1 /*- 2 * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca> 3 * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org> 4 * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * Intel High Definition Audio (Controller) driver for FreeBSD. 31 */ 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_snd.h" 35 #endif 36 37 #include <dev/sound/pcm/sound.h> 38 #include <dev/pci/pcireg.h> 39 #include <dev/pci/pcivar.h> 40 41 #include <sys/ctype.h> 42 #include <sys/taskqueue.h> 43 44 #include <dev/sound/pci/hda/hdac_private.h> 45 #include <dev/sound/pci/hda/hdac_reg.h> 46 #include <dev/sound/pci/hda/hda_reg.h> 47 #include <dev/sound/pci/hda/hdac.h> 48 49 #define HDA_DRV_TEST_REV "20120126_0002" 50 51 SND_DECLARE_FILE("$FreeBSD$"); 52 53 #define hdac_lock(sc) snd_mtxlock((sc)->lock) 54 #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) 55 #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) 56 #define hdac_lockowned(sc) mtx_owned((sc)->lock) 57 58 #define HDAC_QUIRK_64BIT (1 << 0) 59 #define HDAC_QUIRK_DMAPOS (1 << 1) 60 #define HDAC_QUIRK_MSI (1 << 2) 61 62 static const struct { 63 const char *key; 64 uint32_t value; 65 } hdac_quirks_tab[] = { 66 { "64bit", HDAC_QUIRK_DMAPOS }, 67 { "dmapos", HDAC_QUIRK_DMAPOS }, 68 { "msi", HDAC_QUIRK_MSI }, 69 }; 70 71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller"); 72 73 static const struct { 74 uint32_t model; 75 const char *desc; 76 char quirks_on; 77 char quirks_off; 78 } hdac_devices[] = { 79 { HDA_INTEL_OAK, "Intel Oaktrail", 0, 0 }, 80 { HDA_INTEL_BAY, "Intel BayTrail", 0, 0 }, 81 { HDA_INTEL_HSW1, "Intel Haswell", 0, 0 }, 82 { HDA_INTEL_HSW2, "Intel Haswell", 0, 0 }, 83 { HDA_INTEL_HSW3, "Intel Haswell", 0, 0 }, 84 { HDA_INTEL_BDW1, "Intel Broadwell", 0, 0 }, 85 { HDA_INTEL_BDW2, "Intel Broadwell", 0, 0 }, 86 { HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 }, 87 { HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 }, 88 { HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 }, 89 { HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 }, 90 { HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 }, 91 { HDA_INTEL_WCPT, "Intel Wildcat Point", 0, 0 }, 92 { HDA_INTEL_WELLS1, "Intel Wellsburg", 0, 0 }, 93 { HDA_INTEL_WELLS2, "Intel Wellsburg", 0, 0 }, 94 { HDA_INTEL_LPTLP1, "Intel Lynx Point-LP", 0, 0 }, 95 { HDA_INTEL_LPTLP2, "Intel Lynx Point-LP", 0, 0 }, 96 { HDA_INTEL_SRPTLP, "Intel Sunrise Point-LP", 0, 0 }, 97 { HDA_INTEL_KBLKLP, "Intel Kabylake-LP", 0, 0 }, 98 { HDA_INTEL_SRPT, "Intel Sunrise Point", 0, 0 }, 99 { HDA_INTEL_KBLK, "Intel Kabylake", 0, 0 }, 100 { HDA_INTEL_82801F, "Intel 82801F", 0, 0 }, 101 { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 }, 102 { HDA_INTEL_82801G, "Intel 82801G", 0, 0 }, 103 { HDA_INTEL_82801H, "Intel 82801H", 0, 0 }, 104 { HDA_INTEL_82801I, "Intel 82801I", 0, 0 }, 105 { HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 }, 106 { HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 }, 107 { HDA_INTEL_PCH, "Intel 5 Series/3400 Series", 0, 0 }, 108 { HDA_INTEL_PCH2, "Intel 5 Series/3400 Series", 0, 0 }, 109 { HDA_INTEL_SCH, "Intel SCH", 0, 0 }, 110 { HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI }, 111 { HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI }, 112 { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 }, 113 { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 }, 114 { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 }, 115 { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 }, 116 { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 }, 117 { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 }, 118 { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 }, 119 { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 }, 120 { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 121 { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 122 { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 123 { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT }, 124 { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 }, 125 { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 }, 126 { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 }, 127 { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 }, 128 { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 }, 129 { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 }, 130 { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 }, 131 { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 }, 132 { HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI }, 133 { HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI }, 134 { HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI }, 135 { HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI }, 136 { HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI }, 137 { HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI }, 138 { HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI }, 139 { HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI }, 140 { HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 }, 141 { HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 142 { HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI }, 143 { HDA_ATI_SB450, "ATI SB450", 0, 0 }, 144 { HDA_ATI_SB600, "ATI SB600", 0, 0 }, 145 { HDA_ATI_RS600, "ATI RS600", 0, 0 }, 146 { HDA_ATI_RS690, "ATI RS690", 0, 0 }, 147 { HDA_ATI_RS780, "ATI RS780", 0, 0 }, 148 { HDA_ATI_R600, "ATI R600", 0, 0 }, 149 { HDA_ATI_RV610, "ATI RV610", 0, 0 }, 150 { HDA_ATI_RV620, "ATI RV620", 0, 0 }, 151 { HDA_ATI_RV630, "ATI RV630", 0, 0 }, 152 { HDA_ATI_RV635, "ATI RV635", 0, 0 }, 153 { HDA_ATI_RV710, "ATI RV710", 0, 0 }, 154 { HDA_ATI_RV730, "ATI RV730", 0, 0 }, 155 { HDA_ATI_RV740, "ATI RV740", 0, 0 }, 156 { HDA_ATI_RV770, "ATI RV770", 0, 0 }, 157 { HDA_ATI_RV810, "ATI RV810", 0, 0 }, 158 { HDA_ATI_RV830, "ATI RV830", 0, 0 }, 159 { HDA_ATI_RV840, "ATI RV840", 0, 0 }, 160 { HDA_ATI_RV870, "ATI RV870", 0, 0 }, 161 { HDA_ATI_RV910, "ATI RV910", 0, 0 }, 162 { HDA_ATI_RV930, "ATI RV930", 0, 0 }, 163 { HDA_ATI_RV940, "ATI RV940", 0, 0 }, 164 { HDA_ATI_RV970, "ATI RV970", 0, 0 }, 165 { HDA_ATI_R1000, "ATI R1000", 0, 0 }, 166 { HDA_AMD_HUDSON2, "AMD Hudson-2", 0, 0 }, 167 { HDA_RDC_M3010, "RDC M3010", 0, 0 }, 168 { HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 }, 169 { HDA_SIS_966, "SiS 966", 0, 0 }, 170 { HDA_ULI_M5461, "ULI M5461", 0, 0 }, 171 /* Unknown */ 172 { HDA_INTEL_ALL, "Intel", 0, 0 }, 173 { HDA_NVIDIA_ALL, "NVIDIA", 0, 0 }, 174 { HDA_ATI_ALL, "ATI", 0, 0 }, 175 { HDA_AMD_ALL, "AMD", 0, 0 }, 176 { HDA_VIA_ALL, "VIA", 0, 0 }, 177 { HDA_SIS_ALL, "SiS", 0, 0 }, 178 { HDA_ULI_ALL, "ULI", 0, 0 }, 179 }; 180 181 static const struct { 182 uint16_t vendor; 183 uint8_t reg; 184 uint8_t mask; 185 uint8_t enable; 186 } hdac_pcie_snoop[] = { 187 { INTEL_VENDORID, 0x00, 0x00, 0x00 }, 188 { ATI_VENDORID, 0x42, 0xf8, 0x02 }, 189 { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, 190 }; 191 192 /**************************************************************************** 193 * Function prototypes 194 ****************************************************************************/ 195 static void hdac_intr_handler(void *); 196 static int hdac_reset(struct hdac_softc *, int); 197 static int hdac_get_capabilities(struct hdac_softc *); 198 static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); 199 static int hdac_dma_alloc(struct hdac_softc *, 200 struct hdac_dma *, bus_size_t); 201 static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); 202 static int hdac_mem_alloc(struct hdac_softc *); 203 static void hdac_mem_free(struct hdac_softc *); 204 static int hdac_irq_alloc(struct hdac_softc *); 205 static void hdac_irq_free(struct hdac_softc *); 206 static void hdac_corb_init(struct hdac_softc *); 207 static void hdac_rirb_init(struct hdac_softc *); 208 static void hdac_corb_start(struct hdac_softc *); 209 static void hdac_rirb_start(struct hdac_softc *); 210 211 static void hdac_attach2(void *); 212 213 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t); 214 215 static int hdac_probe(device_t); 216 static int hdac_attach(device_t); 217 static int hdac_detach(device_t); 218 static int hdac_suspend(device_t); 219 static int hdac_resume(device_t); 220 221 static int hdac_rirb_flush(struct hdac_softc *sc); 222 static int hdac_unsolq_flush(struct hdac_softc *sc); 223 224 #define hdac_command(a1, a2, a3) \ 225 hdac_send_command(a1, a3, a2) 226 227 /* This function surely going to make its way into upper level someday. */ 228 static void 229 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) 230 { 231 const char *res = NULL; 232 int i = 0, j, k, len, inv; 233 234 if (resource_string_value(device_get_name(sc->dev), 235 device_get_unit(sc->dev), "config", &res) != 0) 236 return; 237 if (!(res != NULL && strlen(res) > 0)) 238 return; 239 HDA_BOOTVERBOSE( 240 device_printf(sc->dev, "Config options:"); 241 ); 242 for (;;) { 243 while (res[i] != '\0' && 244 (res[i] == ',' || isspace(res[i]) != 0)) 245 i++; 246 if (res[i] == '\0') { 247 HDA_BOOTVERBOSE( 248 printf("\n"); 249 ); 250 return; 251 } 252 j = i; 253 while (res[j] != '\0' && 254 !(res[j] == ',' || isspace(res[j]) != 0)) 255 j++; 256 len = j - i; 257 if (len > 2 && strncmp(res + i, "no", 2) == 0) 258 inv = 2; 259 else 260 inv = 0; 261 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) { 262 if (strncmp(res + i + inv, 263 hdac_quirks_tab[k].key, len - inv) != 0) 264 continue; 265 if (len - inv != strlen(hdac_quirks_tab[k].key)) 266 continue; 267 HDA_BOOTVERBOSE( 268 printf(" %s%s", (inv != 0) ? "no" : "", 269 hdac_quirks_tab[k].key); 270 ); 271 if (inv == 0) { 272 *on |= hdac_quirks_tab[k].value; 273 *on &= ~hdac_quirks_tab[k].value; 274 } else if (inv != 0) { 275 *off |= hdac_quirks_tab[k].value; 276 *off &= ~hdac_quirks_tab[k].value; 277 } 278 break; 279 } 280 i = j; 281 } 282 } 283 284 /**************************************************************************** 285 * void hdac_intr_handler(void *) 286 * 287 * Interrupt handler. Processes interrupts received from the hdac. 288 ****************************************************************************/ 289 static void 290 hdac_intr_handler(void *context) 291 { 292 struct hdac_softc *sc; 293 device_t dev; 294 uint32_t intsts; 295 uint8_t rirbsts; 296 int i; 297 298 sc = (struct hdac_softc *)context; 299 hdac_lock(sc); 300 301 /* Do we have anything to do? */ 302 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); 303 if ((intsts & HDAC_INTSTS_GIS) == 0) { 304 hdac_unlock(sc); 305 return; 306 } 307 308 /* Was this a controller interrupt? */ 309 if (intsts & HDAC_INTSTS_CIS) { 310 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 311 /* Get as many responses that we can */ 312 while (rirbsts & HDAC_RIRBSTS_RINTFL) { 313 HDAC_WRITE_1(&sc->mem, 314 HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); 315 hdac_rirb_flush(sc); 316 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); 317 } 318 if (sc->unsolq_rp != sc->unsolq_wp) 319 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 320 } 321 322 if (intsts & HDAC_INTSTS_SIS_MASK) { 323 for (i = 0; i < sc->num_ss; i++) { 324 if ((intsts & (1 << i)) == 0) 325 continue; 326 HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS, 327 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS ); 328 if ((dev = sc->streams[i].dev) != NULL) { 329 HDAC_STREAM_INTR(dev, 330 sc->streams[i].dir, sc->streams[i].stream); 331 } 332 } 333 } 334 335 HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts); 336 hdac_unlock(sc); 337 } 338 339 static void 340 hdac_poll_callback(void *arg) 341 { 342 struct hdac_softc *sc = arg; 343 344 if (sc == NULL) 345 return; 346 347 hdac_lock(sc); 348 if (sc->polling == 0) { 349 hdac_unlock(sc); 350 return; 351 } 352 callout_reset(&sc->poll_callout, sc->poll_ival, 353 hdac_poll_callback, sc); 354 hdac_unlock(sc); 355 356 hdac_intr_handler(sc); 357 } 358 359 /**************************************************************************** 360 * int hdac_reset(hdac_softc *, int) 361 * 362 * Reset the hdac to a quiescent and known state. 363 ****************************************************************************/ 364 static int 365 hdac_reset(struct hdac_softc *sc, int wakeup) 366 { 367 uint32_t gctl; 368 int count, i; 369 370 /* 371 * Stop all Streams DMA engine 372 */ 373 for (i = 0; i < sc->num_iss; i++) 374 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); 375 for (i = 0; i < sc->num_oss; i++) 376 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); 377 for (i = 0; i < sc->num_bss; i++) 378 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); 379 380 /* 381 * Stop Control DMA engines. 382 */ 383 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); 384 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); 385 386 /* 387 * Reset DMA position buffer. 388 */ 389 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); 390 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); 391 392 /* 393 * Reset the controller. The reset must remain asserted for 394 * a minimum of 100us. 395 */ 396 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 397 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); 398 count = 10000; 399 do { 400 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 401 if (!(gctl & HDAC_GCTL_CRST)) 402 break; 403 DELAY(10); 404 } while (--count); 405 if (gctl & HDAC_GCTL_CRST) { 406 device_printf(sc->dev, "Unable to put hdac in reset\n"); 407 return (ENXIO); 408 } 409 410 /* If wakeup is not requested - leave the controller in reset state. */ 411 if (!wakeup) 412 return (0); 413 414 DELAY(100); 415 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 416 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); 417 count = 10000; 418 do { 419 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); 420 if (gctl & HDAC_GCTL_CRST) 421 break; 422 DELAY(10); 423 } while (--count); 424 if (!(gctl & HDAC_GCTL_CRST)) { 425 device_printf(sc->dev, "Device stuck in reset\n"); 426 return (ENXIO); 427 } 428 429 /* 430 * Wait for codecs to finish their own reset sequence. The delay here 431 * should be of 250us but for some reasons, it's not enough on my 432 * computer. Let's use twice as much as necessary to make sure that 433 * it's reset properly. 434 */ 435 DELAY(1000); 436 437 return (0); 438 } 439 440 441 /**************************************************************************** 442 * int hdac_get_capabilities(struct hdac_softc *); 443 * 444 * Retreive the general capabilities of the hdac; 445 * Number of Input Streams 446 * Number of Output Streams 447 * Number of bidirectional Streams 448 * 64bit ready 449 * CORB and RIRB sizes 450 ****************************************************************************/ 451 static int 452 hdac_get_capabilities(struct hdac_softc *sc) 453 { 454 uint16_t gcap; 455 uint8_t corbsize, rirbsize; 456 457 gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); 458 sc->num_iss = HDAC_GCAP_ISS(gcap); 459 sc->num_oss = HDAC_GCAP_OSS(gcap); 460 sc->num_bss = HDAC_GCAP_BSS(gcap); 461 sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss; 462 sc->num_sdo = HDAC_GCAP_NSDO(gcap); 463 sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0; 464 if (sc->quirks_on & HDAC_QUIRK_64BIT) 465 sc->support_64bit = 1; 466 else if (sc->quirks_off & HDAC_QUIRK_64BIT) 467 sc->support_64bit = 0; 468 469 corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); 470 if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == 471 HDAC_CORBSIZE_CORBSZCAP_256) 472 sc->corb_size = 256; 473 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == 474 HDAC_CORBSIZE_CORBSZCAP_16) 475 sc->corb_size = 16; 476 else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == 477 HDAC_CORBSIZE_CORBSZCAP_2) 478 sc->corb_size = 2; 479 else { 480 device_printf(sc->dev, "%s: Invalid corb size (%x)\n", 481 __func__, corbsize); 482 return (ENXIO); 483 } 484 485 rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); 486 if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == 487 HDAC_RIRBSIZE_RIRBSZCAP_256) 488 sc->rirb_size = 256; 489 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == 490 HDAC_RIRBSIZE_RIRBSZCAP_16) 491 sc->rirb_size = 16; 492 else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == 493 HDAC_RIRBSIZE_RIRBSZCAP_2) 494 sc->rirb_size = 2; 495 else { 496 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", 497 __func__, rirbsize); 498 return (ENXIO); 499 } 500 501 HDA_BOOTVERBOSE( 502 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " 503 "NSDO %d%s, CORB %d, RIRB %d\n", 504 sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, 505 sc->support_64bit ? ", 64bit" : "", 506 sc->corb_size, sc->rirb_size); 507 ); 508 509 return (0); 510 } 511 512 513 /**************************************************************************** 514 * void hdac_dma_cb 515 * 516 * This function is called by bus_dmamap_load when the mapping has been 517 * established. We just record the physical address of the mapping into 518 * the struct hdac_dma passed in. 519 ****************************************************************************/ 520 static void 521 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) 522 { 523 struct hdac_dma *dma; 524 525 if (error == 0) { 526 dma = (struct hdac_dma *)callback_arg; 527 dma->dma_paddr = segs[0].ds_addr; 528 } 529 } 530 531 532 /**************************************************************************** 533 * int hdac_dma_alloc 534 * 535 * This function allocate and setup a dma region (struct hdac_dma). 536 * It must be freed by a corresponding hdac_dma_free. 537 ****************************************************************************/ 538 static int 539 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) 540 { 541 bus_size_t roundsz; 542 int result; 543 544 roundsz = roundup2(size, HDA_DMA_ALIGNMENT); 545 bzero(dma, sizeof(*dma)); 546 547 /* 548 * Create a DMA tag 549 */ 550 result = bus_dma_tag_create( 551 bus_get_dma_tag(sc->dev), /* parent */ 552 HDA_DMA_ALIGNMENT, /* alignment */ 553 0, /* boundary */ 554 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 555 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 556 BUS_SPACE_MAXADDR, /* highaddr */ 557 NULL, /* filtfunc */ 558 NULL, /* fistfuncarg */ 559 roundsz, /* maxsize */ 560 1, /* nsegments */ 561 roundsz, /* maxsegsz */ 562 0, /* flags */ 563 NULL, /* lockfunc */ 564 NULL, /* lockfuncarg */ 565 &dma->dma_tag); /* dmat */ 566 if (result != 0) { 567 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%x)\n", 568 __func__, result); 569 goto hdac_dma_alloc_fail; 570 } 571 572 /* 573 * Allocate DMA memory 574 */ 575 result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, 576 BUS_DMA_NOWAIT | BUS_DMA_ZERO | 577 ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0), 578 &dma->dma_map); 579 if (result != 0) { 580 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%x)\n", 581 __func__, result); 582 goto hdac_dma_alloc_fail; 583 } 584 585 dma->dma_size = roundsz; 586 587 /* 588 * Map the memory 589 */ 590 result = bus_dmamap_load(dma->dma_tag, dma->dma_map, 591 (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); 592 if (result != 0 || dma->dma_paddr == 0) { 593 if (result == 0) 594 result = ENOMEM; 595 device_printf(sc->dev, "%s: bus_dmamem_load failed (%x)\n", 596 __func__, result); 597 goto hdac_dma_alloc_fail; 598 } 599 600 HDA_BOOTHVERBOSE( 601 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", 602 __func__, (uintmax_t)size, (uintmax_t)roundsz); 603 ); 604 605 return (0); 606 607 hdac_dma_alloc_fail: 608 hdac_dma_free(sc, dma); 609 610 return (result); 611 } 612 613 614 /**************************************************************************** 615 * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) 616 * 617 * Free a struct dhac_dma that has been previously allocated via the 618 * hdac_dma_alloc function. 619 ****************************************************************************/ 620 static void 621 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) 622 { 623 if (dma->dma_paddr != 0) { 624 #if 0 625 /* Flush caches */ 626 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 627 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 628 #endif 629 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 630 dma->dma_paddr = 0; 631 } 632 if (dma->dma_vaddr != NULL) { 633 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 634 dma->dma_vaddr = NULL; 635 } 636 if (dma->dma_tag != NULL) { 637 bus_dma_tag_destroy(dma->dma_tag); 638 dma->dma_tag = NULL; 639 } 640 dma->dma_size = 0; 641 } 642 643 /**************************************************************************** 644 * int hdac_mem_alloc(struct hdac_softc *) 645 * 646 * Allocate all the bus resources necessary to speak with the physical 647 * controller. 648 ****************************************************************************/ 649 static int 650 hdac_mem_alloc(struct hdac_softc *sc) 651 { 652 struct hdac_mem *mem; 653 654 mem = &sc->mem; 655 mem->mem_rid = PCIR_BAR(0); 656 mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 657 &mem->mem_rid, RF_ACTIVE); 658 if (mem->mem_res == NULL) { 659 device_printf(sc->dev, 660 "%s: Unable to allocate memory resource\n", __func__); 661 return (ENOMEM); 662 } 663 mem->mem_tag = rman_get_bustag(mem->mem_res); 664 mem->mem_handle = rman_get_bushandle(mem->mem_res); 665 666 return (0); 667 } 668 669 /**************************************************************************** 670 * void hdac_mem_free(struct hdac_softc *) 671 * 672 * Free up resources previously allocated by hdac_mem_alloc. 673 ****************************************************************************/ 674 static void 675 hdac_mem_free(struct hdac_softc *sc) 676 { 677 struct hdac_mem *mem; 678 679 mem = &sc->mem; 680 if (mem->mem_res != NULL) 681 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, 682 mem->mem_res); 683 mem->mem_res = NULL; 684 } 685 686 /**************************************************************************** 687 * int hdac_irq_alloc(struct hdac_softc *) 688 * 689 * Allocate and setup the resources necessary for interrupt handling. 690 ****************************************************************************/ 691 static int 692 hdac_irq_alloc(struct hdac_softc *sc) 693 { 694 struct hdac_irq *irq; 695 int result; 696 697 irq = &sc->irq; 698 irq->irq_rid = 0x0; 699 700 if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 && 701 (result = pci_msi_count(sc->dev)) == 1 && 702 pci_alloc_msi(sc->dev, &result) == 0) 703 irq->irq_rid = 0x1; 704 705 irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, 706 &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); 707 if (irq->irq_res == NULL) { 708 device_printf(sc->dev, "%s: Unable to allocate irq\n", 709 __func__); 710 goto hdac_irq_alloc_fail; 711 } 712 result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, 713 NULL, hdac_intr_handler, sc, &irq->irq_handle); 714 if (result != 0) { 715 device_printf(sc->dev, 716 "%s: Unable to setup interrupt handler (%x)\n", 717 __func__, result); 718 goto hdac_irq_alloc_fail; 719 } 720 721 return (0); 722 723 hdac_irq_alloc_fail: 724 hdac_irq_free(sc); 725 726 return (ENXIO); 727 } 728 729 /**************************************************************************** 730 * void hdac_irq_free(struct hdac_softc *) 731 * 732 * Free up resources previously allocated by hdac_irq_alloc. 733 ****************************************************************************/ 734 static void 735 hdac_irq_free(struct hdac_softc *sc) 736 { 737 struct hdac_irq *irq; 738 739 irq = &sc->irq; 740 if (irq->irq_res != NULL && irq->irq_handle != NULL) 741 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); 742 if (irq->irq_res != NULL) 743 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, 744 irq->irq_res); 745 if (irq->irq_rid == 0x1) 746 pci_release_msi(sc->dev); 747 irq->irq_handle = NULL; 748 irq->irq_res = NULL; 749 irq->irq_rid = 0x0; 750 } 751 752 /**************************************************************************** 753 * void hdac_corb_init(struct hdac_softc *) 754 * 755 * Initialize the corb registers for operations but do not start it up yet. 756 * The CORB engine must not be running when this function is called. 757 ****************************************************************************/ 758 static void 759 hdac_corb_init(struct hdac_softc *sc) 760 { 761 uint8_t corbsize; 762 uint64_t corbpaddr; 763 764 /* Setup the CORB size. */ 765 switch (sc->corb_size) { 766 case 256: 767 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); 768 break; 769 case 16: 770 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); 771 break; 772 case 2: 773 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); 774 break; 775 default: 776 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); 777 } 778 HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); 779 780 /* Setup the CORB Address in the hdac */ 781 corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; 782 HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); 783 HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); 784 785 /* Set the WP and RP */ 786 sc->corb_wp = 0; 787 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 788 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); 789 /* 790 * The HDA specification indicates that the CORBRPRST bit will always 791 * read as zero. Unfortunately, it seems that at least the 82801G 792 * doesn't reset the bit to zero, which stalls the corb engine. 793 * manually reset the bit to zero before continuing. 794 */ 795 HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); 796 797 /* Enable CORB error reporting */ 798 #if 0 799 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); 800 #endif 801 } 802 803 /**************************************************************************** 804 * void hdac_rirb_init(struct hdac_softc *) 805 * 806 * Initialize the rirb registers for operations but do not start it up yet. 807 * The RIRB engine must not be running when this function is called. 808 ****************************************************************************/ 809 static void 810 hdac_rirb_init(struct hdac_softc *sc) 811 { 812 uint8_t rirbsize; 813 uint64_t rirbpaddr; 814 815 /* Setup the RIRB size. */ 816 switch (sc->rirb_size) { 817 case 256: 818 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); 819 break; 820 case 16: 821 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); 822 break; 823 case 2: 824 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); 825 break; 826 default: 827 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); 828 } 829 HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); 830 831 /* Setup the RIRB Address in the hdac */ 832 rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; 833 HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); 834 HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); 835 836 /* Setup the WP and RP */ 837 sc->rirb_rp = 0; 838 HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); 839 840 /* Setup the interrupt threshold */ 841 HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); 842 843 /* Enable Overrun and response received reporting */ 844 #if 0 845 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 846 HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); 847 #else 848 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); 849 #endif 850 851 #if 0 852 /* 853 * Make sure that the Host CPU cache doesn't contain any dirty 854 * cache lines that falls in the rirb. If I understood correctly, it 855 * should be sufficient to do this only once as the rirb is purely 856 * read-only from now on. 857 */ 858 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 859 BUS_DMASYNC_PREREAD); 860 #endif 861 } 862 863 /**************************************************************************** 864 * void hdac_corb_start(hdac_softc *) 865 * 866 * Startup the corb DMA engine 867 ****************************************************************************/ 868 static void 869 hdac_corb_start(struct hdac_softc *sc) 870 { 871 uint32_t corbctl; 872 873 corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); 874 corbctl |= HDAC_CORBCTL_CORBRUN; 875 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); 876 } 877 878 /**************************************************************************** 879 * void hdac_rirb_start(hdac_softc *) 880 * 881 * Startup the rirb DMA engine 882 ****************************************************************************/ 883 static void 884 hdac_rirb_start(struct hdac_softc *sc) 885 { 886 uint32_t rirbctl; 887 888 rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); 889 rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; 890 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); 891 } 892 893 static int 894 hdac_rirb_flush(struct hdac_softc *sc) 895 { 896 struct hdac_rirb *rirb_base, *rirb; 897 nid_t cad; 898 uint32_t resp; 899 uint8_t rirbwp; 900 int ret; 901 902 rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; 903 rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); 904 #if 0 905 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, 906 BUS_DMASYNC_POSTREAD); 907 #endif 908 909 ret = 0; 910 while (sc->rirb_rp != rirbwp) { 911 sc->rirb_rp++; 912 sc->rirb_rp %= sc->rirb_size; 913 rirb = &rirb_base[sc->rirb_rp]; 914 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(rirb->response_ex); 915 resp = rirb->response; 916 if (rirb->response_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { 917 sc->unsolq[sc->unsolq_wp++] = resp; 918 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 919 sc->unsolq[sc->unsolq_wp++] = cad; 920 sc->unsolq_wp %= HDAC_UNSOLQ_MAX; 921 } else if (sc->codecs[cad].pending <= 0) { 922 device_printf(sc->dev, "Unexpected unsolicited " 923 "response from address %d: %08x\n", cad, resp); 924 } else { 925 sc->codecs[cad].response = resp; 926 sc->codecs[cad].pending--; 927 } 928 ret++; 929 } 930 return (ret); 931 } 932 933 static int 934 hdac_unsolq_flush(struct hdac_softc *sc) 935 { 936 device_t child; 937 nid_t cad; 938 uint32_t resp; 939 int ret = 0; 940 941 if (sc->unsolq_st == HDAC_UNSOLQ_READY) { 942 sc->unsolq_st = HDAC_UNSOLQ_BUSY; 943 while (sc->unsolq_rp != sc->unsolq_wp) { 944 resp = sc->unsolq[sc->unsolq_rp++]; 945 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 946 cad = sc->unsolq[sc->unsolq_rp++]; 947 sc->unsolq_rp %= HDAC_UNSOLQ_MAX; 948 if ((child = sc->codecs[cad].dev) != NULL) 949 HDAC_UNSOL_INTR(child, resp); 950 ret++; 951 } 952 sc->unsolq_st = HDAC_UNSOLQ_READY; 953 } 954 955 return (ret); 956 } 957 958 /**************************************************************************** 959 * uint32_t hdac_command_sendone_internal 960 * 961 * Wrapper function that sends only one command to a given codec 962 ****************************************************************************/ 963 static uint32_t 964 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb) 965 { 966 int timeout; 967 uint32_t *corb; 968 969 if (!hdac_lockowned(sc)) 970 device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n"); 971 verb &= ~HDA_CMD_CAD_MASK; 972 verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT; 973 sc->codecs[cad].response = HDA_INVALID; 974 975 sc->codecs[cad].pending++; 976 sc->corb_wp++; 977 sc->corb_wp %= sc->corb_size; 978 corb = (uint32_t *)sc->corb_dma.dma_vaddr; 979 #if 0 980 bus_dmamap_sync(sc->corb_dma.dma_tag, 981 sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); 982 #endif 983 corb[sc->corb_wp] = verb; 984 #if 0 985 bus_dmamap_sync(sc->corb_dma.dma_tag, 986 sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); 987 #endif 988 HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); 989 990 timeout = 10000; 991 do { 992 if (hdac_rirb_flush(sc) == 0) 993 DELAY(10); 994 } while (sc->codecs[cad].pending != 0 && --timeout); 995 996 if (sc->codecs[cad].pending != 0) { 997 device_printf(sc->dev, "Command timeout on address %d\n", cad); 998 sc->codecs[cad].pending = 0; 999 } 1000 1001 if (sc->unsolq_rp != sc->unsolq_wp) 1002 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); 1003 return (sc->codecs[cad].response); 1004 } 1005 1006 /**************************************************************************** 1007 * Device Methods 1008 ****************************************************************************/ 1009 1010 /**************************************************************************** 1011 * int hdac_probe(device_t) 1012 * 1013 * Probe for the presence of an hdac. If none is found, check for a generic 1014 * match using the subclass of the device. 1015 ****************************************************************************/ 1016 static int 1017 hdac_probe(device_t dev) 1018 { 1019 int i, result; 1020 uint32_t model; 1021 uint16_t class, subclass; 1022 char desc[64]; 1023 1024 model = (uint32_t)pci_get_device(dev) << 16; 1025 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1026 class = pci_get_class(dev); 1027 subclass = pci_get_subclass(dev); 1028 1029 bzero(desc, sizeof(desc)); 1030 result = ENXIO; 1031 for (i = 0; i < nitems(hdac_devices); i++) { 1032 if (hdac_devices[i].model == model) { 1033 strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); 1034 result = BUS_PROBE_DEFAULT; 1035 break; 1036 } 1037 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1038 class == PCIC_MULTIMEDIA && 1039 subclass == PCIS_MULTIMEDIA_HDA) { 1040 snprintf(desc, sizeof(desc), 1041 "%s (0x%04x)", 1042 hdac_devices[i].desc, pci_get_device(dev)); 1043 result = BUS_PROBE_GENERIC; 1044 break; 1045 } 1046 } 1047 if (result == ENXIO && class == PCIC_MULTIMEDIA && 1048 subclass == PCIS_MULTIMEDIA_HDA) { 1049 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model); 1050 result = BUS_PROBE_GENERIC; 1051 } 1052 if (result != ENXIO) { 1053 strlcat(desc, " HDA Controller", sizeof(desc)); 1054 device_set_desc_copy(dev, desc); 1055 } 1056 1057 return (result); 1058 } 1059 1060 static void 1061 hdac_unsolq_task(void *context, int pending) 1062 { 1063 struct hdac_softc *sc; 1064 1065 sc = (struct hdac_softc *)context; 1066 1067 hdac_lock(sc); 1068 hdac_unsolq_flush(sc); 1069 hdac_unlock(sc); 1070 } 1071 1072 /**************************************************************************** 1073 * int hdac_attach(device_t) 1074 * 1075 * Attach the device into the kernel. Interrupts usually won't be enabled 1076 * when this function is called. Setup everything that doesn't require 1077 * interrupts and defer probing of codecs until interrupts are enabled. 1078 ****************************************************************************/ 1079 static int 1080 hdac_attach(device_t dev) 1081 { 1082 struct hdac_softc *sc; 1083 int result; 1084 int i, devid = -1; 1085 uint32_t model; 1086 uint16_t class, subclass; 1087 uint16_t vendor; 1088 uint8_t v; 1089 1090 sc = device_get_softc(dev); 1091 HDA_BOOTVERBOSE( 1092 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n", 1093 pci_get_subvendor(dev), pci_get_subdevice(dev)); 1094 device_printf(dev, "HDA Driver Revision: %s\n", 1095 HDA_DRV_TEST_REV); 1096 ); 1097 1098 model = (uint32_t)pci_get_device(dev) << 16; 1099 model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; 1100 class = pci_get_class(dev); 1101 subclass = pci_get_subclass(dev); 1102 1103 for (i = 0; i < nitems(hdac_devices); i++) { 1104 if (hdac_devices[i].model == model) { 1105 devid = i; 1106 break; 1107 } 1108 if (HDA_DEV_MATCH(hdac_devices[i].model, model) && 1109 class == PCIC_MULTIMEDIA && 1110 subclass == PCIS_MULTIMEDIA_HDA) { 1111 devid = i; 1112 break; 1113 } 1114 } 1115 1116 sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex"); 1117 sc->dev = dev; 1118 TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); 1119 callout_init(&sc->poll_callout, 1); 1120 for (i = 0; i < HDAC_CODEC_MAX; i++) 1121 sc->codecs[i].dev = NULL; 1122 if (devid >= 0) { 1123 sc->quirks_on = hdac_devices[devid].quirks_on; 1124 sc->quirks_off = hdac_devices[devid].quirks_off; 1125 } else { 1126 sc->quirks_on = 0; 1127 sc->quirks_off = 0; 1128 } 1129 if (resource_int_value(device_get_name(dev), 1130 device_get_unit(dev), "msi", &i) == 0) { 1131 if (i == 0) 1132 sc->quirks_off |= HDAC_QUIRK_MSI; 1133 else { 1134 sc->quirks_on |= HDAC_QUIRK_MSI; 1135 sc->quirks_off |= ~HDAC_QUIRK_MSI; 1136 } 1137 } 1138 hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off); 1139 HDA_BOOTVERBOSE( 1140 device_printf(sc->dev, 1141 "Config options: on=0x%08x off=0x%08x\n", 1142 sc->quirks_on, sc->quirks_off); 1143 ); 1144 sc->poll_ival = hz; 1145 if (resource_int_value(device_get_name(dev), 1146 device_get_unit(dev), "polling", &i) == 0 && i != 0) 1147 sc->polling = 1; 1148 else 1149 sc->polling = 0; 1150 1151 pci_enable_busmaster(dev); 1152 1153 vendor = pci_get_vendor(dev); 1154 if (vendor == INTEL_VENDORID) { 1155 /* TCSEL -> TC0 */ 1156 v = pci_read_config(dev, 0x44, 1); 1157 pci_write_config(dev, 0x44, v & 0xf8, 1); 1158 HDA_BOOTHVERBOSE( 1159 device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, 1160 pci_read_config(dev, 0x44, 1)); 1161 ); 1162 } 1163 1164 #if defined(__i386__) || defined(__amd64__) 1165 sc->flags |= HDAC_F_DMA_NOCACHE; 1166 1167 if (resource_int_value(device_get_name(dev), 1168 device_get_unit(dev), "snoop", &i) == 0 && i != 0) { 1169 #else 1170 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1171 #endif 1172 /* 1173 * Try to enable PCIe snoop to avoid messing around with 1174 * uncacheable DMA attribute. Since PCIe snoop register 1175 * config is pretty much vendor specific, there are no 1176 * general solutions on how to enable it, forcing us (even 1177 * Microsoft) to enable uncacheable or write combined DMA 1178 * by default. 1179 * 1180 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx 1181 */ 1182 for (i = 0; i < nitems(hdac_pcie_snoop); i++) { 1183 if (hdac_pcie_snoop[i].vendor != vendor) 1184 continue; 1185 sc->flags &= ~HDAC_F_DMA_NOCACHE; 1186 if (hdac_pcie_snoop[i].reg == 0x00) 1187 break; 1188 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1189 if ((v & hdac_pcie_snoop[i].enable) == 1190 hdac_pcie_snoop[i].enable) 1191 break; 1192 v &= hdac_pcie_snoop[i].mask; 1193 v |= hdac_pcie_snoop[i].enable; 1194 pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); 1195 v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); 1196 if ((v & hdac_pcie_snoop[i].enable) != 1197 hdac_pcie_snoop[i].enable) { 1198 HDA_BOOTVERBOSE( 1199 device_printf(dev, 1200 "WARNING: Failed to enable PCIe " 1201 "snoop!\n"); 1202 ); 1203 #if defined(__i386__) || defined(__amd64__) 1204 sc->flags |= HDAC_F_DMA_NOCACHE; 1205 #endif 1206 } 1207 break; 1208 } 1209 #if defined(__i386__) || defined(__amd64__) 1210 } 1211 #endif 1212 1213 HDA_BOOTHVERBOSE( 1214 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", 1215 (sc->flags & HDAC_F_DMA_NOCACHE) ? 1216 "Uncacheable" : "PCIe snoop", vendor); 1217 ); 1218 1219 /* Allocate resources */ 1220 result = hdac_mem_alloc(sc); 1221 if (result != 0) 1222 goto hdac_attach_fail; 1223 result = hdac_irq_alloc(sc); 1224 if (result != 0) 1225 goto hdac_attach_fail; 1226 1227 /* Get Capabilities */ 1228 result = hdac_get_capabilities(sc); 1229 if (result != 0) 1230 goto hdac_attach_fail; 1231 1232 /* Allocate CORB, RIRB, POS and BDLs dma memory */ 1233 result = hdac_dma_alloc(sc, &sc->corb_dma, 1234 sc->corb_size * sizeof(uint32_t)); 1235 if (result != 0) 1236 goto hdac_attach_fail; 1237 result = hdac_dma_alloc(sc, &sc->rirb_dma, 1238 sc->rirb_size * sizeof(struct hdac_rirb)); 1239 if (result != 0) 1240 goto hdac_attach_fail; 1241 sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss, 1242 M_HDAC, M_ZERO | M_WAITOK); 1243 for (i = 0; i < sc->num_ss; i++) { 1244 result = hdac_dma_alloc(sc, &sc->streams[i].bdl, 1245 sizeof(struct hdac_bdle) * HDA_BDL_MAX); 1246 if (result != 0) 1247 goto hdac_attach_fail; 1248 } 1249 if (sc->quirks_on & HDAC_QUIRK_DMAPOS) { 1250 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) { 1251 HDA_BOOTVERBOSE( 1252 device_printf(dev, "Failed to " 1253 "allocate DMA pos buffer " 1254 "(non-fatal)\n"); 1255 ); 1256 } else { 1257 uint64_t addr = sc->pos_dma.dma_paddr; 1258 1259 HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32); 1260 HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 1261 (addr & HDAC_DPLBASE_DPLBASE_MASK) | 1262 HDAC_DPLBASE_DPLBASE_DMAPBE); 1263 } 1264 } 1265 1266 result = bus_dma_tag_create( 1267 bus_get_dma_tag(sc->dev), /* parent */ 1268 HDA_DMA_ALIGNMENT, /* alignment */ 1269 0, /* boundary */ 1270 (sc->support_64bit) ? BUS_SPACE_MAXADDR : 1271 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1272 BUS_SPACE_MAXADDR, /* highaddr */ 1273 NULL, /* filtfunc */ 1274 NULL, /* fistfuncarg */ 1275 HDA_BUFSZ_MAX, /* maxsize */ 1276 1, /* nsegments */ 1277 HDA_BUFSZ_MAX, /* maxsegsz */ 1278 0, /* flags */ 1279 NULL, /* lockfunc */ 1280 NULL, /* lockfuncarg */ 1281 &sc->chan_dmat); /* dmat */ 1282 if (result != 0) { 1283 device_printf(dev, "%s: bus_dma_tag_create failed (%x)\n", 1284 __func__, result); 1285 goto hdac_attach_fail; 1286 } 1287 1288 /* Quiesce everything */ 1289 HDA_BOOTHVERBOSE( 1290 device_printf(dev, "Reset controller...\n"); 1291 ); 1292 hdac_reset(sc, 1); 1293 1294 /* Initialize the CORB and RIRB */ 1295 hdac_corb_init(sc); 1296 hdac_rirb_init(sc); 1297 1298 /* Defer remaining of initialization until interrupts are enabled */ 1299 sc->intrhook.ich_func = hdac_attach2; 1300 sc->intrhook.ich_arg = (void *)sc; 1301 if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { 1302 sc->intrhook.ich_func = NULL; 1303 hdac_attach2((void *)sc); 1304 } 1305 1306 return (0); 1307 1308 hdac_attach_fail: 1309 hdac_irq_free(sc); 1310 for (i = 0; i < sc->num_ss; i++) 1311 hdac_dma_free(sc, &sc->streams[i].bdl); 1312 free(sc->streams, M_HDAC); 1313 hdac_dma_free(sc, &sc->rirb_dma); 1314 hdac_dma_free(sc, &sc->corb_dma); 1315 hdac_mem_free(sc); 1316 snd_mtxfree(sc->lock); 1317 1318 return (ENXIO); 1319 } 1320 1321 static int 1322 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) 1323 { 1324 struct hdac_softc *sc; 1325 device_t *devlist; 1326 device_t dev; 1327 int devcount, i, err, val; 1328 1329 dev = oidp->oid_arg1; 1330 sc = device_get_softc(dev); 1331 if (sc == NULL) 1332 return (EINVAL); 1333 val = 0; 1334 err = sysctl_handle_int(oidp, &val, 0, req); 1335 if (err != 0 || req->newptr == NULL || val == 0) 1336 return (err); 1337 1338 /* XXX: Temporary. For debugging. */ 1339 if (val == 100) { 1340 hdac_suspend(dev); 1341 return (0); 1342 } else if (val == 101) { 1343 hdac_resume(dev); 1344 return (0); 1345 } 1346 1347 if ((err = device_get_children(dev, &devlist, &devcount)) != 0) 1348 return (err); 1349 hdac_lock(sc); 1350 for (i = 0; i < devcount; i++) 1351 HDAC_PINDUMP(devlist[i]); 1352 hdac_unlock(sc); 1353 free(devlist, M_TEMP); 1354 return (0); 1355 } 1356 1357 static int 1358 hdac_mdata_rate(uint16_t fmt) 1359 { 1360 static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 }; 1361 int rate, bits; 1362 1363 if (fmt & (1 << 14)) 1364 rate = 44100; 1365 else 1366 rate = 48000; 1367 rate *= ((fmt >> 11) & 0x07) + 1; 1368 rate /= ((fmt >> 8) & 0x07) + 1; 1369 bits = mbits[(fmt >> 4) & 0x03]; 1370 bits *= (fmt & 0x0f) + 1; 1371 return (rate * bits); 1372 } 1373 1374 static int 1375 hdac_bdata_rate(uint16_t fmt, int output) 1376 { 1377 static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 }; 1378 int rate, bits; 1379 1380 rate = 48000; 1381 rate *= ((fmt >> 11) & 0x07) + 1; 1382 bits = bbits[(fmt >> 4) & 0x03]; 1383 bits *= (fmt & 0x0f) + 1; 1384 if (!output) 1385 bits = ((bits + 7) & ~0x07) + 10; 1386 return (rate * bits); 1387 } 1388 1389 static void 1390 hdac_poll_reinit(struct hdac_softc *sc) 1391 { 1392 int i, pollticks, min = 1000000; 1393 struct hdac_stream *s; 1394 1395 if (sc->polling == 0) 1396 return; 1397 if (sc->unsol_registered > 0) 1398 min = hz / 2; 1399 for (i = 0; i < sc->num_ss; i++) { 1400 s = &sc->streams[i]; 1401 if (s->running == 0) 1402 continue; 1403 pollticks = ((uint64_t)hz * s->blksz) / 1404 (hdac_mdata_rate(s->format) / 8); 1405 pollticks >>= 1; 1406 if (pollticks > hz) 1407 pollticks = hz; 1408 if (pollticks < 1) { 1409 HDA_BOOTVERBOSE( 1410 device_printf(sc->dev, 1411 "poll interval < 1 tick !\n"); 1412 ); 1413 pollticks = 1; 1414 } 1415 if (min > pollticks) 1416 min = pollticks; 1417 } 1418 HDA_BOOTVERBOSE( 1419 device_printf(sc->dev, 1420 "poll interval %d -> %d ticks\n", 1421 sc->poll_ival, min); 1422 ); 1423 sc->poll_ival = min; 1424 if (min == 1000000) 1425 callout_stop(&sc->poll_callout); 1426 else 1427 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc); 1428 } 1429 1430 static int 1431 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) 1432 { 1433 struct hdac_softc *sc; 1434 device_t dev; 1435 uint32_t ctl; 1436 int err, val; 1437 1438 dev = oidp->oid_arg1; 1439 sc = device_get_softc(dev); 1440 if (sc == NULL) 1441 return (EINVAL); 1442 hdac_lock(sc); 1443 val = sc->polling; 1444 hdac_unlock(sc); 1445 err = sysctl_handle_int(oidp, &val, 0, req); 1446 1447 if (err != 0 || req->newptr == NULL) 1448 return (err); 1449 if (val < 0 || val > 1) 1450 return (EINVAL); 1451 1452 hdac_lock(sc); 1453 if (val != sc->polling) { 1454 if (val == 0) { 1455 callout_stop(&sc->poll_callout); 1456 hdac_unlock(sc); 1457 callout_drain(&sc->poll_callout); 1458 hdac_lock(sc); 1459 sc->polling = 0; 1460 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1461 ctl |= HDAC_INTCTL_GIE; 1462 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1463 } else { 1464 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1465 ctl &= ~HDAC_INTCTL_GIE; 1466 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1467 sc->polling = 1; 1468 hdac_poll_reinit(sc); 1469 } 1470 } 1471 hdac_unlock(sc); 1472 1473 return (err); 1474 } 1475 1476 static void 1477 hdac_attach2(void *arg) 1478 { 1479 struct hdac_softc *sc; 1480 device_t child; 1481 uint32_t vendorid, revisionid; 1482 int i; 1483 uint16_t statests; 1484 1485 sc = (struct hdac_softc *)arg; 1486 1487 hdac_lock(sc); 1488 1489 /* Remove ourselves from the config hooks */ 1490 if (sc->intrhook.ich_func != NULL) { 1491 config_intrhook_disestablish(&sc->intrhook); 1492 sc->intrhook.ich_func = NULL; 1493 } 1494 1495 HDA_BOOTHVERBOSE( 1496 device_printf(sc->dev, "Starting CORB Engine...\n"); 1497 ); 1498 hdac_corb_start(sc); 1499 HDA_BOOTHVERBOSE( 1500 device_printf(sc->dev, "Starting RIRB Engine...\n"); 1501 ); 1502 hdac_rirb_start(sc); 1503 HDA_BOOTHVERBOSE( 1504 device_printf(sc->dev, 1505 "Enabling controller interrupt...\n"); 1506 ); 1507 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1508 HDAC_GCTL_UNSOL); 1509 if (sc->polling == 0) { 1510 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, 1511 HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1512 } 1513 DELAY(1000); 1514 1515 HDA_BOOTHVERBOSE( 1516 device_printf(sc->dev, "Scanning HDA codecs ...\n"); 1517 ); 1518 statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); 1519 hdac_unlock(sc); 1520 for (i = 0; i < HDAC_CODEC_MAX; i++) { 1521 if (HDAC_STATESTS_SDIWAKE(statests, i)) { 1522 HDA_BOOTHVERBOSE( 1523 device_printf(sc->dev, 1524 "Found CODEC at address %d\n", i); 1525 ); 1526 hdac_lock(sc); 1527 vendorid = hdac_send_command(sc, i, 1528 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID)); 1529 revisionid = hdac_send_command(sc, i, 1530 HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID)); 1531 hdac_unlock(sc); 1532 if (vendorid == HDA_INVALID && 1533 revisionid == HDA_INVALID) { 1534 device_printf(sc->dev, 1535 "CODEC is not responding!\n"); 1536 continue; 1537 } 1538 sc->codecs[i].vendor_id = 1539 HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); 1540 sc->codecs[i].device_id = 1541 HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); 1542 sc->codecs[i].revision_id = 1543 HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); 1544 sc->codecs[i].stepping_id = 1545 HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); 1546 child = device_add_child(sc->dev, "hdacc", -1); 1547 if (child == NULL) { 1548 device_printf(sc->dev, 1549 "Failed to add CODEC device\n"); 1550 continue; 1551 } 1552 device_set_ivars(child, (void *)(intptr_t)i); 1553 sc->codecs[i].dev = child; 1554 } 1555 } 1556 bus_generic_attach(sc->dev); 1557 1558 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1559 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1560 "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), 1561 sysctl_hdac_pindump, "I", "Dump pin states/data"); 1562 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), 1563 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, 1564 "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), 1565 sysctl_hdac_polling, "I", "Enable polling mode"); 1566 } 1567 1568 /**************************************************************************** 1569 * int hdac_suspend(device_t) 1570 * 1571 * Suspend and power down HDA bus and codecs. 1572 ****************************************************************************/ 1573 static int 1574 hdac_suspend(device_t dev) 1575 { 1576 struct hdac_softc *sc = device_get_softc(dev); 1577 1578 HDA_BOOTHVERBOSE( 1579 device_printf(dev, "Suspend...\n"); 1580 ); 1581 bus_generic_suspend(dev); 1582 1583 hdac_lock(sc); 1584 HDA_BOOTHVERBOSE( 1585 device_printf(dev, "Reset controller...\n"); 1586 ); 1587 callout_stop(&sc->poll_callout); 1588 hdac_reset(sc, 0); 1589 hdac_unlock(sc); 1590 callout_drain(&sc->poll_callout); 1591 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1592 HDA_BOOTHVERBOSE( 1593 device_printf(dev, "Suspend done\n"); 1594 ); 1595 return (0); 1596 } 1597 1598 /**************************************************************************** 1599 * int hdac_resume(device_t) 1600 * 1601 * Powerup and restore HDA bus and codecs state. 1602 ****************************************************************************/ 1603 static int 1604 hdac_resume(device_t dev) 1605 { 1606 struct hdac_softc *sc = device_get_softc(dev); 1607 int error; 1608 1609 HDA_BOOTHVERBOSE( 1610 device_printf(dev, "Resume...\n"); 1611 ); 1612 hdac_lock(sc); 1613 1614 /* Quiesce everything */ 1615 HDA_BOOTHVERBOSE( 1616 device_printf(dev, "Reset controller...\n"); 1617 ); 1618 hdac_reset(sc, 1); 1619 1620 /* Initialize the CORB and RIRB */ 1621 hdac_corb_init(sc); 1622 hdac_rirb_init(sc); 1623 1624 HDA_BOOTHVERBOSE( 1625 device_printf(dev, "Starting CORB Engine...\n"); 1626 ); 1627 hdac_corb_start(sc); 1628 HDA_BOOTHVERBOSE( 1629 device_printf(dev, "Starting RIRB Engine...\n"); 1630 ); 1631 hdac_rirb_start(sc); 1632 HDA_BOOTHVERBOSE( 1633 device_printf(dev, "Enabling controller interrupt...\n"); 1634 ); 1635 HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | 1636 HDAC_GCTL_UNSOL); 1637 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); 1638 DELAY(1000); 1639 hdac_poll_reinit(sc); 1640 hdac_unlock(sc); 1641 1642 error = bus_generic_resume(dev); 1643 HDA_BOOTHVERBOSE( 1644 device_printf(dev, "Resume done\n"); 1645 ); 1646 return (error); 1647 } 1648 1649 /**************************************************************************** 1650 * int hdac_detach(device_t) 1651 * 1652 * Detach and free up resources utilized by the hdac device. 1653 ****************************************************************************/ 1654 static int 1655 hdac_detach(device_t dev) 1656 { 1657 struct hdac_softc *sc = device_get_softc(dev); 1658 device_t *devlist; 1659 int cad, i, devcount, error; 1660 1661 if ((error = device_get_children(dev, &devlist, &devcount)) != 0) 1662 return (error); 1663 for (i = 0; i < devcount; i++) { 1664 cad = (intptr_t)device_get_ivars(devlist[i]); 1665 if ((error = device_delete_child(dev, devlist[i])) != 0) { 1666 free(devlist, M_TEMP); 1667 return (error); 1668 } 1669 sc->codecs[cad].dev = NULL; 1670 } 1671 free(devlist, M_TEMP); 1672 1673 hdac_lock(sc); 1674 hdac_reset(sc, 0); 1675 hdac_unlock(sc); 1676 taskqueue_drain(taskqueue_thread, &sc->unsolq_task); 1677 hdac_irq_free(sc); 1678 1679 for (i = 0; i < sc->num_ss; i++) 1680 hdac_dma_free(sc, &sc->streams[i].bdl); 1681 free(sc->streams, M_HDAC); 1682 hdac_dma_free(sc, &sc->pos_dma); 1683 hdac_dma_free(sc, &sc->rirb_dma); 1684 hdac_dma_free(sc, &sc->corb_dma); 1685 if (sc->chan_dmat != NULL) { 1686 bus_dma_tag_destroy(sc->chan_dmat); 1687 sc->chan_dmat = NULL; 1688 } 1689 hdac_mem_free(sc); 1690 snd_mtxfree(sc->lock); 1691 return (0); 1692 } 1693 1694 static bus_dma_tag_t 1695 hdac_get_dma_tag(device_t dev, device_t child) 1696 { 1697 struct hdac_softc *sc = device_get_softc(dev); 1698 1699 return (sc->chan_dmat); 1700 } 1701 1702 static int 1703 hdac_print_child(device_t dev, device_t child) 1704 { 1705 int retval; 1706 1707 retval = bus_print_child_header(dev, child); 1708 retval += printf(" at cad %d", 1709 (int)(intptr_t)device_get_ivars(child)); 1710 retval += bus_print_child_footer(dev, child); 1711 1712 return (retval); 1713 } 1714 1715 static int 1716 hdac_child_location_str(device_t dev, device_t child, char *buf, 1717 size_t buflen) 1718 { 1719 1720 snprintf(buf, buflen, "cad=%d", 1721 (int)(intptr_t)device_get_ivars(child)); 1722 return (0); 1723 } 1724 1725 static int 1726 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, 1727 size_t buflen) 1728 { 1729 struct hdac_softc *sc = device_get_softc(dev); 1730 nid_t cad = (uintptr_t)device_get_ivars(child); 1731 1732 snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x " 1733 "stepping=0x%02x", 1734 sc->codecs[cad].vendor_id, sc->codecs[cad].device_id, 1735 sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id); 1736 return (0); 1737 } 1738 1739 static int 1740 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 1741 { 1742 struct hdac_softc *sc = device_get_softc(dev); 1743 nid_t cad = (uintptr_t)device_get_ivars(child); 1744 1745 switch (which) { 1746 case HDA_IVAR_CODEC_ID: 1747 *result = cad; 1748 break; 1749 case HDA_IVAR_VENDOR_ID: 1750 *result = sc->codecs[cad].vendor_id; 1751 break; 1752 case HDA_IVAR_DEVICE_ID: 1753 *result = sc->codecs[cad].device_id; 1754 break; 1755 case HDA_IVAR_REVISION_ID: 1756 *result = sc->codecs[cad].revision_id; 1757 break; 1758 case HDA_IVAR_STEPPING_ID: 1759 *result = sc->codecs[cad].stepping_id; 1760 break; 1761 case HDA_IVAR_SUBVENDOR_ID: 1762 *result = pci_get_subvendor(dev); 1763 break; 1764 case HDA_IVAR_SUBDEVICE_ID: 1765 *result = pci_get_subdevice(dev); 1766 break; 1767 case HDA_IVAR_DMA_NOCACHE: 1768 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0; 1769 break; 1770 case HDA_IVAR_STRIPES_MASK: 1771 *result = (1 << (1 << sc->num_sdo)) - 1; 1772 break; 1773 default: 1774 return (ENOENT); 1775 } 1776 return (0); 1777 } 1778 1779 static struct mtx * 1780 hdac_get_mtx(device_t dev, device_t child) 1781 { 1782 struct hdac_softc *sc = device_get_softc(dev); 1783 1784 return (sc->lock); 1785 } 1786 1787 static uint32_t 1788 hdac_codec_command(device_t dev, device_t child, uint32_t verb) 1789 { 1790 1791 return (hdac_send_command(device_get_softc(dev), 1792 (intptr_t)device_get_ivars(child), verb)); 1793 } 1794 1795 static int 1796 hdac_find_stream(struct hdac_softc *sc, int dir, int stream) 1797 { 1798 int i, ss; 1799 1800 ss = -1; 1801 /* Allocate ISS/BSS first. */ 1802 if (dir == 0) { 1803 for (i = 0; i < sc->num_iss; i++) { 1804 if (sc->streams[i].stream == stream) { 1805 ss = i; 1806 break; 1807 } 1808 } 1809 } else { 1810 for (i = 0; i < sc->num_oss; i++) { 1811 if (sc->streams[i + sc->num_iss].stream == stream) { 1812 ss = i + sc->num_iss; 1813 break; 1814 } 1815 } 1816 } 1817 /* Fallback to BSS. */ 1818 if (ss == -1) { 1819 for (i = 0; i < sc->num_bss; i++) { 1820 if (sc->streams[i + sc->num_iss + sc->num_oss].stream 1821 == stream) { 1822 ss = i + sc->num_iss + sc->num_oss; 1823 break; 1824 } 1825 } 1826 } 1827 return (ss); 1828 } 1829 1830 static int 1831 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe, 1832 uint32_t **dmapos) 1833 { 1834 struct hdac_softc *sc = device_get_softc(dev); 1835 nid_t cad = (uintptr_t)device_get_ivars(child); 1836 int stream, ss, bw, maxbw, prevbw; 1837 1838 /* Look for empty stream. */ 1839 ss = hdac_find_stream(sc, dir, 0); 1840 1841 /* Return if found nothing. */ 1842 if (ss < 0) 1843 return (0); 1844 1845 /* Check bus bandwidth. */ 1846 bw = hdac_bdata_rate(format, dir); 1847 if (dir == 1) { 1848 bw *= 1 << (sc->num_sdo - stripe); 1849 prevbw = sc->sdo_bw_used; 1850 maxbw = 48000 * 960 * (1 << sc->num_sdo); 1851 } else { 1852 prevbw = sc->codecs[cad].sdi_bw_used; 1853 maxbw = 48000 * 464; 1854 } 1855 HDA_BOOTHVERBOSE( 1856 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n", 1857 (bw + prevbw) / 1000, maxbw / 1000, 1858 bw + prevbw > maxbw ? " -- OVERFLOW!" : ""); 1859 ); 1860 if (bw + prevbw > maxbw) 1861 return (0); 1862 if (dir == 1) 1863 sc->sdo_bw_used += bw; 1864 else 1865 sc->codecs[cad].sdi_bw_used += bw; 1866 1867 /* Allocate stream number */ 1868 if (ss >= sc->num_iss + sc->num_oss) 1869 stream = 15 - (ss - sc->num_iss + sc->num_oss); 1870 else if (ss >= sc->num_iss) 1871 stream = ss - sc->num_iss + 1; 1872 else 1873 stream = ss + 1; 1874 1875 sc->streams[ss].dev = child; 1876 sc->streams[ss].dir = dir; 1877 sc->streams[ss].stream = stream; 1878 sc->streams[ss].bw = bw; 1879 sc->streams[ss].format = format; 1880 sc->streams[ss].stripe = stripe; 1881 if (dmapos != NULL) { 1882 if (sc->pos_dma.dma_vaddr != NULL) 1883 *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8); 1884 else 1885 *dmapos = NULL; 1886 } 1887 return (stream); 1888 } 1889 1890 static void 1891 hdac_stream_free(device_t dev, device_t child, int dir, int stream) 1892 { 1893 struct hdac_softc *sc = device_get_softc(dev); 1894 nid_t cad = (uintptr_t)device_get_ivars(child); 1895 int ss; 1896 1897 ss = hdac_find_stream(sc, dir, stream); 1898 KASSERT(ss >= 0, 1899 ("Free for not allocated stream (%d/%d)\n", dir, stream)); 1900 if (dir == 1) 1901 sc->sdo_bw_used -= sc->streams[ss].bw; 1902 else 1903 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw; 1904 sc->streams[ss].stream = 0; 1905 sc->streams[ss].dev = NULL; 1906 } 1907 1908 static int 1909 hdac_stream_start(device_t dev, device_t child, 1910 int dir, int stream, bus_addr_t buf, int blksz, int blkcnt) 1911 { 1912 struct hdac_softc *sc = device_get_softc(dev); 1913 struct hdac_bdle *bdle; 1914 uint64_t addr; 1915 int i, ss, off; 1916 uint32_t ctl; 1917 1918 ss = hdac_find_stream(sc, dir, stream); 1919 KASSERT(ss >= 0, 1920 ("Start for not allocated stream (%d/%d)\n", dir, stream)); 1921 1922 addr = (uint64_t)buf; 1923 bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr; 1924 for (i = 0; i < blkcnt; i++, bdle++) { 1925 bdle->addrl = (uint32_t)addr; 1926 bdle->addrh = (uint32_t)(addr >> 32); 1927 bdle->len = blksz; 1928 bdle->ioc = 1; 1929 addr += blksz; 1930 } 1931 1932 off = ss << 5; 1933 HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt); 1934 HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1); 1935 addr = sc->streams[ss].bdl.dma_paddr; 1936 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr); 1937 HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); 1938 1939 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2); 1940 if (dir) 1941 ctl |= HDAC_SDCTL2_DIR; 1942 else 1943 ctl &= ~HDAC_SDCTL2_DIR; 1944 ctl &= ~HDAC_SDCTL2_STRM_MASK; 1945 ctl |= stream << HDAC_SDCTL2_STRM_SHIFT; 1946 ctl &= ~HDAC_SDCTL2_STRIPE_MASK; 1947 ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT; 1948 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl); 1949 1950 HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format); 1951 1952 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1953 ctl |= 1 << ss; 1954 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1955 1956 HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS, 1957 HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS); 1958 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1959 ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 1960 HDAC_SDCTL_RUN; 1961 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 1962 1963 sc->streams[ss].blksz = blksz; 1964 sc->streams[ss].running = 1; 1965 hdac_poll_reinit(sc); 1966 return (0); 1967 } 1968 1969 static void 1970 hdac_stream_stop(device_t dev, device_t child, int dir, int stream) 1971 { 1972 struct hdac_softc *sc = device_get_softc(dev); 1973 int ss, off; 1974 uint32_t ctl; 1975 1976 ss = hdac_find_stream(sc, dir, stream); 1977 KASSERT(ss >= 0, 1978 ("Stop for not allocated stream (%d/%d)\n", dir, stream)); 1979 1980 off = ss << 5; 1981 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 1982 ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | 1983 HDAC_SDCTL_RUN); 1984 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 1985 1986 ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); 1987 ctl &= ~(1 << ss); 1988 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); 1989 1990 sc->streams[ss].running = 0; 1991 hdac_poll_reinit(sc); 1992 } 1993 1994 static void 1995 hdac_stream_reset(device_t dev, device_t child, int dir, int stream) 1996 { 1997 struct hdac_softc *sc = device_get_softc(dev); 1998 int timeout = 1000; 1999 int to = timeout; 2000 int ss, off; 2001 uint32_t ctl; 2002 2003 ss = hdac_find_stream(sc, dir, stream); 2004 KASSERT(ss >= 0, 2005 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2006 2007 off = ss << 5; 2008 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2009 ctl |= HDAC_SDCTL_SRST; 2010 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2011 do { 2012 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2013 if (ctl & HDAC_SDCTL_SRST) 2014 break; 2015 DELAY(10); 2016 } while (--to); 2017 if (!(ctl & HDAC_SDCTL_SRST)) 2018 device_printf(dev, "Reset setting timeout\n"); 2019 ctl &= ~HDAC_SDCTL_SRST; 2020 HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl); 2021 to = timeout; 2022 do { 2023 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0); 2024 if (!(ctl & HDAC_SDCTL_SRST)) 2025 break; 2026 DELAY(10); 2027 } while (--to); 2028 if (ctl & HDAC_SDCTL_SRST) 2029 device_printf(dev, "Reset timeout!\n"); 2030 } 2031 2032 static uint32_t 2033 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream) 2034 { 2035 struct hdac_softc *sc = device_get_softc(dev); 2036 int ss, off; 2037 2038 ss = hdac_find_stream(sc, dir, stream); 2039 KASSERT(ss >= 0, 2040 ("Reset for not allocated stream (%d/%d)\n", dir, stream)); 2041 2042 off = ss << 5; 2043 return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB)); 2044 } 2045 2046 static int 2047 hdac_unsol_alloc(device_t dev, device_t child, int tag) 2048 { 2049 struct hdac_softc *sc = device_get_softc(dev); 2050 2051 sc->unsol_registered++; 2052 hdac_poll_reinit(sc); 2053 return (tag); 2054 } 2055 2056 static void 2057 hdac_unsol_free(device_t dev, device_t child, int tag) 2058 { 2059 struct hdac_softc *sc = device_get_softc(dev); 2060 2061 sc->unsol_registered--; 2062 hdac_poll_reinit(sc); 2063 } 2064 2065 static device_method_t hdac_methods[] = { 2066 /* device interface */ 2067 DEVMETHOD(device_probe, hdac_probe), 2068 DEVMETHOD(device_attach, hdac_attach), 2069 DEVMETHOD(device_detach, hdac_detach), 2070 DEVMETHOD(device_suspend, hdac_suspend), 2071 DEVMETHOD(device_resume, hdac_resume), 2072 /* Bus interface */ 2073 DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag), 2074 DEVMETHOD(bus_print_child, hdac_print_child), 2075 DEVMETHOD(bus_child_location_str, hdac_child_location_str), 2076 DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method), 2077 DEVMETHOD(bus_read_ivar, hdac_read_ivar), 2078 DEVMETHOD(hdac_get_mtx, hdac_get_mtx), 2079 DEVMETHOD(hdac_codec_command, hdac_codec_command), 2080 DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc), 2081 DEVMETHOD(hdac_stream_free, hdac_stream_free), 2082 DEVMETHOD(hdac_stream_start, hdac_stream_start), 2083 DEVMETHOD(hdac_stream_stop, hdac_stream_stop), 2084 DEVMETHOD(hdac_stream_reset, hdac_stream_reset), 2085 DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr), 2086 DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc), 2087 DEVMETHOD(hdac_unsol_free, hdac_unsol_free), 2088 DEVMETHOD_END 2089 }; 2090 2091 static driver_t hdac_driver = { 2092 "hdac", 2093 hdac_methods, 2094 sizeof(struct hdac_softc), 2095 }; 2096 2097 static devclass_t hdac_devclass; 2098 2099 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL); 2100