xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision 4cc4b5e2b5f85f136169069559108ed7fff351f9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
55 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
56 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
57 
58 #define HDAC_QUIRK_64BIT	(1 << 0)
59 #define HDAC_QUIRK_DMAPOS	(1 << 1)
60 #define HDAC_QUIRK_MSI		(1 << 2)
61 
62 static const struct {
63 	const char *key;
64 	uint32_t value;
65 } hdac_quirks_tab[] = {
66 	{ "64bit", HDAC_QUIRK_64BIT },
67 	{ "dmapos", HDAC_QUIRK_DMAPOS },
68 	{ "msi", HDAC_QUIRK_MSI },
69 };
70 
71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
72 
73 static const struct {
74 	uint32_t	model;
75 	const char	*desc;
76 	char		quirks_on;
77 	char		quirks_off;
78 } hdac_devices[] = {
79 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
80 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
81 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
82 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
83 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
84 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
85 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
87 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
88 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
89 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
90 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
92 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
93 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
94 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
95 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
96 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
97 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
98 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
99 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
100 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
101 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
102 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
103 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
104 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
105 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
106 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
107 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
108 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
109 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
110 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
111 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
112 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
113 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
114 	{ HDA_INTEL_ALLKM,   "Intel Alder Lake-M",	0, 0 },
115 	{ HDA_INTEL_ALLKN,   "Intel Alder Lake-N",	0, 0 },
116 	{ HDA_INTEL_ALLKP1,  "Intel Alder Lake-P",	0, 0 },
117 	{ HDA_INTEL_ALLKP2,  "Intel Alder Lake-P",	0, 0 },
118 	{ HDA_INTEL_ALLKPS,  "Intel Alder Lake-PS",	0, 0 },
119 	{ HDA_INTEL_RPTLK1,  "Intel Raptor Lake-P",	0, 0 },
120 	{ HDA_INTEL_RPTLK2,  "Intel Raptor Lake-P",	0, 0 },
121 	{ HDA_INTEL_MTL,     "Intel Meteor Lake-P",	0, 0 },
122 	{ HDA_INTEL_ARLS,    "Intel Arrow Lake-S",	0, 0 },
123 	{ HDA_INTEL_ARL,     "Intel Arrow Lake",	0, 0 },
124 	{ HDA_INTEL_LNLP,    "Intel Lunar Lake-P",	0, 0 },
125 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
126 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
127 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
128 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
129 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
130 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
131 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
132 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
133 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
134 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
135 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
136 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
137 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
138 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
139 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
140 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
141 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
142 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
143 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
144 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
145 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
146 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
147 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
148 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
149 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
150 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
151 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
152 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
153 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
154 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
155 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
156 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
157 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
158 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
159 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
160 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
161 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
162 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
163 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
164 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
165 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
166 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
167 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
168 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
169 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
170 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
171 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
172 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
173 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
174 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
175 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
176 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
177 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
178 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
179 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
180 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
181 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
182 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
183 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
184 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
185 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
186 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
187 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
188 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
189 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
190 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
191 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
192 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
193 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
194 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
195 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
196 	{ HDA_ATI_OLAND,     "ATI Oland",	0, 0 },
197 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
198 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
199 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
200 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
201 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
202 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
203 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
204 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
205 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
206 	{ HDA_VMWARE,        "VMware",		0, 0 },
207 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
208 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
209 	{ HDA_CREATIVE_SB1570,	"Creative SB Audigy FX", 0, HDAC_QUIRK_64BIT },
210 	/* Unknown */
211 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
212 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
213 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
214 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
215 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
216 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
217 	{ HDA_VMWARE_ALL, "VMware",		0, 0 },
218 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
219 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
220 };
221 
222 static const struct {
223 	uint16_t vendor;
224 	uint8_t reg;
225 	uint8_t mask;
226 	uint8_t enable;
227 } hdac_pcie_snoop[] = {
228 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
229 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
230 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
231 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
232 };
233 
234 /****************************************************************************
235  * Function prototypes
236  ****************************************************************************/
237 static void	hdac_intr_handler(void *);
238 static int	hdac_reset(struct hdac_softc *, bool);
239 static int	hdac_get_capabilities(struct hdac_softc *);
240 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
241 static int	hdac_dma_alloc(struct hdac_softc *,
242 					struct hdac_dma *, bus_size_t);
243 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
244 static int	hdac_mem_alloc(struct hdac_softc *);
245 static void	hdac_mem_free(struct hdac_softc *);
246 static int	hdac_irq_alloc(struct hdac_softc *);
247 static void	hdac_irq_free(struct hdac_softc *);
248 static void	hdac_corb_init(struct hdac_softc *);
249 static void	hdac_rirb_init(struct hdac_softc *);
250 static void	hdac_corb_start(struct hdac_softc *);
251 static void	hdac_rirb_start(struct hdac_softc *);
252 
253 static void	hdac_attach2(void *);
254 
255 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
256 
257 static int	hdac_probe(device_t);
258 static int	hdac_attach(device_t);
259 static int	hdac_detach(device_t);
260 static int	hdac_suspend(device_t);
261 static int	hdac_resume(device_t);
262 
263 static int	hdac_rirb_flush(struct hdac_softc *sc);
264 static int	hdac_unsolq_flush(struct hdac_softc *sc);
265 
266 /* This function surely going to make its way into upper level someday. */
267 static void
268 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
269 {
270 	const char *res = NULL;
271 	int i = 0, j, k, len, inv;
272 
273 	if (resource_string_value(device_get_name(sc->dev),
274 	    device_get_unit(sc->dev), "config", &res) != 0)
275 		return;
276 	if (!(res != NULL && strlen(res) > 0))
277 		return;
278 	HDA_BOOTVERBOSE(
279 		device_printf(sc->dev, "Config options:");
280 	);
281 	for (;;) {
282 		while (res[i] != '\0' &&
283 		    (res[i] == ',' || isspace(res[i]) != 0))
284 			i++;
285 		if (res[i] == '\0') {
286 			HDA_BOOTVERBOSE(
287 				printf("\n");
288 			);
289 			return;
290 		}
291 		j = i;
292 		while (res[j] != '\0' &&
293 		    !(res[j] == ',' || isspace(res[j]) != 0))
294 			j++;
295 		len = j - i;
296 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
297 			inv = 2;
298 		else
299 			inv = 0;
300 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
301 			if (strncmp(res + i + inv,
302 			    hdac_quirks_tab[k].key, len - inv) != 0)
303 				continue;
304 			if (len - inv != strlen(hdac_quirks_tab[k].key))
305 				continue;
306 			HDA_BOOTVERBOSE(
307 				printf(" %s%s", (inv != 0) ? "no" : "",
308 				    hdac_quirks_tab[k].key);
309 			);
310 			if (inv == 0) {
311 				*on |= hdac_quirks_tab[k].value;
312 				*off &= ~hdac_quirks_tab[k].value;
313 			} else if (inv != 0) {
314 				*off |= hdac_quirks_tab[k].value;
315 				*on &= ~hdac_quirks_tab[k].value;
316 			}
317 			break;
318 		}
319 		i = j;
320 	}
321 }
322 
323 static void
324 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
325 {
326 	device_t dev;
327 	uint8_t rirbsts;
328 	int i;
329 
330 	/* Was this a controller interrupt? */
331 	if (intsts & HDAC_INTSTS_CIS) {
332 		/*
333 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
334 		 * we will need to check and clear HDAC_STATESTS.
335 		 * That event is used to report codec status changes such as
336 		 * a reset or a wake-up event.
337 		 */
338 		/*
339 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
340 		 * will need to check and clear HDAC_CORBSTS_CMEI in
341 		 * HDAC_CORBSTS.
342 		 * That event is used to report CORB memory errors.
343 		 */
344 		/*
345 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
346 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
347 		 * HDAC_RIRBSTS.
348 		 * That event is used to report response FIFO overruns.
349 		 */
350 
351 		/* Get as many responses that we can */
352 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
353 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
354 			HDAC_WRITE_1(&sc->mem,
355 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
356 			hdac_rirb_flush(sc);
357 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
358 		}
359 		if (sc->unsolq_rp != sc->unsolq_wp)
360 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
361 	}
362 
363 	if (intsts & HDAC_INTSTS_SIS_MASK) {
364 		for (i = 0; i < sc->num_ss; i++) {
365 			if ((intsts & (1 << i)) == 0)
366 				continue;
367 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
368 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
369 			if ((dev = sc->streams[i].dev) != NULL) {
370 				HDAC_STREAM_INTR(dev,
371 				    sc->streams[i].dir, sc->streams[i].stream);
372 			}
373 		}
374 	}
375 }
376 
377 /****************************************************************************
378  * void hdac_intr_handler(void *)
379  *
380  * Interrupt handler. Processes interrupts received from the hdac.
381  ****************************************************************************/
382 static void
383 hdac_intr_handler(void *context)
384 {
385 	struct hdac_softc *sc;
386 	uint32_t intsts;
387 
388 	sc = (struct hdac_softc *)context;
389 
390 	/*
391 	 * Loop until HDAC_INTSTS_GIS gets clear.
392 	 * It is plausible that hardware interrupts a host only when GIS goes
393 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
394 	 * statuses, so it's possible that a previously cleared status gets set
395 	 * again while another status has not been cleared yet.  Thus, there
396 	 * will be no new interrupt as GIS always stayed set.  If we don't
397 	 * re-examine GIS then we can leave it set and never get an interrupt
398 	 * again.
399 	 */
400 	hdac_lock(sc);
401 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
402 	while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
403 		hdac_one_intr(sc, intsts);
404 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
405 	}
406 	hdac_unlock(sc);
407 }
408 
409 static void
410 hdac_poll_callback(void *arg)
411 {
412 	struct hdac_softc *sc = arg;
413 
414 	if (sc == NULL)
415 		return;
416 
417 	hdac_lock(sc);
418 	if (sc->polling == 0) {
419 		hdac_unlock(sc);
420 		return;
421 	}
422 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
423 	hdac_unlock(sc);
424 
425 	hdac_intr_handler(sc);
426 }
427 
428 /****************************************************************************
429  * int hdac_reset(hdac_softc *, bool)
430  *
431  * Reset the hdac to a quiescent and known state.
432  ****************************************************************************/
433 static int
434 hdac_reset(struct hdac_softc *sc, bool wakeup)
435 {
436 	uint32_t gctl;
437 	int count, i;
438 
439 	/*
440 	 * Stop all Streams DMA engine
441 	 */
442 	for (i = 0; i < sc->num_iss; i++)
443 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
444 	for (i = 0; i < sc->num_oss; i++)
445 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
446 	for (i = 0; i < sc->num_bss; i++)
447 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
448 
449 	/*
450 	 * Stop Control DMA engines.
451 	 */
452 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
453 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
454 
455 	/*
456 	 * Reset DMA position buffer.
457 	 */
458 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
459 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
460 
461 	/*
462 	 * Reset the controller. The reset must remain asserted for
463 	 * a minimum of 100us.
464 	 */
465 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
466 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
467 	count = 10000;
468 	do {
469 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
470 		if (!(gctl & HDAC_GCTL_CRST))
471 			break;
472 		DELAY(10);
473 	} while (--count);
474 	if (gctl & HDAC_GCTL_CRST) {
475 		device_printf(sc->dev, "Unable to put hdac in reset\n");
476 		return (ENXIO);
477 	}
478 
479 	/* If wakeup is not requested - leave the controller in reset state. */
480 	if (!wakeup)
481 		return (0);
482 
483 	DELAY(100);
484 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
485 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
486 	count = 10000;
487 	do {
488 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
489 		if (gctl & HDAC_GCTL_CRST)
490 			break;
491 		DELAY(10);
492 	} while (--count);
493 	if (!(gctl & HDAC_GCTL_CRST)) {
494 		device_printf(sc->dev, "Device stuck in reset\n");
495 		return (ENXIO);
496 	}
497 
498 	/*
499 	 * Wait for codecs to finish their own reset sequence. The delay here
500 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
501 	 */
502 	DELAY(1000);
503 
504 	return (0);
505 }
506 
507 /****************************************************************************
508  * int hdac_get_capabilities(struct hdac_softc *);
509  *
510  * Retreive the general capabilities of the hdac;
511  *	Number of Input Streams
512  *	Number of Output Streams
513  *	Number of bidirectional Streams
514  *	64bit ready
515  *	CORB and RIRB sizes
516  ****************************************************************************/
517 static int
518 hdac_get_capabilities(struct hdac_softc *sc)
519 {
520 	uint16_t gcap;
521 	uint8_t corbsize, rirbsize;
522 
523 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
524 	sc->num_iss = HDAC_GCAP_ISS(gcap);
525 	sc->num_oss = HDAC_GCAP_OSS(gcap);
526 	sc->num_bss = HDAC_GCAP_BSS(gcap);
527 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
528 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
529 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
530 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
531 		sc->support_64bit = 1;
532 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
533 		sc->support_64bit = 0;
534 
535 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
536 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
537 	    HDAC_CORBSIZE_CORBSZCAP_256)
538 		sc->corb_size = 256;
539 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
540 	    HDAC_CORBSIZE_CORBSZCAP_16)
541 		sc->corb_size = 16;
542 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
543 	    HDAC_CORBSIZE_CORBSZCAP_2)
544 		sc->corb_size = 2;
545 	else {
546 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
547 		    __func__, corbsize);
548 		return (ENXIO);
549 	}
550 
551 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
552 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
553 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
554 		sc->rirb_size = 256;
555 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
556 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
557 		sc->rirb_size = 16;
558 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
559 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
560 		sc->rirb_size = 2;
561 	else {
562 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
563 		    __func__, rirbsize);
564 		return (ENXIO);
565 	}
566 
567 	HDA_BOOTVERBOSE(
568 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
569 		    "NSDO %d%s, CORB %d, RIRB %d\n",
570 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
571 		    sc->support_64bit ? ", 64bit" : "",
572 		    sc->corb_size, sc->rirb_size);
573 	);
574 
575 	return (0);
576 }
577 
578 /****************************************************************************
579  * void hdac_dma_cb
580  *
581  * This function is called by bus_dmamap_load when the mapping has been
582  * established. We just record the physical address of the mapping into
583  * the struct hdac_dma passed in.
584  ****************************************************************************/
585 static void
586 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
587 {
588 	struct hdac_dma *dma;
589 
590 	if (error == 0) {
591 		dma = (struct hdac_dma *)callback_arg;
592 		dma->dma_paddr = segs[0].ds_addr;
593 	}
594 }
595 
596 /****************************************************************************
597  * int hdac_dma_alloc
598  *
599  * This function allocate and setup a dma region (struct hdac_dma).
600  * It must be freed by a corresponding hdac_dma_free.
601  ****************************************************************************/
602 static int
603 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
604 {
605 	bus_size_t roundsz;
606 	int result;
607 
608 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
609 	bzero(dma, sizeof(*dma));
610 
611 	/*
612 	 * Create a DMA tag
613 	 */
614 	result = bus_dma_tag_create(
615 	    bus_get_dma_tag(sc->dev),		/* parent */
616 	    HDA_DMA_ALIGNMENT,			/* alignment */
617 	    0,					/* boundary */
618 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
619 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
620 	    BUS_SPACE_MAXADDR,			/* highaddr */
621 	    NULL,				/* filtfunc */
622 	    NULL,				/* fistfuncarg */
623 	    roundsz,				/* maxsize */
624 	    1,					/* nsegments */
625 	    roundsz,				/* maxsegsz */
626 	    0,					/* flags */
627 	    NULL,				/* lockfunc */
628 	    NULL,				/* lockfuncarg */
629 	    &dma->dma_tag);			/* dmat */
630 	if (result != 0) {
631 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
632 		    __func__, result);
633 		goto hdac_dma_alloc_fail;
634 	}
635 
636 	/*
637 	 * Allocate DMA memory
638 	 */
639 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
640 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
641 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
642 	     BUS_DMA_COHERENT),
643 	    &dma->dma_map);
644 	if (result != 0) {
645 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
646 		    __func__, result);
647 		goto hdac_dma_alloc_fail;
648 	}
649 
650 	dma->dma_size = roundsz;
651 
652 	/*
653 	 * Map the memory
654 	 */
655 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
656 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
657 	if (result != 0 || dma->dma_paddr == 0) {
658 		if (result == 0)
659 			result = ENOMEM;
660 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
661 		    __func__, result);
662 		goto hdac_dma_alloc_fail;
663 	}
664 
665 	HDA_BOOTHVERBOSE(
666 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
667 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
668 	);
669 
670 	return (0);
671 
672 hdac_dma_alloc_fail:
673 	hdac_dma_free(sc, dma);
674 
675 	return (result);
676 }
677 
678 /****************************************************************************
679  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
680  *
681  * Free a struct hdac_dma that has been previously allocated via the
682  * hdac_dma_alloc function.
683  ****************************************************************************/
684 static void
685 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
686 {
687 	if (dma->dma_paddr != 0) {
688 		/* Flush caches */
689 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
690 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
691 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
692 		dma->dma_paddr = 0;
693 	}
694 	if (dma->dma_vaddr != NULL) {
695 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
696 		dma->dma_vaddr = NULL;
697 	}
698 	if (dma->dma_tag != NULL) {
699 		bus_dma_tag_destroy(dma->dma_tag);
700 		dma->dma_tag = NULL;
701 	}
702 	dma->dma_size = 0;
703 }
704 
705 /****************************************************************************
706  * int hdac_mem_alloc(struct hdac_softc *)
707  *
708  * Allocate all the bus resources necessary to speak with the physical
709  * controller.
710  ****************************************************************************/
711 static int
712 hdac_mem_alloc(struct hdac_softc *sc)
713 {
714 	struct hdac_mem *mem;
715 
716 	mem = &sc->mem;
717 	mem->mem_rid = PCIR_BAR(0);
718 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
719 	    &mem->mem_rid, RF_ACTIVE);
720 	if (mem->mem_res == NULL) {
721 		device_printf(sc->dev,
722 		    "%s: Unable to allocate memory resource\n", __func__);
723 		return (ENOMEM);
724 	}
725 	mem->mem_tag = rman_get_bustag(mem->mem_res);
726 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
727 
728 	return (0);
729 }
730 
731 /****************************************************************************
732  * void hdac_mem_free(struct hdac_softc *)
733  *
734  * Free up resources previously allocated by hdac_mem_alloc.
735  ****************************************************************************/
736 static void
737 hdac_mem_free(struct hdac_softc *sc)
738 {
739 	struct hdac_mem *mem;
740 
741 	mem = &sc->mem;
742 	if (mem->mem_res != NULL)
743 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
744 		    mem->mem_res);
745 	mem->mem_res = NULL;
746 }
747 
748 /****************************************************************************
749  * int hdac_irq_alloc(struct hdac_softc *)
750  *
751  * Allocate and setup the resources necessary for interrupt handling.
752  ****************************************************************************/
753 static int
754 hdac_irq_alloc(struct hdac_softc *sc)
755 {
756 	struct hdac_irq *irq;
757 	int result;
758 
759 	irq = &sc->irq;
760 	irq->irq_rid = 0x0;
761 
762 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
763 	    (result = pci_msi_count(sc->dev)) == 1 &&
764 	    pci_alloc_msi(sc->dev, &result) == 0)
765 		irq->irq_rid = 0x1;
766 
767 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
768 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
769 	if (irq->irq_res == NULL) {
770 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
771 		    __func__);
772 		goto hdac_irq_alloc_fail;
773 	}
774 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
775 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
776 	if (result != 0) {
777 		device_printf(sc->dev,
778 		    "%s: Unable to setup interrupt handler (%d)\n",
779 		    __func__, result);
780 		goto hdac_irq_alloc_fail;
781 	}
782 
783 	return (0);
784 
785 hdac_irq_alloc_fail:
786 	hdac_irq_free(sc);
787 
788 	return (ENXIO);
789 }
790 
791 /****************************************************************************
792  * void hdac_irq_free(struct hdac_softc *)
793  *
794  * Free up resources previously allocated by hdac_irq_alloc.
795  ****************************************************************************/
796 static void
797 hdac_irq_free(struct hdac_softc *sc)
798 {
799 	struct hdac_irq *irq;
800 
801 	irq = &sc->irq;
802 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
803 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
804 	if (irq->irq_res != NULL)
805 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
806 		    irq->irq_res);
807 	if (irq->irq_rid == 0x1)
808 		pci_release_msi(sc->dev);
809 	irq->irq_handle = NULL;
810 	irq->irq_res = NULL;
811 	irq->irq_rid = 0x0;
812 }
813 
814 /****************************************************************************
815  * void hdac_corb_init(struct hdac_softc *)
816  *
817  * Initialize the corb registers for operations but do not start it up yet.
818  * The CORB engine must not be running when this function is called.
819  ****************************************************************************/
820 static void
821 hdac_corb_init(struct hdac_softc *sc)
822 {
823 	uint8_t corbsize;
824 	uint64_t corbpaddr;
825 
826 	/* Setup the CORB size. */
827 	switch (sc->corb_size) {
828 	case 256:
829 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
830 		break;
831 	case 16:
832 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
833 		break;
834 	case 2:
835 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
836 		break;
837 	default:
838 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
839 	}
840 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
841 
842 	/* Setup the CORB Address in the hdac */
843 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
844 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
845 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
846 
847 	/* Set the WP and RP */
848 	sc->corb_wp = 0;
849 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
850 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
851 	/*
852 	 * The HDA specification indicates that the CORBRPRST bit will always
853 	 * read as zero. Unfortunately, it seems that at least the 82801G
854 	 * doesn't reset the bit to zero, which stalls the corb engine.
855 	 * manually reset the bit to zero before continuing.
856 	 */
857 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
858 
859 	/* Enable CORB error reporting */
860 #if 0
861 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
862 #endif
863 }
864 
865 /****************************************************************************
866  * void hdac_rirb_init(struct hdac_softc *)
867  *
868  * Initialize the rirb registers for operations but do not start it up yet.
869  * The RIRB engine must not be running when this function is called.
870  ****************************************************************************/
871 static void
872 hdac_rirb_init(struct hdac_softc *sc)
873 {
874 	uint8_t rirbsize;
875 	uint64_t rirbpaddr;
876 
877 	/* Setup the RIRB size. */
878 	switch (sc->rirb_size) {
879 	case 256:
880 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
881 		break;
882 	case 16:
883 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
884 		break;
885 	case 2:
886 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
887 		break;
888 	default:
889 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
890 	}
891 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
892 
893 	/* Setup the RIRB Address in the hdac */
894 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
895 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
896 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
897 
898 	/* Setup the WP and RP */
899 	sc->rirb_rp = 0;
900 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
901 
902 	/* Setup the interrupt threshold */
903 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
904 
905 	/* Enable Overrun and response received reporting */
906 #if 0
907 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
908 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
909 #else
910 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
911 #endif
912 
913 	/*
914 	 * Make sure that the Host CPU cache doesn't contain any dirty
915 	 * cache lines that falls in the rirb. If I understood correctly, it
916 	 * should be sufficient to do this only once as the rirb is purely
917 	 * read-only from now on.
918 	 */
919 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
920 	    BUS_DMASYNC_PREREAD);
921 }
922 
923 /****************************************************************************
924  * void hdac_corb_start(hdac_softc *)
925  *
926  * Startup the corb DMA engine
927  ****************************************************************************/
928 static void
929 hdac_corb_start(struct hdac_softc *sc)
930 {
931 	uint32_t corbctl;
932 
933 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
934 	corbctl |= HDAC_CORBCTL_CORBRUN;
935 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
936 }
937 
938 /****************************************************************************
939  * void hdac_rirb_start(hdac_softc *)
940  *
941  * Startup the rirb DMA engine
942  ****************************************************************************/
943 static void
944 hdac_rirb_start(struct hdac_softc *sc)
945 {
946 	uint32_t rirbctl;
947 
948 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
949 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
950 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
951 }
952 
953 static int
954 hdac_rirb_flush(struct hdac_softc *sc)
955 {
956 	struct hdac_rirb *rirb_base, *rirb;
957 	nid_t cad;
958 	uint32_t resp, resp_ex;
959 	uint8_t rirbwp;
960 	int ret;
961 
962 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
963 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
964 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
965 	    BUS_DMASYNC_POSTREAD);
966 
967 	ret = 0;
968 	while (sc->rirb_rp != rirbwp) {
969 		sc->rirb_rp++;
970 		sc->rirb_rp %= sc->rirb_size;
971 		rirb = &rirb_base[sc->rirb_rp];
972 		resp = le32toh(rirb->response);
973 		resp_ex = le32toh(rirb->response_ex);
974 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
975 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
976 			sc->unsolq[sc->unsolq_wp++] = resp;
977 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
978 			sc->unsolq[sc->unsolq_wp++] = cad;
979 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
980 		} else if (sc->codecs[cad].pending <= 0) {
981 			device_printf(sc->dev, "Unexpected unsolicited "
982 			    "response from address %d: %08x\n", cad, resp);
983 		} else {
984 			sc->codecs[cad].response = resp;
985 			sc->codecs[cad].pending--;
986 		}
987 		ret++;
988 	}
989 
990 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
991 	    BUS_DMASYNC_PREREAD);
992 	return (ret);
993 }
994 
995 static int
996 hdac_unsolq_flush(struct hdac_softc *sc)
997 {
998 	device_t child;
999 	nid_t cad;
1000 	uint32_t resp;
1001 	int ret = 0;
1002 
1003 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
1004 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
1005 		while (sc->unsolq_rp != sc->unsolq_wp) {
1006 			resp = sc->unsolq[sc->unsolq_rp++];
1007 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1008 			cad = sc->unsolq[sc->unsolq_rp++];
1009 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1010 			if ((child = sc->codecs[cad].dev) != NULL &&
1011 			    device_is_attached(child))
1012 				HDAC_UNSOL_INTR(child, resp);
1013 			ret++;
1014 		}
1015 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1016 	}
1017 
1018 	return (ret);
1019 }
1020 
1021 /****************************************************************************
1022  * uint32_t hdac_send_command
1023  *
1024  * Wrapper function that sends only one command to a given codec
1025  ****************************************************************************/
1026 static uint32_t
1027 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1028 {
1029 	int timeout;
1030 	uint32_t *corb;
1031 
1032 	hdac_lockassert(sc);
1033 	verb &= ~HDA_CMD_CAD_MASK;
1034 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1035 	sc->codecs[cad].response = HDA_INVALID;
1036 
1037 	sc->codecs[cad].pending++;
1038 	sc->corb_wp++;
1039 	sc->corb_wp %= sc->corb_size;
1040 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1041 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1042 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1043 	corb[sc->corb_wp] = htole32(verb);
1044 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1045 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1046 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1047 
1048 	timeout = 10000;
1049 	do {
1050 		if (hdac_rirb_flush(sc) == 0)
1051 			DELAY(10);
1052 	} while (sc->codecs[cad].pending != 0 && --timeout);
1053 
1054 	if (sc->codecs[cad].pending != 0) {
1055 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1056 		    verb, cad);
1057 		sc->codecs[cad].pending = 0;
1058 	}
1059 
1060 	if (sc->unsolq_rp != sc->unsolq_wp)
1061 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1062 	return (sc->codecs[cad].response);
1063 }
1064 
1065 /****************************************************************************
1066  * Device Methods
1067  ****************************************************************************/
1068 
1069 /****************************************************************************
1070  * int hdac_probe(device_t)
1071  *
1072  * Probe for the presence of an hdac. If none is found, check for a generic
1073  * match using the subclass of the device.
1074  ****************************************************************************/
1075 static int
1076 hdac_probe(device_t dev)
1077 {
1078 	int i, result;
1079 	uint32_t model;
1080 	uint16_t class, subclass;
1081 	char desc[64];
1082 
1083 	model = (uint32_t)pci_get_device(dev) << 16;
1084 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1085 	class = pci_get_class(dev);
1086 	subclass = pci_get_subclass(dev);
1087 
1088 	bzero(desc, sizeof(desc));
1089 	result = ENXIO;
1090 	for (i = 0; i < nitems(hdac_devices); i++) {
1091 		if (hdac_devices[i].model == model) {
1092 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1093 			result = BUS_PROBE_DEFAULT;
1094 			break;
1095 		}
1096 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1097 		    class == PCIC_MULTIMEDIA &&
1098 		    subclass == PCIS_MULTIMEDIA_HDA) {
1099 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1100 			    hdac_devices[i].desc, pci_get_device(dev));
1101 			result = BUS_PROBE_GENERIC;
1102 			break;
1103 		}
1104 	}
1105 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1106 	    subclass == PCIS_MULTIMEDIA_HDA) {
1107 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1108 		result = BUS_PROBE_GENERIC;
1109 	}
1110 	if (result != ENXIO)
1111 		device_set_descf(dev, "%s HDA Controller", desc);
1112 
1113 	return (result);
1114 }
1115 
1116 static void
1117 hdac_unsolq_task(void *context, int pending)
1118 {
1119 	struct hdac_softc *sc;
1120 
1121 	sc = (struct hdac_softc *)context;
1122 
1123 	hdac_lock(sc);
1124 	hdac_unsolq_flush(sc);
1125 	hdac_unlock(sc);
1126 }
1127 
1128 /****************************************************************************
1129  * int hdac_attach(device_t)
1130  *
1131  * Attach the device into the kernel. Interrupts usually won't be enabled
1132  * when this function is called. Setup everything that doesn't require
1133  * interrupts and defer probing of codecs until interrupts are enabled.
1134  ****************************************************************************/
1135 static int
1136 hdac_attach(device_t dev)
1137 {
1138 	struct hdac_softc *sc;
1139 	int result;
1140 	int i, devid = -1;
1141 	uint32_t model;
1142 	uint16_t class, subclass;
1143 	uint16_t vendor;
1144 	uint8_t v;
1145 
1146 	sc = device_get_softc(dev);
1147 	HDA_BOOTVERBOSE(
1148 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1149 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1150 		device_printf(dev, "HDA Driver Revision: %s\n",
1151 		    HDA_DRV_TEST_REV);
1152 	);
1153 
1154 	model = (uint32_t)pci_get_device(dev) << 16;
1155 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1156 	class = pci_get_class(dev);
1157 	subclass = pci_get_subclass(dev);
1158 
1159 	for (i = 0; i < nitems(hdac_devices); i++) {
1160 		if (hdac_devices[i].model == model) {
1161 			devid = i;
1162 			break;
1163 		}
1164 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1165 		    class == PCIC_MULTIMEDIA &&
1166 		    subclass == PCIS_MULTIMEDIA_HDA) {
1167 			devid = i;
1168 			break;
1169 		}
1170 	}
1171 
1172 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1173 	sc->dev = dev;
1174 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1175 	callout_init(&sc->poll_callout, 1);
1176 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1177 		sc->codecs[i].dev = NULL;
1178 	if (devid >= 0) {
1179 		sc->quirks_on = hdac_devices[devid].quirks_on;
1180 		sc->quirks_off = hdac_devices[devid].quirks_off;
1181 	} else {
1182 		sc->quirks_on = 0;
1183 		sc->quirks_off = 0;
1184 	}
1185 	if (resource_int_value(device_get_name(dev),
1186 	    device_get_unit(dev), "msi", &i) == 0) {
1187 		if (i == 0)
1188 			sc->quirks_off |= HDAC_QUIRK_MSI;
1189 		else {
1190 			sc->quirks_on |= HDAC_QUIRK_MSI;
1191 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1192 		}
1193 	}
1194 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1195 	HDA_BOOTVERBOSE(
1196 		device_printf(sc->dev,
1197 		    "Config options: on=0x%08x off=0x%08x\n",
1198 		    sc->quirks_on, sc->quirks_off);
1199 	);
1200 	sc->poll_ival = hz;
1201 	if (resource_int_value(device_get_name(dev),
1202 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1203 		sc->polling = 1;
1204 	else
1205 		sc->polling = 0;
1206 
1207 	pci_enable_busmaster(dev);
1208 
1209 	vendor = pci_get_vendor(dev);
1210 	if (vendor == INTEL_VENDORID) {
1211 		/* TCSEL -> TC0 */
1212 		v = pci_read_config(dev, 0x44, 1);
1213 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1214 		HDA_BOOTHVERBOSE(
1215 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1216 			    pci_read_config(dev, 0x44, 1));
1217 		);
1218 	}
1219 
1220 #if defined(__i386__) || defined(__amd64__)
1221 	sc->flags |= HDAC_F_DMA_NOCACHE;
1222 
1223 	if (resource_int_value(device_get_name(dev),
1224 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1225 #else
1226 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1227 #endif
1228 		/*
1229 		 * Try to enable PCIe snoop to avoid messing around with
1230 		 * uncacheable DMA attribute. Since PCIe snoop register
1231 		 * config is pretty much vendor specific, there are no
1232 		 * general solutions on how to enable it, forcing us (even
1233 		 * Microsoft) to enable uncacheable or write combined DMA
1234 		 * by default.
1235 		 *
1236 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1237 		 */
1238 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1239 			if (hdac_pcie_snoop[i].vendor != vendor)
1240 				continue;
1241 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1242 			if (hdac_pcie_snoop[i].reg == 0x00)
1243 				break;
1244 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1245 			if ((v & hdac_pcie_snoop[i].enable) ==
1246 			    hdac_pcie_snoop[i].enable)
1247 				break;
1248 			v &= hdac_pcie_snoop[i].mask;
1249 			v |= hdac_pcie_snoop[i].enable;
1250 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1251 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1252 			if ((v & hdac_pcie_snoop[i].enable) !=
1253 			    hdac_pcie_snoop[i].enable) {
1254 				HDA_BOOTVERBOSE(
1255 					device_printf(dev,
1256 					    "WARNING: Failed to enable PCIe "
1257 					    "snoop!\n");
1258 				);
1259 #if defined(__i386__) || defined(__amd64__)
1260 				sc->flags |= HDAC_F_DMA_NOCACHE;
1261 #endif
1262 			}
1263 			break;
1264 		}
1265 #if defined(__i386__) || defined(__amd64__)
1266 	}
1267 #endif
1268 
1269 	HDA_BOOTHVERBOSE(
1270 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1271 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1272 		    "Uncacheable" : "PCIe snoop", vendor);
1273 	);
1274 
1275 	/* Allocate resources */
1276 	result = hdac_mem_alloc(sc);
1277 	if (result != 0)
1278 		goto hdac_attach_fail;
1279 
1280 	/* Get Capabilities */
1281 	result = hdac_get_capabilities(sc);
1282 	if (result != 0)
1283 		goto hdac_attach_fail;
1284 
1285 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1286 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1287 	    sc->corb_size * sizeof(uint32_t));
1288 	if (result != 0)
1289 		goto hdac_attach_fail;
1290 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1291 	    sc->rirb_size * sizeof(struct hdac_rirb));
1292 	if (result != 0)
1293 		goto hdac_attach_fail;
1294 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1295 	    M_HDAC, M_ZERO | M_WAITOK);
1296 	for (i = 0; i < sc->num_ss; i++) {
1297 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1298 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1299 		if (result != 0)
1300 			goto hdac_attach_fail;
1301 	}
1302 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1303 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1304 			HDA_BOOTVERBOSE(
1305 				device_printf(dev, "Failed to "
1306 				    "allocate DMA pos buffer "
1307 				    "(non-fatal)\n");
1308 			);
1309 		} else {
1310 			uint64_t addr = sc->pos_dma.dma_paddr;
1311 
1312 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1313 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1314 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1315 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1316 		}
1317 	}
1318 
1319 	result = bus_dma_tag_create(
1320 	    bus_get_dma_tag(sc->dev),		/* parent */
1321 	    HDA_DMA_ALIGNMENT,			/* alignment */
1322 	    0,					/* boundary */
1323 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1324 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1325 	    BUS_SPACE_MAXADDR,			/* highaddr */
1326 	    NULL,				/* filtfunc */
1327 	    NULL,				/* fistfuncarg */
1328 	    HDA_BUFSZ_MAX,			/* maxsize */
1329 	    1,					/* nsegments */
1330 	    HDA_BUFSZ_MAX,			/* maxsegsz */
1331 	    0,					/* flags */
1332 	    NULL,				/* lockfunc */
1333 	    NULL,				/* lockfuncarg */
1334 	    &sc->chan_dmat);			/* dmat */
1335 	if (result != 0) {
1336 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1337 		     __func__, result);
1338 		goto hdac_attach_fail;
1339 	}
1340 
1341 	/* Quiesce everything */
1342 	HDA_BOOTHVERBOSE(
1343 		device_printf(dev, "Reset controller...\n");
1344 	);
1345 	hdac_reset(sc, true);
1346 
1347 	/* Initialize the CORB and RIRB */
1348 	hdac_corb_init(sc);
1349 	hdac_rirb_init(sc);
1350 
1351 	result = hdac_irq_alloc(sc);
1352 	if (result != 0)
1353 		goto hdac_attach_fail;
1354 
1355 	/* Defer remaining of initialization until interrupts are enabled */
1356 	sc->intrhook.ich_func = hdac_attach2;
1357 	sc->intrhook.ich_arg = (void *)sc;
1358 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1359 		sc->intrhook.ich_func = NULL;
1360 		hdac_attach2((void *)sc);
1361 	}
1362 
1363 	return (0);
1364 
1365 hdac_attach_fail:
1366 	hdac_irq_free(sc);
1367 	if (sc->streams != NULL)
1368 		for (i = 0; i < sc->num_ss; i++)
1369 			hdac_dma_free(sc, &sc->streams[i].bdl);
1370 	free(sc->streams, M_HDAC);
1371 	hdac_dma_free(sc, &sc->rirb_dma);
1372 	hdac_dma_free(sc, &sc->corb_dma);
1373 	hdac_mem_free(sc);
1374 	snd_mtxfree(sc->lock);
1375 
1376 	return (ENXIO);
1377 }
1378 
1379 static int
1380 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1381 {
1382 	struct hdac_softc *sc;
1383 	device_t *devlist;
1384 	device_t dev;
1385 	int devcount, i, err, val;
1386 
1387 	dev = oidp->oid_arg1;
1388 	sc = device_get_softc(dev);
1389 	if (sc == NULL)
1390 		return (EINVAL);
1391 	val = 0;
1392 	err = sysctl_handle_int(oidp, &val, 0, req);
1393 	if (err != 0 || req->newptr == NULL || val == 0)
1394 		return (err);
1395 
1396 	/* XXX: Temporary. For debugging. */
1397 	if (val == 100) {
1398 		hdac_suspend(dev);
1399 		return (0);
1400 	} else if (val == 101) {
1401 		hdac_resume(dev);
1402 		return (0);
1403 	}
1404 
1405 	bus_topo_lock();
1406 
1407 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
1408 		bus_topo_unlock();
1409 		return (err);
1410 	}
1411 
1412 	hdac_lock(sc);
1413 	for (i = 0; i < devcount; i++)
1414 		HDAC_PINDUMP(devlist[i]);
1415 	hdac_unlock(sc);
1416 
1417 	bus_topo_unlock();
1418 
1419 	free(devlist, M_TEMP);
1420 	return (0);
1421 }
1422 
1423 static int
1424 hdac_mdata_rate(uint16_t fmt)
1425 {
1426 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1427 	int rate, bits;
1428 
1429 	if (fmt & (1 << 14))
1430 		rate = 44100;
1431 	else
1432 		rate = 48000;
1433 	rate *= ((fmt >> 11) & 0x07) + 1;
1434 	rate /= ((fmt >> 8) & 0x07) + 1;
1435 	bits = mbits[(fmt >> 4) & 0x03];
1436 	bits *= (fmt & 0x0f) + 1;
1437 	return (rate * bits);
1438 }
1439 
1440 static int
1441 hdac_bdata_rate(uint16_t fmt, int output)
1442 {
1443 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1444 	int rate, bits;
1445 
1446 	rate = 48000;
1447 	rate *= ((fmt >> 11) & 0x07) + 1;
1448 	bits = bbits[(fmt >> 4) & 0x03];
1449 	bits *= (fmt & 0x0f) + 1;
1450 	if (!output)
1451 		bits = ((bits + 7) & ~0x07) + 10;
1452 	return (rate * bits);
1453 }
1454 
1455 static void
1456 hdac_poll_reinit(struct hdac_softc *sc)
1457 {
1458 	int i, pollticks, min = 1000000;
1459 	struct hdac_stream *s;
1460 
1461 	if (sc->polling == 0)
1462 		return;
1463 	if (sc->unsol_registered > 0)
1464 		min = hz / 2;
1465 	for (i = 0; i < sc->num_ss; i++) {
1466 		s = &sc->streams[i];
1467 		if (s->running == 0)
1468 			continue;
1469 		pollticks = ((uint64_t)hz * s->blksz) /
1470 		    (hdac_mdata_rate(s->format) / 8);
1471 		pollticks >>= 1;
1472 		if (pollticks > hz)
1473 			pollticks = hz;
1474 		if (pollticks < 1)
1475 			pollticks = 1;
1476 		if (min > pollticks)
1477 			min = pollticks;
1478 	}
1479 	sc->poll_ival = min;
1480 	if (min == 1000000)
1481 		callout_stop(&sc->poll_callout);
1482 	else
1483 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1484 }
1485 
1486 static int
1487 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1488 {
1489 	struct hdac_softc *sc;
1490 	device_t dev;
1491 	uint32_t ctl;
1492 	int err, val;
1493 
1494 	dev = oidp->oid_arg1;
1495 	sc = device_get_softc(dev);
1496 	if (sc == NULL)
1497 		return (EINVAL);
1498 	hdac_lock(sc);
1499 	val = sc->polling;
1500 	hdac_unlock(sc);
1501 	err = sysctl_handle_int(oidp, &val, 0, req);
1502 
1503 	if (err != 0 || req->newptr == NULL)
1504 		return (err);
1505 	if (val < 0 || val > 1)
1506 		return (EINVAL);
1507 
1508 	hdac_lock(sc);
1509 	if (val != sc->polling) {
1510 		if (val == 0) {
1511 			callout_stop(&sc->poll_callout);
1512 			hdac_unlock(sc);
1513 			callout_drain(&sc->poll_callout);
1514 			hdac_lock(sc);
1515 			sc->polling = 0;
1516 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1517 			ctl |= HDAC_INTCTL_GIE;
1518 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1519 		} else {
1520 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1521 			ctl &= ~HDAC_INTCTL_GIE;
1522 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1523 			sc->polling = 1;
1524 			hdac_poll_reinit(sc);
1525 		}
1526 	}
1527 	hdac_unlock(sc);
1528 
1529 	return (err);
1530 }
1531 
1532 static void
1533 hdac_attach2(void *arg)
1534 {
1535 	struct hdac_softc *sc;
1536 	device_t child;
1537 	uint32_t vendorid, revisionid;
1538 	int i;
1539 	uint16_t statests;
1540 
1541 	sc = (struct hdac_softc *)arg;
1542 
1543 	hdac_lock(sc);
1544 
1545 	/* Remove ourselves from the config hooks */
1546 	if (sc->intrhook.ich_func != NULL) {
1547 		config_intrhook_disestablish(&sc->intrhook);
1548 		sc->intrhook.ich_func = NULL;
1549 	}
1550 
1551 	HDA_BOOTHVERBOSE(
1552 		device_printf(sc->dev, "Starting CORB Engine...\n");
1553 	);
1554 	hdac_corb_start(sc);
1555 	HDA_BOOTHVERBOSE(
1556 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1557 	);
1558 	hdac_rirb_start(sc);
1559 
1560 	/*
1561 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1562 	 * (status change) interrupts.  The documentation says that we
1563 	 * should not make any assumptions about the state of this register
1564 	 * and set it explicitly.
1565 	 * NB: this needs to be done before the interrupt is enabled as
1566 	 * the handler does not expect this interrupt source.
1567 	 */
1568 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1569 
1570 	/*
1571 	 * Read and clear post-reset SDI wake status.
1572 	 * Each set bit corresponds to a codec that came out of reset.
1573 	 */
1574 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1575 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1576 
1577 	HDA_BOOTHVERBOSE(
1578 		device_printf(sc->dev,
1579 		    "Enabling controller interrupt...\n");
1580 	);
1581 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1582 	    HDAC_GCTL_UNSOL);
1583 	if (sc->polling == 0) {
1584 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1585 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1586 	}
1587 	DELAY(1000);
1588 
1589 	HDA_BOOTHVERBOSE(
1590 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1591 	);
1592 	hdac_unlock(sc);
1593 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1594 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1595 			HDA_BOOTHVERBOSE(
1596 				device_printf(sc->dev,
1597 				    "Found CODEC at address %d\n", i);
1598 			);
1599 			hdac_lock(sc);
1600 			vendorid = hdac_send_command(sc, i,
1601 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1602 			revisionid = hdac_send_command(sc, i,
1603 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1604 			hdac_unlock(sc);
1605 			if (vendorid == HDA_INVALID &&
1606 			    revisionid == HDA_INVALID) {
1607 				device_printf(sc->dev,
1608 				    "CODEC at address %d not responding!\n", i);
1609 				continue;
1610 			}
1611 			sc->codecs[i].vendor_id =
1612 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1613 			sc->codecs[i].device_id =
1614 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1615 			sc->codecs[i].revision_id =
1616 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1617 			sc->codecs[i].stepping_id =
1618 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1619 			child = device_add_child(sc->dev, "hdacc", -1);
1620 			if (child == NULL) {
1621 				device_printf(sc->dev,
1622 				    "Failed to add CODEC device\n");
1623 				continue;
1624 			}
1625 			device_set_ivars(child, (void *)(intptr_t)i);
1626 			sc->codecs[i].dev = child;
1627 		}
1628 	}
1629 	bus_generic_attach(sc->dev);
1630 
1631 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1632 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1633 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1634 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1635 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1636 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1637 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1638 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1639 }
1640 
1641 /****************************************************************************
1642  * int hdac_suspend(device_t)
1643  *
1644  * Suspend and power down HDA bus and codecs.
1645  ****************************************************************************/
1646 static int
1647 hdac_suspend(device_t dev)
1648 {
1649 	struct hdac_softc *sc = device_get_softc(dev);
1650 
1651 	HDA_BOOTHVERBOSE(
1652 		device_printf(dev, "Suspend...\n");
1653 	);
1654 	bus_generic_suspend(dev);
1655 
1656 	hdac_lock(sc);
1657 	HDA_BOOTHVERBOSE(
1658 		device_printf(dev, "Reset controller...\n");
1659 	);
1660 	callout_stop(&sc->poll_callout);
1661 	hdac_reset(sc, false);
1662 	hdac_unlock(sc);
1663 	callout_drain(&sc->poll_callout);
1664 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1665 	HDA_BOOTHVERBOSE(
1666 		device_printf(dev, "Suspend done\n");
1667 	);
1668 	return (0);
1669 }
1670 
1671 /****************************************************************************
1672  * int hdac_resume(device_t)
1673  *
1674  * Powerup and restore HDA bus and codecs state.
1675  ****************************************************************************/
1676 static int
1677 hdac_resume(device_t dev)
1678 {
1679 	struct hdac_softc *sc = device_get_softc(dev);
1680 	int error;
1681 
1682 	HDA_BOOTHVERBOSE(
1683 		device_printf(dev, "Resume...\n");
1684 	);
1685 	hdac_lock(sc);
1686 
1687 	/* Quiesce everything */
1688 	HDA_BOOTHVERBOSE(
1689 		device_printf(dev, "Reset controller...\n");
1690 	);
1691 	hdac_reset(sc, true);
1692 
1693 	/* Initialize the CORB and RIRB */
1694 	hdac_corb_init(sc);
1695 	hdac_rirb_init(sc);
1696 
1697 	HDA_BOOTHVERBOSE(
1698 		device_printf(dev, "Starting CORB Engine...\n");
1699 	);
1700 	hdac_corb_start(sc);
1701 	HDA_BOOTHVERBOSE(
1702 		device_printf(dev, "Starting RIRB Engine...\n");
1703 	);
1704 	hdac_rirb_start(sc);
1705 
1706 	/*
1707 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1708 	 * (status change) events.  The documentation says that we should
1709 	 * not make any assumptions about the state of this register and
1710 	 * set it explicitly.
1711 	 * Also, clear HDAC_STATESTS.
1712 	 * NB: this needs to be done before the interrupt is enabled as
1713 	 * the handler does not expect this interrupt source.
1714 	 */
1715 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1716 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1717 
1718 	HDA_BOOTHVERBOSE(
1719 		device_printf(dev, "Enabling controller interrupt...\n");
1720 	);
1721 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1722 	    HDAC_GCTL_UNSOL);
1723 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1724 	DELAY(1000);
1725 	hdac_poll_reinit(sc);
1726 	hdac_unlock(sc);
1727 
1728 	error = bus_generic_resume(dev);
1729 	HDA_BOOTHVERBOSE(
1730 		device_printf(dev, "Resume done\n");
1731 	);
1732 	return (error);
1733 }
1734 
1735 /****************************************************************************
1736  * int hdac_detach(device_t)
1737  *
1738  * Detach and free up resources utilized by the hdac device.
1739  ****************************************************************************/
1740 static int
1741 hdac_detach(device_t dev)
1742 {
1743 	struct hdac_softc *sc = device_get_softc(dev);
1744 	device_t *devlist;
1745 	int cad, i, devcount, error;
1746 
1747 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1748 		return (error);
1749 	for (i = 0; i < devcount; i++) {
1750 		cad = (intptr_t)device_get_ivars(devlist[i]);
1751 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1752 			free(devlist, M_TEMP);
1753 			return (error);
1754 		}
1755 		sc->codecs[cad].dev = NULL;
1756 	}
1757 	free(devlist, M_TEMP);
1758 
1759 	hdac_lock(sc);
1760 	hdac_reset(sc, false);
1761 	hdac_unlock(sc);
1762 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1763 	hdac_irq_free(sc);
1764 
1765 	for (i = 0; i < sc->num_ss; i++)
1766 		hdac_dma_free(sc, &sc->streams[i].bdl);
1767 	free(sc->streams, M_HDAC);
1768 	hdac_dma_free(sc, &sc->pos_dma);
1769 	hdac_dma_free(sc, &sc->rirb_dma);
1770 	hdac_dma_free(sc, &sc->corb_dma);
1771 	if (sc->chan_dmat != NULL) {
1772 		bus_dma_tag_destroy(sc->chan_dmat);
1773 		sc->chan_dmat = NULL;
1774 	}
1775 	hdac_mem_free(sc);
1776 	snd_mtxfree(sc->lock);
1777 	return (0);
1778 }
1779 
1780 static bus_dma_tag_t
1781 hdac_get_dma_tag(device_t dev, device_t child)
1782 {
1783 	struct hdac_softc *sc = device_get_softc(dev);
1784 
1785 	return (sc->chan_dmat);
1786 }
1787 
1788 static int
1789 hdac_print_child(device_t dev, device_t child)
1790 {
1791 	int retval;
1792 
1793 	retval = bus_print_child_header(dev, child);
1794 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1795 	retval += bus_print_child_footer(dev, child);
1796 
1797 	return (retval);
1798 }
1799 
1800 static int
1801 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
1802 {
1803 
1804 	sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1805 	return (0);
1806 }
1807 
1808 static int
1809 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
1810 {
1811 	struct hdac_softc *sc = device_get_softc(dev);
1812 	nid_t cad = (uintptr_t)device_get_ivars(child);
1813 
1814 	sbuf_printf(sb,
1815 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1816 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1817 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1818 	return (0);
1819 }
1820 
1821 static int
1822 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1823 {
1824 	struct hdac_softc *sc = device_get_softc(dev);
1825 	nid_t cad = (uintptr_t)device_get_ivars(child);
1826 
1827 	switch (which) {
1828 	case HDA_IVAR_CODEC_ID:
1829 		*result = cad;
1830 		break;
1831 	case HDA_IVAR_VENDOR_ID:
1832 		*result = sc->codecs[cad].vendor_id;
1833 		break;
1834 	case HDA_IVAR_DEVICE_ID:
1835 		*result = sc->codecs[cad].device_id;
1836 		break;
1837 	case HDA_IVAR_REVISION_ID:
1838 		*result = sc->codecs[cad].revision_id;
1839 		break;
1840 	case HDA_IVAR_STEPPING_ID:
1841 		*result = sc->codecs[cad].stepping_id;
1842 		break;
1843 	case HDA_IVAR_SUBVENDOR_ID:
1844 		*result = pci_get_subvendor(dev);
1845 		break;
1846 	case HDA_IVAR_SUBDEVICE_ID:
1847 		*result = pci_get_subdevice(dev);
1848 		break;
1849 	case HDA_IVAR_DMA_NOCACHE:
1850 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1851 		break;
1852 	case HDA_IVAR_STRIPES_MASK:
1853 		*result = (1 << (1 << sc->num_sdo)) - 1;
1854 		break;
1855 	default:
1856 		return (ENOENT);
1857 	}
1858 	return (0);
1859 }
1860 
1861 static struct mtx *
1862 hdac_get_mtx(device_t dev, device_t child)
1863 {
1864 	struct hdac_softc *sc = device_get_softc(dev);
1865 
1866 	return (sc->lock);
1867 }
1868 
1869 static uint32_t
1870 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1871 {
1872 
1873 	return (hdac_send_command(device_get_softc(dev),
1874 	    (intptr_t)device_get_ivars(child), verb));
1875 }
1876 
1877 static int
1878 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1879 {
1880 	int i, ss;
1881 
1882 	ss = -1;
1883 	/* Allocate ISS/OSS first. */
1884 	if (dir == 0) {
1885 		for (i = 0; i < sc->num_iss; i++) {
1886 			if (sc->streams[i].stream == stream) {
1887 				ss = i;
1888 				break;
1889 			}
1890 		}
1891 	} else {
1892 		for (i = 0; i < sc->num_oss; i++) {
1893 			if (sc->streams[i + sc->num_iss].stream == stream) {
1894 				ss = i + sc->num_iss;
1895 				break;
1896 			}
1897 		}
1898 	}
1899 	/* Fallback to BSS. */
1900 	if (ss == -1) {
1901 		for (i = 0; i < sc->num_bss; i++) {
1902 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1903 			    == stream) {
1904 				ss = i + sc->num_iss + sc->num_oss;
1905 				break;
1906 			}
1907 		}
1908 	}
1909 	return (ss);
1910 }
1911 
1912 static int
1913 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1914     uint32_t **dmapos)
1915 {
1916 	struct hdac_softc *sc = device_get_softc(dev);
1917 	nid_t cad = (uintptr_t)device_get_ivars(child);
1918 	int stream, ss, bw, maxbw, prevbw;
1919 
1920 	/* Look for empty stream. */
1921 	ss = hdac_find_stream(sc, dir, 0);
1922 
1923 	/* Return if found nothing. */
1924 	if (ss < 0)
1925 		return (0);
1926 
1927 	/* Check bus bandwidth. */
1928 	bw = hdac_bdata_rate(format, dir);
1929 	if (dir == 1) {
1930 		bw *= 1 << (sc->num_sdo - stripe);
1931 		prevbw = sc->sdo_bw_used;
1932 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1933 	} else {
1934 		prevbw = sc->codecs[cad].sdi_bw_used;
1935 		maxbw = 48000 * 464;
1936 	}
1937 	HDA_BOOTHVERBOSE(
1938 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1939 		    (bw + prevbw) / 1000, maxbw / 1000,
1940 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1941 	);
1942 	if (bw + prevbw > maxbw)
1943 		return (0);
1944 	if (dir == 1)
1945 		sc->sdo_bw_used += bw;
1946 	else
1947 		sc->codecs[cad].sdi_bw_used += bw;
1948 
1949 	/* Allocate stream number */
1950 	if (ss >= sc->num_iss + sc->num_oss)
1951 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1952 	else if (ss >= sc->num_iss)
1953 		stream = ss - sc->num_iss + 1;
1954 	else
1955 		stream = ss + 1;
1956 
1957 	sc->streams[ss].dev = child;
1958 	sc->streams[ss].dir = dir;
1959 	sc->streams[ss].stream = stream;
1960 	sc->streams[ss].bw = bw;
1961 	sc->streams[ss].format = format;
1962 	sc->streams[ss].stripe = stripe;
1963 	if (dmapos != NULL) {
1964 		if (sc->pos_dma.dma_vaddr != NULL)
1965 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1966 		else
1967 			*dmapos = NULL;
1968 	}
1969 	return (stream);
1970 }
1971 
1972 static void
1973 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1974 {
1975 	struct hdac_softc *sc = device_get_softc(dev);
1976 	nid_t cad = (uintptr_t)device_get_ivars(child);
1977 	int ss;
1978 
1979 	ss = hdac_find_stream(sc, dir, stream);
1980 	KASSERT(ss >= 0,
1981 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1982 	if (dir == 1)
1983 		sc->sdo_bw_used -= sc->streams[ss].bw;
1984 	else
1985 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1986 	sc->streams[ss].stream = 0;
1987 	sc->streams[ss].dev = NULL;
1988 }
1989 
1990 static int
1991 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1992     bus_addr_t buf, int blksz, int blkcnt)
1993 {
1994 	struct hdac_softc *sc = device_get_softc(dev);
1995 	struct hdac_bdle *bdle;
1996 	uint64_t addr;
1997 	int i, ss, off;
1998 	uint32_t ctl;
1999 
2000 	ss = hdac_find_stream(sc, dir, stream);
2001 	KASSERT(ss >= 0,
2002 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
2003 
2004 	addr = (uint64_t)buf;
2005 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
2006 	for (i = 0; i < blkcnt; i++, bdle++) {
2007 		bdle->addrl = htole32((uint32_t)addr);
2008 		bdle->addrh = htole32((uint32_t)(addr >> 32));
2009 		bdle->len = htole32(blksz);
2010 		bdle->ioc = htole32(1);
2011 		addr += blksz;
2012 	}
2013 
2014 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2015 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
2016 
2017 	off = ss << 5;
2018 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
2019 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
2020 	addr = sc->streams[ss].bdl.dma_paddr;
2021 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2022 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2023 
2024 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2025 	if (dir)
2026 		ctl |= HDAC_SDCTL2_DIR;
2027 	else
2028 		ctl &= ~HDAC_SDCTL2_DIR;
2029 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2030 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2031 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2032 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2033 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2034 
2035 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2036 
2037 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2038 	ctl |= 1 << ss;
2039 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2040 
2041 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2042 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2043 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2044 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2045 	    HDAC_SDCTL_RUN;
2046 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2047 
2048 	sc->streams[ss].blksz = blksz;
2049 	sc->streams[ss].running = 1;
2050 	hdac_poll_reinit(sc);
2051 	return (0);
2052 }
2053 
2054 static void
2055 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2056 {
2057 	struct hdac_softc *sc = device_get_softc(dev);
2058 	int ss, off;
2059 	uint32_t ctl;
2060 
2061 	ss = hdac_find_stream(sc, dir, stream);
2062 	KASSERT(ss >= 0,
2063 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2064 
2065 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2066 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2067 
2068 	off = ss << 5;
2069 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2070 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2071 	    HDAC_SDCTL_RUN);
2072 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2073 
2074 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2075 	ctl &= ~(1 << ss);
2076 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2077 
2078 	sc->streams[ss].running = 0;
2079 	hdac_poll_reinit(sc);
2080 }
2081 
2082 static void
2083 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2084 {
2085 	struct hdac_softc *sc = device_get_softc(dev);
2086 	int timeout = 1000;
2087 	int to = timeout;
2088 	int ss, off;
2089 	uint32_t ctl;
2090 
2091 	ss = hdac_find_stream(sc, dir, stream);
2092 	KASSERT(ss >= 0,
2093 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2094 
2095 	off = ss << 5;
2096 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2097 	ctl |= HDAC_SDCTL_SRST;
2098 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2099 	do {
2100 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2101 		if (ctl & HDAC_SDCTL_SRST)
2102 			break;
2103 		DELAY(10);
2104 	} while (--to);
2105 	if (!(ctl & HDAC_SDCTL_SRST))
2106 		device_printf(dev, "Reset setting timeout\n");
2107 	ctl &= ~HDAC_SDCTL_SRST;
2108 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2109 	to = timeout;
2110 	do {
2111 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2112 		if (!(ctl & HDAC_SDCTL_SRST))
2113 			break;
2114 		DELAY(10);
2115 	} while (--to);
2116 	if (ctl & HDAC_SDCTL_SRST)
2117 		device_printf(dev, "Reset timeout!\n");
2118 }
2119 
2120 static uint32_t
2121 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2122 {
2123 	struct hdac_softc *sc = device_get_softc(dev);
2124 	int ss, off;
2125 
2126 	ss = hdac_find_stream(sc, dir, stream);
2127 	KASSERT(ss >= 0,
2128 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2129 
2130 	off = ss << 5;
2131 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2132 }
2133 
2134 static int
2135 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2136 {
2137 	struct hdac_softc *sc = device_get_softc(dev);
2138 
2139 	sc->unsol_registered++;
2140 	hdac_poll_reinit(sc);
2141 	return (tag);
2142 }
2143 
2144 static void
2145 hdac_unsol_free(device_t dev, device_t child, int tag)
2146 {
2147 	struct hdac_softc *sc = device_get_softc(dev);
2148 
2149 	sc->unsol_registered--;
2150 	hdac_poll_reinit(sc);
2151 }
2152 
2153 static device_method_t hdac_methods[] = {
2154 	/* device interface */
2155 	DEVMETHOD(device_probe,		hdac_probe),
2156 	DEVMETHOD(device_attach,	hdac_attach),
2157 	DEVMETHOD(device_detach,	hdac_detach),
2158 	DEVMETHOD(device_suspend,	hdac_suspend),
2159 	DEVMETHOD(device_resume,	hdac_resume),
2160 	/* Bus interface */
2161 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2162 	DEVMETHOD(bus_print_child,	hdac_print_child),
2163 	DEVMETHOD(bus_child_location,	hdac_child_location),
2164 	DEVMETHOD(bus_child_pnpinfo,	hdac_child_pnpinfo_method),
2165 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2166 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2167 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2168 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2169 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2170 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2171 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2172 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2173 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2174 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2175 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2176 	DEVMETHOD_END
2177 };
2178 
2179 static driver_t hdac_driver = {
2180 	"hdac",
2181 	hdac_methods,
2182 	sizeof(struct hdac_softc),
2183 };
2184 
2185 DRIVER_MODULE(snd_hda, pci, hdac_driver, NULL, NULL);
2186