1 /*- 2 * Copyright (c) 1999 Seigo Tanimura 3 * All rights reserved. 4 * 5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in 6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor. 7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/bus.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <machine/resource.h> 38 #include <machine/bus.h> 39 #include <sys/rman.h> 40 41 #ifdef HAVE_KERNEL_OPTION_HEADERS 42 #include "opt_snd.h" 43 #endif 44 45 #include <dev/sound/pcm/sound.h> 46 #include <dev/sound/chip.h> 47 #include <dev/sound/pci/csareg.h> 48 #include <dev/sound/pci/csavar.h> 49 50 #include <dev/pci/pcireg.h> 51 #include <dev/pci/pcivar.h> 52 53 #include <dev/sound/pci/cs461x_dsp.h> 54 55 SND_DECLARE_FILE("$FreeBSD$"); 56 57 /* This is the pci device id. */ 58 #define CS4610_PCI_ID 0x60011013 59 #define CS4614_PCI_ID 0x60031013 60 #define CS4615_PCI_ID 0x60041013 61 62 /* Here is the parameter structure per a device. */ 63 struct csa_softc { 64 device_t dev; /* device */ 65 csa_res res; /* resources */ 66 67 device_t pcm; /* pcm device */ 68 driver_intr_t* pcmintr; /* pcm intr */ 69 void *pcmintr_arg; /* pcm intr arg */ 70 device_t midi; /* midi device */ 71 driver_intr_t* midiintr; /* midi intr */ 72 void *midiintr_arg; /* midi intr arg */ 73 void *ih; /* cookie */ 74 75 struct csa_card *card; 76 struct csa_bridgeinfo binfo; /* The state of this bridge. */ 77 }; 78 79 typedef struct csa_softc *sc_p; 80 81 static int csa_probe(device_t dev); 82 static int csa_attach(device_t dev); 83 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 84 u_long start, u_long end, u_long count, u_int flags); 85 static int csa_release_resource(device_t bus, device_t child, int type, int rid, 86 struct resource *r); 87 static int csa_setup_intr(device_t bus, device_t child, 88 struct resource *irq, int flags, 89 #if __FreeBSD_version >= 700031 90 driver_filter_t *filter, 91 #endif 92 driver_intr_t *intr, void *arg, void **cookiep); 93 static int csa_teardown_intr(device_t bus, device_t child, 94 struct resource *irq, void *cookie); 95 static driver_intr_t csa_intr; 96 static int csa_initialize(sc_p scp); 97 static int csa_downloadimage(csa_res *resp); 98 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len); 99 100 static devclass_t csa_devclass; 101 102 static void 103 amp_none(void) 104 { 105 } 106 107 static void 108 amp_voyetra(void) 109 { 110 } 111 112 static int 113 clkrun_hack(int run) 114 { 115 #ifdef __i386__ 116 devclass_t pci_devclass; 117 device_t *pci_devices, *pci_children, *busp, *childp; 118 int pci_count = 0, pci_childcount = 0; 119 int i, j, port; 120 u_int16_t control; 121 bus_space_tag_t btag; 122 123 if ((pci_devclass = devclass_find("pci")) == NULL) { 124 return ENXIO; 125 } 126 127 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 128 129 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { 130 pci_childcount = 0; 131 if (device_get_children(*busp, &pci_children, &pci_childcount)) 132 continue; 133 for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) { 134 if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) { 135 port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10; 136 /* XXX */ 137 btag = X86_BUS_SPACE_IO; 138 139 control = bus_space_read_2(btag, 0x0, port); 140 control &= ~0x2000; 141 control |= run? 0 : 0x2000; 142 bus_space_write_2(btag, 0x0, port, control); 143 free(pci_devices, M_TEMP); 144 free(pci_children, M_TEMP); 145 return 0; 146 } 147 } 148 free(pci_children, M_TEMP); 149 } 150 151 free(pci_devices, M_TEMP); 152 return ENXIO; 153 #else 154 return 0; 155 #endif 156 } 157 158 static struct csa_card cards_4610[] = { 159 {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0}, 160 }; 161 162 static struct csa_card cards_4614[] = { 163 {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0}, 164 {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1}, 165 {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0}, 166 {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 167 {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 168 {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0}, 169 {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0}, 170 {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0}, 171 {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0}, 172 }; 173 174 static struct csa_card cards_4615[] = { 175 {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0}, 176 }; 177 178 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0}; 179 180 struct card_type { 181 u_int32_t devid; 182 char *name; 183 struct csa_card *cards; 184 }; 185 186 static struct card_type cards[] = { 187 {CS4610_PCI_ID, "CS4610/CS4611", cards_4610}, 188 {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614}, 189 {CS4615_PCI_ID, "CS4615", cards_4615}, 190 {0, NULL, NULL}, 191 }; 192 193 static struct card_type * 194 csa_findcard(device_t dev) 195 { 196 int i; 197 198 i = 0; 199 while (cards[i].devid != 0) { 200 if (pci_get_devid(dev) == cards[i].devid) 201 return &cards[i]; 202 i++; 203 } 204 return NULL; 205 } 206 207 struct csa_card * 208 csa_findsubcard(device_t dev) 209 { 210 int i; 211 struct card_type *card; 212 struct csa_card *subcard; 213 214 card = csa_findcard(dev); 215 if (card == NULL) 216 return &nocard; 217 subcard = card->cards; 218 i = 0; 219 while (subcard[i].subvendor != 0) { 220 if (pci_get_subvendor(dev) == subcard[i].subvendor 221 && pci_get_subdevice(dev) == subcard[i].subdevice) { 222 return &subcard[i]; 223 } 224 i++; 225 } 226 return &subcard[i]; 227 } 228 229 static int 230 csa_probe(device_t dev) 231 { 232 struct card_type *card; 233 234 card = csa_findcard(dev); 235 if (card) { 236 device_set_desc(dev, card->name); 237 return BUS_PROBE_DEFAULT; 238 } 239 return ENXIO; 240 } 241 242 static int 243 csa_attach(device_t dev) 244 { 245 sc_p scp; 246 csa_res *resp; 247 struct sndcard_func *func; 248 int error = ENXIO; 249 250 scp = device_get_softc(dev); 251 252 /* Fill in the softc. */ 253 bzero(scp, sizeof(*scp)); 254 scp->dev = dev; 255 256 pci_enable_busmaster(dev); 257 258 /* Allocate the resources. */ 259 resp = &scp->res; 260 scp->card = csa_findsubcard(dev); 261 scp->binfo.card = scp->card; 262 printf("csa: card is %s\n", scp->card->name); 263 resp->io_rid = PCIR_BAR(0); 264 resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 265 &resp->io_rid, RF_ACTIVE); 266 if (resp->io == NULL) 267 return (ENXIO); 268 resp->mem_rid = PCIR_BAR(1); 269 resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 270 &resp->mem_rid, RF_ACTIVE); 271 if (resp->mem == NULL) 272 goto err_io; 273 resp->irq_rid = 0; 274 resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 275 &resp->irq_rid, RF_ACTIVE | RF_SHAREABLE); 276 if (resp->irq == NULL) 277 goto err_mem; 278 279 /* Enable interrupt. */ 280 if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih)) 281 goto err_intr; 282 #if 0 283 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 284 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 285 #endif 286 287 /* Initialize the chip. */ 288 if (csa_initialize(scp)) 289 goto err_teardown; 290 291 /* Reset the Processor. */ 292 csa_resetdsp(resp); 293 294 /* Download the Processor Image to the processor. */ 295 if (csa_downloadimage(resp)) 296 goto err_teardown; 297 298 /* Attach the children. */ 299 300 /* PCM Audio */ 301 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 302 if (func == NULL) { 303 error = ENOMEM; 304 goto err_teardown; 305 } 306 func->varinfo = &scp->binfo; 307 func->func = SCF_PCM; 308 scp->pcm = device_add_child(dev, "pcm", -1); 309 device_set_ivars(scp->pcm, func); 310 311 /* Midi Interface */ 312 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 313 if (func == NULL) { 314 error = ENOMEM; 315 goto err_teardown; 316 } 317 func->varinfo = &scp->binfo; 318 func->func = SCF_MIDI; 319 scp->midi = device_add_child(dev, "midi", -1); 320 device_set_ivars(scp->midi, func); 321 322 bus_generic_attach(dev); 323 324 return (0); 325 326 err_teardown: 327 bus_teardown_intr(dev, resp->irq, scp->ih); 328 err_intr: 329 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 330 err_mem: 331 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 332 err_io: 333 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 334 return (error); 335 } 336 337 static int 338 csa_detach(device_t dev) 339 { 340 csa_res *resp; 341 sc_p scp; 342 struct sndcard_func *func; 343 int err; 344 345 scp = device_get_softc(dev); 346 resp = &scp->res; 347 348 if (scp->midi != NULL) { 349 func = device_get_ivars(scp->midi); 350 err = device_delete_child(dev, scp->midi); 351 if (err != 0) 352 return err; 353 if (func != NULL) 354 free(func, M_DEVBUF); 355 scp->midi = NULL; 356 } 357 358 if (scp->pcm != NULL) { 359 func = device_get_ivars(scp->pcm); 360 err = device_delete_child(dev, scp->pcm); 361 if (err != 0) 362 return err; 363 if (func != NULL) 364 free(func, M_DEVBUF); 365 scp->pcm = NULL; 366 } 367 368 bus_teardown_intr(dev, resp->irq, scp->ih); 369 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 370 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 371 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 372 373 return bus_generic_detach(dev); 374 } 375 376 static int 377 csa_resume(device_t dev) 378 { 379 csa_res *resp; 380 sc_p scp; 381 382 scp = device_get_softc(dev); 383 resp = &scp->res; 384 385 /* Initialize the chip. */ 386 if (csa_initialize(scp)) 387 return (ENXIO); 388 389 /* Reset the Processor. */ 390 csa_resetdsp(resp); 391 392 /* Download the Processor Image to the processor. */ 393 if (csa_downloadimage(resp)) 394 return (ENXIO); 395 396 return (bus_generic_resume(dev)); 397 } 398 399 static struct resource * 400 csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 401 u_long start, u_long end, u_long count, u_int flags) 402 { 403 sc_p scp; 404 csa_res *resp; 405 struct resource *res; 406 407 scp = device_get_softc(bus); 408 resp = &scp->res; 409 switch (type) { 410 case SYS_RES_IRQ: 411 if (*rid != 0) 412 return (NULL); 413 res = resp->irq; 414 break; 415 case SYS_RES_MEMORY: 416 switch (*rid) { 417 case PCIR_BAR(0): 418 res = resp->io; 419 break; 420 case PCIR_BAR(1): 421 res = resp->mem; 422 break; 423 default: 424 return (NULL); 425 } 426 break; 427 default: 428 return (NULL); 429 } 430 431 return res; 432 } 433 434 static int 435 csa_release_resource(device_t bus, device_t child, int type, int rid, 436 struct resource *r) 437 { 438 return (0); 439 } 440 441 /* 442 * The following three functions deal with interrupt handling. 443 * An interrupt is primarily handled by the bridge driver. 444 * The bridge driver then determines the child devices to pass 445 * the interrupt. Certain information of the device can be read 446 * only once(eg the value of HISR). The bridge driver is responsible 447 * to pass such the information to the children. 448 */ 449 450 static int 451 csa_setup_intr(device_t bus, device_t child, 452 struct resource *irq, int flags, 453 #if __FreeBSD_version >= 700031 454 driver_filter_t *filter, 455 #endif 456 driver_intr_t *intr, void *arg, void **cookiep) 457 { 458 sc_p scp; 459 csa_res *resp; 460 struct sndcard_func *func; 461 462 #if __FreeBSD_version >= 700031 463 if (filter != NULL) { 464 printf("ata-csa.c: we cannot use a filter here\n"); 465 return (EINVAL); 466 } 467 #endif 468 scp = device_get_softc(bus); 469 resp = &scp->res; 470 471 /* 472 * Look at the function code of the child to determine 473 * the appropriate hander for it. 474 */ 475 func = device_get_ivars(child); 476 if (func == NULL || irq != resp->irq) 477 return (EINVAL); 478 479 switch (func->func) { 480 case SCF_PCM: 481 scp->pcmintr = intr; 482 scp->pcmintr_arg = arg; 483 break; 484 485 case SCF_MIDI: 486 scp->midiintr = intr; 487 scp->midiintr_arg = arg; 488 break; 489 490 default: 491 return (EINVAL); 492 } 493 *cookiep = scp; 494 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 495 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 496 497 return (0); 498 } 499 500 static int 501 csa_teardown_intr(device_t bus, device_t child, 502 struct resource *irq, void *cookie) 503 { 504 sc_p scp; 505 csa_res *resp; 506 struct sndcard_func *func; 507 508 scp = device_get_softc(bus); 509 resp = &scp->res; 510 511 /* 512 * Look at the function code of the child to determine 513 * the appropriate hander for it. 514 */ 515 func = device_get_ivars(child); 516 if (func == NULL || irq != resp->irq || cookie != scp) 517 return (EINVAL); 518 519 switch (func->func) { 520 case SCF_PCM: 521 scp->pcmintr = NULL; 522 scp->pcmintr_arg = NULL; 523 break; 524 525 case SCF_MIDI: 526 scp->midiintr = NULL; 527 scp->midiintr_arg = NULL; 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 534 return (0); 535 } 536 537 /* The interrupt handler */ 538 static void 539 csa_intr(void *arg) 540 { 541 sc_p scp = arg; 542 csa_res *resp; 543 u_int32_t hisr; 544 545 resp = &scp->res; 546 547 /* Is this interrupt for us? */ 548 hisr = csa_readio(resp, BA0_HISR); 549 if ((hisr & 0x7fffffff) == 0) { 550 /* Throw an eoi. */ 551 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 552 return; 553 } 554 555 /* 556 * Pass the value of HISR via struct csa_bridgeinfo. 557 * The children get access through their ivars. 558 */ 559 scp->binfo.hisr = hisr; 560 561 /* Invoke the handlers of the children. */ 562 if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) { 563 scp->pcmintr(scp->pcmintr_arg); 564 hisr &= ~(HISR_VC0 | HISR_VC1); 565 } 566 if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) { 567 scp->midiintr(scp->midiintr_arg); 568 hisr &= ~HISR_MIDI; 569 } 570 571 /* Throw an eoi. */ 572 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 573 } 574 575 static int 576 csa_initialize(sc_p scp) 577 { 578 int i; 579 u_int32_t acsts, acisv; 580 csa_res *resp; 581 582 resp = &scp->res; 583 584 /* 585 * First, blast the clock control register to zero so that the PLL starts 586 * out in a known state, and blast the master serial port control register 587 * to zero so that the serial ports also start out in a known state. 588 */ 589 csa_writeio(resp, BA0_CLKCR1, 0); 590 csa_writeio(resp, BA0_SERMC1, 0); 591 592 /* 593 * If we are in AC97 mode, then we must set the part to a host controlled 594 * AC-link. Otherwise, we won't be able to bring up the link. 595 */ 596 #if 1 597 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */ 598 #else 599 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */ 600 #endif /* 1 */ 601 602 /* 603 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97 604 * spec) and then drive it high. This is done for non AC97 modes since 605 * there might be logic external to the CS461x that uses the ARST# line 606 * for a reset. 607 */ 608 csa_writeio(resp, BA0_ACCTL, 1); 609 DELAY(50); 610 csa_writeio(resp, BA0_ACCTL, 0); 611 DELAY(50); 612 csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN); 613 614 /* 615 * The first thing we do here is to enable sync generation. As soon 616 * as we start receiving bit clock, we'll start producing the SYNC 617 * signal. 618 */ 619 csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN); 620 621 /* 622 * Now wait for a short while to allow the AC97 part to start 623 * generating bit clock (so we don't try to start the PLL without an 624 * input clock). 625 */ 626 DELAY(50000); 627 628 /* 629 * Set the serial port timing configuration, so that 630 * the clock control circuit gets its clock from the correct place. 631 */ 632 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97); 633 DELAY(700000); 634 635 /* 636 * Write the selected clock control setup to the hardware. Do not turn on 637 * SWCE yet (if requested), so that the devices clocked by the output of 638 * PLL are not clocked until the PLL is stable. 639 */ 640 csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ); 641 csa_writeio(resp, BA0_PLLM, 0x3a); 642 csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8); 643 644 /* 645 * Power up the PLL. 646 */ 647 csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP); 648 649 /* 650 * Wait until the PLL has stabilized. 651 */ 652 DELAY(5000); 653 654 /* 655 * Turn on clocking of the core so that we can setup the serial ports. 656 */ 657 csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE); 658 659 /* 660 * Fill the serial port FIFOs with silence. 661 */ 662 csa_clearserialfifos(resp); 663 664 /* 665 * Set the serial port FIFO pointer to the first sample in the FIFO. 666 */ 667 #ifdef notdef 668 csa_writeio(resp, BA0_SERBSP, 0); 669 #endif /* notdef */ 670 671 /* 672 * Write the serial port configuration to the part. The master 673 * enable bit is not set until all other values have been written. 674 */ 675 csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN); 676 csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN); 677 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE); 678 679 /* 680 * Wait for the codec ready signal from the AC97 codec. 681 */ 682 acsts = 0; 683 for (i = 0 ; i < 1000 ; i++) { 684 /* 685 * First, lets wait a short while to let things settle out a bit, 686 * and to prevent retrying the read too quickly. 687 */ 688 DELAY(125); 689 690 /* 691 * Read the AC97 status register to see if we've seen a CODEC READY 692 * signal from the AC97 codec. 693 */ 694 acsts = csa_readio(resp, BA0_ACSTS); 695 if ((acsts & ACSTS_CRDY) != 0) 696 break; 697 } 698 699 /* 700 * Make sure we sampled CODEC READY. 701 */ 702 if ((acsts & ACSTS_CRDY) == 0) 703 return (ENXIO); 704 705 /* 706 * Assert the vaid frame signal so that we can start sending commands 707 * to the AC97 codec. 708 */ 709 csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 710 711 /* 712 * Wait until we've sampled input slots 3 and 4 as valid, meaning that 713 * the codec is pumping ADC data across the AC-link. 714 */ 715 acisv = 0; 716 for (i = 0 ; i < 1000 ; i++) { 717 /* 718 * First, lets wait a short while to let things settle out a bit, 719 * and to prevent retrying the read too quickly. 720 */ 721 #ifdef notdef 722 DELAY(10000000L); /* clw */ 723 #else 724 DELAY(1000); 725 #endif /* notdef */ 726 /* 727 * Read the input slot valid register and see if input slots 3 and 728 * 4 are valid yet. 729 */ 730 acisv = csa_readio(resp, BA0_ACISV); 731 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4)) 732 break; 733 } 734 /* 735 * Make sure we sampled valid input slots 3 and 4. If not, then return 736 * an error. 737 */ 738 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) 739 return (ENXIO); 740 741 /* 742 * Now, assert valid frame and the slot 3 and 4 valid bits. This will 743 * commense the transfer of digital audio data to the AC97 codec. 744 */ 745 csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4); 746 747 /* 748 * Power down the DAC and ADC. We will power them up (if) when we need 749 * them. 750 */ 751 #ifdef notdef 752 csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300); 753 #endif /* notdef */ 754 755 /* 756 * Turn off the Processor by turning off the software clock enable flag in 757 * the clock control register. 758 */ 759 #ifdef notdef 760 clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE; 761 csa_writeio(resp, BA0_CLKCR1, clkcr1); 762 #endif /* notdef */ 763 764 /* 765 * Enable interrupts on the part. 766 */ 767 #if 0 768 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 769 #endif /* notdef */ 770 771 return (0); 772 } 773 774 void 775 csa_clearserialfifos(csa_res *resp) 776 { 777 int i, j, pwr; 778 u_int8_t clkcr1, serbst; 779 780 /* 781 * See if the devices are powered down. If so, we must power them up first 782 * or they will not respond. 783 */ 784 pwr = 1; 785 clkcr1 = csa_readio(resp, BA0_CLKCR1); 786 if ((clkcr1 & CLKCR1_SWCE) == 0) { 787 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE); 788 pwr = 0; 789 } 790 791 /* 792 * We want to clear out the serial port FIFOs so we don't end up playing 793 * whatever random garbage happens to be in them. We fill the sample FIFOs 794 * with zero (silence). 795 */ 796 csa_writeio(resp, BA0_SERBWP, 0); 797 798 /* Fill all 256 sample FIFO locations. */ 799 serbst = 0; 800 for (i = 0 ; i < 256 ; i++) { 801 /* Make sure the previous FIFO write operation has completed. */ 802 for (j = 0 ; j < 5 ; j++) { 803 DELAY(100); 804 serbst = csa_readio(resp, BA0_SERBST); 805 if ((serbst & SERBST_WBSY) == 0) 806 break; 807 } 808 if ((serbst & SERBST_WBSY) != 0) { 809 if (!pwr) 810 csa_writeio(resp, BA0_CLKCR1, clkcr1); 811 } 812 /* Write the serial port FIFO index. */ 813 csa_writeio(resp, BA0_SERBAD, i); 814 /* Tell the serial port to load the new value into the FIFO location. */ 815 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC); 816 } 817 /* 818 * Now, if we powered up the devices, then power them back down again. 819 * This is kinda ugly, but should never happen. 820 */ 821 if (!pwr) 822 csa_writeio(resp, BA0_CLKCR1, clkcr1); 823 } 824 825 void 826 csa_resetdsp(csa_res *resp) 827 { 828 int i; 829 830 /* 831 * Write the reset bit of the SP control register. 832 */ 833 csa_writemem(resp, BA1_SPCR, SPCR_RSTSP); 834 835 /* 836 * Write the control register. 837 */ 838 csa_writemem(resp, BA1_SPCR, SPCR_DRQEN); 839 840 /* 841 * Clear the trap registers. 842 */ 843 for (i = 0 ; i < 8 ; i++) { 844 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i); 845 csa_writemem(resp, BA1_TWPR, 0xffff); 846 } 847 csa_writemem(resp, BA1_DREG, 0); 848 849 /* 850 * Set the frame timer to reflect the number of cycles per frame. 851 */ 852 csa_writemem(resp, BA1_FRMT, 0xadf); 853 } 854 855 static int 856 csa_downloadimage(csa_res *resp) 857 { 858 int ret; 859 u_long ul, offset; 860 861 for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) { 862 /* 863 * DMA this block from host memory to the appropriate 864 * memory on the CSDevice. 865 */ 866 ret = csa_transferimage(resp, 867 cs461x_firmware.BA1Array + offset, 868 cs461x_firmware.MemoryStat[ul].ulDestAddr, 869 cs461x_firmware.MemoryStat[ul].ulSourceSize); 870 if (ret) 871 return (ret); 872 offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2; 873 } 874 return (0); 875 } 876 877 static int 878 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len) 879 { 880 u_long ul; 881 882 /* 883 * We do not allow DMAs from host memory to host memory (although the DMA 884 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes 885 * in size (because that DMA can not do that). Return an error if either 886 * of these conditions exist. 887 */ 888 if ((len & 0x3) != 0) 889 return (EINVAL); 890 891 /* Check the destination address that it is a multiple of 4 */ 892 if ((dest & 0x3) != 0) 893 return (EINVAL); 894 895 /* Write the buffer out. */ 896 for (ul = 0 ; ul < len ; ul += 4) 897 csa_writemem(resp, dest + ul, src[ul >> 2]); 898 return (0); 899 } 900 901 int 902 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data) 903 { 904 int i; 905 u_int32_t acctl, acsts; 906 907 /* 908 * Make sure that there is not data sitting around from a previous 909 * uncompleted access. ACSDA = Status Data Register = 47Ch 910 */ 911 csa_readio(resp, BA0_ACSDA); 912 913 /* 914 * Setup the AC97 control registers on the CS461x to send the 915 * appropriate command to the AC97 to perform the read. 916 * ACCAD = Command Address Register = 46Ch 917 * ACCDA = Command Data Register = 470h 918 * ACCTL = Control Register = 460h 919 * set DCV - will clear when process completed 920 * set CRW - Read command 921 * set VFRM - valid frame enabled 922 * set ESYN - ASYNC generation enabled 923 * set RSTN - ARST# inactive, AC97 codec not reset 924 */ 925 926 /* 927 * Get the actual AC97 register from the offset 928 */ 929 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 930 csa_writeio(resp, BA0_ACCDA, 0); 931 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 932 933 /* 934 * Wait for the read to occur. 935 */ 936 acctl = 0; 937 for (i = 0 ; i < 10 ; i++) { 938 /* 939 * First, we want to wait for a short time. 940 */ 941 DELAY(25); 942 943 /* 944 * Now, check to see if the read has completed. 945 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 946 */ 947 acctl = csa_readio(resp, BA0_ACCTL); 948 if ((acctl & ACCTL_DCV) == 0) 949 break; 950 } 951 952 /* 953 * Make sure the read completed. 954 */ 955 if ((acctl & ACCTL_DCV) != 0) 956 return (EAGAIN); 957 958 /* 959 * Wait for the valid status bit to go active. 960 */ 961 acsts = 0; 962 for (i = 0 ; i < 10 ; i++) { 963 /* 964 * Read the AC97 status register. 965 * ACSTS = Status Register = 464h 966 */ 967 acsts = csa_readio(resp, BA0_ACSTS); 968 /* 969 * See if we have valid status. 970 * VSTS - Valid Status 971 */ 972 if ((acsts & ACSTS_VSTS) != 0) 973 break; 974 /* 975 * Wait for a short while. 976 */ 977 DELAY(25); 978 } 979 980 /* 981 * Make sure we got valid status. 982 */ 983 if ((acsts & ACSTS_VSTS) == 0) 984 return (EAGAIN); 985 986 /* 987 * Read the data returned from the AC97 register. 988 * ACSDA = Status Data Register = 474h 989 */ 990 *data = csa_readio(resp, BA0_ACSDA); 991 992 return (0); 993 } 994 995 int 996 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data) 997 { 998 int i; 999 u_int32_t acctl; 1000 1001 /* 1002 * Setup the AC97 control registers on the CS461x to send the 1003 * appropriate command to the AC97 to perform the write. 1004 * ACCAD = Command Address Register = 46Ch 1005 * ACCDA = Command Data Register = 470h 1006 * ACCTL = Control Register = 460h 1007 * set DCV - will clear when process completed 1008 * set VFRM - valid frame enabled 1009 * set ESYN - ASYNC generation enabled 1010 * set RSTN - ARST# inactive, AC97 codec not reset 1011 */ 1012 1013 /* 1014 * Get the actual AC97 register from the offset 1015 */ 1016 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 1017 csa_writeio(resp, BA0_ACCDA, data); 1018 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 1019 1020 /* 1021 * Wait for the write to occur. 1022 */ 1023 acctl = 0; 1024 for (i = 0 ; i < 10 ; i++) { 1025 /* 1026 * First, we want to wait for a short time. 1027 */ 1028 DELAY(25); 1029 1030 /* 1031 * Now, check to see if the read has completed. 1032 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 1033 */ 1034 acctl = csa_readio(resp, BA0_ACCTL); 1035 if ((acctl & ACCTL_DCV) == 0) 1036 break; 1037 } 1038 1039 /* 1040 * Make sure the write completed. 1041 */ 1042 if ((acctl & ACCTL_DCV) != 0) 1043 return (EAGAIN); 1044 1045 return (0); 1046 } 1047 1048 u_int32_t 1049 csa_readio(csa_res *resp, u_long offset) 1050 { 1051 u_int32_t ul; 1052 1053 if (offset < BA0_AC97_RESET) 1054 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff; 1055 else { 1056 if (csa_readcodec(resp, offset, &ul)) 1057 ul = 0; 1058 return (ul); 1059 } 1060 } 1061 1062 void 1063 csa_writeio(csa_res *resp, u_long offset, u_int32_t data) 1064 { 1065 if (offset < BA0_AC97_RESET) 1066 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data); 1067 else 1068 csa_writecodec(resp, offset, data); 1069 } 1070 1071 u_int32_t 1072 csa_readmem(csa_res *resp, u_long offset) 1073 { 1074 return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset); 1075 } 1076 1077 void 1078 csa_writemem(csa_res *resp, u_long offset, u_int32_t data) 1079 { 1080 bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data); 1081 } 1082 1083 static device_method_t csa_methods[] = { 1084 /* Device interface */ 1085 DEVMETHOD(device_probe, csa_probe), 1086 DEVMETHOD(device_attach, csa_attach), 1087 DEVMETHOD(device_detach, csa_detach), 1088 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1089 DEVMETHOD(device_suspend, bus_generic_suspend), 1090 DEVMETHOD(device_resume, csa_resume), 1091 1092 /* Bus interface */ 1093 DEVMETHOD(bus_alloc_resource, csa_alloc_resource), 1094 DEVMETHOD(bus_release_resource, csa_release_resource), 1095 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1096 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1097 DEVMETHOD(bus_setup_intr, csa_setup_intr), 1098 DEVMETHOD(bus_teardown_intr, csa_teardown_intr), 1099 1100 DEVMETHOD_END 1101 }; 1102 1103 static driver_t csa_driver = { 1104 "csa", 1105 csa_methods, 1106 sizeof(struct csa_softc), 1107 }; 1108 1109 /* 1110 * csa can be attached to a pci bus. 1111 */ 1112 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0); 1113 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); 1114 MODULE_VERSION(snd_csa, 1); 1115