xref: /freebsd/sys/dev/sound/pci/csa.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 1999 Seigo Tanimura
3  * All rights reserved.
4  *
5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <machine/resource.h>
38 #include <machine/bus.h>
39 #include <sys/rman.h>
40 
41 #ifdef HAVE_KERNEL_OPTION_HEADERS
42 #include "opt_snd.h"
43 #endif
44 
45 #include <dev/sound/pcm/sound.h>
46 #include <dev/sound/chip.h>
47 #include <dev/sound/pci/csareg.h>
48 #include <dev/sound/pci/csavar.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <dev/sound/pci/cs461x_dsp.h>
54 
55 SND_DECLARE_FILE("$FreeBSD$");
56 
57 /* This is the pci device id. */
58 #define CS4610_PCI_ID 0x60011013
59 #define CS4614_PCI_ID 0x60031013
60 #define CS4615_PCI_ID 0x60041013
61 
62 /* Here is the parameter structure per a device. */
63 struct csa_softc {
64 	device_t dev; /* device */
65 	csa_res res; /* resources */
66 
67 	device_t pcm; /* pcm device */
68 	driver_intr_t* pcmintr; /* pcm intr */
69 	void *pcmintr_arg; /* pcm intr arg */
70 	device_t midi; /* midi device */
71 	driver_intr_t* midiintr; /* midi intr */
72 	void *midiintr_arg; /* midi intr arg */
73 	void *ih; /* cookie */
74 
75 	struct csa_card *card;
76 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
77 };
78 
79 typedef struct csa_softc *sc_p;
80 
81 static int csa_probe(device_t dev);
82 static int csa_attach(device_t dev);
83 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
84 					      u_long start, u_long end, u_long count, u_int flags);
85 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
86 				   struct resource *r);
87 static int csa_setup_intr(device_t bus, device_t child,
88 			  struct resource *irq, int flags,
89 #if __FreeBSD_version >= 700031
90 			  driver_filter_t *filter,
91 #endif
92 			  driver_intr_t *intr,  void *arg, void **cookiep);
93 static int csa_teardown_intr(device_t bus, device_t child,
94 			     struct resource *irq, void *cookie);
95 static driver_intr_t csa_intr;
96 static int csa_initialize(sc_p scp);
97 static int csa_downloadimage(csa_res *resp);
98 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
99 
100 static devclass_t csa_devclass;
101 
102 static void
103 amp_none(void)
104 {
105 }
106 
107 static void
108 amp_voyetra(void)
109 {
110 }
111 
112 static int
113 clkrun_hack(int run)
114 {
115 #ifdef __i386__
116 	devclass_t		pci_devclass;
117 	device_t		*pci_devices, *pci_children, *busp, *childp;
118 	int			pci_count = 0, pci_childcount = 0;
119 	int			i, j, port;
120 	u_int16_t		control;
121 	bus_space_tag_t		btag;
122 
123 	if ((pci_devclass = devclass_find("pci")) == NULL) {
124 		return ENXIO;
125 	}
126 
127 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
128 
129 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
130 		pci_childcount = 0;
131 		if (device_get_children(*busp, &pci_children, &pci_childcount))
132 			continue;
133 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
134 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
135 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
136 				/* XXX */
137 				btag = X86_BUS_SPACE_IO;
138 
139 				control = bus_space_read_2(btag, 0x0, port);
140 				control &= ~0x2000;
141 				control |= run? 0 : 0x2000;
142 				bus_space_write_2(btag, 0x0, port, control);
143 				free(pci_devices, M_TEMP);
144 				free(pci_children, M_TEMP);
145 				return 0;
146 			}
147 		}
148 		free(pci_children, M_TEMP);
149 	}
150 
151 	free(pci_devices, M_TEMP);
152 	return ENXIO;
153 #else
154 	return 0;
155 #endif
156 }
157 
158 static struct csa_card cards_4610[] = {
159 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
160 };
161 
162 static struct csa_card cards_4614[] = {
163 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
164 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
165 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
166 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
167 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
168 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
169 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
170 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
171 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
172 };
173 
174 static struct csa_card cards_4615[] = {
175 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
176 };
177 
178 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
179 
180 struct card_type {
181 	u_int32_t devid;
182 	char *name;
183 	struct csa_card *cards;
184 };
185 
186 static struct card_type cards[] = {
187 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
188 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
189 	{CS4615_PCI_ID, "CS4615", cards_4615},
190 	{0, NULL, NULL},
191 };
192 
193 static struct card_type *
194 csa_findcard(device_t dev)
195 {
196 	int i;
197 
198 	i = 0;
199 	while (cards[i].devid != 0) {
200 		if (pci_get_devid(dev) == cards[i].devid)
201 			return &cards[i];
202 		i++;
203 	}
204 	return NULL;
205 }
206 
207 struct csa_card *
208 csa_findsubcard(device_t dev)
209 {
210 	int i;
211 	struct card_type *card;
212 	struct csa_card *subcard;
213 
214 	card = csa_findcard(dev);
215 	if (card == NULL)
216 		return &nocard;
217 	subcard = card->cards;
218 	i = 0;
219 	while (subcard[i].subvendor != 0) {
220 		if (pci_get_subvendor(dev) == subcard[i].subvendor
221 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
222 			return &subcard[i];
223 		}
224 		i++;
225 	}
226 	return &subcard[i];
227 }
228 
229 static int
230 csa_probe(device_t dev)
231 {
232 	struct card_type *card;
233 
234 	card = csa_findcard(dev);
235 	if (card) {
236 		device_set_desc(dev, card->name);
237 		return BUS_PROBE_DEFAULT;
238 	}
239 	return ENXIO;
240 }
241 
242 static int
243 csa_attach(device_t dev)
244 {
245 	sc_p scp;
246 	csa_res *resp;
247 	struct sndcard_func *func;
248 	int error = ENXIO;
249 
250 	scp = device_get_softc(dev);
251 
252 	/* Fill in the softc. */
253 	bzero(scp, sizeof(*scp));
254 	scp->dev = dev;
255 
256 	pci_enable_busmaster(dev);
257 
258 	/* Allocate the resources. */
259 	resp = &scp->res;
260 	scp->card = csa_findsubcard(dev);
261 	scp->binfo.card = scp->card;
262 	printf("csa: card is %s\n", scp->card->name);
263 	resp->io_rid = PCIR_BAR(0);
264 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
265 		&resp->io_rid, RF_ACTIVE);
266 	if (resp->io == NULL)
267 		return (ENXIO);
268 	resp->mem_rid = PCIR_BAR(1);
269 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
270 		&resp->mem_rid, RF_ACTIVE);
271 	if (resp->mem == NULL)
272 		goto err_io;
273 	resp->irq_rid = 0;
274 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
275 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
276 	if (resp->irq == NULL)
277 		goto err_mem;
278 
279 	/* Enable interrupt. */
280 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
281 		goto err_intr;
282 #if 0
283 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
284 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
285 #endif
286 
287 	/* Initialize the chip. */
288 	if (csa_initialize(scp))
289 		goto err_teardown;
290 
291 	/* Reset the Processor. */
292 	csa_resetdsp(resp);
293 
294 	/* Download the Processor Image to the processor. */
295 	if (csa_downloadimage(resp))
296 		goto err_teardown;
297 
298 	/* Attach the children. */
299 
300 	/* PCM Audio */
301 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
302 	if (func == NULL) {
303 		error = ENOMEM;
304 		goto err_teardown;
305 	}
306 	func->varinfo = &scp->binfo;
307 	func->func = SCF_PCM;
308 	scp->pcm = device_add_child(dev, "pcm", -1);
309 	device_set_ivars(scp->pcm, func);
310 
311 	/* Midi Interface */
312 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
313 	if (func == NULL) {
314 		error = ENOMEM;
315 		goto err_teardown;
316 	}
317 	func->varinfo = &scp->binfo;
318 	func->func = SCF_MIDI;
319 	scp->midi = device_add_child(dev, "midi", -1);
320 	device_set_ivars(scp->midi, func);
321 
322 	bus_generic_attach(dev);
323 
324 	return (0);
325 
326 err_teardown:
327 	bus_teardown_intr(dev, resp->irq, scp->ih);
328 err_intr:
329 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
330 err_mem:
331 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
332 err_io:
333 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
334 	return (error);
335 }
336 
337 static int
338 csa_detach(device_t dev)
339 {
340 	csa_res *resp;
341 	sc_p scp;
342 	struct sndcard_func *func;
343 	int err;
344 
345 	scp = device_get_softc(dev);
346 	resp = &scp->res;
347 
348 	if (scp->midi != NULL) {
349 		func = device_get_ivars(scp->midi);
350 		err = device_delete_child(dev, scp->midi);
351 		if (err != 0)
352 			return err;
353 		if (func != NULL)
354 			free(func, M_DEVBUF);
355 		scp->midi = NULL;
356 	}
357 
358 	if (scp->pcm != NULL) {
359 		func = device_get_ivars(scp->pcm);
360 		err = device_delete_child(dev, scp->pcm);
361 		if (err != 0)
362 			return err;
363 		if (func != NULL)
364 			free(func, M_DEVBUF);
365 		scp->pcm = NULL;
366 	}
367 
368 	bus_teardown_intr(dev, resp->irq, scp->ih);
369 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
370 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
371 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
372 
373 	return bus_generic_detach(dev);
374 }
375 
376 static int
377 csa_resume(device_t dev)
378 {
379 	csa_res *resp;
380 	sc_p scp;
381 
382 	scp = device_get_softc(dev);
383 	resp = &scp->res;
384 
385 	/* Initialize the chip. */
386 	if (csa_initialize(scp))
387 		return (ENXIO);
388 
389 	/* Reset the Processor. */
390 	csa_resetdsp(resp);
391 
392 	/* Download the Processor Image to the processor. */
393 	if (csa_downloadimage(resp))
394 		return (ENXIO);
395 
396 	return (bus_generic_resume(dev));
397 }
398 
399 static struct resource *
400 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
401 		      u_long start, u_long end, u_long count, u_int flags)
402 {
403 	sc_p scp;
404 	csa_res *resp;
405 	struct resource *res;
406 
407 	scp = device_get_softc(bus);
408 	resp = &scp->res;
409 	switch (type) {
410 	case SYS_RES_IRQ:
411 		if (*rid != 0)
412 			return (NULL);
413 		res = resp->irq;
414 		break;
415 	case SYS_RES_MEMORY:
416 		switch (*rid) {
417 		case PCIR_BAR(0):
418 			res = resp->io;
419 			break;
420 		case PCIR_BAR(1):
421 			res = resp->mem;
422 			break;
423 		default:
424 			return (NULL);
425 		}
426 		break;
427 	default:
428 		return (NULL);
429 	}
430 
431 	return res;
432 }
433 
434 static int
435 csa_release_resource(device_t bus, device_t child, int type, int rid,
436 			struct resource *r)
437 {
438 	return (0);
439 }
440 
441 /*
442  * The following three functions deal with interrupt handling.
443  * An interrupt is primarily handled by the bridge driver.
444  * The bridge driver then determines the child devices to pass
445  * the interrupt. Certain information of the device can be read
446  * only once(eg the value of HISR). The bridge driver is responsible
447  * to pass such the information to the children.
448  */
449 
450 static int
451 csa_setup_intr(device_t bus, device_t child,
452 	       struct resource *irq, int flags,
453 #if __FreeBSD_version >= 700031
454 	       driver_filter_t *filter,
455 #endif
456 	       driver_intr_t *intr, void *arg, void **cookiep)
457 {
458 	sc_p scp;
459 	csa_res *resp;
460 	struct sndcard_func *func;
461 
462 #if __FreeBSD_version >= 700031
463 	if (filter != NULL) {
464 		printf("ata-csa.c: we cannot use a filter here\n");
465 		return (EINVAL);
466 	}
467 #endif
468 	scp = device_get_softc(bus);
469 	resp = &scp->res;
470 
471 	/*
472 	 * Look at the function code of the child to determine
473 	 * the appropriate hander for it.
474 	 */
475 	func = device_get_ivars(child);
476 	if (func == NULL || irq != resp->irq)
477 		return (EINVAL);
478 
479 	switch (func->func) {
480 	case SCF_PCM:
481 		scp->pcmintr = intr;
482 		scp->pcmintr_arg = arg;
483 		break;
484 
485 	case SCF_MIDI:
486 		scp->midiintr = intr;
487 		scp->midiintr_arg = arg;
488 		break;
489 
490 	default:
491 		return (EINVAL);
492 	}
493 	*cookiep = scp;
494 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
495 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
496 
497 	return (0);
498 }
499 
500 static int
501 csa_teardown_intr(device_t bus, device_t child,
502 		  struct resource *irq, void *cookie)
503 {
504 	sc_p scp;
505 	csa_res *resp;
506 	struct sndcard_func *func;
507 
508 	scp = device_get_softc(bus);
509 	resp = &scp->res;
510 
511 	/*
512 	 * Look at the function code of the child to determine
513 	 * the appropriate hander for it.
514 	 */
515 	func = device_get_ivars(child);
516 	if (func == NULL || irq != resp->irq || cookie != scp)
517 		return (EINVAL);
518 
519 	switch (func->func) {
520 	case SCF_PCM:
521 		scp->pcmintr = NULL;
522 		scp->pcmintr_arg = NULL;
523 		break;
524 
525 	case SCF_MIDI:
526 		scp->midiintr = NULL;
527 		scp->midiintr_arg = NULL;
528 		break;
529 
530 	default:
531 		return (EINVAL);
532 	}
533 
534 	return (0);
535 }
536 
537 /* The interrupt handler */
538 static void
539 csa_intr(void *arg)
540 {
541 	sc_p scp = arg;
542 	csa_res *resp;
543 	u_int32_t hisr;
544 
545 	resp = &scp->res;
546 
547 	/* Is this interrupt for us? */
548 	hisr = csa_readio(resp, BA0_HISR);
549 	if ((hisr & 0x7fffffff) == 0) {
550 		/* Throw an eoi. */
551 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
552 		return;
553 	}
554 
555 	/*
556 	 * Pass the value of HISR via struct csa_bridgeinfo.
557 	 * The children get access through their ivars.
558 	 */
559 	scp->binfo.hisr = hisr;
560 
561 	/* Invoke the handlers of the children. */
562 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
563 		scp->pcmintr(scp->pcmintr_arg);
564 		hisr &= ~(HISR_VC0 | HISR_VC1);
565 	}
566 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
567 		scp->midiintr(scp->midiintr_arg);
568 		hisr &= ~HISR_MIDI;
569 	}
570 
571 	/* Throw an eoi. */
572 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
573 }
574 
575 static int
576 csa_initialize(sc_p scp)
577 {
578 	int i;
579 	u_int32_t acsts, acisv;
580 	csa_res *resp;
581 
582 	resp = &scp->res;
583 
584 	/*
585 	 * First, blast the clock control register to zero so that the PLL starts
586 	 * out in a known state, and blast the master serial port control register
587 	 * to zero so that the serial ports also start out in a known state.
588 	 */
589 	csa_writeio(resp, BA0_CLKCR1, 0);
590 	csa_writeio(resp, BA0_SERMC1, 0);
591 
592 	/*
593 	 * If we are in AC97 mode, then we must set the part to a host controlled
594 	 * AC-link.  Otherwise, we won't be able to bring up the link.
595 	 */
596 #if 1
597 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
598 #else
599 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
600 #endif /* 1 */
601 
602 	/*
603 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
604 	 * spec) and then drive it high.  This is done for non AC97 modes since
605 	 * there might be logic external to the CS461x that uses the ARST# line
606 	 * for a reset.
607 	 */
608 	csa_writeio(resp, BA0_ACCTL, 1);
609 	DELAY(50);
610 	csa_writeio(resp, BA0_ACCTL, 0);
611 	DELAY(50);
612 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
613 
614 	/*
615 	 * The first thing we do here is to enable sync generation.  As soon
616 	 * as we start receiving bit clock, we'll start producing the SYNC
617 	 * signal.
618 	 */
619 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
620 
621 	/*
622 	 * Now wait for a short while to allow the AC97 part to start
623 	 * generating bit clock (so we don't try to start the PLL without an
624 	 * input clock).
625 	 */
626 	DELAY(50000);
627 
628 	/*
629 	 * Set the serial port timing configuration, so that
630 	 * the clock control circuit gets its clock from the correct place.
631 	 */
632 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
633 	DELAY(700000);
634 
635 	/*
636 	 * Write the selected clock control setup to the hardware.  Do not turn on
637 	 * SWCE yet (if requested), so that the devices clocked by the output of
638 	 * PLL are not clocked until the PLL is stable.
639 	 */
640 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
641 	csa_writeio(resp, BA0_PLLM, 0x3a);
642 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
643 
644 	/*
645 	 * Power up the PLL.
646 	 */
647 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
648 
649 	/*
650 	 * Wait until the PLL has stabilized.
651 	 */
652 	DELAY(5000);
653 
654 	/*
655 	 * Turn on clocking of the core so that we can setup the serial ports.
656 	 */
657 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
658 
659 	/*
660 	 * Fill the serial port FIFOs with silence.
661 	 */
662 	csa_clearserialfifos(resp);
663 
664 	/*
665 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
666 	 */
667 #ifdef notdef
668 	csa_writeio(resp, BA0_SERBSP, 0);
669 #endif /* notdef */
670 
671 	/*
672 	 *  Write the serial port configuration to the part.  The master
673 	 *  enable bit is not set until all other values have been written.
674 	 */
675 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
676 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
677 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
678 
679 	/*
680 	 * Wait for the codec ready signal from the AC97 codec.
681 	 */
682 	acsts = 0;
683 	for (i = 0 ; i < 1000 ; i++) {
684 		/*
685 		 * First, lets wait a short while to let things settle out a bit,
686 		 * and to prevent retrying the read too quickly.
687 		 */
688 		DELAY(125);
689 
690 		/*
691 		 * Read the AC97 status register to see if we've seen a CODEC READY
692 		 * signal from the AC97 codec.
693 		 */
694 		acsts = csa_readio(resp, BA0_ACSTS);
695 		if ((acsts & ACSTS_CRDY) != 0)
696 			break;
697 	}
698 
699 	/*
700 	 * Make sure we sampled CODEC READY.
701 	 */
702 	if ((acsts & ACSTS_CRDY) == 0)
703 		return (ENXIO);
704 
705 	/*
706 	 * Assert the vaid frame signal so that we can start sending commands
707 	 * to the AC97 codec.
708 	 */
709 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
710 
711 	/*
712 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
713 	 * the codec is pumping ADC data across the AC-link.
714 	 */
715 	acisv = 0;
716 	for (i = 0 ; i < 1000 ; i++) {
717 		/*
718 		 * First, lets wait a short while to let things settle out a bit,
719 		 * and to prevent retrying the read too quickly.
720 		 */
721 #ifdef notdef
722 		DELAY(10000000L); /* clw */
723 #else
724 		DELAY(1000);
725 #endif /* notdef */
726 		/*
727 		 * Read the input slot valid register and see if input slots 3 and
728 		 * 4 are valid yet.
729 		 */
730 		acisv = csa_readio(resp, BA0_ACISV);
731 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
732 			break;
733 	}
734 	/*
735 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
736 	 * an error.
737 	 */
738 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
739 		return (ENXIO);
740 
741 	/*
742 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
743 	 * commense the transfer of digital audio data to the AC97 codec.
744 	 */
745 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
746 
747 	/*
748 	 * Power down the DAC and ADC.  We will power them up (if) when we need
749 	 * them.
750 	 */
751 #ifdef notdef
752 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
753 #endif /* notdef */
754 
755 	/*
756 	 * Turn off the Processor by turning off the software clock enable flag in
757 	 * the clock control register.
758 	 */
759 #ifdef notdef
760 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
761 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
762 #endif /* notdef */
763 
764 	/*
765 	 * Enable interrupts on the part.
766 	 */
767 #if 0
768 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
769 #endif /* notdef */
770 
771 	return (0);
772 }
773 
774 void
775 csa_clearserialfifos(csa_res *resp)
776 {
777 	int i, j, pwr;
778 	u_int8_t clkcr1, serbst;
779 
780 	/*
781 	 * See if the devices are powered down.  If so, we must power them up first
782 	 * or they will not respond.
783 	 */
784 	pwr = 1;
785 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
786 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
787 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
788 		pwr = 0;
789 	}
790 
791 	/*
792 	 * We want to clear out the serial port FIFOs so we don't end up playing
793 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
794 	 * with zero (silence).
795 	 */
796 	csa_writeio(resp, BA0_SERBWP, 0);
797 
798 	/* Fill all 256 sample FIFO locations. */
799 	serbst = 0;
800 	for (i = 0 ; i < 256 ; i++) {
801 		/* Make sure the previous FIFO write operation has completed. */
802 		for (j = 0 ; j < 5 ; j++) {
803 			DELAY(100);
804 			serbst = csa_readio(resp, BA0_SERBST);
805 			if ((serbst & SERBST_WBSY) == 0)
806 				break;
807 		}
808 		if ((serbst & SERBST_WBSY) != 0) {
809 			if (!pwr)
810 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
811 		}
812 		/* Write the serial port FIFO index. */
813 		csa_writeio(resp, BA0_SERBAD, i);
814 		/* Tell the serial port to load the new value into the FIFO location. */
815 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
816 	}
817 	/*
818 	 *  Now, if we powered up the devices, then power them back down again.
819 	 *  This is kinda ugly, but should never happen.
820 	 */
821 	if (!pwr)
822 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
823 }
824 
825 void
826 csa_resetdsp(csa_res *resp)
827 {
828 	int i;
829 
830 	/*
831 	 * Write the reset bit of the SP control register.
832 	 */
833 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
834 
835 	/*
836 	 * Write the control register.
837 	 */
838 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
839 
840 	/*
841 	 * Clear the trap registers.
842 	 */
843 	for (i = 0 ; i < 8 ; i++) {
844 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
845 		csa_writemem(resp, BA1_TWPR, 0xffff);
846 	}
847 	csa_writemem(resp, BA1_DREG, 0);
848 
849 	/*
850 	 * Set the frame timer to reflect the number of cycles per frame.
851 	 */
852 	csa_writemem(resp, BA1_FRMT, 0xadf);
853 }
854 
855 static int
856 csa_downloadimage(csa_res *resp)
857 {
858 	int ret;
859 	u_long ul, offset;
860 
861 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
862 	        /*
863 	         * DMA this block from host memory to the appropriate
864 	         * memory on the CSDevice.
865 	         */
866 		ret = csa_transferimage(resp,
867 		    cs461x_firmware.BA1Array + offset,
868 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
869 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
870 		if (ret)
871 			return (ret);
872 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
873 	}
874 	return (0);
875 }
876 
877 static int
878 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
879 {
880 	u_long ul;
881 
882 	/*
883 	 * We do not allow DMAs from host memory to host memory (although the DMA
884 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
885 	 * in size (because that DMA can not do that).  Return an error if either
886 	 * of these conditions exist.
887 	 */
888 	if ((len & 0x3) != 0)
889 		return (EINVAL);
890 
891 	/* Check the destination address that it is a multiple of 4 */
892 	if ((dest & 0x3) != 0)
893 		return (EINVAL);
894 
895 	/* Write the buffer out. */
896 	for (ul = 0 ; ul < len ; ul += 4)
897 		csa_writemem(resp, dest + ul, src[ul >> 2]);
898 	return (0);
899 }
900 
901 int
902 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
903 {
904 	int i;
905 	u_int32_t acctl, acsts;
906 
907 	/*
908 	 * Make sure that there is not data sitting around from a previous
909 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
910 	 */
911 	csa_readio(resp, BA0_ACSDA);
912 
913 	/*
914 	 * Setup the AC97 control registers on the CS461x to send the
915 	 * appropriate command to the AC97 to perform the read.
916 	 * ACCAD = Command Address Register = 46Ch
917 	 * ACCDA = Command Data Register = 470h
918 	 * ACCTL = Control Register = 460h
919 	 * set DCV - will clear when process completed
920 	 * set CRW - Read command
921 	 * set VFRM - valid frame enabled
922 	 * set ESYN - ASYNC generation enabled
923 	 * set RSTN - ARST# inactive, AC97 codec not reset
924 	 */
925 
926 	/*
927 	 * Get the actual AC97 register from the offset
928 	 */
929 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
930 	csa_writeio(resp, BA0_ACCDA, 0);
931 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
932 
933 	/*
934 	 * Wait for the read to occur.
935 	 */
936 	acctl = 0;
937 	for (i = 0 ; i < 10 ; i++) {
938 		/*
939 		 * First, we want to wait for a short time.
940 		 */
941 		DELAY(25);
942 
943 		/*
944 		 * Now, check to see if the read has completed.
945 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
946 		 */
947 		acctl = csa_readio(resp, BA0_ACCTL);
948 		if ((acctl & ACCTL_DCV) == 0)
949 			break;
950 	}
951 
952 	/*
953 	 * Make sure the read completed.
954 	 */
955 	if ((acctl & ACCTL_DCV) != 0)
956 		return (EAGAIN);
957 
958 	/*
959 	 * Wait for the valid status bit to go active.
960 	 */
961 	acsts = 0;
962 	for (i = 0 ; i < 10 ; i++) {
963 		/*
964 		 * Read the AC97 status register.
965 		 * ACSTS = Status Register = 464h
966 		 */
967 		acsts = csa_readio(resp, BA0_ACSTS);
968 		/*
969 		 * See if we have valid status.
970 		 * VSTS - Valid Status
971 		 */
972 		if ((acsts & ACSTS_VSTS) != 0)
973 			break;
974 		/*
975 		 * Wait for a short while.
976 		 */
977 		 DELAY(25);
978 	}
979 
980 	/*
981 	 * Make sure we got valid status.
982 	 */
983 	if ((acsts & ACSTS_VSTS) == 0)
984 		return (EAGAIN);
985 
986 	/*
987 	 * Read the data returned from the AC97 register.
988 	 * ACSDA = Status Data Register = 474h
989 	 */
990 	*data = csa_readio(resp, BA0_ACSDA);
991 
992 	return (0);
993 }
994 
995 int
996 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
997 {
998 	int i;
999 	u_int32_t acctl;
1000 
1001 	/*
1002 	 * Setup the AC97 control registers on the CS461x to send the
1003 	 * appropriate command to the AC97 to perform the write.
1004 	 * ACCAD = Command Address Register = 46Ch
1005 	 * ACCDA = Command Data Register = 470h
1006 	 * ACCTL = Control Register = 460h
1007 	 * set DCV - will clear when process completed
1008 	 * set VFRM - valid frame enabled
1009 	 * set ESYN - ASYNC generation enabled
1010 	 * set RSTN - ARST# inactive, AC97 codec not reset
1011 	 */
1012 
1013 	/*
1014 	 * Get the actual AC97 register from the offset
1015 	 */
1016 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1017 	csa_writeio(resp, BA0_ACCDA, data);
1018 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1019 
1020 	/*
1021 	 * Wait for the write to occur.
1022 	 */
1023 	acctl = 0;
1024 	for (i = 0 ; i < 10 ; i++) {
1025 		/*
1026 		 * First, we want to wait for a short time.
1027 		 */
1028 		DELAY(25);
1029 
1030 		/*
1031 		 * Now, check to see if the read has completed.
1032 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1033 		 */
1034 		acctl = csa_readio(resp, BA0_ACCTL);
1035 		if ((acctl & ACCTL_DCV) == 0)
1036 			break;
1037 	}
1038 
1039 	/*
1040 	 * Make sure the write completed.
1041 	 */
1042 	if ((acctl & ACCTL_DCV) != 0)
1043 		return (EAGAIN);
1044 
1045 	return (0);
1046 }
1047 
1048 u_int32_t
1049 csa_readio(csa_res *resp, u_long offset)
1050 {
1051 	u_int32_t ul;
1052 
1053 	if (offset < BA0_AC97_RESET)
1054 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1055 	else {
1056 		if (csa_readcodec(resp, offset, &ul))
1057 			ul = 0;
1058 		return (ul);
1059 	}
1060 }
1061 
1062 void
1063 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1064 {
1065 	if (offset < BA0_AC97_RESET)
1066 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1067 	else
1068 		csa_writecodec(resp, offset, data);
1069 }
1070 
1071 u_int32_t
1072 csa_readmem(csa_res *resp, u_long offset)
1073 {
1074 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1075 }
1076 
1077 void
1078 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1079 {
1080 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1081 }
1082 
1083 static device_method_t csa_methods[] = {
1084 	/* Device interface */
1085 	DEVMETHOD(device_probe,		csa_probe),
1086 	DEVMETHOD(device_attach,	csa_attach),
1087 	DEVMETHOD(device_detach,	csa_detach),
1088 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1089 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1090 	DEVMETHOD(device_resume,	csa_resume),
1091 
1092 	/* Bus interface */
1093 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1094 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1095 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1096 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1097 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1098 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1099 
1100 	DEVMETHOD_END
1101 };
1102 
1103 static driver_t csa_driver = {
1104 	"csa",
1105 	csa_methods,
1106 	sizeof(struct csa_softc),
1107 };
1108 
1109 /*
1110  * csa can be attached to a pci bus.
1111  */
1112 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1113 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1114 MODULE_VERSION(snd_csa, 1);
1115