams, M_HDAC); 1669 hdac_dma_free(sc, &sc->pos_dma); 1670 hdac_dma_free(sc, &sc->rirb_dma); 1671 hdac_dma_free(sc, &sc->corb_dma); 1672 if (sc->chan_dmat != NULL) { 1673 bus_dma_tag_destroy(sc->chan_dmat); 1674 sc->chan_dmat = NULL; 1675 } 1676 hdac_mem_free(sc); 1677 snd_mtxfree(sc->lock); 1678 return (0); 1679 } 1680 1681 static bus_dma_tag_t 1682 hdac_get_dma_tag(device_t dev, device_t child) 1683 { 1684 struct hdac_softc *sc = device_get_softc(dev); 1685 1686 return (sc->chan_dmat); 1687 } 1688 1689 static int 1690 hdac_print_child(device_t dev, device_t child) 1691 { 1692 int retval; 1693 1694 retval = bus_print_child_header(dev, child); 1695 retval += printf(" at cad %d", 1696 (int)(intptr_t)device_get_ivars(child)); 1697 retval += bus_print_child_footer(dev, child); 1698 1699 return (retval); 1700 } 1701 1702 static int 1703 hdac_child_location_str(device_t dev, device_t child, char *buf, 1704 size_t buflen) 1705 { 1706 1707 snprintf(buf, buflen, "cad=%d", 1708 (int)(intptr_t)device_get_ivars(child)); 1709 return (0); 1710 } 1711 1712 static int 1713 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 1714 size_t buflen) 1715 { 1716 struct hdac_softc *sc = device_get_softc(dev); 1717 nid_t cad = (uintptr_t)device_get_ivars(child); 1718 1719 snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x " 1720 "stepping=0x%02x", 1721 sc->codecs[cad].vendor_id, sc->codecs[cad].device_id, 1722 sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id); 1723 return (0); 1724 } 1725 1726 static int 1727 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1728 { 1729 struct hdac_softc *sc = device_get_softc(dev); 1730 nid_t cad = (uintptr_t)device_get_ivars(child); 1731 1732 switch (which) { 1733 case HDA_IVAR_CODEC_ID: 1734 *result = cad; 1735 break; 1736 case HDA_IVAR_VENDOR_ID: 1737 *result = sc->codecs[cad].vendor_id; 1738 break; 1739 case HDA_IVAR_DEVICE_ID: 1740 *result = sc->codecs[cad].device_id; 1741 break; 1742 case HDA_IVAR_REVISION_ID: 1743 *result = sc->codecs[cad].revision_id; 1744 break; 1745 case HDA_IVAR_STEPPING_ID: 1746 *result = sc->codecs[cad].stepping_id; 1747 break; 1748 case HDA_IVAR_SUBVENDOR_ID: 1749 *result = pci_get_subvendor(dev); 1750 break; 1751 case HDA_IVAR_SUBDEVICE_ID: 1752 *result = pci_get_subdevice(dev); 1753 break; 1754 case HDA_IVAR_DMA_NOCACHE: 1755 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0; 1756 break; 1757 default: 1758 return (ENOENT); 1759 } 1760 return (0); 1761 } 1762 1763 static struct mtx * 1764 hdac_get_mtx(device_t dev, device_t child) 1765 { 1766 struct hdac_softc *sc = device_get_softc(dev); 1767 1768 return (sc->lock); 1769 } 1770 1771 static uint32_t 1772 hdac_codec_command(device_t dev, device_t child, uint32_t verb) 1773 { 1774 1775 return (hdac_send_command(device_get_softc(dev), 1776 (intptr_t)device_get_ivars(child), verb)); 1777 } 1778 1779 static int 1780 hdac_find_stream(struct hdac_softc *sc, int dir, int stream) 1781 { 1782 int i, ss; 1783 1784 ss = -1; 1785 /* Allocate ISS/BSS first. */ 1786 if (dir == 0) { 1787 for (i = 0; i < sc->num_iss; i++) { 1788 if (sc->streams[i].stream == stream) { 1789 ss = i; 1790 break; 1791 } 1792 } 1793 } else { 1794 for (i = 0; i < sc->num_oss; i++) { 1795 if (sc->streams[i + sc->num_iss].stream == stream) { 1796 ss = i + sc->num_iss; 1797 break; 1798 } 1799 } 1800 } 1801 /* Fallback to BSS. */ 1802 if (ss == -1) { 1803 for (i = 0; i < sc->num_bss; i++) { 1804 if (sc->streams[i + sc->num_iss + sc->num_oss].stream 1805 == stream) { 1806 ss = i + sc->num_iss + sc->num_oss; 1807 break; 1808 } 1809 } 1810 } 1811 return (ss); 1812 } 1813 1814 static int 1815 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, 1816 uint32_t **dmapos) 1817 { 1818 struct hdac_softc *sc = device_get_softc(dev); 1819 nid_t cad = (uintptr_t)device_get_ivars(child); 1820 int stream, ss, bw, maxbw, prevbw; 1821 1822 /* Look for empty stream. */ 1823 ss = hdac_find_stream(sc, dir, 0); 1824 1825 /* Return if found nothing. */ 1826 if (ss < 0) 1827 return (0); 1828 1829 /* Check bus bandwidth. */ 1830 bw = hdac_bdata_rate(format, dir); 1831 if (dir == 1) { 1832 bw *= 1 << (sc->num_sdo - stripe); 1833 prevbw = sc->sdo_bw_used; 1834 maxbw = 48000 * 960 * (1 << sc->num_sdo); 1835 } else { 1836 prevbw = sc->codecs[cad].sdi_bw_used; 1837 maxbw = 48000 * 464; 1838 } 1839 HDA_BOOTHVERBOSE( 1840 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n", 1841 (bw + prevbw) / 1000, maxbw / 1000, 1842 bw + prevbw > maxbw ? " -- OVERFLOW!" : ""); 1843 ); 1844 if (bw + prevbw > maxbw) 1845 return (0); 1846 if (dir == 1) 1847 sc->sdo_bw_used += bw; 1848 else 1849 sc->codecs[cad].sdi_bw_used += bw; 1850 1851 /* Allocate stream number */ 1852 if (ss >= sc->num_iss + sc->num_oss) 1853 stream = 15 - (ss - sc->num_iss + sc->num_oss); 1854 else if (ss >= sc->num_iss) 1855 stream = ss - sc->num_iss + 1; 1856 else 1857 stream = ss + 1; 1858 1859 sc->streams[ss].dev = child; 1860 sc->streams[ss].dir = dir; 1861 sc->streams[ss].stream = stream; 1862 sc->streams[ss].bw = bw; 1863 sc->streams[ss].format = format; 1864 sc->streams[ss].stripe = stripe; 1865 if (dmapos != NULL) { 1866 if (sc->pos_dma.dma_vaddr != NULL) 1867 *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8); 1868 else 1869 *dmapos = NULL; 1870 } 1871 return (stream); 1872 } 1873 1874 static void 1875 hdac_stream_free(device_t dev, device_t child, int dir, int stream) 1876 { 1877 struct hdac_softc *sc = device_get_softc(dev); 1878 nid_t cad = (uintptr_t)device_get_ivars(child); 1879 int ss; 1880 1881 ss = hdac_find_stream(sc, dir, stream); 1882 KASSERT(ss >= 0, 1883 ("Free for not allocated stream (%d/%d)\n", dir, stream)); 1884 if (dir == 1) 1885 sc->sdo_bw_used -= sc->streams[ss].bw; 1886 else 1887 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw; 1888 sc->streams[ss].stream = 0; 1889 sc->streams[ss].dev = NULL; 1890 } 1891 1892 static int 1893 hdac_stream_start(device_t dev, device_t child, 1894 int dir, int stream, bus_addr_t buf, int blksz, int blkcnt) 1895 { 1896 struct hdac_softc *sc = device_get_softc(dev); 1897 struct hdac_bdle *bdle; 1898 uint64_t addr; 1899 int i, ss, off; 1900 uint32_t ctl; 1901 1902 ss = hdac_find_stream(sc, dir, stream); 1903 KASSERT(ss >= 0, 1904 ("Start for not allocated stream (%d/%d)\n", dir, stream)); 1905 1906 addr = (uint64_t)buf; 1907 bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr; 1908 for (i = 0; i < blkcnt; i++, bdle++) { 1909 bdle->addrl = (uint32_t)addr; 1910 bdle->addrh = (uint32_t)(addr >> 32); 1911 bdle->len = blksz; 1912 bdle->ioc = 1; 1913 addr += blksz; 1914 } 1915 1916 off = ss << 5; 1917 HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt); 1918 HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1); 1919 addr = sc->streams[ss].bdl.dma_paddr; 1920 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr); 1921 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); 1922 1923 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2); 1924 if (dir) 1925 ctl |= HDAC_SDCTL2_DIR; 1926 else 1927 ctl &= ~HDAC_SDCTL2_DIR; 1928 ctl &= ~HDAC_SDCTL2_STRM_MASK; 1929 ctl |= stream << HDAC_SDCTL2_STRM_SHIFT; 1930 ctl &= ~HDAC_SDCTL2_STRIPE_MASK; 1931 ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT; 1932 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl); 1933 1934 HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format); 1935 1936 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1937 ctl |= 1 << ss; 1938 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1939 1940 HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS, 1941 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 1942 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1943 ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 1944 HDAC_SDCTL_RUN; 1945 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 1946 1947 sc->streams[ss].blksz = blksz; 1948 sc->streams[ss].running = 1; 1949 hdac_poll_reinit(sc); 1950 return (0); 1951 } 1952 1953 static void 1954 hdac_stream_stop(device_t dev, device_t child, int dir, int stream) 1955 { 1956 struct hdac_softc *sc = device_get_softc(dev); 1957 int ss, off; 1958 uint32_t ctl; 1959 1960 ss = hdac_find_stream(sc, dir, stream); 1961 KASSERT(ss >= 0, 1962 ("Stop for not allocated stream (%d/%d)\n", dir, stream)); 1963 1964 off = ss << 5; 1965 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1966 ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 1967 HDAC_SDCTL_RUN); 1968 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 1969 1970 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1971 ctl &= ~(1 << ss); 1972 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1973 1974 sc->streams[ss].running = 0; 1975 hdac_poll_reinit(sc); 1976 } 1977 1978 static void 1979 hdac_stream_reset(device_t dev, device_t child, int dir, int stream) 1980 { 1981 struct hdac_softc *sc = device_get_softc(dev); 1982 int timeout = 1000; 1983 int to = timeout; 1984 int ss, off; 1985 uint32_t ctl; 1986 1987 ss = hdac_find_stream(sc, dir, stream); 1988 KASSERT(ss >= 0, 1989 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 1990 1991 off = ss << 5; 1992 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1993 ctl |= HDAC_SDCTL_SRST; 1994 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 1995 do { 1996 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1997 if (ctl & HDAC_SDCTL_SRST) 1998 break; 1999 DELAY(10); 2000 } while (--to); 2001 if (!(ctl & HDAC_SDCTL_SRST)) 2002 device_printf(dev, "Reset setting timeout\n"); 2003 ctl &= ~HDAC_SDCTL_SRST; 2004 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2005 to = timeout; 2006 do { 2007 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2008 if (!(ctl & HDAC_SDCTL_SRST)) 2009 break; 2010 DELAY(10); 2011 } while (--to); 2012 if (ctl & HDAC_SDCTL_SRST) 2013 device_printf(dev, "Reset timeout!\n"); 2014 } 2015 2016 static uint32_t 2017 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream) 2018 { 2019 struct hdac_softc *sc = device_get_softc(dev); 2020 int ss, off; 2021 2022 ss = hdac_find_stream(sc, dir, stream); 2023 KASSERT(ss >= 0, 2024 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2025 2026 off = ss << 5; 2027 return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB)); 2028 } 2029 2030 static int 2031 hdac_unsol_alloc(device_t dev, device_t child, int tag) 2032 { 2033 struct hdac_softc *sc = device_get_softc(dev); 2034 2035 sc->unsol_registered++; 2036 hdac_poll_reinit(sc); 2037 return (tag); 2038 } 2039 2040 static void 2041 hdac_unsol_free(device_t dev, device_t child, int tag) 2042 { 2043 struct hdac_softc *sc = device_get_softc(dev); 2044 2045 sc->unsol_registered--; 2046 hdac_poll_reinit(sc); 2047 } 2048 2049 static device_method_t hdac_methods[] = { 2050 /* device interface */ 2051 DEVMETHOD(device_probe, hdac_probe), 2052 DEVMETHOD(device_attach, hdac_attach), 2053 DEVMETHOD(device_detach, hdac_detach), 2054 DEVMETHOD(device_suspend, hdac_suspend), 2055 DEVMETHOD(device_resume, hdac_resume), 2056 /* Bus interface */ 2057 DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag), 2058 DEVMETHOD(bus_print_child, hdac_print_child), 2059 DEVMETHOD(bus_child_location_str, hdac_child_location_str), 2060 DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method), 2061 DEVMETHOD(bus_read_ivar, hdac_read_ivar), 2062 DEVMETHOD(hdac_get_mtx, hdac_get_mtx), 2063 DEVMETHOD(hdac_codec_command, hdac_codec_command), 2064 DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc), 2065 DEVMETHOD(hdac_stream_free, hdac_stream_free), 2066 DEVMETHOD(hdac_stream_start, hdac_stream_start), 2067 DEVMETHOD(hdac_stream_stop, hdac_stream_stop), 2068 DEVMETHOD(hdac_stream_reset, hdac_stream_reset), 2069 DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr), 2070 DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc), 2071 DEVMETHOD(hdac_unsol_free, hdac_unsol_free), 2072 { 0, 0 } 2073 }; 2074 2075 static driver_t hdac_driver = { 2076 "hdac", 2077 hdac_methods, 2078 sizeof(struct hdac_softc), 2079 }; 2080 2081 static devclass_t hdac_devclass; 2082 2083 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, 0, 0); 2084