xref: /freebsd/sys/dev/sound/pci/hda/hdac.c (revision 11c53278a8a3e86e14377f09bbaa7bad193d3713)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 /*
32  * Intel High Definition Audio (Controller) driver for FreeBSD.
33  */
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_snd.h"
37 #endif
38 
39 #include <dev/sound/pcm/sound.h>
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include <sys/ctype.h>
44 #include <sys/endian.h>
45 #include <sys/taskqueue.h>
46 
47 #include <dev/sound/pci/hda/hdac_private.h>
48 #include <dev/sound/pci/hda/hdac_reg.h>
49 #include <dev/sound/pci/hda/hda_reg.h>
50 #include <dev/sound/pci/hda/hdac.h>
51 
52 #define HDA_DRV_TEST_REV	"20120126_0002"
53 
54 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
55 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
56 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
57 
58 #define HDAC_QUIRK_64BIT	(1 << 0)
59 #define HDAC_QUIRK_DMAPOS	(1 << 1)
60 #define HDAC_QUIRK_MSI		(1 << 2)
61 
62 static const struct {
63 	const char *key;
64 	uint32_t value;
65 } hdac_quirks_tab[] = {
66 	{ "64bit", HDAC_QUIRK_64BIT },
67 	{ "dmapos", HDAC_QUIRK_DMAPOS },
68 	{ "msi", HDAC_QUIRK_MSI },
69 };
70 
71 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
72 
73 static const struct {
74 	uint32_t	model;
75 	const char	*desc;
76 	char		quirks_on;
77 	char		quirks_off;
78 } hdac_devices[] = {
79 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
80 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
81 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
82 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
83 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
84 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
85 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
86 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
87 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
88 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
89 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
90 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
91 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
92 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
93 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
94 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
95 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
96 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
97 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
98 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
99 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
100 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
101 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
102 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
103 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
104 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
105 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
106 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
107 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
108 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
109 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
110 	{ HDA_INTEL_TGLKH,   "Intel Tiger Lake-H",	0, 0 },
111 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
112 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
113 	{ HDA_INTEL_ALLKM,   "Intel Alder Lake-M",	0, 0 },
114 	{ HDA_INTEL_ALLKN,   "Intel Alder Lake-N",	0, 0 },
115 	{ HDA_INTEL_ALLKP1,  "Intel Alder Lake-P",	0, 0 },
116 	{ HDA_INTEL_ALLKP2,  "Intel Alder Lake-P",	0, 0 },
117 	{ HDA_INTEL_ALLKPS,  "Intel Alder Lake-PS",	0, 0 },
118 	{ HDA_INTEL_RPTLK1,  "Intel Raptor Lake-P",	0, 0 },
119 	{ HDA_INTEL_RPTLK2,  "Intel Raptor Lake-P",	0, 0 },
120 	{ HDA_INTEL_MTL,     "Intel Meteor Lake-P",	0, 0 },
121 	{ HDA_INTEL_ARLS,    "Intel Arrow Lake-S",	0, 0 },
122 	{ HDA_INTEL_ARL,     "Intel Arrow Lake",	0, 0 },
123 	{ HDA_INTEL_LNLP,    "Intel Lunar Lake-P",	0, 0 },
124 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
125 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
126 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
127 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
128 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
129 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
130 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
131 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
132 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
133 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
134 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
135 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
136 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
137 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
138 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
139 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
140 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
141 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
142 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
143 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
144 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
145 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
146 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
147 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
148 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
149 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
150 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
151 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
152 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
153 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
154 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
155 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
156 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
157 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
158 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
159 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
160 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
161 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
162 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
163 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
164 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
165 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
166 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
167 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
168 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
169 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
170 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
171 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
172 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
173 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
174 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
175 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
176 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
177 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
178 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
179 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
180 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
181 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
182 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
183 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
184 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
185 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
186 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
187 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
188 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
189 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
190 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
191 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
192 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
193 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
194 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
195 	{ HDA_ATI_OLAND,     "ATI Oland",	0, 0 },
196 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
197 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
198 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
199 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
200 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
201 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
202 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
203 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
204 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
205 	{ HDA_VMWARE,        "VMware",		0, 0 },
206 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
207 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
208 	{ HDA_CREATIVE_SB1570,	"Creative SB Audigy FX", 0, HDAC_QUIRK_64BIT },
209 	/* Unknown */
210 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
211 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
212 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
213 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
214 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
215 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
216 	{ HDA_VMWARE_ALL, "VMware",		0, 0 },
217 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
218 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
219 };
220 
221 static const struct {
222 	uint16_t vendor;
223 	uint8_t reg;
224 	uint8_t mask;
225 	uint8_t enable;
226 } hdac_pcie_snoop[] = {
227 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
228 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
229 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
230 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
231 };
232 
233 /****************************************************************************
234  * Function prototypes
235  ****************************************************************************/
236 static void	hdac_intr_handler(void *);
237 static int	hdac_reset(struct hdac_softc *, bool);
238 static int	hdac_get_capabilities(struct hdac_softc *);
239 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
240 static int	hdac_dma_alloc(struct hdac_softc *,
241 					struct hdac_dma *, bus_size_t);
242 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
243 static int	hdac_mem_alloc(struct hdac_softc *);
244 static void	hdac_mem_free(struct hdac_softc *);
245 static int	hdac_irq_alloc(struct hdac_softc *);
246 static void	hdac_irq_free(struct hdac_softc *);
247 static void	hdac_corb_init(struct hdac_softc *);
248 static void	hdac_rirb_init(struct hdac_softc *);
249 static void	hdac_corb_start(struct hdac_softc *);
250 static void	hdac_rirb_start(struct hdac_softc *);
251 
252 static void	hdac_attach2(void *);
253 
254 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
255 
256 static int	hdac_probe(device_t);
257 static int	hdac_attach(device_t);
258 static int	hdac_detach(device_t);
259 static int	hdac_suspend(device_t);
260 static int	hdac_resume(device_t);
261 
262 static int	hdac_rirb_flush(struct hdac_softc *sc);
263 static int	hdac_unsolq_flush(struct hdac_softc *sc);
264 
265 /* This function surely going to make its way into upper level someday. */
266 static void
267 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
268 {
269 	const char *res = NULL;
270 	int i = 0, j, k, len, inv;
271 
272 	if (resource_string_value(device_get_name(sc->dev),
273 	    device_get_unit(sc->dev), "config", &res) != 0)
274 		return;
275 	if (!(res != NULL && strlen(res) > 0))
276 		return;
277 	HDA_BOOTVERBOSE(
278 		device_printf(sc->dev, "Config options:");
279 	);
280 	for (;;) {
281 		while (res[i] != '\0' &&
282 		    (res[i] == ',' || isspace(res[i]) != 0))
283 			i++;
284 		if (res[i] == '\0') {
285 			HDA_BOOTVERBOSE(
286 				printf("\n");
287 			);
288 			return;
289 		}
290 		j = i;
291 		while (res[j] != '\0' &&
292 		    !(res[j] == ',' || isspace(res[j]) != 0))
293 			j++;
294 		len = j - i;
295 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
296 			inv = 2;
297 		else
298 			inv = 0;
299 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
300 			if (strncmp(res + i + inv,
301 			    hdac_quirks_tab[k].key, len - inv) != 0)
302 				continue;
303 			if (len - inv != strlen(hdac_quirks_tab[k].key))
304 				continue;
305 			HDA_BOOTVERBOSE(
306 				printf(" %s%s", (inv != 0) ? "no" : "",
307 				    hdac_quirks_tab[k].key);
308 			);
309 			if (inv == 0) {
310 				*on |= hdac_quirks_tab[k].value;
311 				*off &= ~hdac_quirks_tab[k].value;
312 			} else if (inv != 0) {
313 				*off |= hdac_quirks_tab[k].value;
314 				*on &= ~hdac_quirks_tab[k].value;
315 			}
316 			break;
317 		}
318 		i = j;
319 	}
320 }
321 
322 static void
323 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
324 {
325 	device_t dev;
326 	uint8_t rirbsts;
327 	int i;
328 
329 	/* Was this a controller interrupt? */
330 	if (intsts & HDAC_INTSTS_CIS) {
331 		/*
332 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
333 		 * we will need to check and clear HDAC_STATESTS.
334 		 * That event is used to report codec status changes such as
335 		 * a reset or a wake-up event.
336 		 */
337 		/*
338 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
339 		 * will need to check and clear HDAC_CORBSTS_CMEI in
340 		 * HDAC_CORBSTS.
341 		 * That event is used to report CORB memory errors.
342 		 */
343 		/*
344 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
345 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
346 		 * HDAC_RIRBSTS.
347 		 * That event is used to report response FIFO overruns.
348 		 */
349 
350 		/* Get as many responses that we can */
351 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
352 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
353 			HDAC_WRITE_1(&sc->mem,
354 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
355 			hdac_rirb_flush(sc);
356 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
357 		}
358 		if (sc->unsolq_rp != sc->unsolq_wp)
359 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
360 	}
361 
362 	if (intsts & HDAC_INTSTS_SIS_MASK) {
363 		for (i = 0; i < sc->num_ss; i++) {
364 			if ((intsts & (1 << i)) == 0)
365 				continue;
366 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
367 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
368 			if ((dev = sc->streams[i].dev) != NULL) {
369 				HDAC_STREAM_INTR(dev,
370 				    sc->streams[i].dir, sc->streams[i].stream);
371 			}
372 		}
373 	}
374 }
375 
376 /****************************************************************************
377  * void hdac_intr_handler(void *)
378  *
379  * Interrupt handler. Processes interrupts received from the hdac.
380  ****************************************************************************/
381 static void
382 hdac_intr_handler(void *context)
383 {
384 	struct hdac_softc *sc;
385 	uint32_t intsts;
386 
387 	sc = (struct hdac_softc *)context;
388 
389 	/*
390 	 * Loop until HDAC_INTSTS_GIS gets clear.
391 	 * It is plausible that hardware interrupts a host only when GIS goes
392 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
393 	 * statuses, so it's possible that a previously cleared status gets set
394 	 * again while another status has not been cleared yet.  Thus, there
395 	 * will be no new interrupt as GIS always stayed set.  If we don't
396 	 * re-examine GIS then we can leave it set and never get an interrupt
397 	 * again.
398 	 */
399 	hdac_lock(sc);
400 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
401 	while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
402 		hdac_one_intr(sc, intsts);
403 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
404 	}
405 	hdac_unlock(sc);
406 }
407 
408 static void
409 hdac_poll_callback(void *arg)
410 {
411 	struct hdac_softc *sc = arg;
412 
413 	if (sc == NULL)
414 		return;
415 
416 	hdac_lock(sc);
417 	if (sc->polling == 0) {
418 		hdac_unlock(sc);
419 		return;
420 	}
421 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
422 	hdac_unlock(sc);
423 
424 	hdac_intr_handler(sc);
425 }
426 
427 /****************************************************************************
428  * int hdac_reset(hdac_softc *, bool)
429  *
430  * Reset the hdac to a quiescent and known state.
431  ****************************************************************************/
432 static int
433 hdac_reset(struct hdac_softc *sc, bool wakeup)
434 {
435 	uint32_t gctl;
436 	int count, i;
437 
438 	/*
439 	 * Stop all Streams DMA engine
440 	 */
441 	for (i = 0; i < sc->num_iss; i++)
442 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
443 	for (i = 0; i < sc->num_oss; i++)
444 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
445 	for (i = 0; i < sc->num_bss; i++)
446 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
447 
448 	/*
449 	 * Stop Control DMA engines.
450 	 */
451 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
452 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
453 
454 	/*
455 	 * Reset DMA position buffer.
456 	 */
457 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
458 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
459 
460 	/*
461 	 * Reset the controller. The reset must remain asserted for
462 	 * a minimum of 100us.
463 	 */
464 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
465 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
466 	count = 10000;
467 	do {
468 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
469 		if (!(gctl & HDAC_GCTL_CRST))
470 			break;
471 		DELAY(10);
472 	} while (--count);
473 	if (gctl & HDAC_GCTL_CRST) {
474 		device_printf(sc->dev, "Unable to put hdac in reset\n");
475 		return (ENXIO);
476 	}
477 
478 	/* If wakeup is not requested - leave the controller in reset state. */
479 	if (!wakeup)
480 		return (0);
481 
482 	DELAY(100);
483 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
484 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
485 	count = 10000;
486 	do {
487 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
488 		if (gctl & HDAC_GCTL_CRST)
489 			break;
490 		DELAY(10);
491 	} while (--count);
492 	if (!(gctl & HDAC_GCTL_CRST)) {
493 		device_printf(sc->dev, "Device stuck in reset\n");
494 		return (ENXIO);
495 	}
496 
497 	/*
498 	 * Wait for codecs to finish their own reset sequence. The delay here
499 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
500 	 */
501 	DELAY(1000);
502 
503 	return (0);
504 }
505 
506 /****************************************************************************
507  * int hdac_get_capabilities(struct hdac_softc *);
508  *
509  * Retreive the general capabilities of the hdac;
510  *	Number of Input Streams
511  *	Number of Output Streams
512  *	Number of bidirectional Streams
513  *	64bit ready
514  *	CORB and RIRB sizes
515  ****************************************************************************/
516 static int
517 hdac_get_capabilities(struct hdac_softc *sc)
518 {
519 	uint16_t gcap;
520 	uint8_t corbsize, rirbsize;
521 
522 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
523 	sc->num_iss = HDAC_GCAP_ISS(gcap);
524 	sc->num_oss = HDAC_GCAP_OSS(gcap);
525 	sc->num_bss = HDAC_GCAP_BSS(gcap);
526 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
527 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
528 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
529 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
530 		sc->support_64bit = 1;
531 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
532 		sc->support_64bit = 0;
533 
534 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
535 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
536 	    HDAC_CORBSIZE_CORBSZCAP_256)
537 		sc->corb_size = 256;
538 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
539 	    HDAC_CORBSIZE_CORBSZCAP_16)
540 		sc->corb_size = 16;
541 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
542 	    HDAC_CORBSIZE_CORBSZCAP_2)
543 		sc->corb_size = 2;
544 	else {
545 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
546 		    __func__, corbsize);
547 		return (ENXIO);
548 	}
549 
550 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
551 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
552 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
553 		sc->rirb_size = 256;
554 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
555 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
556 		sc->rirb_size = 16;
557 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
558 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
559 		sc->rirb_size = 2;
560 	else {
561 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
562 		    __func__, rirbsize);
563 		return (ENXIO);
564 	}
565 
566 	HDA_BOOTVERBOSE(
567 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
568 		    "NSDO %d%s, CORB %d, RIRB %d\n",
569 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
570 		    sc->support_64bit ? ", 64bit" : "",
571 		    sc->corb_size, sc->rirb_size);
572 	);
573 
574 	return (0);
575 }
576 
577 /****************************************************************************
578  * void hdac_dma_cb
579  *
580  * This function is called by bus_dmamap_load when the mapping has been
581  * established. We just record the physical address of the mapping into
582  * the struct hdac_dma passed in.
583  ****************************************************************************/
584 static void
585 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
586 {
587 	struct hdac_dma *dma;
588 
589 	if (error == 0) {
590 		dma = (struct hdac_dma *)callback_arg;
591 		dma->dma_paddr = segs[0].ds_addr;
592 	}
593 }
594 
595 /****************************************************************************
596  * int hdac_dma_alloc
597  *
598  * This function allocate and setup a dma region (struct hdac_dma).
599  * It must be freed by a corresponding hdac_dma_free.
600  ****************************************************************************/
601 static int
602 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
603 {
604 	bus_size_t roundsz;
605 	int result;
606 
607 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
608 	bzero(dma, sizeof(*dma));
609 
610 	/*
611 	 * Create a DMA tag
612 	 */
613 	result = bus_dma_tag_create(
614 	    bus_get_dma_tag(sc->dev),		/* parent */
615 	    HDA_DMA_ALIGNMENT,			/* alignment */
616 	    0,					/* boundary */
617 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
618 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
619 	    BUS_SPACE_MAXADDR,			/* highaddr */
620 	    NULL,				/* filtfunc */
621 	    NULL,				/* fistfuncarg */
622 	    roundsz,				/* maxsize */
623 	    1,					/* nsegments */
624 	    roundsz,				/* maxsegsz */
625 	    0,					/* flags */
626 	    NULL,				/* lockfunc */
627 	    NULL,				/* lockfuncarg */
628 	    &dma->dma_tag);			/* dmat */
629 	if (result != 0) {
630 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
631 		    __func__, result);
632 		goto hdac_dma_alloc_fail;
633 	}
634 
635 	/*
636 	 * Allocate DMA memory
637 	 */
638 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
639 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
640 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
641 	     BUS_DMA_COHERENT),
642 	    &dma->dma_map);
643 	if (result != 0) {
644 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
645 		    __func__, result);
646 		goto hdac_dma_alloc_fail;
647 	}
648 
649 	dma->dma_size = roundsz;
650 
651 	/*
652 	 * Map the memory
653 	 */
654 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
655 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
656 	if (result != 0 || dma->dma_paddr == 0) {
657 		if (result == 0)
658 			result = ENOMEM;
659 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
660 		    __func__, result);
661 		goto hdac_dma_alloc_fail;
662 	}
663 
664 	HDA_BOOTHVERBOSE(
665 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
666 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
667 	);
668 
669 	return (0);
670 
671 hdac_dma_alloc_fail:
672 	hdac_dma_free(sc, dma);
673 
674 	return (result);
675 }
676 
677 /****************************************************************************
678  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
679  *
680  * Free a struct hdac_dma that has been previously allocated via the
681  * hdac_dma_alloc function.
682  ****************************************************************************/
683 static void
684 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
685 {
686 	if (dma->dma_paddr != 0) {
687 		/* Flush caches */
688 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
689 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
690 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
691 		dma->dma_paddr = 0;
692 	}
693 	if (dma->dma_vaddr != NULL) {
694 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
695 		dma->dma_vaddr = NULL;
696 	}
697 	if (dma->dma_tag != NULL) {
698 		bus_dma_tag_destroy(dma->dma_tag);
699 		dma->dma_tag = NULL;
700 	}
701 	dma->dma_size = 0;
702 }
703 
704 /****************************************************************************
705  * int hdac_mem_alloc(struct hdac_softc *)
706  *
707  * Allocate all the bus resources necessary to speak with the physical
708  * controller.
709  ****************************************************************************/
710 static int
711 hdac_mem_alloc(struct hdac_softc *sc)
712 {
713 	struct hdac_mem *mem;
714 
715 	mem = &sc->mem;
716 	mem->mem_rid = PCIR_BAR(0);
717 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
718 	    &mem->mem_rid, RF_ACTIVE);
719 	if (mem->mem_res == NULL) {
720 		device_printf(sc->dev,
721 		    "%s: Unable to allocate memory resource\n", __func__);
722 		return (ENOMEM);
723 	}
724 	mem->mem_tag = rman_get_bustag(mem->mem_res);
725 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
726 
727 	return (0);
728 }
729 
730 /****************************************************************************
731  * void hdac_mem_free(struct hdac_softc *)
732  *
733  * Free up resources previously allocated by hdac_mem_alloc.
734  ****************************************************************************/
735 static void
736 hdac_mem_free(struct hdac_softc *sc)
737 {
738 	struct hdac_mem *mem;
739 
740 	mem = &sc->mem;
741 	if (mem->mem_res != NULL)
742 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
743 		    mem->mem_res);
744 	mem->mem_res = NULL;
745 }
746 
747 /****************************************************************************
748  * int hdac_irq_alloc(struct hdac_softc *)
749  *
750  * Allocate and setup the resources necessary for interrupt handling.
751  ****************************************************************************/
752 static int
753 hdac_irq_alloc(struct hdac_softc *sc)
754 {
755 	struct hdac_irq *irq;
756 	int result;
757 
758 	irq = &sc->irq;
759 	irq->irq_rid = 0x0;
760 
761 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
762 	    (result = pci_msi_count(sc->dev)) == 1 &&
763 	    pci_alloc_msi(sc->dev, &result) == 0)
764 		irq->irq_rid = 0x1;
765 
766 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
767 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
768 	if (irq->irq_res == NULL) {
769 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
770 		    __func__);
771 		goto hdac_irq_alloc_fail;
772 	}
773 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
774 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
775 	if (result != 0) {
776 		device_printf(sc->dev,
777 		    "%s: Unable to setup interrupt handler (%d)\n",
778 		    __func__, result);
779 		goto hdac_irq_alloc_fail;
780 	}
781 
782 	return (0);
783 
784 hdac_irq_alloc_fail:
785 	hdac_irq_free(sc);
786 
787 	return (ENXIO);
788 }
789 
790 /****************************************************************************
791  * void hdac_irq_free(struct hdac_softc *)
792  *
793  * Free up resources previously allocated by hdac_irq_alloc.
794  ****************************************************************************/
795 static void
796 hdac_irq_free(struct hdac_softc *sc)
797 {
798 	struct hdac_irq *irq;
799 
800 	irq = &sc->irq;
801 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
802 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
803 	if (irq->irq_res != NULL)
804 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
805 		    irq->irq_res);
806 	if (irq->irq_rid == 0x1)
807 		pci_release_msi(sc->dev);
808 	irq->irq_handle = NULL;
809 	irq->irq_res = NULL;
810 	irq->irq_rid = 0x0;
811 }
812 
813 /****************************************************************************
814  * void hdac_corb_init(struct hdac_softc *)
815  *
816  * Initialize the corb registers for operations but do not start it up yet.
817  * The CORB engine must not be running when this function is called.
818  ****************************************************************************/
819 static void
820 hdac_corb_init(struct hdac_softc *sc)
821 {
822 	uint8_t corbsize;
823 	uint64_t corbpaddr;
824 
825 	/* Setup the CORB size. */
826 	switch (sc->corb_size) {
827 	case 256:
828 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
829 		break;
830 	case 16:
831 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
832 		break;
833 	case 2:
834 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
835 		break;
836 	default:
837 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
838 	}
839 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
840 
841 	/* Setup the CORB Address in the hdac */
842 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
843 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
844 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
845 
846 	/* Set the WP and RP */
847 	sc->corb_wp = 0;
848 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
849 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
850 	/*
851 	 * The HDA specification indicates that the CORBRPRST bit will always
852 	 * read as zero. Unfortunately, it seems that at least the 82801G
853 	 * doesn't reset the bit to zero, which stalls the corb engine.
854 	 * manually reset the bit to zero before continuing.
855 	 */
856 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
857 
858 	/* Enable CORB error reporting */
859 #if 0
860 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
861 #endif
862 }
863 
864 /****************************************************************************
865  * void hdac_rirb_init(struct hdac_softc *)
866  *
867  * Initialize the rirb registers for operations but do not start it up yet.
868  * The RIRB engine must not be running when this function is called.
869  ****************************************************************************/
870 static void
871 hdac_rirb_init(struct hdac_softc *sc)
872 {
873 	uint8_t rirbsize;
874 	uint64_t rirbpaddr;
875 
876 	/* Setup the RIRB size. */
877 	switch (sc->rirb_size) {
878 	case 256:
879 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
880 		break;
881 	case 16:
882 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
883 		break;
884 	case 2:
885 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
886 		break;
887 	default:
888 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
889 	}
890 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
891 
892 	/* Setup the RIRB Address in the hdac */
893 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
894 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
895 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
896 
897 	/* Setup the WP and RP */
898 	sc->rirb_rp = 0;
899 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
900 
901 	/* Setup the interrupt threshold */
902 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
903 
904 	/* Enable Overrun and response received reporting */
905 #if 0
906 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
907 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
908 #else
909 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
910 #endif
911 
912 	/*
913 	 * Make sure that the Host CPU cache doesn't contain any dirty
914 	 * cache lines that falls in the rirb. If I understood correctly, it
915 	 * should be sufficient to do this only once as the rirb is purely
916 	 * read-only from now on.
917 	 */
918 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
919 	    BUS_DMASYNC_PREREAD);
920 }
921 
922 /****************************************************************************
923  * void hdac_corb_start(hdac_softc *)
924  *
925  * Startup the corb DMA engine
926  ****************************************************************************/
927 static void
928 hdac_corb_start(struct hdac_softc *sc)
929 {
930 	uint32_t corbctl;
931 
932 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
933 	corbctl |= HDAC_CORBCTL_CORBRUN;
934 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
935 }
936 
937 /****************************************************************************
938  * void hdac_rirb_start(hdac_softc *)
939  *
940  * Startup the rirb DMA engine
941  ****************************************************************************/
942 static void
943 hdac_rirb_start(struct hdac_softc *sc)
944 {
945 	uint32_t rirbctl;
946 
947 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
948 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
949 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
950 }
951 
952 static int
953 hdac_rirb_flush(struct hdac_softc *sc)
954 {
955 	struct hdac_rirb *rirb_base, *rirb;
956 	nid_t cad;
957 	uint32_t resp, resp_ex;
958 	uint8_t rirbwp;
959 	int ret;
960 
961 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
962 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
963 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
964 	    BUS_DMASYNC_POSTREAD);
965 
966 	ret = 0;
967 	while (sc->rirb_rp != rirbwp) {
968 		sc->rirb_rp++;
969 		sc->rirb_rp %= sc->rirb_size;
970 		rirb = &rirb_base[sc->rirb_rp];
971 		resp = le32toh(rirb->response);
972 		resp_ex = le32toh(rirb->response_ex);
973 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
974 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
975 			sc->unsolq[sc->unsolq_wp++] = resp;
976 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
977 			sc->unsolq[sc->unsolq_wp++] = cad;
978 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
979 		} else if (sc->codecs[cad].pending <= 0) {
980 			device_printf(sc->dev, "Unexpected unsolicited "
981 			    "response from address %d: %08x\n", cad, resp);
982 		} else {
983 			sc->codecs[cad].response = resp;
984 			sc->codecs[cad].pending--;
985 		}
986 		ret++;
987 	}
988 
989 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
990 	    BUS_DMASYNC_PREREAD);
991 	return (ret);
992 }
993 
994 static int
995 hdac_unsolq_flush(struct hdac_softc *sc)
996 {
997 	device_t child;
998 	nid_t cad;
999 	uint32_t resp;
1000 	int ret = 0;
1001 
1002 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
1003 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
1004 		while (sc->unsolq_rp != sc->unsolq_wp) {
1005 			resp = sc->unsolq[sc->unsolq_rp++];
1006 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1007 			cad = sc->unsolq[sc->unsolq_rp++];
1008 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
1009 			if ((child = sc->codecs[cad].dev) != NULL &&
1010 			    device_is_attached(child))
1011 				HDAC_UNSOL_INTR(child, resp);
1012 			ret++;
1013 		}
1014 		sc->unsolq_st = HDAC_UNSOLQ_READY;
1015 	}
1016 
1017 	return (ret);
1018 }
1019 
1020 /****************************************************************************
1021  * uint32_t hdac_send_command
1022  *
1023  * Wrapper function that sends only one command to a given codec
1024  ****************************************************************************/
1025 static uint32_t
1026 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
1027 {
1028 	int timeout;
1029 	uint32_t *corb;
1030 
1031 	hdac_lockassert(sc);
1032 	verb &= ~HDA_CMD_CAD_MASK;
1033 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
1034 	sc->codecs[cad].response = HDA_INVALID;
1035 
1036 	sc->codecs[cad].pending++;
1037 	sc->corb_wp++;
1038 	sc->corb_wp %= sc->corb_size;
1039 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
1040 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1041 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
1042 	corb[sc->corb_wp] = htole32(verb);
1043 	bus_dmamap_sync(sc->corb_dma.dma_tag,
1044 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
1045 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
1046 
1047 	timeout = 10000;
1048 	do {
1049 		if (hdac_rirb_flush(sc) == 0)
1050 			DELAY(10);
1051 	} while (sc->codecs[cad].pending != 0 && --timeout);
1052 
1053 	if (sc->codecs[cad].pending != 0) {
1054 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
1055 		    verb, cad);
1056 		sc->codecs[cad].pending = 0;
1057 	}
1058 
1059 	if (sc->unsolq_rp != sc->unsolq_wp)
1060 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
1061 	return (sc->codecs[cad].response);
1062 }
1063 
1064 /****************************************************************************
1065  * Device Methods
1066  ****************************************************************************/
1067 
1068 /****************************************************************************
1069  * int hdac_probe(device_t)
1070  *
1071  * Probe for the presence of an hdac. If none is found, check for a generic
1072  * match using the subclass of the device.
1073  ****************************************************************************/
1074 static int
1075 hdac_probe(device_t dev)
1076 {
1077 	int i, result;
1078 	uint32_t model;
1079 	uint16_t class, subclass;
1080 	char desc[64];
1081 
1082 	model = (uint32_t)pci_get_device(dev) << 16;
1083 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1084 	class = pci_get_class(dev);
1085 	subclass = pci_get_subclass(dev);
1086 
1087 	bzero(desc, sizeof(desc));
1088 	result = ENXIO;
1089 	for (i = 0; i < nitems(hdac_devices); i++) {
1090 		if (hdac_devices[i].model == model) {
1091 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
1092 			result = BUS_PROBE_DEFAULT;
1093 			break;
1094 		}
1095 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1096 		    class == PCIC_MULTIMEDIA &&
1097 		    subclass == PCIS_MULTIMEDIA_HDA) {
1098 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
1099 			    hdac_devices[i].desc, pci_get_device(dev));
1100 			result = BUS_PROBE_GENERIC;
1101 			break;
1102 		}
1103 	}
1104 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
1105 	    subclass == PCIS_MULTIMEDIA_HDA) {
1106 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
1107 		result = BUS_PROBE_GENERIC;
1108 	}
1109 	if (result != ENXIO)
1110 		device_set_descf(dev, "%s HDA Controller", desc);
1111 
1112 	return (result);
1113 }
1114 
1115 static void
1116 hdac_unsolq_task(void *context, int pending)
1117 {
1118 	struct hdac_softc *sc;
1119 
1120 	sc = (struct hdac_softc *)context;
1121 
1122 	hdac_lock(sc);
1123 	hdac_unsolq_flush(sc);
1124 	hdac_unlock(sc);
1125 }
1126 
1127 /****************************************************************************
1128  * int hdac_attach(device_t)
1129  *
1130  * Attach the device into the kernel. Interrupts usually won't be enabled
1131  * when this function is called. Setup everything that doesn't require
1132  * interrupts and defer probing of codecs until interrupts are enabled.
1133  ****************************************************************************/
1134 static int
1135 hdac_attach(device_t dev)
1136 {
1137 	struct hdac_softc *sc;
1138 	int result;
1139 	int i, devid = -1;
1140 	uint32_t model;
1141 	uint16_t class, subclass;
1142 	uint16_t vendor;
1143 	uint8_t v;
1144 
1145 	sc = device_get_softc(dev);
1146 	HDA_BOOTVERBOSE(
1147 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
1148 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
1149 		device_printf(dev, "HDA Driver Revision: %s\n",
1150 		    HDA_DRV_TEST_REV);
1151 	);
1152 
1153 	model = (uint32_t)pci_get_device(dev) << 16;
1154 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
1155 	class = pci_get_class(dev);
1156 	subclass = pci_get_subclass(dev);
1157 
1158 	for (i = 0; i < nitems(hdac_devices); i++) {
1159 		if (hdac_devices[i].model == model) {
1160 			devid = i;
1161 			break;
1162 		}
1163 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
1164 		    class == PCIC_MULTIMEDIA &&
1165 		    subclass == PCIS_MULTIMEDIA_HDA) {
1166 			devid = i;
1167 			break;
1168 		}
1169 	}
1170 
1171 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
1172 	sc->dev = dev;
1173 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
1174 	callout_init(&sc->poll_callout, 1);
1175 	for (i = 0; i < HDAC_CODEC_MAX; i++)
1176 		sc->codecs[i].dev = NULL;
1177 	if (devid >= 0) {
1178 		sc->quirks_on = hdac_devices[devid].quirks_on;
1179 		sc->quirks_off = hdac_devices[devid].quirks_off;
1180 	} else {
1181 		sc->quirks_on = 0;
1182 		sc->quirks_off = 0;
1183 	}
1184 	if (resource_int_value(device_get_name(dev),
1185 	    device_get_unit(dev), "msi", &i) == 0) {
1186 		if (i == 0)
1187 			sc->quirks_off |= HDAC_QUIRK_MSI;
1188 		else {
1189 			sc->quirks_on |= HDAC_QUIRK_MSI;
1190 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
1191 		}
1192 	}
1193 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
1194 	HDA_BOOTVERBOSE(
1195 		device_printf(sc->dev,
1196 		    "Config options: on=0x%08x off=0x%08x\n",
1197 		    sc->quirks_on, sc->quirks_off);
1198 	);
1199 	sc->poll_ival = hz;
1200 	if (resource_int_value(device_get_name(dev),
1201 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
1202 		sc->polling = 1;
1203 	else
1204 		sc->polling = 0;
1205 
1206 	pci_enable_busmaster(dev);
1207 
1208 	vendor = pci_get_vendor(dev);
1209 	if (vendor == INTEL_VENDORID) {
1210 		/* TCSEL -> TC0 */
1211 		v = pci_read_config(dev, 0x44, 1);
1212 		pci_write_config(dev, 0x44, v & 0xf8, 1);
1213 		HDA_BOOTHVERBOSE(
1214 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
1215 			    pci_read_config(dev, 0x44, 1));
1216 		);
1217 	}
1218 
1219 #if defined(__i386__) || defined(__amd64__)
1220 	sc->flags |= HDAC_F_DMA_NOCACHE;
1221 
1222 	if (resource_int_value(device_get_name(dev),
1223 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
1224 #else
1225 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
1226 #endif
1227 		/*
1228 		 * Try to enable PCIe snoop to avoid messing around with
1229 		 * uncacheable DMA attribute. Since PCIe snoop register
1230 		 * config is pretty much vendor specific, there are no
1231 		 * general solutions on how to enable it, forcing us (even
1232 		 * Microsoft) to enable uncacheable or write combined DMA
1233 		 * by default.
1234 		 *
1235 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
1236 		 */
1237 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
1238 			if (hdac_pcie_snoop[i].vendor != vendor)
1239 				continue;
1240 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
1241 			if (hdac_pcie_snoop[i].reg == 0x00)
1242 				break;
1243 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1244 			if ((v & hdac_pcie_snoop[i].enable) ==
1245 			    hdac_pcie_snoop[i].enable)
1246 				break;
1247 			v &= hdac_pcie_snoop[i].mask;
1248 			v |= hdac_pcie_snoop[i].enable;
1249 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
1250 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
1251 			if ((v & hdac_pcie_snoop[i].enable) !=
1252 			    hdac_pcie_snoop[i].enable) {
1253 				HDA_BOOTVERBOSE(
1254 					device_printf(dev,
1255 					    "WARNING: Failed to enable PCIe "
1256 					    "snoop!\n");
1257 				);
1258 #if defined(__i386__) || defined(__amd64__)
1259 				sc->flags |= HDAC_F_DMA_NOCACHE;
1260 #endif
1261 			}
1262 			break;
1263 		}
1264 #if defined(__i386__) || defined(__amd64__)
1265 	}
1266 #endif
1267 
1268 	HDA_BOOTHVERBOSE(
1269 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
1270 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
1271 		    "Uncacheable" : "PCIe snoop", vendor);
1272 	);
1273 
1274 	/* Allocate resources */
1275 	result = hdac_mem_alloc(sc);
1276 	if (result != 0)
1277 		goto hdac_attach_fail;
1278 
1279 	/* Get Capabilities */
1280 	result = hdac_get_capabilities(sc);
1281 	if (result != 0)
1282 		goto hdac_attach_fail;
1283 
1284 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
1285 	result = hdac_dma_alloc(sc, &sc->corb_dma,
1286 	    sc->corb_size * sizeof(uint32_t));
1287 	if (result != 0)
1288 		goto hdac_attach_fail;
1289 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
1290 	    sc->rirb_size * sizeof(struct hdac_rirb));
1291 	if (result != 0)
1292 		goto hdac_attach_fail;
1293 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
1294 	    M_HDAC, M_ZERO | M_WAITOK);
1295 	for (i = 0; i < sc->num_ss; i++) {
1296 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
1297 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
1298 		if (result != 0)
1299 			goto hdac_attach_fail;
1300 	}
1301 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
1302 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
1303 			HDA_BOOTVERBOSE(
1304 				device_printf(dev, "Failed to "
1305 				    "allocate DMA pos buffer "
1306 				    "(non-fatal)\n");
1307 			);
1308 		} else {
1309 			uint64_t addr = sc->pos_dma.dma_paddr;
1310 
1311 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
1312 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
1313 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
1314 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
1315 		}
1316 	}
1317 
1318 	result = bus_dma_tag_create(
1319 	    bus_get_dma_tag(sc->dev),		/* parent */
1320 	    HDA_DMA_ALIGNMENT,			/* alignment */
1321 	    0,					/* boundary */
1322 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
1323 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1324 	    BUS_SPACE_MAXADDR,			/* highaddr */
1325 	    NULL,				/* filtfunc */
1326 	    NULL,				/* fistfuncarg */
1327 	    HDA_BUFSZ_MAX,			/* maxsize */
1328 	    1,					/* nsegments */
1329 	    HDA_BUFSZ_MAX,			/* maxsegsz */
1330 	    0,					/* flags */
1331 	    NULL,				/* lockfunc */
1332 	    NULL,				/* lockfuncarg */
1333 	    &sc->chan_dmat);			/* dmat */
1334 	if (result != 0) {
1335 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
1336 		     __func__, result);
1337 		goto hdac_attach_fail;
1338 	}
1339 
1340 	/* Quiesce everything */
1341 	HDA_BOOTHVERBOSE(
1342 		device_printf(dev, "Reset controller...\n");
1343 	);
1344 	hdac_reset(sc, true);
1345 
1346 	/* Initialize the CORB and RIRB */
1347 	hdac_corb_init(sc);
1348 	hdac_rirb_init(sc);
1349 
1350 	result = hdac_irq_alloc(sc);
1351 	if (result != 0)
1352 		goto hdac_attach_fail;
1353 
1354 	/* Defer remaining of initialization until interrupts are enabled */
1355 	sc->intrhook.ich_func = hdac_attach2;
1356 	sc->intrhook.ich_arg = (void *)sc;
1357 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
1358 		sc->intrhook.ich_func = NULL;
1359 		hdac_attach2((void *)sc);
1360 	}
1361 
1362 	return (0);
1363 
1364 hdac_attach_fail:
1365 	hdac_irq_free(sc);
1366 	if (sc->streams != NULL)
1367 		for (i = 0; i < sc->num_ss; i++)
1368 			hdac_dma_free(sc, &sc->streams[i].bdl);
1369 	free(sc->streams, M_HDAC);
1370 	hdac_dma_free(sc, &sc->rirb_dma);
1371 	hdac_dma_free(sc, &sc->corb_dma);
1372 	hdac_mem_free(sc);
1373 	snd_mtxfree(sc->lock);
1374 
1375 	return (ENXIO);
1376 }
1377 
1378 static int
1379 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
1380 {
1381 	struct hdac_softc *sc;
1382 	device_t *devlist;
1383 	device_t dev;
1384 	int devcount, i, err, val;
1385 
1386 	dev = oidp->oid_arg1;
1387 	sc = device_get_softc(dev);
1388 	if (sc == NULL)
1389 		return (EINVAL);
1390 	val = 0;
1391 	err = sysctl_handle_int(oidp, &val, 0, req);
1392 	if (err != 0 || req->newptr == NULL || val == 0)
1393 		return (err);
1394 
1395 	/* XXX: Temporary. For debugging. */
1396 	if (val == 100) {
1397 		hdac_suspend(dev);
1398 		return (0);
1399 	} else if (val == 101) {
1400 		hdac_resume(dev);
1401 		return (0);
1402 	}
1403 
1404 	bus_topo_lock();
1405 
1406 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
1407 		bus_topo_unlock();
1408 		return (err);
1409 	}
1410 
1411 	hdac_lock(sc);
1412 	for (i = 0; i < devcount; i++)
1413 		HDAC_PINDUMP(devlist[i]);
1414 	hdac_unlock(sc);
1415 
1416 	bus_topo_unlock();
1417 
1418 	free(devlist, M_TEMP);
1419 	return (0);
1420 }
1421 
1422 static int
1423 hdac_mdata_rate(uint16_t fmt)
1424 {
1425 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
1426 	int rate, bits;
1427 
1428 	if (fmt & (1 << 14))
1429 		rate = 44100;
1430 	else
1431 		rate = 48000;
1432 	rate *= ((fmt >> 11) & 0x07) + 1;
1433 	rate /= ((fmt >> 8) & 0x07) + 1;
1434 	bits = mbits[(fmt >> 4) & 0x03];
1435 	bits *= (fmt & 0x0f) + 1;
1436 	return (rate * bits);
1437 }
1438 
1439 static int
1440 hdac_bdata_rate(uint16_t fmt, int output)
1441 {
1442 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
1443 	int rate, bits;
1444 
1445 	rate = 48000;
1446 	rate *= ((fmt >> 11) & 0x07) + 1;
1447 	bits = bbits[(fmt >> 4) & 0x03];
1448 	bits *= (fmt & 0x0f) + 1;
1449 	if (!output)
1450 		bits = ((bits + 7) & ~0x07) + 10;
1451 	return (rate * bits);
1452 }
1453 
1454 static void
1455 hdac_poll_reinit(struct hdac_softc *sc)
1456 {
1457 	int i, pollticks, min = 1000000;
1458 	struct hdac_stream *s;
1459 
1460 	if (sc->polling == 0)
1461 		return;
1462 	if (sc->unsol_registered > 0)
1463 		min = hz / 2;
1464 	for (i = 0; i < sc->num_ss; i++) {
1465 		s = &sc->streams[i];
1466 		if (s->running == 0)
1467 			continue;
1468 		pollticks = ((uint64_t)hz * s->blksz) /
1469 		    (hdac_mdata_rate(s->format) / 8);
1470 		pollticks >>= 1;
1471 		if (pollticks > hz)
1472 			pollticks = hz;
1473 		if (pollticks < 1)
1474 			pollticks = 1;
1475 		if (min > pollticks)
1476 			min = pollticks;
1477 	}
1478 	sc->poll_ival = min;
1479 	if (min == 1000000)
1480 		callout_stop(&sc->poll_callout);
1481 	else
1482 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
1483 }
1484 
1485 static int
1486 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
1487 {
1488 	struct hdac_softc *sc;
1489 	device_t dev;
1490 	uint32_t ctl;
1491 	int err, val;
1492 
1493 	dev = oidp->oid_arg1;
1494 	sc = device_get_softc(dev);
1495 	if (sc == NULL)
1496 		return (EINVAL);
1497 	hdac_lock(sc);
1498 	val = sc->polling;
1499 	hdac_unlock(sc);
1500 	err = sysctl_handle_int(oidp, &val, 0, req);
1501 
1502 	if (err != 0 || req->newptr == NULL)
1503 		return (err);
1504 	if (val < 0 || val > 1)
1505 		return (EINVAL);
1506 
1507 	hdac_lock(sc);
1508 	if (val != sc->polling) {
1509 		if (val == 0) {
1510 			callout_stop(&sc->poll_callout);
1511 			hdac_unlock(sc);
1512 			callout_drain(&sc->poll_callout);
1513 			hdac_lock(sc);
1514 			sc->polling = 0;
1515 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1516 			ctl |= HDAC_INTCTL_GIE;
1517 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1518 		} else {
1519 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
1520 			ctl &= ~HDAC_INTCTL_GIE;
1521 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
1522 			sc->polling = 1;
1523 			hdac_poll_reinit(sc);
1524 		}
1525 	}
1526 	hdac_unlock(sc);
1527 
1528 	return (err);
1529 }
1530 
1531 static void
1532 hdac_attach2(void *arg)
1533 {
1534 	struct hdac_softc *sc;
1535 	device_t child;
1536 	uint32_t vendorid, revisionid;
1537 	int i;
1538 	uint16_t statests;
1539 
1540 	sc = (struct hdac_softc *)arg;
1541 
1542 	hdac_lock(sc);
1543 
1544 	/* Remove ourselves from the config hooks */
1545 	if (sc->intrhook.ich_func != NULL) {
1546 		config_intrhook_disestablish(&sc->intrhook);
1547 		sc->intrhook.ich_func = NULL;
1548 	}
1549 
1550 	HDA_BOOTHVERBOSE(
1551 		device_printf(sc->dev, "Starting CORB Engine...\n");
1552 	);
1553 	hdac_corb_start(sc);
1554 	HDA_BOOTHVERBOSE(
1555 		device_printf(sc->dev, "Starting RIRB Engine...\n");
1556 	);
1557 	hdac_rirb_start(sc);
1558 
1559 	/*
1560 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1561 	 * (status change) interrupts.  The documentation says that we
1562 	 * should not make any assumptions about the state of this register
1563 	 * and set it explicitly.
1564 	 * NB: this needs to be done before the interrupt is enabled as
1565 	 * the handler does not expect this interrupt source.
1566 	 */
1567 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1568 
1569 	/*
1570 	 * Read and clear post-reset SDI wake status.
1571 	 * Each set bit corresponds to a codec that came out of reset.
1572 	 */
1573 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
1574 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
1575 
1576 	HDA_BOOTHVERBOSE(
1577 		device_printf(sc->dev,
1578 		    "Enabling controller interrupt...\n");
1579 	);
1580 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1581 	    HDAC_GCTL_UNSOL);
1582 	if (sc->polling == 0) {
1583 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
1584 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1585 	}
1586 	DELAY(1000);
1587 
1588 	HDA_BOOTHVERBOSE(
1589 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
1590 	);
1591 	hdac_unlock(sc);
1592 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
1593 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
1594 			HDA_BOOTHVERBOSE(
1595 				device_printf(sc->dev,
1596 				    "Found CODEC at address %d\n", i);
1597 			);
1598 			hdac_lock(sc);
1599 			vendorid = hdac_send_command(sc, i,
1600 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
1601 			revisionid = hdac_send_command(sc, i,
1602 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
1603 			hdac_unlock(sc);
1604 			if (vendorid == HDA_INVALID &&
1605 			    revisionid == HDA_INVALID) {
1606 				device_printf(sc->dev,
1607 				    "CODEC at address %d not responding!\n", i);
1608 				continue;
1609 			}
1610 			sc->codecs[i].vendor_id =
1611 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
1612 			sc->codecs[i].device_id =
1613 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
1614 			sc->codecs[i].revision_id =
1615 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
1616 			sc->codecs[i].stepping_id =
1617 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
1618 			child = device_add_child(sc->dev, "hdacc", DEVICE_UNIT_ANY);
1619 			if (child == NULL) {
1620 				device_printf(sc->dev,
1621 				    "Failed to add CODEC device\n");
1622 				continue;
1623 			}
1624 			device_set_ivars(child, (void *)(intptr_t)i);
1625 			sc->codecs[i].dev = child;
1626 		}
1627 	}
1628 	bus_generic_attach(sc->dev);
1629 
1630 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1631 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1632 	    "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1633 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
1634 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
1635 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
1636 	    "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
1637 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
1638 }
1639 
1640 /****************************************************************************
1641  * int hdac_suspend(device_t)
1642  *
1643  * Suspend and power down HDA bus and codecs.
1644  ****************************************************************************/
1645 static int
1646 hdac_suspend(device_t dev)
1647 {
1648 	struct hdac_softc *sc = device_get_softc(dev);
1649 
1650 	HDA_BOOTHVERBOSE(
1651 		device_printf(dev, "Suspend...\n");
1652 	);
1653 	bus_generic_suspend(dev);
1654 
1655 	hdac_lock(sc);
1656 	HDA_BOOTHVERBOSE(
1657 		device_printf(dev, "Reset controller...\n");
1658 	);
1659 	callout_stop(&sc->poll_callout);
1660 	hdac_reset(sc, false);
1661 	hdac_unlock(sc);
1662 	callout_drain(&sc->poll_callout);
1663 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1664 	HDA_BOOTHVERBOSE(
1665 		device_printf(dev, "Suspend done\n");
1666 	);
1667 	return (0);
1668 }
1669 
1670 /****************************************************************************
1671  * int hdac_resume(device_t)
1672  *
1673  * Powerup and restore HDA bus and codecs state.
1674  ****************************************************************************/
1675 static int
1676 hdac_resume(device_t dev)
1677 {
1678 	struct hdac_softc *sc = device_get_softc(dev);
1679 	int error;
1680 
1681 	HDA_BOOTHVERBOSE(
1682 		device_printf(dev, "Resume...\n");
1683 	);
1684 	hdac_lock(sc);
1685 
1686 	/* Quiesce everything */
1687 	HDA_BOOTHVERBOSE(
1688 		device_printf(dev, "Reset controller...\n");
1689 	);
1690 	hdac_reset(sc, true);
1691 
1692 	/* Initialize the CORB and RIRB */
1693 	hdac_corb_init(sc);
1694 	hdac_rirb_init(sc);
1695 
1696 	HDA_BOOTHVERBOSE(
1697 		device_printf(dev, "Starting CORB Engine...\n");
1698 	);
1699 	hdac_corb_start(sc);
1700 	HDA_BOOTHVERBOSE(
1701 		device_printf(dev, "Starting RIRB Engine...\n");
1702 	);
1703 	hdac_rirb_start(sc);
1704 
1705 	/*
1706 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
1707 	 * (status change) events.  The documentation says that we should
1708 	 * not make any assumptions about the state of this register and
1709 	 * set it explicitly.
1710 	 * Also, clear HDAC_STATESTS.
1711 	 * NB: this needs to be done before the interrupt is enabled as
1712 	 * the handler does not expect this interrupt source.
1713 	 */
1714 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
1715 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
1716 
1717 	HDA_BOOTHVERBOSE(
1718 		device_printf(dev, "Enabling controller interrupt...\n");
1719 	);
1720 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
1721 	    HDAC_GCTL_UNSOL);
1722 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
1723 	DELAY(1000);
1724 	hdac_poll_reinit(sc);
1725 	hdac_unlock(sc);
1726 
1727 	error = bus_generic_resume(dev);
1728 	HDA_BOOTHVERBOSE(
1729 		device_printf(dev, "Resume done\n");
1730 	);
1731 	return (error);
1732 }
1733 
1734 /****************************************************************************
1735  * int hdac_detach(device_t)
1736  *
1737  * Detach and free up resources utilized by the hdac device.
1738  ****************************************************************************/
1739 static int
1740 hdac_detach(device_t dev)
1741 {
1742 	struct hdac_softc *sc = device_get_softc(dev);
1743 	device_t *devlist;
1744 	int cad, i, devcount, error;
1745 
1746 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
1747 		return (error);
1748 	for (i = 0; i < devcount; i++) {
1749 		cad = (intptr_t)device_get_ivars(devlist[i]);
1750 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
1751 			free(devlist, M_TEMP);
1752 			return (error);
1753 		}
1754 		sc->codecs[cad].dev = NULL;
1755 	}
1756 	free(devlist, M_TEMP);
1757 
1758 	hdac_lock(sc);
1759 	hdac_reset(sc, false);
1760 	hdac_unlock(sc);
1761 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
1762 	hdac_irq_free(sc);
1763 
1764 	for (i = 0; i < sc->num_ss; i++)
1765 		hdac_dma_free(sc, &sc->streams[i].bdl);
1766 	free(sc->streams, M_HDAC);
1767 	hdac_dma_free(sc, &sc->pos_dma);
1768 	hdac_dma_free(sc, &sc->rirb_dma);
1769 	hdac_dma_free(sc, &sc->corb_dma);
1770 	if (sc->chan_dmat != NULL) {
1771 		bus_dma_tag_destroy(sc->chan_dmat);
1772 		sc->chan_dmat = NULL;
1773 	}
1774 	hdac_mem_free(sc);
1775 	snd_mtxfree(sc->lock);
1776 	return (0);
1777 }
1778 
1779 static bus_dma_tag_t
1780 hdac_get_dma_tag(device_t dev, device_t child)
1781 {
1782 	struct hdac_softc *sc = device_get_softc(dev);
1783 
1784 	return (sc->chan_dmat);
1785 }
1786 
1787 static int
1788 hdac_print_child(device_t dev, device_t child)
1789 {
1790 	int retval;
1791 
1792 	retval = bus_print_child_header(dev, child);
1793 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
1794 	retval += bus_print_child_footer(dev, child);
1795 
1796 	return (retval);
1797 }
1798 
1799 static int
1800 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
1801 {
1802 
1803 	sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
1804 	return (0);
1805 }
1806 
1807 static int
1808 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
1809 {
1810 	struct hdac_softc *sc = device_get_softc(dev);
1811 	nid_t cad = (uintptr_t)device_get_ivars(child);
1812 
1813 	sbuf_printf(sb,
1814 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
1815 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
1816 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
1817 	return (0);
1818 }
1819 
1820 static int
1821 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1822 {
1823 	struct hdac_softc *sc = device_get_softc(dev);
1824 	nid_t cad = (uintptr_t)device_get_ivars(child);
1825 
1826 	switch (which) {
1827 	case HDA_IVAR_CODEC_ID:
1828 		*result = cad;
1829 		break;
1830 	case HDA_IVAR_VENDOR_ID:
1831 		*result = sc->codecs[cad].vendor_id;
1832 		break;
1833 	case HDA_IVAR_DEVICE_ID:
1834 		*result = sc->codecs[cad].device_id;
1835 		break;
1836 	case HDA_IVAR_REVISION_ID:
1837 		*result = sc->codecs[cad].revision_id;
1838 		break;
1839 	case HDA_IVAR_STEPPING_ID:
1840 		*result = sc->codecs[cad].stepping_id;
1841 		break;
1842 	case HDA_IVAR_SUBVENDOR_ID:
1843 		*result = pci_get_subvendor(dev);
1844 		break;
1845 	case HDA_IVAR_SUBDEVICE_ID:
1846 		*result = pci_get_subdevice(dev);
1847 		break;
1848 	case HDA_IVAR_DMA_NOCACHE:
1849 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
1850 		break;
1851 	case HDA_IVAR_STRIPES_MASK:
1852 		*result = (1 << (1 << sc->num_sdo)) - 1;
1853 		break;
1854 	default:
1855 		return (ENOENT);
1856 	}
1857 	return (0);
1858 }
1859 
1860 static struct mtx *
1861 hdac_get_mtx(device_t dev, device_t child)
1862 {
1863 	struct hdac_softc *sc = device_get_softc(dev);
1864 
1865 	return (sc->lock);
1866 }
1867 
1868 static uint32_t
1869 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
1870 {
1871 
1872 	return (hdac_send_command(device_get_softc(dev),
1873 	    (intptr_t)device_get_ivars(child), verb));
1874 }
1875 
1876 static int
1877 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
1878 {
1879 	int i, ss;
1880 
1881 	ss = -1;
1882 	/* Allocate ISS/OSS first. */
1883 	if (dir == 0) {
1884 		for (i = 0; i < sc->num_iss; i++) {
1885 			if (sc->streams[i].stream == stream) {
1886 				ss = i;
1887 				break;
1888 			}
1889 		}
1890 	} else {
1891 		for (i = 0; i < sc->num_oss; i++) {
1892 			if (sc->streams[i + sc->num_iss].stream == stream) {
1893 				ss = i + sc->num_iss;
1894 				break;
1895 			}
1896 		}
1897 	}
1898 	/* Fallback to BSS. */
1899 	if (ss == -1) {
1900 		for (i = 0; i < sc->num_bss; i++) {
1901 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
1902 			    == stream) {
1903 				ss = i + sc->num_iss + sc->num_oss;
1904 				break;
1905 			}
1906 		}
1907 	}
1908 	return (ss);
1909 }
1910 
1911 static int
1912 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
1913     uint32_t **dmapos)
1914 {
1915 	struct hdac_softc *sc = device_get_softc(dev);
1916 	nid_t cad = (uintptr_t)device_get_ivars(child);
1917 	int stream, ss, bw, maxbw, prevbw;
1918 
1919 	/* Look for empty stream. */
1920 	ss = hdac_find_stream(sc, dir, 0);
1921 
1922 	/* Return if found nothing. */
1923 	if (ss < 0)
1924 		return (0);
1925 
1926 	/* Check bus bandwidth. */
1927 	bw = hdac_bdata_rate(format, dir);
1928 	if (dir == 1) {
1929 		bw *= 1 << (sc->num_sdo - stripe);
1930 		prevbw = sc->sdo_bw_used;
1931 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
1932 	} else {
1933 		prevbw = sc->codecs[cad].sdi_bw_used;
1934 		maxbw = 48000 * 464;
1935 	}
1936 	HDA_BOOTHVERBOSE(
1937 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
1938 		    (bw + prevbw) / 1000, maxbw / 1000,
1939 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
1940 	);
1941 	if (bw + prevbw > maxbw)
1942 		return (0);
1943 	if (dir == 1)
1944 		sc->sdo_bw_used += bw;
1945 	else
1946 		sc->codecs[cad].sdi_bw_used += bw;
1947 
1948 	/* Allocate stream number */
1949 	if (ss >= sc->num_iss + sc->num_oss)
1950 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
1951 	else if (ss >= sc->num_iss)
1952 		stream = ss - sc->num_iss + 1;
1953 	else
1954 		stream = ss + 1;
1955 
1956 	sc->streams[ss].dev = child;
1957 	sc->streams[ss].dir = dir;
1958 	sc->streams[ss].stream = stream;
1959 	sc->streams[ss].bw = bw;
1960 	sc->streams[ss].format = format;
1961 	sc->streams[ss].stripe = stripe;
1962 	if (dmapos != NULL) {
1963 		if (sc->pos_dma.dma_vaddr != NULL)
1964 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
1965 		else
1966 			*dmapos = NULL;
1967 	}
1968 	return (stream);
1969 }
1970 
1971 static void
1972 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
1973 {
1974 	struct hdac_softc *sc = device_get_softc(dev);
1975 	nid_t cad = (uintptr_t)device_get_ivars(child);
1976 	int ss;
1977 
1978 	ss = hdac_find_stream(sc, dir, stream);
1979 	KASSERT(ss >= 0,
1980 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
1981 	if (dir == 1)
1982 		sc->sdo_bw_used -= sc->streams[ss].bw;
1983 	else
1984 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
1985 	sc->streams[ss].stream = 0;
1986 	sc->streams[ss].dev = NULL;
1987 }
1988 
1989 static int
1990 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
1991     bus_addr_t buf, int blksz, int blkcnt)
1992 {
1993 	struct hdac_softc *sc = device_get_softc(dev);
1994 	struct hdac_bdle *bdle;
1995 	uint64_t addr;
1996 	int i, ss, off;
1997 	uint32_t ctl;
1998 
1999 	ss = hdac_find_stream(sc, dir, stream);
2000 	KASSERT(ss >= 0,
2001 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
2002 
2003 	addr = (uint64_t)buf;
2004 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
2005 	for (i = 0; i < blkcnt; i++, bdle++) {
2006 		bdle->addrl = htole32((uint32_t)addr);
2007 		bdle->addrh = htole32((uint32_t)(addr >> 32));
2008 		bdle->len = htole32(blksz);
2009 		bdle->ioc = htole32(1);
2010 		addr += blksz;
2011 	}
2012 
2013 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2014 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
2015 
2016 	off = ss << 5;
2017 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
2018 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
2019 	addr = sc->streams[ss].bdl.dma_paddr;
2020 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
2021 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
2022 
2023 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
2024 	if (dir)
2025 		ctl |= HDAC_SDCTL2_DIR;
2026 	else
2027 		ctl &= ~HDAC_SDCTL2_DIR;
2028 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
2029 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
2030 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
2031 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
2032 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
2033 
2034 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
2035 
2036 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2037 	ctl |= 1 << ss;
2038 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2039 
2040 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
2041 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
2042 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2043 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2044 	    HDAC_SDCTL_RUN;
2045 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2046 
2047 	sc->streams[ss].blksz = blksz;
2048 	sc->streams[ss].running = 1;
2049 	hdac_poll_reinit(sc);
2050 	return (0);
2051 }
2052 
2053 static void
2054 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
2055 {
2056 	struct hdac_softc *sc = device_get_softc(dev);
2057 	int ss, off;
2058 	uint32_t ctl;
2059 
2060 	ss = hdac_find_stream(sc, dir, stream);
2061 	KASSERT(ss >= 0,
2062 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
2063 
2064 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
2065 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
2066 
2067 	off = ss << 5;
2068 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2069 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
2070 	    HDAC_SDCTL_RUN);
2071 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2072 
2073 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
2074 	ctl &= ~(1 << ss);
2075 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
2076 
2077 	sc->streams[ss].running = 0;
2078 	hdac_poll_reinit(sc);
2079 }
2080 
2081 static void
2082 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
2083 {
2084 	struct hdac_softc *sc = device_get_softc(dev);
2085 	int timeout = 1000;
2086 	int to = timeout;
2087 	int ss, off;
2088 	uint32_t ctl;
2089 
2090 	ss = hdac_find_stream(sc, dir, stream);
2091 	KASSERT(ss >= 0,
2092 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2093 
2094 	off = ss << 5;
2095 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2096 	ctl |= HDAC_SDCTL_SRST;
2097 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2098 	do {
2099 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2100 		if (ctl & HDAC_SDCTL_SRST)
2101 			break;
2102 		DELAY(10);
2103 	} while (--to);
2104 	if (!(ctl & HDAC_SDCTL_SRST))
2105 		device_printf(dev, "Reset setting timeout\n");
2106 	ctl &= ~HDAC_SDCTL_SRST;
2107 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
2108 	to = timeout;
2109 	do {
2110 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
2111 		if (!(ctl & HDAC_SDCTL_SRST))
2112 			break;
2113 		DELAY(10);
2114 	} while (--to);
2115 	if (ctl & HDAC_SDCTL_SRST)
2116 		device_printf(dev, "Reset timeout!\n");
2117 }
2118 
2119 static uint32_t
2120 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
2121 {
2122 	struct hdac_softc *sc = device_get_softc(dev);
2123 	int ss, off;
2124 
2125 	ss = hdac_find_stream(sc, dir, stream);
2126 	KASSERT(ss >= 0,
2127 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
2128 
2129 	off = ss << 5;
2130 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
2131 }
2132 
2133 static int
2134 hdac_unsol_alloc(device_t dev, device_t child, int tag)
2135 {
2136 	struct hdac_softc *sc = device_get_softc(dev);
2137 
2138 	sc->unsol_registered++;
2139 	hdac_poll_reinit(sc);
2140 	return (tag);
2141 }
2142 
2143 static void
2144 hdac_unsol_free(device_t dev, device_t child, int tag)
2145 {
2146 	struct hdac_softc *sc = device_get_softc(dev);
2147 
2148 	sc->unsol_registered--;
2149 	hdac_poll_reinit(sc);
2150 }
2151 
2152 static device_method_t hdac_methods[] = {
2153 	/* device interface */
2154 	DEVMETHOD(device_probe,		hdac_probe),
2155 	DEVMETHOD(device_attach,	hdac_attach),
2156 	DEVMETHOD(device_detach,	hdac_detach),
2157 	DEVMETHOD(device_suspend,	hdac_suspend),
2158 	DEVMETHOD(device_resume,	hdac_resume),
2159 	/* Bus interface */
2160 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
2161 	DEVMETHOD(bus_print_child,	hdac_print_child),
2162 	DEVMETHOD(bus_child_location,	hdac_child_location),
2163 	DEVMETHOD(bus_child_pnpinfo,	hdac_child_pnpinfo_method),
2164 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
2165 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
2166 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
2167 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
2168 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
2169 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
2170 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
2171 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
2172 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
2173 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
2174 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
2175 	DEVMETHOD_END
2176 };
2177 
2178 static driver_t hdac_driver = {
2179 	"hdac",
2180 	hdac_methods,
2181 	sizeof(struct hdac_softc),
2182 };
2183 
2184 DRIVER_MODULE(snd_hda, pci, hdac_driver, NULL, NULL);
2185