xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 #define hdac_lockowned(sc)	mtx_owned((sc)->lock)
60 
61 #define HDAC_QUIRK_64BIT	(1 << 0)
62 #define HDAC_QUIRK_DMAPOS	(1 << 1)
63 #define HDAC_QUIRK_MSI		(1 << 2)
64 
65 static const struct {
66 	const char *key;
67 	uint32_t value;
68 } hdac_quirks_tab[] = {
69 	{ "64bit", HDAC_QUIRK_DMAPOS },
70 	{ "dmapos", HDAC_QUIRK_DMAPOS },
71 	{ "msi", HDAC_QUIRK_MSI },
72 };
73 
74 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
75 
76 static const struct {
77 	uint32_t	model;
78 	const char	*desc;
79 	char		quirks_on;
80 	char		quirks_off;
81 } hdac_devices[] = {
82 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
83 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
84 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
85 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
88 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
90 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
92 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
93 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
94 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
95 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
96 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
97 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
98 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
99 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
100 	{ HDA_INTEL_KBLKLP,  "Intel Kabylake-LP",	0, 0 },
101 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
102 	{ HDA_INTEL_KBLK,    "Intel Kabylake",	0, 0 },
103 	{ HDA_INTEL_KBLKH,   "Intel Kabylake-H",	0, 0 },
104 	{ HDA_INTEL_CFLK,    "Intel Coffelake",	0, 0 },
105 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
106 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
107 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
108 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
109 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
110 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
111 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
112 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
113 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
114 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
115 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
116 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
117 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
118 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
119 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
120 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
121 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
122 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
123 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
124 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
125 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
126 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
127 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
128 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
129 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
130 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
131 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
132 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
133 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
134 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
135 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
136 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
137 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
138 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
139 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
140 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
141 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
142 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
143 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
144 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
145 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
146 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
147 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
148 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
149 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
150 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
151 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
152 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
153 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
154 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
155 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
156 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
157 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
158 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
159 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
160 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
161 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
162 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
163 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
164 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
165 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
166 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
167 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
168 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
169 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
170 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
171 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
172 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
173 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
174 	{ HDA_SIS_966,       "SiS 966",		0, 0 },
175 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
176 	/* Unknown */
177 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
178 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
179 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
180 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
181 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
182 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
183 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
184 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
185 };
186 
187 static const struct {
188 	uint16_t vendor;
189 	uint8_t reg;
190 	uint8_t mask;
191 	uint8_t enable;
192 } hdac_pcie_snoop[] = {
193 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
194 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
195 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
196 };
197 
198 /****************************************************************************
199  * Function prototypes
200  ****************************************************************************/
201 static void	hdac_intr_handler(void *);
202 static int	hdac_reset(struct hdac_softc *, int);
203 static int	hdac_get_capabilities(struct hdac_softc *);
204 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
205 static int	hdac_dma_alloc(struct hdac_softc *,
206 					struct hdac_dma *, bus_size_t);
207 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
208 static int	hdac_mem_alloc(struct hdac_softc *);
209 static void	hdac_mem_free(struct hdac_softc *);
210 static int	hdac_irq_alloc(struct hdac_softc *);
211 static void	hdac_irq_free(struct hdac_softc *);
212 static void	hdac_corb_init(struct hdac_softc *);
213 static void	hdac_rirb_init(struct hdac_softc *);
214 static void	hdac_corb_start(struct hdac_softc *);
215 static void	hdac_rirb_start(struct hdac_softc *);
216 
217 static void	hdac_attach2(void *);
218 
219 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
220 
221 static int	hdac_probe(device_t);
222 static int	hdac_attach(device_t);
223 static int	hdac_detach(device_t);
224 static int	hdac_suspend(device_t);
225 static int	hdac_resume(device_t);
226 
227 static int	hdac_rirb_flush(struct hdac_softc *sc);
228 static int	hdac_unsolq_flush(struct hdac_softc *sc);
229 
230 #define hdac_command(a1, a2, a3)	\
231 		hdac_send_command(a1, a3, a2)
232 
233 /* This function surely going to make its way into upper level someday. */
234 static void
235 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
236 {
237 	const char *res = NULL;
238 	int i = 0, j, k, len, inv;
239 
240 	if (resource_string_value(device_get_name(sc->dev),
241 	    device_get_unit(sc->dev), "config", &res) != 0)
242 		return;
243 	if (!(res != NULL && strlen(res) > 0))
244 		return;
245 	HDA_BOOTVERBOSE(
246 		device_printf(sc->dev, "Config options:");
247 	);
248 	for (;;) {
249 		while (res[i] != '\0' &&
250 		    (res[i] == ',' || isspace(res[i]) != 0))
251 			i++;
252 		if (res[i] == '\0') {
253 			HDA_BOOTVERBOSE(
254 				printf("\n");
255 			);
256 			return;
257 		}
258 		j = i;
259 		while (res[j] != '\0' &&
260 		    !(res[j] == ',' || isspace(res[j]) != 0))
261 			j++;
262 		len = j - i;
263 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
264 			inv = 2;
265 		else
266 			inv = 0;
267 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
268 			if (strncmp(res + i + inv,
269 			    hdac_quirks_tab[k].key, len - inv) != 0)
270 				continue;
271 			if (len - inv != strlen(hdac_quirks_tab[k].key))
272 				continue;
273 			HDA_BOOTVERBOSE(
274 				printf(" %s%s", (inv != 0) ? "no" : "",
275 				    hdac_quirks_tab[k].key);
276 			);
277 			if (inv == 0) {
278 				*on |= hdac_quirks_tab[k].value;
279 				*on &= ~hdac_quirks_tab[k].value;
280 			} else if (inv != 0) {
281 				*off |= hdac_quirks_tab[k].value;
282 				*off &= ~hdac_quirks_tab[k].value;
283 			}
284 			break;
285 		}
286 		i = j;
287 	}
288 }
289 
290 /****************************************************************************
291  * void hdac_intr_handler(void *)
292  *
293  * Interrupt handler. Processes interrupts received from the hdac.
294  ****************************************************************************/
295 static void
296 hdac_intr_handler(void *context)
297 {
298 	struct hdac_softc *sc;
299 	device_t dev;
300 	uint32_t intsts;
301 	uint8_t rirbsts;
302 	int i;
303 
304 	sc = (struct hdac_softc *)context;
305 	hdac_lock(sc);
306 
307 	/* Do we have anything to do? */
308 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
309 	if ((intsts & HDAC_INTSTS_GIS) == 0) {
310 		hdac_unlock(sc);
311 		return;
312 	}
313 
314 	/* Was this a controller interrupt? */
315 	if (intsts & HDAC_INTSTS_CIS) {
316 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
317 		/* Get as many responses that we can */
318 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
319 			HDAC_WRITE_1(&sc->mem,
320 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
321 			hdac_rirb_flush(sc);
322 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
323 		}
324 		if (sc->unsolq_rp != sc->unsolq_wp)
325 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
326 	}
327 
328 	if (intsts & HDAC_INTSTS_SIS_MASK) {
329 		for (i = 0; i < sc->num_ss; i++) {
330 			if ((intsts & (1 << i)) == 0)
331 				continue;
332 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
333 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
334 			if ((dev = sc->streams[i].dev) != NULL) {
335 				HDAC_STREAM_INTR(dev,
336 				    sc->streams[i].dir, sc->streams[i].stream);
337 			}
338 		}
339 	}
340 
341 	HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
342 	hdac_unlock(sc);
343 }
344 
345 static void
346 hdac_poll_callback(void *arg)
347 {
348 	struct hdac_softc *sc = arg;
349 
350 	if (sc == NULL)
351 		return;
352 
353 	hdac_lock(sc);
354 	if (sc->polling == 0) {
355 		hdac_unlock(sc);
356 		return;
357 	}
358 	callout_reset(&sc->poll_callout, sc->poll_ival,
359 	    hdac_poll_callback, sc);
360 	hdac_unlock(sc);
361 
362 	hdac_intr_handler(sc);
363 }
364 
365 /****************************************************************************
366  * int hdac_reset(hdac_softc *, int)
367  *
368  * Reset the hdac to a quiescent and known state.
369  ****************************************************************************/
370 static int
371 hdac_reset(struct hdac_softc *sc, int wakeup)
372 {
373 	uint32_t gctl;
374 	int count, i;
375 
376 	/*
377 	 * Stop all Streams DMA engine
378 	 */
379 	for (i = 0; i < sc->num_iss; i++)
380 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
381 	for (i = 0; i < sc->num_oss; i++)
382 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
383 	for (i = 0; i < sc->num_bss; i++)
384 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
385 
386 	/*
387 	 * Stop Control DMA engines.
388 	 */
389 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
390 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
391 
392 	/*
393 	 * Reset DMA position buffer.
394 	 */
395 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
396 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
397 
398 	/*
399 	 * Reset the controller. The reset must remain asserted for
400 	 * a minimum of 100us.
401 	 */
402 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
403 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
404 	count = 10000;
405 	do {
406 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
407 		if (!(gctl & HDAC_GCTL_CRST))
408 			break;
409 		DELAY(10);
410 	} while	(--count);
411 	if (gctl & HDAC_GCTL_CRST) {
412 		device_printf(sc->dev, "Unable to put hdac in reset\n");
413 		return (ENXIO);
414 	}
415 
416 	/* If wakeup is not requested - leave the controller in reset state. */
417 	if (!wakeup)
418 		return (0);
419 
420 	DELAY(100);
421 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
422 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
423 	count = 10000;
424 	do {
425 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
426 		if (gctl & HDAC_GCTL_CRST)
427 			break;
428 		DELAY(10);
429 	} while (--count);
430 	if (!(gctl & HDAC_GCTL_CRST)) {
431 		device_printf(sc->dev, "Device stuck in reset\n");
432 		return (ENXIO);
433 	}
434 
435 	/*
436 	 * Wait for codecs to finish their own reset sequence. The delay here
437 	 * should be of 250us but for some reasons, it's not enough on my
438 	 * computer. Let's use twice as much as necessary to make sure that
439 	 * it's reset properly.
440 	 */
441 	DELAY(1000);
442 
443 	return (0);
444 }
445 
446 
447 /****************************************************************************
448  * int hdac_get_capabilities(struct hdac_softc *);
449  *
450  * Retreive the general capabilities of the hdac;
451  *	Number of Input Streams
452  *	Number of Output Streams
453  *	Number of bidirectional Streams
454  *	64bit ready
455  *	CORB and RIRB sizes
456  ****************************************************************************/
457 static int
458 hdac_get_capabilities(struct hdac_softc *sc)
459 {
460 	uint16_t gcap;
461 	uint8_t corbsize, rirbsize;
462 
463 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
464 	sc->num_iss = HDAC_GCAP_ISS(gcap);
465 	sc->num_oss = HDAC_GCAP_OSS(gcap);
466 	sc->num_bss = HDAC_GCAP_BSS(gcap);
467 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
468 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
469 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
470 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
471 		sc->support_64bit = 1;
472 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
473 		sc->support_64bit = 0;
474 
475 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
476 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
477 	    HDAC_CORBSIZE_CORBSZCAP_256)
478 		sc->corb_size = 256;
479 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
480 	    HDAC_CORBSIZE_CORBSZCAP_16)
481 		sc->corb_size = 16;
482 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
483 	    HDAC_CORBSIZE_CORBSZCAP_2)
484 		sc->corb_size = 2;
485 	else {
486 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
487 		    __func__, corbsize);
488 		return (ENXIO);
489 	}
490 
491 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
492 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
493 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
494 		sc->rirb_size = 256;
495 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
496 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
497 		sc->rirb_size = 16;
498 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
499 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
500 		sc->rirb_size = 2;
501 	else {
502 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
503 		    __func__, rirbsize);
504 		return (ENXIO);
505 	}
506 
507 	HDA_BOOTVERBOSE(
508 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
509 		    "NSDO %d%s, CORB %d, RIRB %d\n",
510 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
511 		    sc->support_64bit ? ", 64bit" : "",
512 		    sc->corb_size, sc->rirb_size);
513 	);
514 
515 	return (0);
516 }
517 
518 
519 /****************************************************************************
520  * void hdac_dma_cb
521  *
522  * This function is called by bus_dmamap_load when the mapping has been
523  * established. We just record the physical address of the mapping into
524  * the struct hdac_dma passed in.
525  ****************************************************************************/
526 static void
527 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
528 {
529 	struct hdac_dma *dma;
530 
531 	if (error == 0) {
532 		dma = (struct hdac_dma *)callback_arg;
533 		dma->dma_paddr = segs[0].ds_addr;
534 	}
535 }
536 
537 
538 /****************************************************************************
539  * int hdac_dma_alloc
540  *
541  * This function allocate and setup a dma region (struct hdac_dma).
542  * It must be freed by a corresponding hdac_dma_free.
543  ****************************************************************************/
544 static int
545 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
546 {
547 	bus_size_t roundsz;
548 	int result;
549 
550 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
551 	bzero(dma, sizeof(*dma));
552 
553 	/*
554 	 * Create a DMA tag
555 	 */
556 	result = bus_dma_tag_create(
557 	    bus_get_dma_tag(sc->dev),		/* parent */
558 	    HDA_DMA_ALIGNMENT,			/* alignment */
559 	    0,					/* boundary */
560 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
561 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
562 	    BUS_SPACE_MAXADDR,			/* highaddr */
563 	    NULL,				/* filtfunc */
564 	    NULL,				/* fistfuncarg */
565 	    roundsz, 				/* maxsize */
566 	    1,					/* nsegments */
567 	    roundsz, 				/* maxsegsz */
568 	    0,					/* flags */
569 	    NULL,				/* lockfunc */
570 	    NULL,				/* lockfuncarg */
571 	    &dma->dma_tag);			/* dmat */
572 	if (result != 0) {
573 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
574 		    __func__, result);
575 		goto hdac_dma_alloc_fail;
576 	}
577 
578 	/*
579 	 * Allocate DMA memory
580 	 */
581 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
582 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
583 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
584 	     BUS_DMA_COHERENT),
585 	    &dma->dma_map);
586 	if (result != 0) {
587 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
588 		    __func__, result);
589 		goto hdac_dma_alloc_fail;
590 	}
591 
592 	dma->dma_size = roundsz;
593 
594 	/*
595 	 * Map the memory
596 	 */
597 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
598 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
599 	if (result != 0 || dma->dma_paddr == 0) {
600 		if (result == 0)
601 			result = ENOMEM;
602 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
603 		    __func__, result);
604 		goto hdac_dma_alloc_fail;
605 	}
606 
607 	HDA_BOOTHVERBOSE(
608 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
609 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
610 	);
611 
612 	return (0);
613 
614 hdac_dma_alloc_fail:
615 	hdac_dma_free(sc, dma);
616 
617 	return (result);
618 }
619 
620 
621 /****************************************************************************
622  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
623  *
624  * Free a struct dhac_dma that has been previously allocated via the
625  * hdac_dma_alloc function.
626  ****************************************************************************/
627 static void
628 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
629 {
630 	if (dma->dma_paddr != 0) {
631 		/* Flush caches */
632 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
633 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
634 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
635 		dma->dma_paddr = 0;
636 	}
637 	if (dma->dma_vaddr != NULL) {
638 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
639 		dma->dma_vaddr = NULL;
640 	}
641 	if (dma->dma_tag != NULL) {
642 		bus_dma_tag_destroy(dma->dma_tag);
643 		dma->dma_tag = NULL;
644 	}
645 	dma->dma_size = 0;
646 }
647 
648 /****************************************************************************
649  * int hdac_mem_alloc(struct hdac_softc *)
650  *
651  * Allocate all the bus resources necessary to speak with the physical
652  * controller.
653  ****************************************************************************/
654 static int
655 hdac_mem_alloc(struct hdac_softc *sc)
656 {
657 	struct hdac_mem *mem;
658 
659 	mem = &sc->mem;
660 	mem->mem_rid = PCIR_BAR(0);
661 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
662 	    &mem->mem_rid, RF_ACTIVE);
663 	if (mem->mem_res == NULL) {
664 		device_printf(sc->dev,
665 		    "%s: Unable to allocate memory resource\n", __func__);
666 		return (ENOMEM);
667 	}
668 	mem->mem_tag = rman_get_bustag(mem->mem_res);
669 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
670 
671 	return (0);
672 }
673 
674 /****************************************************************************
675  * void hdac_mem_free(struct hdac_softc *)
676  *
677  * Free up resources previously allocated by hdac_mem_alloc.
678  ****************************************************************************/
679 static void
680 hdac_mem_free(struct hdac_softc *sc)
681 {
682 	struct hdac_mem *mem;
683 
684 	mem = &sc->mem;
685 	if (mem->mem_res != NULL)
686 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
687 		    mem->mem_res);
688 	mem->mem_res = NULL;
689 }
690 
691 /****************************************************************************
692  * int hdac_irq_alloc(struct hdac_softc *)
693  *
694  * Allocate and setup the resources necessary for interrupt handling.
695  ****************************************************************************/
696 static int
697 hdac_irq_alloc(struct hdac_softc *sc)
698 {
699 	struct hdac_irq *irq;
700 	int result;
701 
702 	irq = &sc->irq;
703 	irq->irq_rid = 0x0;
704 
705 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
706 	    (result = pci_msi_count(sc->dev)) == 1 &&
707 	    pci_alloc_msi(sc->dev, &result) == 0)
708 		irq->irq_rid = 0x1;
709 
710 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
711 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
712 	if (irq->irq_res == NULL) {
713 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
714 		    __func__);
715 		goto hdac_irq_alloc_fail;
716 	}
717 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
718 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
719 	if (result != 0) {
720 		device_printf(sc->dev,
721 		    "%s: Unable to setup interrupt handler (%d)\n",
722 		    __func__, result);
723 		goto hdac_irq_alloc_fail;
724 	}
725 
726 	return (0);
727 
728 hdac_irq_alloc_fail:
729 	hdac_irq_free(sc);
730 
731 	return (ENXIO);
732 }
733 
734 /****************************************************************************
735  * void hdac_irq_free(struct hdac_softc *)
736  *
737  * Free up resources previously allocated by hdac_irq_alloc.
738  ****************************************************************************/
739 static void
740 hdac_irq_free(struct hdac_softc *sc)
741 {
742 	struct hdac_irq *irq;
743 
744 	irq = &sc->irq;
745 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
746 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
747 	if (irq->irq_res != NULL)
748 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
749 		    irq->irq_res);
750 	if (irq->irq_rid == 0x1)
751 		pci_release_msi(sc->dev);
752 	irq->irq_handle = NULL;
753 	irq->irq_res = NULL;
754 	irq->irq_rid = 0x0;
755 }
756 
757 /****************************************************************************
758  * void hdac_corb_init(struct hdac_softc *)
759  *
760  * Initialize the corb registers for operations but do not start it up yet.
761  * The CORB engine must not be running when this function is called.
762  ****************************************************************************/
763 static void
764 hdac_corb_init(struct hdac_softc *sc)
765 {
766 	uint8_t corbsize;
767 	uint64_t corbpaddr;
768 
769 	/* Setup the CORB size. */
770 	switch (sc->corb_size) {
771 	case 256:
772 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
773 		break;
774 	case 16:
775 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
776 		break;
777 	case 2:
778 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
779 		break;
780 	default:
781 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
782 	}
783 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
784 
785 	/* Setup the CORB Address in the hdac */
786 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
787 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
788 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
789 
790 	/* Set the WP and RP */
791 	sc->corb_wp = 0;
792 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
793 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
794 	/*
795 	 * The HDA specification indicates that the CORBRPRST bit will always
796 	 * read as zero. Unfortunately, it seems that at least the 82801G
797 	 * doesn't reset the bit to zero, which stalls the corb engine.
798 	 * manually reset the bit to zero before continuing.
799 	 */
800 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
801 
802 	/* Enable CORB error reporting */
803 #if 0
804 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
805 #endif
806 }
807 
808 /****************************************************************************
809  * void hdac_rirb_init(struct hdac_softc *)
810  *
811  * Initialize the rirb registers for operations but do not start it up yet.
812  * The RIRB engine must not be running when this function is called.
813  ****************************************************************************/
814 static void
815 hdac_rirb_init(struct hdac_softc *sc)
816 {
817 	uint8_t rirbsize;
818 	uint64_t rirbpaddr;
819 
820 	/* Setup the RIRB size. */
821 	switch (sc->rirb_size) {
822 	case 256:
823 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
824 		break;
825 	case 16:
826 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
827 		break;
828 	case 2:
829 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
830 		break;
831 	default:
832 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
833 	}
834 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
835 
836 	/* Setup the RIRB Address in the hdac */
837 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
838 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
839 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
840 
841 	/* Setup the WP and RP */
842 	sc->rirb_rp = 0;
843 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
844 
845 	/* Setup the interrupt threshold */
846 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
847 
848 	/* Enable Overrun and response received reporting */
849 #if 0
850 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
851 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
852 #else
853 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
854 #endif
855 
856 	/*
857 	 * Make sure that the Host CPU cache doesn't contain any dirty
858 	 * cache lines that falls in the rirb. If I understood correctly, it
859 	 * should be sufficient to do this only once as the rirb is purely
860 	 * read-only from now on.
861 	 */
862 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
863 	    BUS_DMASYNC_PREREAD);
864 }
865 
866 /****************************************************************************
867  * void hdac_corb_start(hdac_softc *)
868  *
869  * Startup the corb DMA engine
870  ****************************************************************************/
871 static void
872 hdac_corb_start(struct hdac_softc *sc)
873 {
874 	uint32_t corbctl;
875 
876 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
877 	corbctl |= HDAC_CORBCTL_CORBRUN;
878 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
879 }
880 
881 /****************************************************************************
882  * void hdac_rirb_start(hdac_softc *)
883  *
884  * Startup the rirb DMA engine
885  ****************************************************************************/
886 static void
887 hdac_rirb_start(struct hdac_softc *sc)
888 {
889 	uint32_t rirbctl;
890 
891 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
892 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
893 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
894 }
895 
896 static int
897 hdac_rirb_flush(struct hdac_softc *sc)
898 {
899 	struct hdac_rirb *rirb_base, *rirb;
900 	nid_t cad;
901 	uint32_t resp, resp_ex;
902 	uint8_t rirbwp;
903 	int ret;
904 
905 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
906 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
907 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
908 	    BUS_DMASYNC_POSTREAD);
909 
910 	ret = 0;
911 	while (sc->rirb_rp != rirbwp) {
912 		sc->rirb_rp++;
913 		sc->rirb_rp %= sc->rirb_size;
914 		rirb = &rirb_base[sc->rirb_rp];
915 		resp = le32toh(rirb->response);
916 		resp_ex = le32toh(rirb->response_ex);
917 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
918 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
919 			sc->unsolq[sc->unsolq_wp++] = resp;
920 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
921 			sc->unsolq[sc->unsolq_wp++] = cad;
922 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
923 		} else if (sc->codecs[cad].pending <= 0) {
924 			device_printf(sc->dev, "Unexpected unsolicited "
925 			    "response from address %d: %08x\n", cad, resp);
926 		} else {
927 			sc->codecs[cad].response = resp;
928 			sc->codecs[cad].pending--;
929 		}
930 		ret++;
931 	}
932 
933 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
934 	    BUS_DMASYNC_PREREAD);
935 	return (ret);
936 }
937 
938 static int
939 hdac_unsolq_flush(struct hdac_softc *sc)
940 {
941 	device_t child;
942 	nid_t cad;
943 	uint32_t resp;
944 	int ret = 0;
945 
946 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
947 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
948 		while (sc->unsolq_rp != sc->unsolq_wp) {
949 			resp = sc->unsolq[sc->unsolq_rp++];
950 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
951 			cad = sc->unsolq[sc->unsolq_rp++];
952 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
953 			if ((child = sc->codecs[cad].dev) != NULL)
954 				HDAC_UNSOL_INTR(child, resp);
955 			ret++;
956 		}
957 		sc->unsolq_st = HDAC_UNSOLQ_READY;
958 	}
959 
960 	return (ret);
961 }
962 
963 /****************************************************************************
964  * uint32_t hdac_command_sendone_internal
965  *
966  * Wrapper function that sends only one command to a given codec
967  ****************************************************************************/
968 static uint32_t
969 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
970 {
971 	int timeout;
972 	uint32_t *corb;
973 
974 	if (!hdac_lockowned(sc))
975 		device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
976 	verb &= ~HDA_CMD_CAD_MASK;
977 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
978 	sc->codecs[cad].response = HDA_INVALID;
979 
980 	sc->codecs[cad].pending++;
981 	sc->corb_wp++;
982 	sc->corb_wp %= sc->corb_size;
983 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
984 	bus_dmamap_sync(sc->corb_dma.dma_tag,
985 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
986 	corb[sc->corb_wp] = htole32(verb);
987 	bus_dmamap_sync(sc->corb_dma.dma_tag,
988 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
989 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
990 
991 	timeout = 10000;
992 	do {
993 		if (hdac_rirb_flush(sc) == 0)
994 			DELAY(10);
995 	} while (sc->codecs[cad].pending != 0 && --timeout);
996 
997 	if (sc->codecs[cad].pending != 0) {
998 		device_printf(sc->dev, "Command timeout on address %d\n", cad);
999 		sc->codecs[cad].pending = 0;
1000 	}
1001 
1002 	if (sc->unsolq_rp != sc->unsolq_wp)
1003 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1004 	return (sc->codecs[cad].response);
1005 }
1006 
1007 /****************************************************************************
1008  * Device Methods
1009  ****************************************************************************/
1010 
1011 /****************************************************************************
1012  * int hdac_probe(device_t)
1013  *
1014  * Probe for the presence of an hdac. If none is found, check for a generic
1015  * match using the subclass of the device.
1016  ****************************************************************************/
1017 static int
1018 hdac_probe(device_t dev)
1019 {
1020 	int i, result;
1021 	uint32_t model;
1022 	uint16_t class, subclass;
1023 	char desc[64];
1024 
1025 	model = (uint32_t)pci_get_device(dev) << 16;
1026 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1027 	class = pci_get_class(dev);
1028 	subclass = pci_get_subclass(dev);
1029 
1030 	bzero(desc, sizeof(desc));
1031 	result = ENXIO;
1032 	for (i = 0; i < nitems(hdac_devices); i++) {
1033 		if (hdac_devices[i].model == model) {
1034 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1035 			result = BUS_PROBE_DEFAULT;
1036 			break;
1037 		}
1038 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1039 		    class == PCIC_MULTIMEDIA &&
1040 		    subclass == PCIS_MULTIMEDIA_HDA) {
1041 			snprintf(desc, sizeof(desc),
1042 			    "%s (0x%04x)",
1043 			    hdac_devices[i].desc, pci_get_device(dev));
1044 			result = BUS_PROBE_GENERIC;
1045 			break;
1046 		}
1047 	}
1048 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1049 	    subclass == PCIS_MULTIMEDIA_HDA) {
1050 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1051 		result = BUS_PROBE_GENERIC;
1052 	}
1053 	if (result != ENXIO) {
1054 		strlcat(desc, " HDA Controller", sizeof(desc));
1055 		device_set_desc_copy(dev, desc);
1056 	}
1057 
1058 	return (result);
1059 }
1060 
1061 static void
1062 hdac_unsolq_task(void *context, int pending)
1063 {
1064 	struct hdac_softc *sc;
1065 
1066 	sc = (struct hdac_softc *)context;
1067 
1068 	hdac_lock(sc);
1069 	hdac_unsolq_flush(sc);
1070 	hdac_unlock(sc);
1071 }
1072 
1073 /****************************************************************************
1074  * int hdac_attach(device_t)
1075  *
1076  * Attach the device into the kernel. Interrupts usually won't be enabled
1077  * when this function is called. Setup everything that doesn't require
1078  * interrupts and defer probing of codecs until interrupts are enabled.
1079  ****************************************************************************/
1080 static int
1081 hdac_attach(device_t dev)
1082 {
1083 	struct hdac_softc *sc;
1084 	int result;
1085 	int i, devid = -1;
1086 	uint32_t model;
1087 	uint16_t class, subclass;
1088 	uint16_t vendor;
1089 	uint8_t v;
1090 
1091 	sc = device_get_softc(dev);
1092 	HDA_BOOTVERBOSE(
1093 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1094 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1095 		device_printf(dev, "HDA Driver Revision: %s\n",
1096 		    HDA_DRV_TEST_REV);
1097 	);
1098 
1099 	model = (uint32_t)pci_get_device(dev) << 16;
1100 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1101 	class = pci_get_class(dev);
1102 	subclass = pci_get_subclass(dev);
1103 
1104 	for (i = 0; i < nitems(hdac_devices); i++) {
1105 		if (hdac_devices[i].model == model) {
1106 			devid = i;
1107 			break;
1108 		}
1109 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1110 		    class == PCIC_MULTIMEDIA &&
1111 		    subclass == PCIS_MULTIMEDIA_HDA) {
1112 			devid = i;
1113 			break;
1114 		}
1115 	}
1116 
1117 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1118 	sc->dev = dev;
1119 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1120 	callout_init(&sc->poll_callout, 1);
1121 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1122 		sc->codecs[i].dev = NULL;
1123 	if (devid >= 0) {
1124 		sc->quirks_on = hdac_devices[devid].quirks_on;
1125 		sc->quirks_off = hdac_devices[devid].quirks_off;
1126 	} else {
1127 		sc->quirks_on = 0;
1128 		sc->quirks_off = 0;
1129 	}
1130 	if (resource_int_value(device_get_name(dev),
1131 	    device_get_unit(dev), "msi", &i) == 0) {
1132 		if (i == 0)
1133 			sc->quirks_off |= HDAC_QUIRK_MSI;
1134 		else {
1135 			sc->quirks_on |= HDAC_QUIRK_MSI;
1136 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1137 		}
1138 	}
1139 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1140 	HDA_BOOTVERBOSE(
1141 		device_printf(sc->dev,
1142 		    "Config options: on=0x%08x off=0x%08x\n",
1143 		    sc->quirks_on, sc->quirks_off);
1144 	);
1145 	sc->poll_ival = hz;
1146 	if (resource_int_value(device_get_name(dev),
1147 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1148 		sc->polling = 1;
1149 	else
1150 		sc->polling = 0;
1151 
1152 	pci_enable_busmaster(dev);
1153 
1154 	vendor = pci_get_vendor(dev);
1155 	if (vendor == INTEL_VENDORID) {
1156 		/* TCSEL -> TC0 */
1157 		v = pci_read_config(dev, 0x44, 1);
1158 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1159 		HDA_BOOTHVERBOSE(
1160 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1161 			    pci_read_config(dev, 0x44, 1));
1162 		);
1163 	}
1164 
1165 #if defined(__i386__) || defined(__amd64__)
1166 	sc->flags |= HDAC_F_DMA_NOCACHE;
1167 
1168 	if (resource_int_value(device_get_name(dev),
1169 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1170 #else
1171 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1172 #endif
1173 		/*
1174 		 * Try to enable PCIe snoop to avoid messing around with
1175 		 * uncacheable DMA attribute. Since PCIe snoop register
1176 		 * config is pretty much vendor specific, there are no
1177 		 * general solutions on how to enable it, forcing us (even
1178 		 * Microsoft) to enable uncacheable or write combined DMA
1179 		 * by default.
1180 		 *
1181 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1182 		 */
1183 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1184 			if (hdac_pcie_snoop[i].vendor != vendor)
1185 				continue;
1186 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1187 			if (hdac_pcie_snoop[i].reg == 0x00)
1188 				break;
1189 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1190 			if ((v & hdac_pcie_snoop[i].enable) ==
1191 			    hdac_pcie_snoop[i].enable)
1192 				break;
1193 			v &= hdac_pcie_snoop[i].mask;
1194 			v |= hdac_pcie_snoop[i].enable;
1195 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1196 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1197 			if ((v & hdac_pcie_snoop[i].enable) !=
1198 			    hdac_pcie_snoop[i].enable) {
1199 				HDA_BOOTVERBOSE(
1200 					device_printf(dev,
1201 					    "WARNING: Failed to enable PCIe "
1202 					    "snoop!\n");
1203 				);
1204 #if defined(__i386__) || defined(__amd64__)
1205 				sc->flags |= HDAC_F_DMA_NOCACHE;
1206 #endif
1207 			}
1208 			break;
1209 		}
1210 #if defined(__i386__) || defined(__amd64__)
1211 	}
1212 #endif
1213 
1214 	HDA_BOOTHVERBOSE(
1215 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1216 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1217 		    "Uncacheable" : "PCIe snoop", vendor);
1218 	);
1219 
1220 	/* Allocate resources */
1221 	result = hdac_mem_alloc(sc);
1222 	if (result != 0)
1223 		goto hdac_attach_fail;
1224 	result = hdac_irq_alloc(sc);
1225 	if (result != 0)
1226 		goto hdac_attach_fail;
1227 
1228 	/* Get Capabilities */
1229 	result = hdac_get_capabilities(sc);
1230 	if (result != 0)
1231 		goto hdac_attach_fail;
1232 
1233 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1234 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1235 	    sc->corb_size * sizeof(uint32_t));
1236 	if (result != 0)
1237 		goto hdac_attach_fail;
1238 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1239 	    sc->rirb_size * sizeof(struct hdac_rirb));
1240 	if (result != 0)
1241 		goto hdac_attach_fail;
1242 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1243 	    M_HDAC, M_ZERO | M_WAITOK);
1244 	for (i = 0; i < sc->num_ss; i++) {
1245 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1246 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1247 		if (result != 0)
1248 			goto hdac_attach_fail;
1249 	}
1250 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1251 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1252 			HDA_BOOTVERBOSE(
1253 				device_printf(dev, "Failed to "
1254 				    "allocate DMA pos buffer "
1255 				    "(non-fatal)\n");
1256 			);
1257 		} else {
1258 			uint64_t addr = sc->pos_dma.dma_paddr;
1259 
1260 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1261 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1262 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1263 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1264 		}
1265 	}
1266 
1267 	result = bus_dma_tag_create(
1268 	    bus_get_dma_tag(sc->dev),		/* parent */
1269 	    HDA_DMA_ALIGNMENT,			/* alignment */
1270 	    0,					/* boundary */
1271 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1272 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1273 	    BUS_SPACE_MAXADDR,			/* highaddr */
1274 	    NULL,				/* filtfunc */
1275 	    NULL,				/* fistfuncarg */
1276 	    HDA_BUFSZ_MAX, 			/* maxsize */
1277 	    1,					/* nsegments */
1278 	    HDA_BUFSZ_MAX, 			/* maxsegsz */
1279 	    0,					/* flags */
1280 	    NULL,				/* lockfunc */
1281 	    NULL,				/* lockfuncarg */
1282 	    &sc->chan_dmat);			/* dmat */
1283 	if (result != 0) {
1284 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1285 		     __func__, result);
1286 		goto hdac_attach_fail;
1287 	}
1288 
1289 	/* Quiesce everything */
1290 	HDA_BOOTHVERBOSE(
1291 		device_printf(dev, "Reset controller...\n");
1292 	);
1293 	hdac_reset(sc, 1);
1294 
1295 	/* Initialize the CORB and RIRB */
1296 	hdac_corb_init(sc);
1297 	hdac_rirb_init(sc);
1298 
1299 	/* Defer remaining of initialization until interrupts are enabled */
1300 	sc->intrhook.ich_func = hdac_attach2;
1301 	sc->intrhook.ich_arg = (void *)sc;
1302 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1303 		sc->intrhook.ich_func = NULL;
1304 		hdac_attach2((void *)sc);
1305 	}
1306 
1307 	return (0);
1308 
1309 hdac_attach_fail:
1310 	hdac_irq_free(sc);
1311 	if (sc->streams != NULL)
1312 		for (i = 0; i < sc->num_ss; i++)
1313 			hdac_dma_free(sc, &sc->streams[i].bdl);
1314 	free(sc->streams, M_HDAC);
1315 	hdac_dma_free(sc, &sc->rirb_dma);
1316 	hdac_dma_free(sc, &sc->corb_dma);
1317 	hdac_mem_free(sc);
1318 	snd_mtxfree(sc->lock);
1319 
1320 	return (ENXIO);
1321 }
1322 
1323 static int
1324 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1325 {
1326 	struct hdac_softc *sc;
1327 	device_t *devlist;
1328 	device_t dev;
1329 	int devcount, i, err, val;
1330 
1331 	dev = oidp->oid_arg1;
1332 	sc = device_get_softc(dev);
1333 	if (sc == NULL)
1334 		return (EINVAL);
1335 	val = 0;
1336 	err = sysctl_handle_int(oidp, &val, 0, req);
1337 	if (err != 0 || req->newptr == NULL || val == 0)
1338 		return (err);
1339 
1340 	/* XXX: Temporary. For debugging. */
1341 	if (val == 100) {
1342 		hdac_suspend(dev);
1343 		return (0);
1344 	} else if (val == 101) {
1345 		hdac_resume(dev);
1346 		return (0);
1347 	}
1348 
1349 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
1350 		return (err);
1351 	hdac_lock(sc);
1352 	for (i = 0; i < devcount; i++)
1353 		HDAC_PINDUMP(devlist[i]);
1354 	hdac_unlock(sc);
1355 	free(devlist, M_TEMP);
1356 	return (0);
1357 }
1358 
1359 static int
1360 hdac_mdata_rate(uint16_t fmt)
1361 {
1362 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1363 	int rate, bits;
1364 
1365 	if (fmt & (1 << 14))
1366 		rate = 44100;
1367 	else
1368 		rate = 48000;
1369 	rate *= ((fmt >> 11) & 0x07) + 1;
1370 	rate /= ((fmt >> 8) & 0x07) + 1;
1371 	bits = mbits[(fmt >> 4) & 0x03];
1372 	bits *= (fmt & 0x0f) + 1;
1373 	return (rate * bits);
1374 }
1375 
1376 static int
1377 hdac_bdata_rate(uint16_t fmt, int output)
1378 {
1379 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1380 	int rate, bits;
1381 
1382 	rate = 48000;
1383 	rate *= ((fmt >> 11) & 0x07) + 1;
1384 	bits = bbits[(fmt >> 4) & 0x03];
1385 	bits *= (fmt & 0x0f) + 1;
1386 	if (!output)
1387 		bits = ((bits + 7) & ~0x07) + 10;
1388 	return (rate * bits);
1389 }
1390 
1391 static void
1392 hdac_poll_reinit(struct hdac_softc *sc)
1393 {
1394 	int i, pollticks, min = 1000000;
1395 	struct hdac_stream *s;
1396 
1397 	if (sc->polling == 0)
1398 		return;
1399 	if (sc->unsol_registered > 0)
1400 		min = hz / 2;
1401 	for (i = 0; i < sc->num_ss; i++) {
1402 		s = &sc->streams[i];
1403 		if (s->running == 0)
1404 			continue;
1405 		pollticks = ((uint64_t)hz * s->blksz) /
1406 		    (hdac_mdata_rate(s->format) / 8);
1407 		pollticks >>= 1;
1408 		if (pollticks > hz)
1409 			pollticks = hz;
1410 		if (pollticks < 1) {
1411 			HDA_BOOTVERBOSE(
1412 				device_printf(sc->dev,
1413 				    "poll interval < 1 tick !\n");
1414 			);
1415 			pollticks = 1;
1416 		}
1417 		if (min > pollticks)
1418 			min = pollticks;
1419 	}
1420 	HDA_BOOTVERBOSE(
1421 		device_printf(sc->dev,
1422 		    "poll interval %d -> %d ticks\n",
1423 		    sc->poll_ival, min);
1424 	);
1425 	sc->poll_ival = min;
1426 	if (min == 1000000)
1427 		callout_stop(&sc->poll_callout);
1428 	else
1429 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1430 }
1431 
1432 static int
1433 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1434 {
1435 	struct hdac_softc *sc;
1436 	device_t dev;
1437 	uint32_t ctl;
1438 	int err, val;
1439 
1440 	dev = oidp->oid_arg1;
1441 	sc = device_get_softc(dev);
1442 	if (sc == NULL)
1443 		return (EINVAL);
1444 	hdac_lock(sc);
1445 	val = sc->polling;
1446 	hdac_unlock(sc);
1447 	err = sysctl_handle_int(oidp, &val, 0, req);
1448 
1449 	if (err != 0 || req->newptr == NULL)
1450 		return (err);
1451 	if (val < 0 || val > 1)
1452 		return (EINVAL);
1453 
1454 	hdac_lock(sc);
1455 	if (val != sc->polling) {
1456 		if (val == 0) {
1457 			callout_stop(&sc->poll_callout);
1458 			hdac_unlock(sc);
1459 			callout_drain(&sc->poll_callout);
1460 			hdac_lock(sc);
1461 			sc->polling = 0;
1462 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1463 			ctl |= HDAC_INTCTL_GIE;
1464 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1465 		} else {
1466 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1467 			ctl &= ~HDAC_INTCTL_GIE;
1468 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1469 			sc->polling = 1;
1470 			hdac_poll_reinit(sc);
1471 		}
1472 	}
1473 	hdac_unlock(sc);
1474 
1475 	return (err);
1476 }
1477 
1478 static void
1479 hdac_attach2(void *arg)
1480 {
1481 	struct hdac_softc *sc;
1482 	device_t child;
1483 	uint32_t vendorid, revisionid;
1484 	int i;
1485 	uint16_t statests;
1486 
1487 	sc = (struct hdac_softc *)arg;
1488 
1489 	hdac_lock(sc);
1490 
1491 	/* Remove ourselves from the config hooks */
1492 	if (sc->intrhook.ich_func != NULL) {
1493 		config_intrhook_disestablish(&sc->intrhook);
1494 		sc->intrhook.ich_func = NULL;
1495 	}
1496 
1497 	HDA_BOOTHVERBOSE(
1498 		device_printf(sc->dev, "Starting CORB Engine...\n");
1499 	);
1500 	hdac_corb_start(sc);
1501 	HDA_BOOTHVERBOSE(
1502 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1503 	);
1504 	hdac_rirb_start(sc);
1505 	HDA_BOOTHVERBOSE(
1506 		device_printf(sc->dev,
1507 		    "Enabling controller interrupt...\n");
1508 	);
1509 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1510 	    HDAC_GCTL_UNSOL);
1511 	if (sc->polling == 0) {
1512 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1513 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1514 	}
1515 	DELAY(1000);
1516 
1517 	HDA_BOOTHVERBOSE(
1518 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1519 	);
1520 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1521 	hdac_unlock(sc);
1522 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1523 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1524 			HDA_BOOTHVERBOSE(
1525 				device_printf(sc->dev,
1526 				    "Found CODEC at address %d\n", i);
1527 			);
1528 			hdac_lock(sc);
1529 			vendorid = hdac_send_command(sc, i,
1530 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1531 			revisionid = hdac_send_command(sc, i,
1532 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1533 			hdac_unlock(sc);
1534 			if (vendorid == HDA_INVALID &&
1535 			    revisionid == HDA_INVALID) {
1536 				device_printf(sc->dev,
1537 				    "CODEC is not responding!\n");
1538 				continue;
1539 			}
1540 			sc->codecs[i].vendor_id =
1541 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1542 			sc->codecs[i].device_id =
1543 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1544 			sc->codecs[i].revision_id =
1545 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1546 			sc->codecs[i].stepping_id =
1547 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1548 			child = device_add_child(sc->dev, "hdacc", -1);
1549 			if (child == NULL) {
1550 				device_printf(sc->dev,
1551 				    "Failed to add CODEC device\n");
1552 				continue;
1553 			}
1554 			device_set_ivars(child, (void *)(intptr_t)i);
1555 			sc->codecs[i].dev = child;
1556 		}
1557 	}
1558 	bus_generic_attach(sc->dev);
1559 
1560 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1561 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1562 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1563 	    sysctl_hdac_pindump, "I", "Dump pin states/data");
1564 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1565 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1566 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
1567 	    sysctl_hdac_polling, "I", "Enable polling mode");
1568 }
1569 
1570 /****************************************************************************
1571  * int hdac_suspend(device_t)
1572  *
1573  * Suspend and power down HDA bus and codecs.
1574  ****************************************************************************/
1575 static int
1576 hdac_suspend(device_t dev)
1577 {
1578 	struct hdac_softc *sc = device_get_softc(dev);
1579 
1580 	HDA_BOOTHVERBOSE(
1581 		device_printf(dev, "Suspend...\n");
1582 	);
1583 	bus_generic_suspend(dev);
1584 
1585 	hdac_lock(sc);
1586 	HDA_BOOTHVERBOSE(
1587 		device_printf(dev, "Reset controller...\n");
1588 	);
1589 	callout_stop(&sc->poll_callout);
1590 	hdac_reset(sc, 0);
1591 	hdac_unlock(sc);
1592 	callout_drain(&sc->poll_callout);
1593 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1594 	HDA_BOOTHVERBOSE(
1595 		device_printf(dev, "Suspend done\n");
1596 	);
1597 	return (0);
1598 }
1599 
1600 /****************************************************************************
1601  * int hdac_resume(device_t)
1602  *
1603  * Powerup and restore HDA bus and codecs state.
1604  ****************************************************************************/
1605 static int
1606 hdac_resume(device_t dev)
1607 {
1608 	struct hdac_softc *sc = device_get_softc(dev);
1609 	int error;
1610 
1611 	HDA_BOOTHVERBOSE(
1612 		device_printf(dev, "Resume...\n");
1613 	);
1614 	hdac_lock(sc);
1615 
1616 	/* Quiesce everything */
1617 	HDA_BOOTHVERBOSE(
1618 		device_printf(dev, "Reset controller...\n");
1619 	);
1620 	hdac_reset(sc, 1);
1621 
1622 	/* Initialize the CORB and RIRB */
1623 	hdac_corb_init(sc);
1624 	hdac_rirb_init(sc);
1625 
1626 	HDA_BOOTHVERBOSE(
1627 		device_printf(dev, "Starting CORB Engine...\n");
1628 	);
1629 	hdac_corb_start(sc);
1630 	HDA_BOOTHVERBOSE(
1631 		device_printf(dev, "Starting RIRB Engine...\n");
1632 	);
1633 	hdac_rirb_start(sc);
1634 	HDA_BOOTHVERBOSE(
1635 		device_printf(dev, "Enabling controller interrupt...\n");
1636 	);
1637 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1638 	    HDAC_GCTL_UNSOL);
1639 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1640 	DELAY(1000);
1641 	hdac_poll_reinit(sc);
1642 	hdac_unlock(sc);
1643 
1644 	error = bus_generic_resume(dev);
1645 	HDA_BOOTHVERBOSE(
1646 		device_printf(dev, "Resume done\n");
1647 	);
1648 	return (error);
1649 }
1650 
1651 /****************************************************************************
1652  * int hdac_detach(device_t)
1653  *
1654  * Detach and free up resources utilized by the hdac device.
1655  ****************************************************************************/
1656 static int
1657 hdac_detach(device_t dev)
1658 {
1659 	struct hdac_softc *sc = device_get_softc(dev);
1660 	device_t *devlist;
1661 	int cad, i, devcount, error;
1662 
1663 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1664 		return (error);
1665 	for (i = 0; i < devcount; i++) {
1666 		cad = (intptr_t)device_get_ivars(devlist[i]);
1667 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1668 			free(devlist, M_TEMP);
1669 			return (error);
1670 		}
1671 		sc->codecs[cad].dev = NULL;
1672 	}
1673 	free(devlist, M_TEMP);
1674 
1675 	hdac_lock(sc);
1676 	hdac_reset(sc, 0);
1677 	hdac_unlock(sc);
1678 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1679 	hdac_irq_free(sc);
1680 
1681 	for (i = 0; i < sc->num_ss; i++)
1682 		hdac_dma_free(sc, &sc->streams[i].bdl);
1683 	free(sc->streams, M_HDAC);
1684 	hdac_dma_free(sc, &sc->pos_dma);
1685 	hdac_dma_free(sc, &sc->rirb_dma);
1686 	hdac_dma_free(sc, &sc->corb_dma);
1687 	if (sc->chan_dmat != NULL) {
1688 		bus_dma_tag_destroy(sc->chan_dmat);
1689 		sc->chan_dmat = NULL;
1690 	}
1691 	hdac_mem_free(sc);
1692 	snd_mtxfree(sc->lock);
1693 	return (0);
1694 }
1695 
1696 static bus_dma_tag_t
1697 hdac_get_dma_tag(device_t dev, device_t child)
1698 {
1699 	struct hdac_softc *sc = device_get_softc(dev);
1700 
1701 	return (sc->chan_dmat);
1702 }
1703 
1704 static int
1705 hdac_print_child(device_t dev, device_t child)
1706 {
1707 	int retval;
1708 
1709 	retval = bus_print_child_header(dev, child);
1710 	retval += printf(" at cad %d",
1711 	    (int)(intptr_t)device_get_ivars(child));
1712 	retval += bus_print_child_footer(dev, child);
1713 
1714 	return (retval);
1715 }
1716 
1717 static int
1718 hdac_child_location_str(device_t dev, device_t child, char *buf,
1719     size_t buflen)
1720 {
1721 
1722 	snprintf(buf, buflen, "cad=%d",
1723 	    (int)(intptr_t)device_get_ivars(child));
1724 	return (0);
1725 }
1726 
1727 static int
1728 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
1729     size_t buflen)
1730 {
1731 	struct hdac_softc *sc = device_get_softc(dev);
1732 	nid_t cad = (uintptr_t)device_get_ivars(child);
1733 
1734 	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
1735 	    "stepping=0x%02x",
1736 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1737 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1738 	return (0);
1739 }
1740 
1741 static int
1742 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1743 {
1744 	struct hdac_softc *sc = device_get_softc(dev);
1745 	nid_t cad = (uintptr_t)device_get_ivars(child);
1746 
1747 	switch (which) {
1748 	case HDA_IVAR_CODEC_ID:
1749 		*result = cad;
1750 		break;
1751 	case HDA_IVAR_VENDOR_ID:
1752 		*result = sc->codecs[cad].vendor_id;
1753 		break;
1754 	case HDA_IVAR_DEVICE_ID:
1755 		*result = sc->codecs[cad].device_id;
1756 		break;
1757 	case HDA_IVAR_REVISION_ID:
1758 		*result = sc->codecs[cad].revision_id;
1759 		break;
1760 	case HDA_IVAR_STEPPING_ID:
1761 		*result = sc->codecs[cad].stepping_id;
1762 		break;
1763 	case HDA_IVAR_SUBVENDOR_ID:
1764 		*result = pci_get_subvendor(dev);
1765 		break;
1766 	case HDA_IVAR_SUBDEVICE_ID:
1767 		*result = pci_get_subdevice(dev);
1768 		break;
1769 	case HDA_IVAR_DMA_NOCACHE:
1770 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1771 		break;
1772 	case HDA_IVAR_STRIPES_MASK:
1773 		*result = (1 << (1 << sc->num_sdo)) - 1;
1774 		break;
1775 	default:
1776 		return (ENOENT);
1777 	}
1778 	return (0);
1779 }
1780 
1781 static struct mtx *
1782 hdac_get_mtx(device_t dev, device_t child)
1783 {
1784 	struct hdac_softc *sc = device_get_softc(dev);
1785 
1786 	return (sc->lock);
1787 }
1788 
1789 static uint32_t
1790 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1791 {
1792 
1793 	return (hdac_send_command(device_get_softc(dev),
1794 	    (intptr_t)device_get_ivars(child), verb));
1795 }
1796 
1797 static int
1798 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1799 {
1800 	int i, ss;
1801 
1802 	ss = -1;
1803 	/* Allocate ISS/OSS first. */
1804 	if (dir == 0) {
1805 		for (i = 0; i < sc->num_iss; i++) {
1806 			if (sc->streams[i].stream == stream) {
1807 				ss = i;
1808 				break;
1809 			}
1810 		}
1811 	} else {
1812 		for (i = 0; i < sc->num_oss; i++) {
1813 			if (sc->streams[i + sc->num_iss].stream == stream) {
1814 				ss = i + sc->num_iss;
1815 				break;
1816 			}
1817 		}
1818 	}
1819 	/* Fallback to BSS. */
1820 	if (ss == -1) {
1821 		for (i = 0; i < sc->num_bss; i++) {
1822 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1823 			    == stream) {
1824 				ss = i + sc->num_iss + sc->num_oss;
1825 				break;
1826 			}
1827 		}
1828 	}
1829 	return (ss);
1830 }
1831 
1832 static int
1833 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1834     uint32_t **dmapos)
1835 {
1836 	struct hdac_softc *sc = device_get_softc(dev);
1837 	nid_t cad = (uintptr_t)device_get_ivars(child);
1838 	int stream, ss, bw, maxbw, prevbw;
1839 
1840 	/* Look for empty stream. */
1841 	ss = hdac_find_stream(sc, dir, 0);
1842 
1843 	/* Return if found nothing. */
1844 	if (ss < 0)
1845 		return (0);
1846 
1847 	/* Check bus bandwidth. */
1848 	bw = hdac_bdata_rate(format, dir);
1849 	if (dir == 1) {
1850 		bw *= 1 << (sc->num_sdo - stripe);
1851 		prevbw = sc->sdo_bw_used;
1852 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1853 	} else {
1854 		prevbw = sc->codecs[cad].sdi_bw_used;
1855 		maxbw = 48000 * 464;
1856 	}
1857 	HDA_BOOTHVERBOSE(
1858 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1859 		    (bw + prevbw) / 1000, maxbw / 1000,
1860 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1861 	);
1862 	if (bw + prevbw > maxbw)
1863 		return (0);
1864 	if (dir == 1)
1865 		sc->sdo_bw_used += bw;
1866 	else
1867 		sc->codecs[cad].sdi_bw_used += bw;
1868 
1869 	/* Allocate stream number */
1870 	if (ss >= sc->num_iss + sc->num_oss)
1871 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1872 	else if (ss >= sc->num_iss)
1873 		stream = ss - sc->num_iss + 1;
1874 	else
1875 		stream = ss + 1;
1876 
1877 	sc->streams[ss].dev = child;
1878 	sc->streams[ss].dir = dir;
1879 	sc->streams[ss].stream = stream;
1880 	sc->streams[ss].bw = bw;
1881 	sc->streams[ss].format = format;
1882 	sc->streams[ss].stripe = stripe;
1883 	if (dmapos != NULL) {
1884 		if (sc->pos_dma.dma_vaddr != NULL)
1885 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1886 		else
1887 			*dmapos = NULL;
1888 	}
1889 	return (stream);
1890 }
1891 
1892 static void
1893 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1894 {
1895 	struct hdac_softc *sc = device_get_softc(dev);
1896 	nid_t cad = (uintptr_t)device_get_ivars(child);
1897 	int ss;
1898 
1899 	ss = hdac_find_stream(sc, dir, stream);
1900 	KASSERT(ss >= 0,
1901 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1902 	if (dir == 1)
1903 		sc->sdo_bw_used -= sc->streams[ss].bw;
1904 	else
1905 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1906 	sc->streams[ss].stream = 0;
1907 	sc->streams[ss].dev = NULL;
1908 }
1909 
1910 static int
1911 hdac_stream_start(device_t dev, device_t child,
1912     int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
1913 {
1914 	struct hdac_softc *sc = device_get_softc(dev);
1915 	struct hdac_bdle *bdle;
1916 	uint64_t addr;
1917 	int i, ss, off;
1918 	uint32_t ctl;
1919 
1920 	ss = hdac_find_stream(sc, dir, stream);
1921 	KASSERT(ss >= 0,
1922 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1923 
1924 	addr = (uint64_t)buf;
1925 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1926 	for (i = 0; i < blkcnt; i++, bdle++) {
1927 		bdle->addrl = htole32((uint32_t)addr);
1928 		bdle->addrh = htole32((uint32_t)(addr >> 32));
1929 		bdle->len = htole32(blksz);
1930 		bdle->ioc = htole32(1);
1931 		addr += blksz;
1932 	}
1933 
1934 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1935 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
1936 
1937 	off = ss << 5;
1938 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
1939 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
1940 	addr = sc->streams[ss].bdl.dma_paddr;
1941 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
1942 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
1943 
1944 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
1945 	if (dir)
1946 		ctl |= HDAC_SDCTL2_DIR;
1947 	else
1948 		ctl &= ~HDAC_SDCTL2_DIR;
1949 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
1950 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
1951 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
1952 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
1953 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
1954 
1955 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
1956 
1957 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1958 	ctl |= 1 << ss;
1959 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1960 
1961 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
1962 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
1963 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1964 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1965 	    HDAC_SDCTL_RUN;
1966 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1967 
1968 	sc->streams[ss].blksz = blksz;
1969 	sc->streams[ss].running = 1;
1970 	hdac_poll_reinit(sc);
1971 	return (0);
1972 }
1973 
1974 static void
1975 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
1976 {
1977 	struct hdac_softc *sc = device_get_softc(dev);
1978 	int ss, off;
1979 	uint32_t ctl;
1980 
1981 	ss = hdac_find_stream(sc, dir, stream);
1982 	KASSERT(ss >= 0,
1983 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
1984 
1985 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
1986 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
1987 
1988 	off = ss << 5;
1989 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
1990 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
1991 	    HDAC_SDCTL_RUN);
1992 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
1993 
1994 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1995 	ctl &= ~(1 << ss);
1996 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1997 
1998 	sc->streams[ss].running = 0;
1999 	hdac_poll_reinit(sc);
2000 }
2001 
2002 static void
2003 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2004 {
2005 	struct hdac_softc *sc = device_get_softc(dev);
2006 	int timeout = 1000;
2007 	int to = timeout;
2008 	int ss, off;
2009 	uint32_t ctl;
2010 
2011 	ss = hdac_find_stream(sc, dir, stream);
2012 	KASSERT(ss >= 0,
2013 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2014 
2015 	off = ss << 5;
2016 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2017 	ctl |= HDAC_SDCTL_SRST;
2018 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2019 	do {
2020 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2021 		if (ctl & HDAC_SDCTL_SRST)
2022 			break;
2023 		DELAY(10);
2024 	} while (--to);
2025 	if (!(ctl & HDAC_SDCTL_SRST))
2026 		device_printf(dev, "Reset setting timeout\n");
2027 	ctl &= ~HDAC_SDCTL_SRST;
2028 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2029 	to = timeout;
2030 	do {
2031 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2032 		if (!(ctl & HDAC_SDCTL_SRST))
2033 			break;
2034 		DELAY(10);
2035 	} while (--to);
2036 	if (ctl & HDAC_SDCTL_SRST)
2037 		device_printf(dev, "Reset timeout!\n");
2038 }
2039 
2040 static uint32_t
2041 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2042 {
2043 	struct hdac_softc *sc = device_get_softc(dev);
2044 	int ss, off;
2045 
2046 	ss = hdac_find_stream(sc, dir, stream);
2047 	KASSERT(ss >= 0,
2048 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2049 
2050 	off = ss << 5;
2051 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2052 }
2053 
2054 static int
2055 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2056 {
2057 	struct hdac_softc *sc = device_get_softc(dev);
2058 
2059 	sc->unsol_registered++;
2060 	hdac_poll_reinit(sc);
2061 	return (tag);
2062 }
2063 
2064 static void
2065 hdac_unsol_free(device_t dev, device_t child, int tag)
2066 {
2067 	struct hdac_softc *sc = device_get_softc(dev);
2068 
2069 	sc->unsol_registered--;
2070 	hdac_poll_reinit(sc);
2071 }
2072 
2073 static device_method_t hdac_methods[] = {
2074 	/* device interface */
2075 	DEVMETHOD(device_probe,		hdac_probe),
2076 	DEVMETHOD(device_attach,	hdac_attach),
2077 	DEVMETHOD(device_detach,	hdac_detach),
2078 	DEVMETHOD(device_suspend,	hdac_suspend),
2079 	DEVMETHOD(device_resume,	hdac_resume),
2080 	/* Bus interface */
2081 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2082 	DEVMETHOD(bus_print_child,	hdac_print_child),
2083 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
2084 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
2085 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2086 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2087 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2088 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2089 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2090 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2091 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2092 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2093 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2094 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2095 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2096 	DEVMETHOD_END
2097 };
2098 
2099 static driver_t hdac_driver = {
2100 	"hdac",
2101 	hdac_methods,
2102 	sizeof(struct hdac_softc),
2103 };
2104 
2105 static devclass_t hdac_devclass;
2106 
2107 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2108