xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 SND_DECLARE_FILE("$FreeBSD$");
55 
56 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
57 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
58 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
59 
60 #define HDAC_QUIRK_64BIT	(1 << 0)
61 #define HDAC_QUIRK_DMAPOS	(1 << 1)
62 #define HDAC_QUIRK_MSI		(1 << 2)
63 
64 static const struct {
65 	const char *key;
66 	uint32_t value;
67 } hdac_quirks_tab[] = {
68 	{ "64bit", HDAC_QUIRK_64BIT },
69 	{ "dmapos", HDAC_QUIRK_DMAPOS },
70 	{ "msi", HDAC_QUIRK_MSI },
71 };
72 
73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
74 
75 static const struct {
76 	uint32_t	model;
77 	const char	*desc;
78 	char		quirks_on;
79 	char		quirks_off;
80 } hdac_devices[] = {
81 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
82 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
83 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
84 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
85 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
87 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
88 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
89 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
90 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
91 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
92 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
93 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
94 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
95 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
96 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
97 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
98 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
99 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
100 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
101 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
102 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
103 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
104 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
105 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
106 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
107 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
108 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
109 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
110 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
111 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
112 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
113 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
114 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
115 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
116 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
117 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
118 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
119 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
120 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
121 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
122 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
123 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
124 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
125 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
126 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
127 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
128 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
129 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
130 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
131 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
132 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
133 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
134 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
135 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
136 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
137 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
138 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
139 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
140 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
141 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
142 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
143 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
144 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
145 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
146 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
147 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
148 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
149 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
150 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
151 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
152 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
153 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
154 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
155 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
156 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
157 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
158 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
159 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
160 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
161 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
162 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
163 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
164 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
165 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
166 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
167 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
168 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
169 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
170 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
171 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
172 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
173 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
174 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
175 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
176 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
177 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
178 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
179 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
180 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
181 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
182 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
183 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
184 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
185 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
186 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
187 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
188 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
189 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
190 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
191 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
192 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
193 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
194 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
195 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
196 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
197 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
198 	/* Unknown */
199 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
200 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
201 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
202 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
203 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
204 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
205 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
206 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
207 };
208 
209 static const struct {
210 	uint16_t vendor;
211 	uint8_t reg;
212 	uint8_t mask;
213 	uint8_t enable;
214 } hdac_pcie_snoop[] = {
215 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
216 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
217 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
218 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
219 };
220 
221 /****************************************************************************
222  * Function prototypes
223  ****************************************************************************/
224 static void	hdac_intr_handler(void *);
225 static int	hdac_reset(struct hdac_softc *, bool);
226 static int	hdac_get_capabilities(struct hdac_softc *);
227 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
228 static int	hdac_dma_alloc(struct hdac_softc *,
229 					struct hdac_dma *, bus_size_t);
230 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
231 static int	hdac_mem_alloc(struct hdac_softc *);
232 static void	hdac_mem_free(struct hdac_softc *);
233 static int	hdac_irq_alloc(struct hdac_softc *);
234 static void	hdac_irq_free(struct hdac_softc *);
235 static void	hdac_corb_init(struct hdac_softc *);
236 static void	hdac_rirb_init(struct hdac_softc *);
237 static void	hdac_corb_start(struct hdac_softc *);
238 static void	hdac_rirb_start(struct hdac_softc *);
239 
240 static void	hdac_attach2(void *);
241 
242 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
243 
244 static int	hdac_probe(device_t);
245 static int	hdac_attach(device_t);
246 static int	hdac_detach(device_t);
247 static int	hdac_suspend(device_t);
248 static int	hdac_resume(device_t);
249 
250 static int	hdac_rirb_flush(struct hdac_softc *sc);
251 static int	hdac_unsolq_flush(struct hdac_softc *sc);
252 
253 /* This function surely going to make its way into upper level someday. */
254 static void
255 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
256 {
257 	const char *res = NULL;
258 	int i = 0, j, k, len, inv;
259 
260 	if (resource_string_value(device_get_name(sc->dev),
261 	    device_get_unit(sc->dev), "config", &res) != 0)
262 		return;
263 	if (!(res != NULL && strlen(res) > 0))
264 		return;
265 	HDA_BOOTVERBOSE(
266 		device_printf(sc->dev, "Config options:");
267 	);
268 	for (;;) {
269 		while (res[i] != '\0' &&
270 		    (res[i] == ',' || isspace(res[i]) != 0))
271 			i++;
272 		if (res[i] == '\0') {
273 			HDA_BOOTVERBOSE(
274 				printf("\n");
275 			);
276 			return;
277 		}
278 		j = i;
279 		while (res[j] != '\0' &&
280 		    !(res[j] == ',' || isspace(res[j]) != 0))
281 			j++;
282 		len = j - i;
283 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
284 			inv = 2;
285 		else
286 			inv = 0;
287 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
288 			if (strncmp(res + i + inv,
289 			    hdac_quirks_tab[k].key, len - inv) != 0)
290 				continue;
291 			if (len - inv != strlen(hdac_quirks_tab[k].key))
292 				continue;
293 			HDA_BOOTVERBOSE(
294 				printf(" %s%s", (inv != 0) ? "no" : "",
295 				    hdac_quirks_tab[k].key);
296 			);
297 			if (inv == 0) {
298 				*on |= hdac_quirks_tab[k].value;
299 				*off &= ~hdac_quirks_tab[k].value;
300 			} else if (inv != 0) {
301 				*off |= hdac_quirks_tab[k].value;
302 				*on &= ~hdac_quirks_tab[k].value;
303 			}
304 			break;
305 		}
306 		i = j;
307 	}
308 }
309 
310 static void
311 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
312 {
313 	device_t dev;
314 	uint8_t rirbsts;
315 	int i;
316 
317 	/* Was this a controller interrupt? */
318 	if (intsts & HDAC_INTSTS_CIS) {
319 		/*
320 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
321 		 * we will need to check and clear HDAC_STATESTS.
322 		 * That event is used to report codec status changes such as
323 		 * a reset or a wake-up event.
324 		 */
325 		/*
326 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
327 		 * will need to check and clear HDAC_CORBSTS_CMEI in
328 		 * HDAC_CORBSTS.
329 		 * That event is used to report CORB memory errors.
330 		 */
331 		/*
332 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
333 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
334 		 * HDAC_RIRBSTS.
335 		 * That event is used to report response FIFO overruns.
336 		 */
337 
338 		/* Get as many responses that we can */
339 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
340 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
341 			HDAC_WRITE_1(&sc->mem,
342 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
343 			hdac_rirb_flush(sc);
344 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
345 		}
346 		if (sc->unsolq_rp != sc->unsolq_wp)
347 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
348 	}
349 
350 	if (intsts & HDAC_INTSTS_SIS_MASK) {
351 		for (i = 0; i < sc->num_ss; i++) {
352 			if ((intsts & (1 << i)) == 0)
353 				continue;
354 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
355 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
356 			if ((dev = sc->streams[i].dev) != NULL) {
357 				HDAC_STREAM_INTR(dev,
358 				    sc->streams[i].dir, sc->streams[i].stream);
359 			}
360 		}
361 	}
362 }
363 
364 /****************************************************************************
365  * void hdac_intr_handler(void *)
366  *
367  * Interrupt handler. Processes interrupts received from the hdac.
368  ****************************************************************************/
369 static void
370 hdac_intr_handler(void *context)
371 {
372 	struct hdac_softc *sc;
373 	uint32_t intsts;
374 
375 	sc = (struct hdac_softc *)context;
376 
377 	/*
378 	 * Loop until HDAC_INTSTS_GIS gets clear.
379 	 * It is plausible that hardware interrupts a host only when GIS goes
380 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
381 	 * statuses, so it's possible that a previously cleared status gets set
382 	 * again while another status has not been cleared yet.  Thus, there
383 	 * will be no new interrupt as GIS always stayed set.  If we don't
384 	 * re-examine GIS then we can leave it set and never get an interrupt
385 	 * again.
386 	 */
387 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
388 	while ((intsts & HDAC_INTSTS_GIS) != 0) {
389 		hdac_lock(sc);
390 		hdac_one_intr(sc, intsts);
391 		hdac_unlock(sc);
392 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
393 	}
394 }
395 
396 static void
397 hdac_poll_callback(void *arg)
398 {
399 	struct hdac_softc *sc = arg;
400 
401 	if (sc == NULL)
402 		return;
403 
404 	hdac_lock(sc);
405 	if (sc->polling == 0) {
406 		hdac_unlock(sc);
407 		return;
408 	}
409 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
410 	hdac_unlock(sc);
411 
412 	hdac_intr_handler(sc);
413 }
414 
415 /****************************************************************************
416  * int hdac_reset(hdac_softc *, bool)
417  *
418  * Reset the hdac to a quiescent and known state.
419  ****************************************************************************/
420 static int
421 hdac_reset(struct hdac_softc *sc, bool wakeup)
422 {
423 	uint32_t gctl;
424 	int count, i;
425 
426 	/*
427 	 * Stop all Streams DMA engine
428 	 */
429 	for (i = 0; i < sc->num_iss; i++)
430 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
431 	for (i = 0; i < sc->num_oss; i++)
432 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
433 	for (i = 0; i < sc->num_bss; i++)
434 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
435 
436 	/*
437 	 * Stop Control DMA engines.
438 	 */
439 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
440 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
441 
442 	/*
443 	 * Reset DMA position buffer.
444 	 */
445 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
446 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
447 
448 	/*
449 	 * Reset the controller. The reset must remain asserted for
450 	 * a minimum of 100us.
451 	 */
452 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
453 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
454 	count = 10000;
455 	do {
456 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
457 		if (!(gctl & HDAC_GCTL_CRST))
458 			break;
459 		DELAY(10);
460 	} while (--count);
461 	if (gctl & HDAC_GCTL_CRST) {
462 		device_printf(sc->dev, "Unable to put hdac in reset\n");
463 		return (ENXIO);
464 	}
465 
466 	/* If wakeup is not requested - leave the controller in reset state. */
467 	if (!wakeup)
468 		return (0);
469 
470 	DELAY(100);
471 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
472 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
473 	count = 10000;
474 	do {
475 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
476 		if (gctl & HDAC_GCTL_CRST)
477 			break;
478 		DELAY(10);
479 	} while (--count);
480 	if (!(gctl & HDAC_GCTL_CRST)) {
481 		device_printf(sc->dev, "Device stuck in reset\n");
482 		return (ENXIO);
483 	}
484 
485 	/*
486 	 * Wait for codecs to finish their own reset sequence. The delay here
487 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
488 	 */
489 	DELAY(1000);
490 
491 	return (0);
492 }
493 
494 /****************************************************************************
495  * int hdac_get_capabilities(struct hdac_softc *);
496  *
497  * Retreive the general capabilities of the hdac;
498  *	Number of Input Streams
499  *	Number of Output Streams
500  *	Number of bidirectional Streams
501  *	64bit ready
502  *	CORB and RIRB sizes
503  ****************************************************************************/
504 static int
505 hdac_get_capabilities(struct hdac_softc *sc)
506 {
507 	uint16_t gcap;
508 	uint8_t corbsize, rirbsize;
509 
510 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
511 	sc->num_iss = HDAC_GCAP_ISS(gcap);
512 	sc->num_oss = HDAC_GCAP_OSS(gcap);
513 	sc->num_bss = HDAC_GCAP_BSS(gcap);
514 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
515 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
516 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
517 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
518 		sc->support_64bit = 1;
519 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
520 		sc->support_64bit = 0;
521 
522 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
523 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
524 	    HDAC_CORBSIZE_CORBSZCAP_256)
525 		sc->corb_size = 256;
526 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
527 	    HDAC_CORBSIZE_CORBSZCAP_16)
528 		sc->corb_size = 16;
529 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
530 	    HDAC_CORBSIZE_CORBSZCAP_2)
531 		sc->corb_size = 2;
532 	else {
533 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
534 		    __func__, corbsize);
535 		return (ENXIO);
536 	}
537 
538 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
539 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
540 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
541 		sc->rirb_size = 256;
542 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
543 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
544 		sc->rirb_size = 16;
545 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
546 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
547 		sc->rirb_size = 2;
548 	else {
549 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
550 		    __func__, rirbsize);
551 		return (ENXIO);
552 	}
553 
554 	HDA_BOOTVERBOSE(
555 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
556 		    "NSDO %d%s, CORB %d, RIRB %d\n",
557 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
558 		    sc->support_64bit ? ", 64bit" : "",
559 		    sc->corb_size, sc->rirb_size);
560 	);
561 
562 	return (0);
563 }
564 
565 /****************************************************************************
566  * void hdac_dma_cb
567  *
568  * This function is called by bus_dmamap_load when the mapping has been
569  * established. We just record the physical address of the mapping into
570  * the struct hdac_dma passed in.
571  ****************************************************************************/
572 static void
573 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
574 {
575 	struct hdac_dma *dma;
576 
577 	if (error == 0) {
578 		dma = (struct hdac_dma *)callback_arg;
579 		dma->dma_paddr = segs[0].ds_addr;
580 	}
581 }
582 
583 /****************************************************************************
584  * int hdac_dma_alloc
585  *
586  * This function allocate and setup a dma region (struct hdac_dma).
587  * It must be freed by a corresponding hdac_dma_free.
588  ****************************************************************************/
589 static int
590 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
591 {
592 	bus_size_t roundsz;
593 	int result;
594 
595 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
596 	bzero(dma, sizeof(*dma));
597 
598 	/*
599 	 * Create a DMA tag
600 	 */
601 	result = bus_dma_tag_create(
602 	    bus_get_dma_tag(sc->dev),		/* parent */
603 	    HDA_DMA_ALIGNMENT,			/* alignment */
604 	    0,					/* boundary */
605 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
606 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
607 	    BUS_SPACE_MAXADDR,			/* highaddr */
608 	    NULL,				/* filtfunc */
609 	    NULL,				/* fistfuncarg */
610 	    roundsz,				/* maxsize */
611 	    1,					/* nsegments */
612 	    roundsz,				/* maxsegsz */
613 	    0,					/* flags */
614 	    NULL,				/* lockfunc */
615 	    NULL,				/* lockfuncarg */
616 	    &dma->dma_tag);			/* dmat */
617 	if (result != 0) {
618 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
619 		    __func__, result);
620 		goto hdac_dma_alloc_fail;
621 	}
622 
623 	/*
624 	 * Allocate DMA memory
625 	 */
626 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
627 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
628 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
629 	     BUS_DMA_COHERENT),
630 	    &dma->dma_map);
631 	if (result != 0) {
632 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
633 		    __func__, result);
634 		goto hdac_dma_alloc_fail;
635 	}
636 
637 	dma->dma_size = roundsz;
638 
639 	/*
640 	 * Map the memory
641 	 */
642 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
643 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
644 	if (result != 0 || dma->dma_paddr == 0) {
645 		if (result == 0)
646 			result = ENOMEM;
647 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
648 		    __func__, result);
649 		goto hdac_dma_alloc_fail;
650 	}
651 
652 	HDA_BOOTHVERBOSE(
653 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
654 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
655 	);
656 
657 	return (0);
658 
659 hdac_dma_alloc_fail:
660 	hdac_dma_free(sc, dma);
661 
662 	return (result);
663 }
664 
665 /****************************************************************************
666  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
667  *
668  * Free a struct hdac_dma that has been previously allocated via the
669  * hdac_dma_alloc function.
670  ****************************************************************************/
671 static void
672 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
673 {
674 	if (dma->dma_paddr != 0) {
675 		/* Flush caches */
676 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
677 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
678 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
679 		dma->dma_paddr = 0;
680 	}
681 	if (dma->dma_vaddr != NULL) {
682 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
683 		dma->dma_vaddr = NULL;
684 	}
685 	if (dma->dma_tag != NULL) {
686 		bus_dma_tag_destroy(dma->dma_tag);
687 		dma->dma_tag = NULL;
688 	}
689 	dma->dma_size = 0;
690 }
691 
692 /****************************************************************************
693  * int hdac_mem_alloc(struct hdac_softc *)
694  *
695  * Allocate all the bus resources necessary to speak with the physical
696  * controller.
697  ****************************************************************************/
698 static int
699 hdac_mem_alloc(struct hdac_softc *sc)
700 {
701 	struct hdac_mem *mem;
702 
703 	mem = &sc->mem;
704 	mem->mem_rid = PCIR_BAR(0);
705 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
706 	    &mem->mem_rid, RF_ACTIVE);
707 	if (mem->mem_res == NULL) {
708 		device_printf(sc->dev,
709 		    "%s: Unable to allocate memory resource\n", __func__);
710 		return (ENOMEM);
711 	}
712 	mem->mem_tag = rman_get_bustag(mem->mem_res);
713 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
714 
715 	return (0);
716 }
717 
718 /****************************************************************************
719  * void hdac_mem_free(struct hdac_softc *)
720  *
721  * Free up resources previously allocated by hdac_mem_alloc.
722  ****************************************************************************/
723 static void
724 hdac_mem_free(struct hdac_softc *sc)
725 {
726 	struct hdac_mem *mem;
727 
728 	mem = &sc->mem;
729 	if (mem->mem_res != NULL)
730 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
731 		    mem->mem_res);
732 	mem->mem_res = NULL;
733 }
734 
735 /****************************************************************************
736  * int hdac_irq_alloc(struct hdac_softc *)
737  *
738  * Allocate and setup the resources necessary for interrupt handling.
739  ****************************************************************************/
740 static int
741 hdac_irq_alloc(struct hdac_softc *sc)
742 {
743 	struct hdac_irq *irq;
744 	int result;
745 
746 	irq = &sc->irq;
747 	irq->irq_rid = 0x0;
748 
749 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
750 	    (result = pci_msi_count(sc->dev)) == 1 &&
751 	    pci_alloc_msi(sc->dev, &result) == 0)
752 		irq->irq_rid = 0x1;
753 
754 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
755 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
756 	if (irq->irq_res == NULL) {
757 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
758 		    __func__);
759 		goto hdac_irq_alloc_fail;
760 	}
761 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
762 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
763 	if (result != 0) {
764 		device_printf(sc->dev,
765 		    "%s: Unable to setup interrupt handler (%d)\n",
766 		    __func__, result);
767 		goto hdac_irq_alloc_fail;
768 	}
769 
770 	return (0);
771 
772 hdac_irq_alloc_fail:
773 	hdac_irq_free(sc);
774 
775 	return (ENXIO);
776 }
777 
778 /****************************************************************************
779  * void hdac_irq_free(struct hdac_softc *)
780  *
781  * Free up resources previously allocated by hdac_irq_alloc.
782  ****************************************************************************/
783 static void
784 hdac_irq_free(struct hdac_softc *sc)
785 {
786 	struct hdac_irq *irq;
787 
788 	irq = &sc->irq;
789 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
790 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
791 	if (irq->irq_res != NULL)
792 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
793 		    irq->irq_res);
794 	if (irq->irq_rid == 0x1)
795 		pci_release_msi(sc->dev);
796 	irq->irq_handle = NULL;
797 	irq->irq_res = NULL;
798 	irq->irq_rid = 0x0;
799 }
800 
801 /****************************************************************************
802  * void hdac_corb_init(struct hdac_softc *)
803  *
804  * Initialize the corb registers for operations but do not start it up yet.
805  * The CORB engine must not be running when this function is called.
806  ****************************************************************************/
807 static void
808 hdac_corb_init(struct hdac_softc *sc)
809 {
810 	uint8_t corbsize;
811 	uint64_t corbpaddr;
812 
813 	/* Setup the CORB size. */
814 	switch (sc->corb_size) {
815 	case 256:
816 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
817 		break;
818 	case 16:
819 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
820 		break;
821 	case 2:
822 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
823 		break;
824 	default:
825 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
826 	}
827 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
828 
829 	/* Setup the CORB Address in the hdac */
830 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
831 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
832 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
833 
834 	/* Set the WP and RP */
835 	sc->corb_wp = 0;
836 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
837 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
838 	/*
839 	 * The HDA specification indicates that the CORBRPRST bit will always
840 	 * read as zero. Unfortunately, it seems that at least the 82801G
841 	 * doesn't reset the bit to zero, which stalls the corb engine.
842 	 * manually reset the bit to zero before continuing.
843 	 */
844 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
845 
846 	/* Enable CORB error reporting */
847 #if 0
848 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
849 #endif
850 }
851 
852 /****************************************************************************
853  * void hdac_rirb_init(struct hdac_softc *)
854  *
855  * Initialize the rirb registers for operations but do not start it up yet.
856  * The RIRB engine must not be running when this function is called.
857  ****************************************************************************/
858 static void
859 hdac_rirb_init(struct hdac_softc *sc)
860 {
861 	uint8_t rirbsize;
862 	uint64_t rirbpaddr;
863 
864 	/* Setup the RIRB size. */
865 	switch (sc->rirb_size) {
866 	case 256:
867 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
868 		break;
869 	case 16:
870 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
871 		break;
872 	case 2:
873 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
874 		break;
875 	default:
876 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
877 	}
878 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
879 
880 	/* Setup the RIRB Address in the hdac */
881 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
882 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
883 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
884 
885 	/* Setup the WP and RP */
886 	sc->rirb_rp = 0;
887 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
888 
889 	/* Setup the interrupt threshold */
890 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
891 
892 	/* Enable Overrun and response received reporting */
893 #if 0
894 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
895 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
896 #else
897 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
898 #endif
899 
900 	/*
901 	 * Make sure that the Host CPU cache doesn't contain any dirty
902 	 * cache lines that falls in the rirb. If I understood correctly, it
903 	 * should be sufficient to do this only once as the rirb is purely
904 	 * read-only from now on.
905 	 */
906 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
907 	    BUS_DMASYNC_PREREAD);
908 }
909 
910 /****************************************************************************
911  * void hdac_corb_start(hdac_softc *)
912  *
913  * Startup the corb DMA engine
914  ****************************************************************************/
915 static void
916 hdac_corb_start(struct hdac_softc *sc)
917 {
918 	uint32_t corbctl;
919 
920 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
921 	corbctl |= HDAC_CORBCTL_CORBRUN;
922 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
923 }
924 
925 /****************************************************************************
926  * void hdac_rirb_start(hdac_softc *)
927  *
928  * Startup the rirb DMA engine
929  ****************************************************************************/
930 static void
931 hdac_rirb_start(struct hdac_softc *sc)
932 {
933 	uint32_t rirbctl;
934 
935 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
936 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
937 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
938 }
939 
940 static int
941 hdac_rirb_flush(struct hdac_softc *sc)
942 {
943 	struct hdac_rirb *rirb_base, *rirb;
944 	nid_t cad;
945 	uint32_t resp, resp_ex;
946 	uint8_t rirbwp;
947 	int ret;
948 
949 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
950 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
951 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
952 	    BUS_DMASYNC_POSTREAD);
953 
954 	ret = 0;
955 	while (sc->rirb_rp != rirbwp) {
956 		sc->rirb_rp++;
957 		sc->rirb_rp %= sc->rirb_size;
958 		rirb = &rirb_base[sc->rirb_rp];
959 		resp = le32toh(rirb->response);
960 		resp_ex = le32toh(rirb->response_ex);
961 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
962 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
963 			sc->unsolq[sc->unsolq_wp++] = resp;
964 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
965 			sc->unsolq[sc->unsolq_wp++] = cad;
966 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
967 		} else if (sc->codecs[cad].pending <= 0) {
968 			device_printf(sc->dev, "Unexpected unsolicited "
969 			    "response from address %d: %08x\n", cad, resp);
970 		} else {
971 			sc->codecs[cad].response = resp;
972 			sc->codecs[cad].pending--;
973 		}
974 		ret++;
975 	}
976 
977 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
978 	    BUS_DMASYNC_PREREAD);
979 	return (ret);
980 }
981 
982 static int
983 hdac_unsolq_flush(struct hdac_softc *sc)
984 {
985 	device_t child;
986 	nid_t cad;
987 	uint32_t resp;
988 	int ret = 0;
989 
990 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
991 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
992 		while (sc->unsolq_rp != sc->unsolq_wp) {
993 			resp = sc->unsolq[sc->unsolq_rp++];
994 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
995 			cad = sc->unsolq[sc->unsolq_rp++];
996 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
997 			if ((child = sc->codecs[cad].dev) != NULL &&
998 			    device_is_attached(child))
999 				HDAC_UNSOL_INTR(child, resp);
1000 			ret++;
1001 		}
1002 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1003 	}
1004 
1005 	return (ret);
1006 }
1007 
1008 /****************************************************************************
1009  * uint32_t hdac_send_command
1010  *
1011  * Wrapper function that sends only one command to a given codec
1012  ****************************************************************************/
1013 static uint32_t
1014 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1015 {
1016 	int timeout;
1017 	uint32_t *corb;
1018 
1019 	hdac_lockassert(sc);
1020 	verb &= ~HDA_CMD_CAD_MASK;
1021 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1022 	sc->codecs[cad].response = HDA_INVALID;
1023 
1024 	sc->codecs[cad].pending++;
1025 	sc->corb_wp++;
1026 	sc->corb_wp %= sc->corb_size;
1027 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1028 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1029 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1030 	corb[sc->corb_wp] = htole32(verb);
1031 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1032 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1033 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1034 
1035 	timeout = 10000;
1036 	do {
1037 		if (hdac_rirb_flush(sc) == 0)
1038 			DELAY(10);
1039 	} while (sc->codecs[cad].pending != 0 && --timeout);
1040 
1041 	if (sc->codecs[cad].pending != 0) {
1042 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1043 		    verb, cad);
1044 		sc->codecs[cad].pending = 0;
1045 	}
1046 
1047 	if (sc->unsolq_rp != sc->unsolq_wp)
1048 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1049 	return (sc->codecs[cad].response);
1050 }
1051 
1052 /****************************************************************************
1053  * Device Methods
1054  ****************************************************************************/
1055 
1056 /****************************************************************************
1057  * int hdac_probe(device_t)
1058  *
1059  * Probe for the presence of an hdac. If none is found, check for a generic
1060  * match using the subclass of the device.
1061  ****************************************************************************/
1062 static int
1063 hdac_probe(device_t dev)
1064 {
1065 	int i, result;
1066 	uint32_t model;
1067 	uint16_t class, subclass;
1068 	char desc[64];
1069 
1070 	model = (uint32_t)pci_get_device(dev) << 16;
1071 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1072 	class = pci_get_class(dev);
1073 	subclass = pci_get_subclass(dev);
1074 
1075 	bzero(desc, sizeof(desc));
1076 	result = ENXIO;
1077 	for (i = 0; i < nitems(hdac_devices); i++) {
1078 		if (hdac_devices[i].model == model) {
1079 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1080 			result = BUS_PROBE_DEFAULT;
1081 			break;
1082 		}
1083 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1084 		    class == PCIC_MULTIMEDIA &&
1085 		    subclass == PCIS_MULTIMEDIA_HDA) {
1086 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1087 			    hdac_devices[i].desc, pci_get_device(dev));
1088 			result = BUS_PROBE_GENERIC;
1089 			break;
1090 		}
1091 	}
1092 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1093 	    subclass == PCIS_MULTIMEDIA_HDA) {
1094 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1095 		result = BUS_PROBE_GENERIC;
1096 	}
1097 	if (result != ENXIO) {
1098 		strlcat(desc, " HDA Controller", sizeof(desc));
1099 		device_set_desc_copy(dev, desc);
1100 	}
1101 
1102 	return (result);
1103 }
1104 
1105 static void
1106 hdac_unsolq_task(void *context, int pending)
1107 {
1108 	struct hdac_softc *sc;
1109 
1110 	sc = (struct hdac_softc *)context;
1111 
1112 	hdac_lock(sc);
1113 	hdac_unsolq_flush(sc);
1114 	hdac_unlock(sc);
1115 }
1116 
1117 /****************************************************************************
1118  * int hdac_attach(device_t)
1119  *
1120  * Attach the device into the kernel. Interrupts usually won't be enabled
1121  * when this function is called. Setup everything that doesn't require
1122  * interrupts and defer probing of codecs until interrupts are enabled.
1123  ****************************************************************************/
1124 static int
1125 hdac_attach(device_t dev)
1126 {
1127 	struct hdac_softc *sc;
1128 	int result;
1129 	int i, devid = -1;
1130 	uint32_t model;
1131 	uint16_t class, subclass;
1132 	uint16_t vendor;
1133 	uint8_t v;
1134 
1135 	sc = device_get_softc(dev);
1136 	HDA_BOOTVERBOSE(
1137 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1138 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1139 		device_printf(dev, "HDA Driver Revision: %s\n",
1140 		    HDA_DRV_TEST_REV);
1141 	);
1142 
1143 	model = (uint32_t)pci_get_device(dev) << 16;
1144 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1145 	class = pci_get_class(dev);
1146 	subclass = pci_get_subclass(dev);
1147 
1148 	for (i = 0; i < nitems(hdac_devices); i++) {
1149 		if (hdac_devices[i].model == model) {
1150 			devid = i;
1151 			break;
1152 		}
1153 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1154 		    class == PCIC_MULTIMEDIA &&
1155 		    subclass == PCIS_MULTIMEDIA_HDA) {
1156 			devid = i;
1157 			break;
1158 		}
1159 	}
1160 
1161 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1162 	sc->dev = dev;
1163 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1164 	callout_init(&sc->poll_callout, 1);
1165 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1166 		sc->codecs[i].dev = NULL;
1167 	if (devid >= 0) {
1168 		sc->quirks_on = hdac_devices[devid].quirks_on;
1169 		sc->quirks_off = hdac_devices[devid].quirks_off;
1170 	} else {
1171 		sc->quirks_on = 0;
1172 		sc->quirks_off = 0;
1173 	}
1174 	if (resource_int_value(device_get_name(dev),
1175 	    device_get_unit(dev), "msi", &i) == 0) {
1176 		if (i == 0)
1177 			sc->quirks_off |= HDAC_QUIRK_MSI;
1178 		else {
1179 			sc->quirks_on |= HDAC_QUIRK_MSI;
1180 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1181 		}
1182 	}
1183 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1184 	HDA_BOOTVERBOSE(
1185 		device_printf(sc->dev,
1186 		    "Config options: on=0x%08x off=0x%08x\n",
1187 		    sc->quirks_on, sc->quirks_off);
1188 	);
1189 	sc->poll_ival = hz;
1190 	if (resource_int_value(device_get_name(dev),
1191 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1192 		sc->polling = 1;
1193 	else
1194 		sc->polling = 0;
1195 
1196 	pci_enable_busmaster(dev);
1197 
1198 	vendor = pci_get_vendor(dev);
1199 	if (vendor == INTEL_VENDORID) {
1200 		/* TCSEL -> TC0 */
1201 		v = pci_read_config(dev, 0x44, 1);
1202 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1203 		HDA_BOOTHVERBOSE(
1204 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1205 			    pci_read_config(dev, 0x44, 1));
1206 		);
1207 	}
1208 
1209 #if defined(__i386__) || defined(__amd64__)
1210 	sc->flags |= HDAC_F_DMA_NOCACHE;
1211 
1212 	if (resource_int_value(device_get_name(dev),
1213 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1214 #else
1215 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1216 #endif
1217 		/*
1218 		 * Try to enable PCIe snoop to avoid messing around with
1219 		 * uncacheable DMA attribute. Since PCIe snoop register
1220 		 * config is pretty much vendor specific, there are no
1221 		 * general solutions on how to enable it, forcing us (even
1222 		 * Microsoft) to enable uncacheable or write combined DMA
1223 		 * by default.
1224 		 *
1225 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1226 		 */
1227 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1228 			if (hdac_pcie_snoop[i].vendor != vendor)
1229 				continue;
1230 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1231 			if (hdac_pcie_snoop[i].reg == 0x00)
1232 				break;
1233 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1234 			if ((v & hdac_pcie_snoop[i].enable) ==
1235 			    hdac_pcie_snoop[i].enable)
1236 				break;
1237 			v &= hdac_pcie_snoop[i].mask;
1238 			v |= hdac_pcie_snoop[i].enable;
1239 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1240 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1241 			if ((v & hdac_pcie_snoop[i].enable) !=
1242 			    hdac_pcie_snoop[i].enable) {
1243 				HDA_BOOTVERBOSE(
1244 					device_printf(dev,
1245 					    "WARNING: Failed to enable PCIe "
1246 					    "snoop!\n");
1247 				);
1248 #if defined(__i386__) || defined(__amd64__)
1249 				sc->flags |= HDAC_F_DMA_NOCACHE;
1250 #endif
1251 			}
1252 			break;
1253 		}
1254 #if defined(__i386__) || defined(__amd64__)
1255 	}
1256 #endif
1257 
1258 	HDA_BOOTHVERBOSE(
1259 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1260 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1261 		    "Uncacheable" : "PCIe snoop", vendor);
1262 	);
1263 
1264 	/* Allocate resources */
1265 	result = hdac_mem_alloc(sc);
1266 	if (result != 0)
1267 		goto hdac_attach_fail;
1268 	result = hdac_irq_alloc(sc);
1269 	if (result != 0)
1270 		goto hdac_attach_fail;
1271 
1272 	/* Get Capabilities */
1273 	result = hdac_get_capabilities(sc);
1274 	if (result != 0)
1275 		goto hdac_attach_fail;
1276 
1277 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1278 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1279 	    sc->corb_size * sizeof(uint32_t));
1280 	if (result != 0)
1281 		goto hdac_attach_fail;
1282 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1283 	    sc->rirb_size * sizeof(struct hdac_rirb));
1284 	if (result != 0)
1285 		goto hdac_attach_fail;
1286 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1287 	    M_HDAC, M_ZERO | M_WAITOK);
1288 	for (i = 0; i < sc->num_ss; i++) {
1289 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1290 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1291 		if (result != 0)
1292 			goto hdac_attach_fail;
1293 	}
1294 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1295 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1296 			HDA_BOOTVERBOSE(
1297 				device_printf(dev, "Failed to "
1298 				    "allocate DMA pos buffer "
1299 				    "(non-fatal)\n");
1300 			);
1301 		} else {
1302 			uint64_t addr = sc->pos_dma.dma_paddr;
1303 
1304 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1305 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1306 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1307 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1308 		}
1309 	}
1310 
1311 	result = bus_dma_tag_create(
1312 	    bus_get_dma_tag(sc->dev),		/* parent */
1313 	    HDA_DMA_ALIGNMENT,			/* alignment */
1314 	    0,					/* boundary */
1315 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1316 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1317 	    BUS_SPACE_MAXADDR,			/* highaddr */
1318 	    NULL,				/* filtfunc */
1319 	    NULL,				/* fistfuncarg */
1320 	    HDA_BUFSZ_MAX,			/* maxsize */
1321 	    1,					/* nsegments */
1322 	    HDA_BUFSZ_MAX,			/* maxsegsz */
1323 	    0,					/* flags */
1324 	    NULL,				/* lockfunc */
1325 	    NULL,				/* lockfuncarg */
1326 	    &sc->chan_dmat);			/* dmat */
1327 	if (result != 0) {
1328 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1329 		     __func__, result);
1330 		goto hdac_attach_fail;
1331 	}
1332 
1333 	/* Quiesce everything */
1334 	HDA_BOOTHVERBOSE(
1335 		device_printf(dev, "Reset controller...\n");
1336 	);
1337 	hdac_reset(sc, true);
1338 
1339 	/* Initialize the CORB and RIRB */
1340 	hdac_corb_init(sc);
1341 	hdac_rirb_init(sc);
1342 
1343 	/* Defer remaining of initialization until interrupts are enabled */
1344 	sc->intrhook.ich_func = hdac_attach2;
1345 	sc->intrhook.ich_arg = (void *)sc;
1346 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1347 		sc->intrhook.ich_func = NULL;
1348 		hdac_attach2((void *)sc);
1349 	}
1350 
1351 	return (0);
1352 
1353 hdac_attach_fail:
1354 	hdac_irq_free(sc);
1355 	if (sc->streams != NULL)
1356 		for (i = 0; i < sc->num_ss; i++)
1357 			hdac_dma_free(sc, &sc->streams[i].bdl);
1358 	free(sc->streams, M_HDAC);
1359 	hdac_dma_free(sc, &sc->rirb_dma);
1360 	hdac_dma_free(sc, &sc->corb_dma);
1361 	hdac_mem_free(sc);
1362 	snd_mtxfree(sc->lock);
1363 
1364 	return (ENXIO);
1365 }
1366 
1367 static int
1368 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1369 {
1370 	struct hdac_softc *sc;
1371 	device_t *devlist;
1372 	device_t dev;
1373 	int devcount, i, err, val;
1374 
1375 	dev = oidp->oid_arg1;
1376 	sc = device_get_softc(dev);
1377 	if (sc == NULL)
1378 		return (EINVAL);
1379 	val = 0;
1380 	err = sysctl_handle_int(oidp, &val, 0, req);
1381 	if (err != 0 || req->newptr == NULL || val == 0)
1382 		return (err);
1383 
1384 	/* XXX: Temporary. For debugging. */
1385 	if (val == 100) {
1386 		hdac_suspend(dev);
1387 		return (0);
1388 	} else if (val == 101) {
1389 		hdac_resume(dev);
1390 		return (0);
1391 	}
1392 
1393 	bus_topo_lock();
1394 
1395 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
1396 		bus_topo_unlock();
1397 		return (err);
1398 	}
1399 
1400 	hdac_lock(sc);
1401 	for (i = 0; i < devcount; i++)
1402 		HDAC_PINDUMP(devlist[i]);
1403 	hdac_unlock(sc);
1404 
1405 	bus_topo_unlock();
1406 
1407 	free(devlist, M_TEMP);
1408 	return (0);
1409 }
1410 
1411 static int
1412 hdac_mdata_rate(uint16_t fmt)
1413 {
1414 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1415 	int rate, bits;
1416 
1417 	if (fmt & (1 << 14))
1418 		rate = 44100;
1419 	else
1420 		rate = 48000;
1421 	rate *= ((fmt >> 11) & 0x07) + 1;
1422 	rate /= ((fmt >> 8) & 0x07) + 1;
1423 	bits = mbits[(fmt >> 4) & 0x03];
1424 	bits *= (fmt & 0x0f) + 1;
1425 	return (rate * bits);
1426 }
1427 
1428 static int
1429 hdac_bdata_rate(uint16_t fmt, int output)
1430 {
1431 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1432 	int rate, bits;
1433 
1434 	rate = 48000;
1435 	rate *= ((fmt >> 11) & 0x07) + 1;
1436 	bits = bbits[(fmt >> 4) & 0x03];
1437 	bits *= (fmt & 0x0f) + 1;
1438 	if (!output)
1439 		bits = ((bits + 7) & ~0x07) + 10;
1440 	return (rate * bits);
1441 }
1442 
1443 static void
1444 hdac_poll_reinit(struct hdac_softc *sc)
1445 {
1446 	int i, pollticks, min = 1000000;
1447 	struct hdac_stream *s;
1448 
1449 	if (sc->polling == 0)
1450 		return;
1451 	if (sc->unsol_registered > 0)
1452 		min = hz / 2;
1453 	for (i = 0; i < sc->num_ss; i++) {
1454 		s = &sc->streams[i];
1455 		if (s->running == 0)
1456 			continue;
1457 		pollticks = ((uint64_t)hz * s->blksz) /
1458 		    (hdac_mdata_rate(s->format) / 8);
1459 		pollticks >>= 1;
1460 		if (pollticks > hz)
1461 			pollticks = hz;
1462 		if (pollticks < 1)
1463 			pollticks = 1;
1464 		if (min > pollticks)
1465 			min = pollticks;
1466 	}
1467 	sc->poll_ival = min;
1468 	if (min == 1000000)
1469 		callout_stop(&sc->poll_callout);
1470 	else
1471 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1472 }
1473 
1474 static int
1475 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1476 {
1477 	struct hdac_softc *sc;
1478 	device_t dev;
1479 	uint32_t ctl;
1480 	int err, val;
1481 
1482 	dev = oidp->oid_arg1;
1483 	sc = device_get_softc(dev);
1484 	if (sc == NULL)
1485 		return (EINVAL);
1486 	hdac_lock(sc);
1487 	val = sc->polling;
1488 	hdac_unlock(sc);
1489 	err = sysctl_handle_int(oidp, &val, 0, req);
1490 
1491 	if (err != 0 || req->newptr == NULL)
1492 		return (err);
1493 	if (val < 0 || val > 1)
1494 		return (EINVAL);
1495 
1496 	hdac_lock(sc);
1497 	if (val != sc->polling) {
1498 		if (val == 0) {
1499 			callout_stop(&sc->poll_callout);
1500 			hdac_unlock(sc);
1501 			callout_drain(&sc->poll_callout);
1502 			hdac_lock(sc);
1503 			sc->polling = 0;
1504 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1505 			ctl |= HDAC_INTCTL_GIE;
1506 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1507 		} else {
1508 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1509 			ctl &= ~HDAC_INTCTL_GIE;
1510 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1511 			sc->polling = 1;
1512 			hdac_poll_reinit(sc);
1513 		}
1514 	}
1515 	hdac_unlock(sc);
1516 
1517 	return (err);
1518 }
1519 
1520 static void
1521 hdac_attach2(void *arg)
1522 {
1523 	struct hdac_softc *sc;
1524 	device_t child;
1525 	uint32_t vendorid, revisionid;
1526 	int i;
1527 	uint16_t statests;
1528 
1529 	sc = (struct hdac_softc *)arg;
1530 
1531 	hdac_lock(sc);
1532 
1533 	/* Remove ourselves from the config hooks */
1534 	if (sc->intrhook.ich_func != NULL) {
1535 		config_intrhook_disestablish(&sc->intrhook);
1536 		sc->intrhook.ich_func = NULL;
1537 	}
1538 
1539 	HDA_BOOTHVERBOSE(
1540 		device_printf(sc->dev, "Starting CORB Engine...\n");
1541 	);
1542 	hdac_corb_start(sc);
1543 	HDA_BOOTHVERBOSE(
1544 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1545 	);
1546 	hdac_rirb_start(sc);
1547 
1548 	/*
1549 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1550 	 * (status change) interrupts.  The documentation says that we
1551 	 * should not make any assumptions about the state of this register
1552 	 * and set it explicitly.
1553 	 * NB: this needs to be done before the interrupt is enabled as
1554 	 * the handler does not expect this interrupt source.
1555 	 */
1556 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1557 
1558 	/*
1559 	 * Read and clear post-reset SDI wake status.
1560 	 * Each set bit corresponds to a codec that came out of reset.
1561 	 */
1562 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1563 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1564 
1565 	HDA_BOOTHVERBOSE(
1566 		device_printf(sc->dev,
1567 		    "Enabling controller interrupt...\n");
1568 	);
1569 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1570 	    HDAC_GCTL_UNSOL);
1571 	if (sc->polling == 0) {
1572 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1573 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1574 	}
1575 	DELAY(1000);
1576 
1577 	HDA_BOOTHVERBOSE(
1578 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1579 	);
1580 	hdac_unlock(sc);
1581 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1582 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1583 			HDA_BOOTHVERBOSE(
1584 				device_printf(sc->dev,
1585 				    "Found CODEC at address %d\n", i);
1586 			);
1587 			hdac_lock(sc);
1588 			vendorid = hdac_send_command(sc, i,
1589 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1590 			revisionid = hdac_send_command(sc, i,
1591 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1592 			hdac_unlock(sc);
1593 			if (vendorid == HDA_INVALID &&
1594 			    revisionid == HDA_INVALID) {
1595 				device_printf(sc->dev,
1596 				    "CODEC at address %d not responding!\n", i);
1597 				continue;
1598 			}
1599 			sc->codecs[i].vendor_id =
1600 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1601 			sc->codecs[i].device_id =
1602 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1603 			sc->codecs[i].revision_id =
1604 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1605 			sc->codecs[i].stepping_id =
1606 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1607 			child = device_add_child(sc->dev, "hdacc", -1);
1608 			if (child == NULL) {
1609 				device_printf(sc->dev,
1610 				    "Failed to add CODEC device\n");
1611 				continue;
1612 			}
1613 			device_set_ivars(child, (void *)(intptr_t)i);
1614 			sc->codecs[i].dev = child;
1615 		}
1616 	}
1617 	bus_generic_attach(sc->dev);
1618 
1619 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1620 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1621 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1622 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1623 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1624 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1625 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1626 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1627 }
1628 
1629 /****************************************************************************
1630  * int hdac_suspend(device_t)
1631  *
1632  * Suspend and power down HDA bus and codecs.
1633  ****************************************************************************/
1634 static int
1635 hdac_suspend(device_t dev)
1636 {
1637 	struct hdac_softc *sc = device_get_softc(dev);
1638 
1639 	HDA_BOOTHVERBOSE(
1640 		device_printf(dev, "Suspend...\n");
1641 	);
1642 	bus_generic_suspend(dev);
1643 
1644 	hdac_lock(sc);
1645 	HDA_BOOTHVERBOSE(
1646 		device_printf(dev, "Reset controller...\n");
1647 	);
1648 	callout_stop(&sc->poll_callout);
1649 	hdac_reset(sc, false);
1650 	hdac_unlock(sc);
1651 	callout_drain(&sc->poll_callout);
1652 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1653 	HDA_BOOTHVERBOSE(
1654 		device_printf(dev, "Suspend done\n");
1655 	);
1656 	return (0);
1657 }
1658 
1659 /****************************************************************************
1660  * int hdac_resume(device_t)
1661  *
1662  * Powerup and restore HDA bus and codecs state.
1663  ****************************************************************************/
1664 static int
1665 hdac_resume(device_t dev)
1666 {
1667 	struct hdac_softc *sc = device_get_softc(dev);
1668 	int error;
1669 
1670 	HDA_BOOTHVERBOSE(
1671 		device_printf(dev, "Resume...\n");
1672 	);
1673 	hdac_lock(sc);
1674 
1675 	/* Quiesce everything */
1676 	HDA_BOOTHVERBOSE(
1677 		device_printf(dev, "Reset controller...\n");
1678 	);
1679 	hdac_reset(sc, true);
1680 
1681 	/* Initialize the CORB and RIRB */
1682 	hdac_corb_init(sc);
1683 	hdac_rirb_init(sc);
1684 
1685 	HDA_BOOTHVERBOSE(
1686 		device_printf(dev, "Starting CORB Engine...\n");
1687 	);
1688 	hdac_corb_start(sc);
1689 	HDA_BOOTHVERBOSE(
1690 		device_printf(dev, "Starting RIRB Engine...\n");
1691 	);
1692 	hdac_rirb_start(sc);
1693 
1694 	/*
1695 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1696 	 * (status change) events.  The documentation says that we should
1697 	 * not make any assumptions about the state of this register and
1698 	 * set it explicitly.
1699 	 * Also, clear HDAC_STATESTS.
1700 	 * NB: this needs to be done before the interrupt is enabled as
1701 	 * the handler does not expect this interrupt source.
1702 	 */
1703 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1704 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1705 
1706 	HDA_BOOTHVERBOSE(
1707 		device_printf(dev, "Enabling controller interrupt...\n");
1708 	);
1709 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1710 	    HDAC_GCTL_UNSOL);
1711 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1712 	DELAY(1000);
1713 	hdac_poll_reinit(sc);
1714 	hdac_unlock(sc);
1715 
1716 	error = bus_generic_resume(dev);
1717 	HDA_BOOTHVERBOSE(
1718 		device_printf(dev, "Resume done\n");
1719 	);
1720 	return (error);
1721 }
1722 
1723 /****************************************************************************
1724  * int hdac_detach(device_t)
1725  *
1726  * Detach and free up resources utilized by the hdac device.
1727  ****************************************************************************/
1728 static int
1729 hdac_detach(device_t dev)
1730 {
1731 	struct hdac_softc *sc = device_get_softc(dev);
1732 	device_t *devlist;
1733 	int cad, i, devcount, error;
1734 
1735 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1736 		return (error);
1737 	for (i = 0; i < devcount; i++) {
1738 		cad = (intptr_t)device_get_ivars(devlist[i]);
1739 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1740 			free(devlist, M_TEMP);
1741 			return (error);
1742 		}
1743 		sc->codecs[cad].dev = NULL;
1744 	}
1745 	free(devlist, M_TEMP);
1746 
1747 	hdac_lock(sc);
1748 	hdac_reset(sc, false);
1749 	hdac_unlock(sc);
1750 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1751 	hdac_irq_free(sc);
1752 
1753 	for (i = 0; i < sc->num_ss; i++)
1754 		hdac_dma_free(sc, &sc->streams[i].bdl);
1755 	free(sc->streams, M_HDAC);
1756 	hdac_dma_free(sc, &sc->pos_dma);
1757 	hdac_dma_free(sc, &sc->rirb_dma);
1758 	hdac_dma_free(sc, &sc->corb_dma);
1759 	if (sc->chan_dmat != NULL) {
1760 		bus_dma_tag_destroy(sc->chan_dmat);
1761 		sc->chan_dmat = NULL;
1762 	}
1763 	hdac_mem_free(sc);
1764 	snd_mtxfree(sc->lock);
1765 	return (0);
1766 }
1767 
1768 static bus_dma_tag_t
1769 hdac_get_dma_tag(device_t dev, device_t child)
1770 {
1771 	struct hdac_softc *sc = device_get_softc(dev);
1772 
1773 	return (sc->chan_dmat);
1774 }
1775 
1776 static int
1777 hdac_print_child(device_t dev, device_t child)
1778 {
1779 	int retval;
1780 
1781 	retval = bus_print_child_header(dev, child);
1782 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1783 	retval += bus_print_child_footer(dev, child);
1784 
1785 	return (retval);
1786 }
1787 
1788 static int
1789 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
1790 {
1791 
1792 	sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1793 	return (0);
1794 }
1795 
1796 static int
1797 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
1798 {
1799 	struct hdac_softc *sc = device_get_softc(dev);
1800 	nid_t cad = (uintptr_t)device_get_ivars(child);
1801 
1802 	sbuf_printf(sb,
1803 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1804 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1805 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1806 	return (0);
1807 }
1808 
1809 static int
1810 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1811 {
1812 	struct hdac_softc *sc = device_get_softc(dev);
1813 	nid_t cad = (uintptr_t)device_get_ivars(child);
1814 
1815 	switch (which) {
1816 	case HDA_IVAR_CODEC_ID:
1817 		*result = cad;
1818 		break;
1819 	case HDA_IVAR_VENDOR_ID:
1820 		*result = sc->codecs[cad].vendor_id;
1821 		break;
1822 	case HDA_IVAR_DEVICE_ID:
1823 		*result = sc->codecs[cad].device_id;
1824 		break;
1825 	case HDA_IVAR_REVISION_ID:
1826 		*result = sc->codecs[cad].revision_id;
1827 		break;
1828 	case HDA_IVAR_STEPPING_ID:
1829 		*result = sc->codecs[cad].stepping_id;
1830 		break;
1831 	case HDA_IVAR_SUBVENDOR_ID:
1832 		*result = pci_get_subvendor(dev);
1833 		break;
1834 	case HDA_IVAR_SUBDEVICE_ID:
1835 		*result = pci_get_subdevice(dev);
1836 		break;
1837 	case HDA_IVAR_DMA_NOCACHE:
1838 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1839 		break;
1840 	case HDA_IVAR_STRIPES_MASK:
1841 		*result = (1 << (1 << sc->num_sdo)) - 1;
1842 		break;
1843 	default:
1844 		return (ENOENT);
1845 	}
1846 	return (0);
1847 }
1848 
1849 static struct mtx *
1850 hdac_get_mtx(device_t dev, device_t child)
1851 {
1852 	struct hdac_softc *sc = device_get_softc(dev);
1853 
1854 	return (sc->lock);
1855 }
1856 
1857 static uint32_t
1858 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1859 {
1860 
1861 	return (hdac_send_command(device_get_softc(dev),
1862 	    (intptr_t)device_get_ivars(child), verb));
1863 }
1864 
1865 static int
1866 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1867 {
1868 	int i, ss;
1869 
1870 	ss = -1;
1871 	/* Allocate ISS/OSS first. */
1872 	if (dir == 0) {
1873 		for (i = 0; i < sc->num_iss; i++) {
1874 			if (sc->streams[i].stream == stream) {
1875 				ss = i;
1876 				break;
1877 			}
1878 		}
1879 	} else {
1880 		for (i = 0; i < sc->num_oss; i++) {
1881 			if (sc->streams[i + sc->num_iss].stream == stream) {
1882 				ss = i + sc->num_iss;
1883 				break;
1884 			}
1885 		}
1886 	}
1887 	/* Fallback to BSS. */
1888 	if (ss == -1) {
1889 		for (i = 0; i < sc->num_bss; i++) {
1890 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1891 			    == stream) {
1892 				ss = i + sc->num_iss + sc->num_oss;
1893 				break;
1894 			}
1895 		}
1896 	}
1897 	return (ss);
1898 }
1899 
1900 static int
1901 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1902     uint32_t **dmapos)
1903 {
1904 	struct hdac_softc *sc = device_get_softc(dev);
1905 	nid_t cad = (uintptr_t)device_get_ivars(child);
1906 	int stream, ss, bw, maxbw, prevbw;
1907 
1908 	/* Look for empty stream. */
1909 	ss = hdac_find_stream(sc, dir, 0);
1910 
1911 	/* Return if found nothing. */
1912 	if (ss < 0)
1913 		return (0);
1914 
1915 	/* Check bus bandwidth. */
1916 	bw = hdac_bdata_rate(format, dir);
1917 	if (dir == 1) {
1918 		bw *= 1 << (sc->num_sdo - stripe);
1919 		prevbw = sc->sdo_bw_used;
1920 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1921 	} else {
1922 		prevbw = sc->codecs[cad].sdi_bw_used;
1923 		maxbw = 48000 * 464;
1924 	}
1925 	HDA_BOOTHVERBOSE(
1926 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1927 		    (bw + prevbw) / 1000, maxbw / 1000,
1928 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1929 	);
1930 	if (bw + prevbw > maxbw)
1931 		return (0);
1932 	if (dir == 1)
1933 		sc->sdo_bw_used += bw;
1934 	else
1935 		sc->codecs[cad].sdi_bw_used += bw;
1936 
1937 	/* Allocate stream number */
1938 	if (ss >= sc->num_iss + sc->num_oss)
1939 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1940 	else if (ss >= sc->num_iss)
1941 		stream = ss - sc->num_iss + 1;
1942 	else
1943 		stream = ss + 1;
1944 
1945 	sc->streams[ss].dev = child;
1946 	sc->streams[ss].dir = dir;
1947 	sc->streams[ss].stream = stream;
1948 	sc->streams[ss].bw = bw;
1949 	sc->streams[ss].format = format;
1950 	sc->streams[ss].stripe = stripe;
1951 	if (dmapos != NULL) {
1952 		if (sc->pos_dma.dma_vaddr != NULL)
1953 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1954 		else
1955 			*dmapos = NULL;
1956 	}
1957 	return (stream);
1958 }
1959 
1960 static void
1961 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1962 {
1963 	struct hdac_softc *sc = device_get_softc(dev);
1964 	nid_t cad = (uintptr_t)device_get_ivars(child);
1965 	int ss;
1966 
1967 	ss = hdac_find_stream(sc, dir, stream);
1968 	KASSERT(ss >= 0,
1969 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1970 	if (dir == 1)
1971 		sc->sdo_bw_used -= sc->streams[ss].bw;
1972 	else
1973 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1974 	sc->streams[ss].stream = 0;
1975 	sc->streams[ss].dev = NULL;
1976 }
1977 
1978 static int
1979 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1980     bus_addr_t buf, int blksz, int blkcnt)
1981 {
1982 	struct hdac_softc *sc = device_get_softc(dev);
1983 	struct hdac_bdle *bdle;
1984 	uint64_t addr;
1985 	int i, ss, off;
1986 	uint32_t ctl;
1987 
1988 	ss = hdac_find_stream(sc, dir, stream);
1989 	KASSERT(ss >= 0,
1990 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
1991 
1992 	addr = (uint64_t)buf;
1993 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
1994 	for (i = 0; i < blkcnt; i++, bdle++) {
1995 		bdle->addrl = htole32((uint32_t)addr);
1996 		bdle->addrh = htole32((uint32_t)(addr >> 32));
1997 		bdle->len = htole32(blksz);
1998 		bdle->ioc = htole32(1);
1999 		addr += blksz;
2000 	}
2001 
2002 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2003 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
2004 
2005 	off = ss << 5;
2006 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
2007 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
2008 	addr = sc->streams[ss].bdl.dma_paddr;
2009 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2010 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2011 
2012 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2013 	if (dir)
2014 		ctl |= HDAC_SDCTL2_DIR;
2015 	else
2016 		ctl &= ~HDAC_SDCTL2_DIR;
2017 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2018 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2019 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2020 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2021 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2022 
2023 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2024 
2025 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2026 	ctl |= 1 << ss;
2027 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2028 
2029 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2030 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2031 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2032 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2033 	    HDAC_SDCTL_RUN;
2034 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2035 
2036 	sc->streams[ss].blksz = blksz;
2037 	sc->streams[ss].running = 1;
2038 	hdac_poll_reinit(sc);
2039 	return (0);
2040 }
2041 
2042 static void
2043 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2044 {
2045 	struct hdac_softc *sc = device_get_softc(dev);
2046 	int ss, off;
2047 	uint32_t ctl;
2048 
2049 	ss = hdac_find_stream(sc, dir, stream);
2050 	KASSERT(ss >= 0,
2051 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2052 
2053 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2054 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2055 
2056 	off = ss << 5;
2057 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2058 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2059 	    HDAC_SDCTL_RUN);
2060 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2061 
2062 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2063 	ctl &= ~(1 << ss);
2064 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2065 
2066 	sc->streams[ss].running = 0;
2067 	hdac_poll_reinit(sc);
2068 }
2069 
2070 static void
2071 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2072 {
2073 	struct hdac_softc *sc = device_get_softc(dev);
2074 	int timeout = 1000;
2075 	int to = timeout;
2076 	int ss, off;
2077 	uint32_t ctl;
2078 
2079 	ss = hdac_find_stream(sc, dir, stream);
2080 	KASSERT(ss >= 0,
2081 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2082 
2083 	off = ss << 5;
2084 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2085 	ctl |= HDAC_SDCTL_SRST;
2086 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2087 	do {
2088 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2089 		if (ctl & HDAC_SDCTL_SRST)
2090 			break;
2091 		DELAY(10);
2092 	} while (--to);
2093 	if (!(ctl & HDAC_SDCTL_SRST))
2094 		device_printf(dev, "Reset setting timeout\n");
2095 	ctl &= ~HDAC_SDCTL_SRST;
2096 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2097 	to = timeout;
2098 	do {
2099 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2100 		if (!(ctl & HDAC_SDCTL_SRST))
2101 			break;
2102 		DELAY(10);
2103 	} while (--to);
2104 	if (ctl & HDAC_SDCTL_SRST)
2105 		device_printf(dev, "Reset timeout!\n");
2106 }
2107 
2108 static uint32_t
2109 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2110 {
2111 	struct hdac_softc *sc = device_get_softc(dev);
2112 	int ss, off;
2113 
2114 	ss = hdac_find_stream(sc, dir, stream);
2115 	KASSERT(ss >= 0,
2116 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2117 
2118 	off = ss << 5;
2119 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2120 }
2121 
2122 static int
2123 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2124 {
2125 	struct hdac_softc *sc = device_get_softc(dev);
2126 
2127 	sc->unsol_registered++;
2128 	hdac_poll_reinit(sc);
2129 	return (tag);
2130 }
2131 
2132 static void
2133 hdac_unsol_free(device_t dev, device_t child, int tag)
2134 {
2135 	struct hdac_softc *sc = device_get_softc(dev);
2136 
2137 	sc->unsol_registered--;
2138 	hdac_poll_reinit(sc);
2139 }
2140 
2141 static device_method_t hdac_methods[] = {
2142 	/* device interface */
2143 	DEVMETHOD(device_probe,		hdac_probe),
2144 	DEVMETHOD(device_attach,	hdac_attach),
2145 	DEVMETHOD(device_detach,	hdac_detach),
2146 	DEVMETHOD(device_suspend,	hdac_suspend),
2147 	DEVMETHOD(device_resume,	hdac_resume),
2148 	/* Bus interface */
2149 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2150 	DEVMETHOD(bus_print_child,	hdac_print_child),
2151 	DEVMETHOD(bus_child_location,	hdac_child_location),
2152 	DEVMETHOD(bus_child_pnpinfo,	hdac_child_pnpinfo_method),
2153 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2154 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2155 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2156 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2157 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2158 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2159 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2160 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2161 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2162 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2163 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2164 	DEVMETHOD_END
2165 };
2166 
2167 static driver_t hdac_driver = {
2168 	"hdac",
2169 	hdac_methods,
2170 	sizeof(struct hdac_softc),
2171 };
2172 
2173 static devclass_t hdac_devclass;
2174 
2175 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);
2176