xref: /freebsd/sys/dev/sound/pci/csa.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/pci/csareg.h>
49 #include <dev/sound/pci/csavar.h>
50 
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 
54 #include <dev/sound/pci/cs461x_dsp.h>
55 
56 /* This is the pci device id. */
57 #define CS4610_PCI_ID 0x60011013
58 #define CS4614_PCI_ID 0x60031013
59 #define CS4615_PCI_ID 0x60041013
60 
61 /* Here is the parameter structure per a device. */
62 struct csa_softc {
63 	device_t dev; /* device */
64 	csa_res res; /* resources */
65 
66 	device_t pcm; /* pcm device */
67 	driver_intr_t* pcmintr; /* pcm intr */
68 	void *pcmintr_arg; /* pcm intr arg */
69 	device_t midi; /* midi device */
70 	driver_intr_t* midiintr; /* midi intr */
71 	void *midiintr_arg; /* midi intr arg */
72 	void *ih; /* cookie */
73 
74 	struct csa_card *card;
75 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
76 };
77 
78 typedef struct csa_softc *sc_p;
79 
80 static int csa_probe(device_t dev);
81 static int csa_attach(device_t dev);
82 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
83 					      rman_res_t start, rman_res_t end,
84 					      rman_res_t count, u_int flags);
85 static int csa_release_resource(device_t bus, device_t child, struct resource *r);
86 static int csa_setup_intr(device_t bus, device_t child,
87 			  struct resource *irq, int flags,
88 			  driver_filter_t *filter,
89 			  driver_intr_t *intr,  void *arg, void **cookiep);
90 static int csa_teardown_intr(device_t bus, device_t child,
91 			     struct resource *irq, void *cookie);
92 static driver_intr_t csa_intr;
93 static int csa_initialize(sc_p scp);
94 static int csa_downloadimage(csa_res *resp);
95 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
96 
97 static void
98 amp_none(void)
99 {
100 }
101 
102 static void
103 amp_voyetra(void)
104 {
105 }
106 
107 static int
108 clkrun_hack(int run)
109 {
110 #ifdef __i386__
111 	device_t		child;
112 	int			port;
113 	u_int16_t		control;
114 	bus_space_tag_t		btag;
115 
116 	child = pci_find_device(0x8086, 0x7113);
117 	if (child == NULL)
118 		return (ENXIO);
119 
120 	port = (pci_read_config(child, 0x41, 1) << 8) + 0x10;
121 	/* XXX */
122 	btag = X86_BUS_SPACE_IO;
123 
124 	control = bus_space_read_2(btag, 0x0, port);
125 	control &= ~0x2000;
126 	control |= run? 0 : 0x2000;
127 	bus_space_write_2(btag, 0x0, port, control);
128 #endif
129 	return (0);
130 }
131 
132 static struct csa_card cards_4610[] = {
133 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
134 };
135 
136 static struct csa_card cards_4614[] = {
137 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
138 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
139 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
140 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
141 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
142 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
143 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
144 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
145 	{0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
146 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
147 };
148 
149 static struct csa_card cards_4615[] = {
150 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
151 };
152 
153 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
154 
155 struct card_type {
156 	u_int32_t devid;
157 	char *name;
158 	struct csa_card *cards;
159 };
160 
161 static struct card_type cards[] = {
162 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
163 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
164 	{CS4615_PCI_ID, "CS4615", cards_4615},
165 	{0, NULL, NULL},
166 };
167 
168 static struct card_type *
169 csa_findcard(device_t dev)
170 {
171 	int i;
172 
173 	i = 0;
174 	while (cards[i].devid != 0) {
175 		if (pci_get_devid(dev) == cards[i].devid)
176 			return &cards[i];
177 		i++;
178 	}
179 	return NULL;
180 }
181 
182 struct csa_card *
183 csa_findsubcard(device_t dev)
184 {
185 	int i;
186 	struct card_type *card;
187 	struct csa_card *subcard;
188 
189 	card = csa_findcard(dev);
190 	if (card == NULL)
191 		return &nocard;
192 	subcard = card->cards;
193 	i = 0;
194 	while (subcard[i].subvendor != 0) {
195 		if (pci_get_subvendor(dev) == subcard[i].subvendor
196 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
197 			return &subcard[i];
198 		}
199 		i++;
200 	}
201 	return &subcard[i];
202 }
203 
204 static int
205 csa_probe(device_t dev)
206 {
207 	struct card_type *card;
208 
209 	card = csa_findcard(dev);
210 	if (card) {
211 		device_set_desc(dev, card->name);
212 		return BUS_PROBE_DEFAULT;
213 	}
214 	return ENXIO;
215 }
216 
217 static int
218 csa_attach(device_t dev)
219 {
220 	sc_p scp;
221 	csa_res *resp;
222 	struct sndcard_func *func;
223 	int error = ENXIO;
224 
225 	scp = device_get_softc(dev);
226 
227 	/* Fill in the softc. */
228 	bzero(scp, sizeof(*scp));
229 	scp->dev = dev;
230 
231 	pci_enable_busmaster(dev);
232 
233 	/* Allocate the resources. */
234 	resp = &scp->res;
235 	scp->card = csa_findsubcard(dev);
236 	scp->binfo.card = scp->card;
237 	printf("csa: card is %s\n", scp->card->name);
238 	resp->io_rid = PCIR_BAR(0);
239 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
240 		&resp->io_rid, RF_ACTIVE);
241 	if (resp->io == NULL)
242 		return (ENXIO);
243 	resp->mem_rid = PCIR_BAR(1);
244 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
245 		&resp->mem_rid, RF_ACTIVE);
246 	if (resp->mem == NULL)
247 		goto err_io;
248 	resp->irq_rid = 0;
249 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
250 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
251 	if (resp->irq == NULL)
252 		goto err_mem;
253 
254 	/* Enable interrupt. */
255 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
256 		goto err_intr;
257 #if 0
258 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
259 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
260 #endif
261 
262 	/* Initialize the chip. */
263 	if (csa_initialize(scp))
264 		goto err_teardown;
265 
266 	/* Reset the Processor. */
267 	csa_resetdsp(resp);
268 
269 	/* Download the Processor Image to the processor. */
270 	if (csa_downloadimage(resp))
271 		goto err_teardown;
272 
273 	/* Attach the children. */
274 
275 	/* PCM Audio */
276 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_WAITOK | M_ZERO);
277 	func->varinfo = &scp->binfo;
278 	func->func = SCF_PCM;
279 	scp->pcm = device_add_child(dev, "pcm", DEVICE_UNIT_ANY);
280 	device_set_ivars(scp->pcm, func);
281 
282 	/* Midi Interface */
283 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_WAITOK | M_ZERO);
284 	func->varinfo = &scp->binfo;
285 	func->func = SCF_MIDI;
286 	scp->midi = device_add_child(dev, "midi", DEVICE_UNIT_ANY);
287 	device_set_ivars(scp->midi, func);
288 
289 	bus_attach_children(dev);
290 
291 	return (0);
292 
293 err_teardown:
294 	bus_teardown_intr(dev, resp->irq, scp->ih);
295 err_intr:
296 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
297 err_mem:
298 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
299 err_io:
300 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
301 	return (error);
302 }
303 
304 static void
305 csa_child_deleted(device_t dev, device_t child)
306 {
307 	free(device_get_ivars(child), M_DEVBUF);
308 }
309 
310 static int
311 csa_detach(device_t dev)
312 {
313 	csa_res *resp;
314 	sc_p scp;
315 	int err;
316 
317 	scp = device_get_softc(dev);
318 	resp = &scp->res;
319 
320 	err = bus_generic_detach(dev);
321 	if (err != 0)
322 		return err;
323 
324 	bus_teardown_intr(dev, resp->irq, scp->ih);
325 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
326 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
327 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
328 
329 	return (0);
330 }
331 
332 static int
333 csa_resume(device_t dev)
334 {
335 	csa_res *resp;
336 	sc_p scp;
337 
338 	scp = device_get_softc(dev);
339 	resp = &scp->res;
340 
341 	/* Initialize the chip. */
342 	if (csa_initialize(scp))
343 		return (ENXIO);
344 
345 	/* Reset the Processor. */
346 	csa_resetdsp(resp);
347 
348 	/* Download the Processor Image to the processor. */
349 	if (csa_downloadimage(resp))
350 		return (ENXIO);
351 
352 	return (bus_generic_resume(dev));
353 }
354 
355 static struct resource *
356 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
357 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
358 {
359 	sc_p scp;
360 	csa_res *resp;
361 	struct resource *res;
362 
363 	scp = device_get_softc(bus);
364 	resp = &scp->res;
365 	switch (type) {
366 	case SYS_RES_IRQ:
367 		if (*rid != 0)
368 			return (NULL);
369 		res = resp->irq;
370 		break;
371 	case SYS_RES_MEMORY:
372 		switch (*rid) {
373 		case PCIR_BAR(0):
374 			res = resp->io;
375 			break;
376 		case PCIR_BAR(1):
377 			res = resp->mem;
378 			break;
379 		default:
380 			return (NULL);
381 		}
382 		break;
383 	default:
384 		return (NULL);
385 	}
386 
387 	return res;
388 }
389 
390 static int
391 csa_release_resource(device_t bus, device_t child, struct resource *r)
392 {
393 	return (0);
394 }
395 
396 /*
397  * The following three functions deal with interrupt handling.
398  * An interrupt is primarily handled by the bridge driver.
399  * The bridge driver then determines the child devices to pass
400  * the interrupt. Certain information of the device can be read
401  * only once(eg the value of HISR). The bridge driver is responsible
402  * to pass such the information to the children.
403  */
404 
405 static int
406 csa_setup_intr(device_t bus, device_t child,
407 	       struct resource *irq, int flags,
408 	       driver_filter_t *filter,
409 	       driver_intr_t *intr, void *arg, void **cookiep)
410 {
411 	sc_p scp;
412 	csa_res *resp;
413 	struct sndcard_func *func;
414 
415 	if (filter != NULL) {
416 		printf("ata-csa.c: we cannot use a filter here\n");
417 		return (EINVAL);
418 	}
419 	scp = device_get_softc(bus);
420 	resp = &scp->res;
421 
422 	/*
423 	 * Look at the function code of the child to determine
424 	 * the appropriate handler for it.
425 	 */
426 	func = device_get_ivars(child);
427 	if (func == NULL || irq != resp->irq)
428 		return (EINVAL);
429 
430 	switch (func->func) {
431 	case SCF_PCM:
432 		scp->pcmintr = intr;
433 		scp->pcmintr_arg = arg;
434 		break;
435 
436 	case SCF_MIDI:
437 		scp->midiintr = intr;
438 		scp->midiintr_arg = arg;
439 		break;
440 
441 	default:
442 		return (EINVAL);
443 	}
444 	*cookiep = scp;
445 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
446 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
447 
448 	return (0);
449 }
450 
451 static int
452 csa_teardown_intr(device_t bus, device_t child,
453 		  struct resource *irq, void *cookie)
454 {
455 	sc_p scp;
456 	csa_res *resp;
457 	struct sndcard_func *func;
458 
459 	scp = device_get_softc(bus);
460 	resp = &scp->res;
461 
462 	/*
463 	 * Look at the function code of the child to determine
464 	 * the appropriate handler for it.
465 	 */
466 	func = device_get_ivars(child);
467 	if (func == NULL || irq != resp->irq || cookie != scp)
468 		return (EINVAL);
469 
470 	switch (func->func) {
471 	case SCF_PCM:
472 		scp->pcmintr = NULL;
473 		scp->pcmintr_arg = NULL;
474 		break;
475 
476 	case SCF_MIDI:
477 		scp->midiintr = NULL;
478 		scp->midiintr_arg = NULL;
479 		break;
480 
481 	default:
482 		return (EINVAL);
483 	}
484 
485 	return (0);
486 }
487 
488 /* The interrupt handler */
489 static void
490 csa_intr(void *arg)
491 {
492 	sc_p scp = arg;
493 	csa_res *resp;
494 	u_int32_t hisr;
495 
496 	resp = &scp->res;
497 
498 	/* Is this interrupt for us? */
499 	hisr = csa_readio(resp, BA0_HISR);
500 	if ((hisr & 0x7fffffff) == 0) {
501 		/* Throw an eoi. */
502 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
503 		return;
504 	}
505 
506 	/*
507 	 * Pass the value of HISR via struct csa_bridgeinfo.
508 	 * The children get access through their ivars.
509 	 */
510 	scp->binfo.hisr = hisr;
511 
512 	/* Invoke the handlers of the children. */
513 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
514 		scp->pcmintr(scp->pcmintr_arg);
515 		hisr &= ~(HISR_VC0 | HISR_VC1);
516 	}
517 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
518 		scp->midiintr(scp->midiintr_arg);
519 		hisr &= ~HISR_MIDI;
520 	}
521 
522 	/* Throw an eoi. */
523 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
524 }
525 
526 static int
527 csa_initialize(sc_p scp)
528 {
529 	int i;
530 	u_int32_t acsts, acisv;
531 	csa_res *resp;
532 
533 	resp = &scp->res;
534 
535 	/*
536 	 * First, blast the clock control register to zero so that the PLL starts
537 	 * out in a known state, and blast the master serial port control register
538 	 * to zero so that the serial ports also start out in a known state.
539 	 */
540 	csa_writeio(resp, BA0_CLKCR1, 0);
541 	csa_writeio(resp, BA0_SERMC1, 0);
542 
543 	/*
544 	 * If we are in AC97 mode, then we must set the part to a host controlled
545 	 * AC-link.  Otherwise, we won't be able to bring up the link.
546 	 */
547 #if 1
548 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
549 #else
550 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
551 #endif /* 1 */
552 
553 	/*
554 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
555 	 * spec) and then drive it high.  This is done for non AC97 modes since
556 	 * there might be logic external to the CS461x that uses the ARST# line
557 	 * for a reset.
558 	 */
559 	csa_writeio(resp, BA0_ACCTL, 1);
560 	DELAY(50);
561 	csa_writeio(resp, BA0_ACCTL, 0);
562 	DELAY(50);
563 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
564 
565 	/*
566 	 * The first thing we do here is to enable sync generation.  As soon
567 	 * as we start receiving bit clock, we'll start producing the SYNC
568 	 * signal.
569 	 */
570 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
571 
572 	/*
573 	 * Now wait for a short while to allow the AC97 part to start
574 	 * generating bit clock (so we don't try to start the PLL without an
575 	 * input clock).
576 	 */
577 	DELAY(50000);
578 
579 	/*
580 	 * Set the serial port timing configuration, so that
581 	 * the clock control circuit gets its clock from the correct place.
582 	 */
583 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
584 	DELAY(700000);
585 
586 	/*
587 	 * Write the selected clock control setup to the hardware.  Do not turn on
588 	 * SWCE yet (if requested), so that the devices clocked by the output of
589 	 * PLL are not clocked until the PLL is stable.
590 	 */
591 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
592 	csa_writeio(resp, BA0_PLLM, 0x3a);
593 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
594 
595 	/*
596 	 * Power up the PLL.
597 	 */
598 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
599 
600 	/*
601 	 * Wait until the PLL has stabilized.
602 	 */
603 	DELAY(5000);
604 
605 	/*
606 	 * Turn on clocking of the core so that we can setup the serial ports.
607 	 */
608 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
609 
610 	/*
611 	 * Fill the serial port FIFOs with silence.
612 	 */
613 	csa_clearserialfifos(resp);
614 
615 	/*
616 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
617 	 */
618 #ifdef notdef
619 	csa_writeio(resp, BA0_SERBSP, 0);
620 #endif /* notdef */
621 
622 	/*
623 	 *  Write the serial port configuration to the part.  The master
624 	 *  enable bit is not set until all other values have been written.
625 	 */
626 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
627 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
628 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
629 
630 	/*
631 	 * Wait for the codec ready signal from the AC97 codec.
632 	 */
633 	acsts = 0;
634 	for (i = 0 ; i < 1000 ; i++) {
635 		/*
636 		 * First, lets wait a short while to let things settle out a bit,
637 		 * and to prevent retrying the read too quickly.
638 		 */
639 		DELAY(125);
640 
641 		/*
642 		 * Read the AC97 status register to see if we've seen a CODEC READY
643 		 * signal from the AC97 codec.
644 		 */
645 		acsts = csa_readio(resp, BA0_ACSTS);
646 		if ((acsts & ACSTS_CRDY) != 0)
647 			break;
648 	}
649 
650 	/*
651 	 * Make sure we sampled CODEC READY.
652 	 */
653 	if ((acsts & ACSTS_CRDY) == 0)
654 		return (ENXIO);
655 
656 	/*
657 	 * Assert the vaid frame signal so that we can start sending commands
658 	 * to the AC97 codec.
659 	 */
660 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
661 
662 	/*
663 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
664 	 * the codec is pumping ADC data across the AC-link.
665 	 */
666 	acisv = 0;
667 	for (i = 0 ; i < 2000 ; i++) {
668 		/*
669 		 * First, lets wait a short while to let things settle out a bit,
670 		 * and to prevent retrying the read too quickly.
671 		 */
672 #ifdef notdef
673 		DELAY(10000000L); /* clw */
674 #else
675 		DELAY(1000);
676 #endif /* notdef */
677 		/*
678 		 * Read the input slot valid register and see if input slots 3 and
679 		 * 4 are valid yet.
680 		 */
681 		acisv = csa_readio(resp, BA0_ACISV);
682 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
683 			break;
684 	}
685 	/*
686 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
687 	 * an error.
688 	 */
689 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
690 		return (ENXIO);
691 
692 	/*
693 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
694 	 * commense the transfer of digital audio data to the AC97 codec.
695 	 */
696 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
697 
698 	/*
699 	 * Power down the DAC and ADC.  We will power them up (if) when we need
700 	 * them.
701 	 */
702 #ifdef notdef
703 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
704 #endif /* notdef */
705 
706 	/*
707 	 * Turn off the Processor by turning off the software clock enable flag in
708 	 * the clock control register.
709 	 */
710 #ifdef notdef
711 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
712 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
713 #endif /* notdef */
714 
715 	/*
716 	 * Enable interrupts on the part.
717 	 */
718 #if 0
719 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
720 #endif /* notdef */
721 
722 	return (0);
723 }
724 
725 void
726 csa_clearserialfifos(csa_res *resp)
727 {
728 	int i, j, pwr;
729 	u_int8_t clkcr1, serbst;
730 
731 	/*
732 	 * See if the devices are powered down.  If so, we must power them up first
733 	 * or they will not respond.
734 	 */
735 	pwr = 1;
736 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
737 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
738 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
739 		pwr = 0;
740 	}
741 
742 	/*
743 	 * We want to clear out the serial port FIFOs so we don't end up playing
744 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
745 	 * with zero (silence).
746 	 */
747 	csa_writeio(resp, BA0_SERBWP, 0);
748 
749 	/* Fill all 256 sample FIFO locations. */
750 	serbst = 0;
751 	for (i = 0 ; i < 256 ; i++) {
752 		/* Make sure the previous FIFO write operation has completed. */
753 		for (j = 0 ; j < 5 ; j++) {
754 			DELAY(100);
755 			serbst = csa_readio(resp, BA0_SERBST);
756 			if ((serbst & SERBST_WBSY) == 0)
757 				break;
758 		}
759 		if ((serbst & SERBST_WBSY) != 0) {
760 			if (!pwr)
761 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
762 		}
763 		/* Write the serial port FIFO index. */
764 		csa_writeio(resp, BA0_SERBAD, i);
765 		/* Tell the serial port to load the new value into the FIFO location. */
766 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
767 	}
768 	/*
769 	 *  Now, if we powered up the devices, then power them back down again.
770 	 *  This is kinda ugly, but should never happen.
771 	 */
772 	if (!pwr)
773 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
774 }
775 
776 void
777 csa_resetdsp(csa_res *resp)
778 {
779 	int i;
780 
781 	/*
782 	 * Write the reset bit of the SP control register.
783 	 */
784 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
785 
786 	/*
787 	 * Write the control register.
788 	 */
789 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
790 
791 	/*
792 	 * Clear the trap registers.
793 	 */
794 	for (i = 0 ; i < 8 ; i++) {
795 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
796 		csa_writemem(resp, BA1_TWPR, 0xffff);
797 	}
798 	csa_writemem(resp, BA1_DREG, 0);
799 
800 	/*
801 	 * Set the frame timer to reflect the number of cycles per frame.
802 	 */
803 	csa_writemem(resp, BA1_FRMT, 0xadf);
804 }
805 
806 static int
807 csa_downloadimage(csa_res *resp)
808 {
809 	int ret;
810 	u_long ul, offset;
811 
812 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
813 	        /*
814 	         * DMA this block from host memory to the appropriate
815 	         * memory on the CSDevice.
816 	         */
817 		ret = csa_transferimage(resp,
818 		    cs461x_firmware.BA1Array + offset,
819 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
820 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
821 		if (ret)
822 			return (ret);
823 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
824 	}
825 	return (0);
826 }
827 
828 static int
829 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
830 {
831 	u_long ul;
832 
833 	/*
834 	 * We do not allow DMAs from host memory to host memory (although the DMA
835 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
836 	 * in size (because that DMA can not do that).  Return an error if either
837 	 * of these conditions exist.
838 	 */
839 	if ((len & 0x3) != 0)
840 		return (EINVAL);
841 
842 	/* Check the destination address that it is a multiple of 4 */
843 	if ((dest & 0x3) != 0)
844 		return (EINVAL);
845 
846 	/* Write the buffer out. */
847 	for (ul = 0 ; ul < len ; ul += 4)
848 		csa_writemem(resp, dest + ul, src[ul >> 2]);
849 	return (0);
850 }
851 
852 int
853 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
854 {
855 	int i;
856 	u_int32_t acctl, acsts;
857 
858 	/*
859 	 * Make sure that there is not data sitting around from a previous
860 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
861 	 */
862 	csa_readio(resp, BA0_ACSDA);
863 
864 	/*
865 	 * Setup the AC97 control registers on the CS461x to send the
866 	 * appropriate command to the AC97 to perform the read.
867 	 * ACCAD = Command Address Register = 46Ch
868 	 * ACCDA = Command Data Register = 470h
869 	 * ACCTL = Control Register = 460h
870 	 * set DCV - will clear when process completed
871 	 * set CRW - Read command
872 	 * set VFRM - valid frame enabled
873 	 * set ESYN - ASYNC generation enabled
874 	 * set RSTN - ARST# inactive, AC97 codec not reset
875 	 */
876 
877 	/*
878 	 * Get the actual AC97 register from the offset
879 	 */
880 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
881 	csa_writeio(resp, BA0_ACCDA, 0);
882 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
883 
884 	/*
885 	 * Wait for the read to occur.
886 	 */
887 	acctl = 0;
888 	for (i = 0 ; i < 10 ; i++) {
889 		/*
890 		 * First, we want to wait for a short time.
891 		 */
892 		DELAY(25);
893 
894 		/*
895 		 * Now, check to see if the read has completed.
896 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
897 		 */
898 		acctl = csa_readio(resp, BA0_ACCTL);
899 		if ((acctl & ACCTL_DCV) == 0)
900 			break;
901 	}
902 
903 	/*
904 	 * Make sure the read completed.
905 	 */
906 	if ((acctl & ACCTL_DCV) != 0)
907 		return (EAGAIN);
908 
909 	/*
910 	 * Wait for the valid status bit to go active.
911 	 */
912 	acsts = 0;
913 	for (i = 0 ; i < 10 ; i++) {
914 		/*
915 		 * Read the AC97 status register.
916 		 * ACSTS = Status Register = 464h
917 		 */
918 		acsts = csa_readio(resp, BA0_ACSTS);
919 		/*
920 		 * See if we have valid status.
921 		 * VSTS - Valid Status
922 		 */
923 		if ((acsts & ACSTS_VSTS) != 0)
924 			break;
925 		/*
926 		 * Wait for a short while.
927 		 */
928 		 DELAY(25);
929 	}
930 
931 	/*
932 	 * Make sure we got valid status.
933 	 */
934 	if ((acsts & ACSTS_VSTS) == 0)
935 		return (EAGAIN);
936 
937 	/*
938 	 * Read the data returned from the AC97 register.
939 	 * ACSDA = Status Data Register = 474h
940 	 */
941 	*data = csa_readio(resp, BA0_ACSDA);
942 
943 	return (0);
944 }
945 
946 int
947 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
948 {
949 	int i;
950 	u_int32_t acctl;
951 
952 	/*
953 	 * Setup the AC97 control registers on the CS461x to send the
954 	 * appropriate command to the AC97 to perform the write.
955 	 * ACCAD = Command Address Register = 46Ch
956 	 * ACCDA = Command Data Register = 470h
957 	 * ACCTL = Control Register = 460h
958 	 * set DCV - will clear when process completed
959 	 * set VFRM - valid frame enabled
960 	 * set ESYN - ASYNC generation enabled
961 	 * set RSTN - ARST# inactive, AC97 codec not reset
962 	 */
963 
964 	/*
965 	 * Get the actual AC97 register from the offset
966 	 */
967 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
968 	csa_writeio(resp, BA0_ACCDA, data);
969 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
970 
971 	/*
972 	 * Wait for the write to occur.
973 	 */
974 	acctl = 0;
975 	for (i = 0 ; i < 10 ; i++) {
976 		/*
977 		 * First, we want to wait for a short time.
978 		 */
979 		DELAY(25);
980 
981 		/*
982 		 * Now, check to see if the read has completed.
983 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
984 		 */
985 		acctl = csa_readio(resp, BA0_ACCTL);
986 		if ((acctl & ACCTL_DCV) == 0)
987 			break;
988 	}
989 
990 	/*
991 	 * Make sure the write completed.
992 	 */
993 	if ((acctl & ACCTL_DCV) != 0)
994 		return (EAGAIN);
995 
996 	return (0);
997 }
998 
999 u_int32_t
1000 csa_readio(csa_res *resp, u_long offset)
1001 {
1002 	u_int32_t ul;
1003 
1004 	if (offset < BA0_AC97_RESET)
1005 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1006 	else {
1007 		if (csa_readcodec(resp, offset, &ul))
1008 			ul = 0;
1009 		return (ul);
1010 	}
1011 }
1012 
1013 void
1014 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1015 {
1016 	if (offset < BA0_AC97_RESET)
1017 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1018 	else
1019 		csa_writecodec(resp, offset, data);
1020 }
1021 
1022 u_int32_t
1023 csa_readmem(csa_res *resp, u_long offset)
1024 {
1025 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1026 }
1027 
1028 void
1029 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1030 {
1031 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1032 }
1033 
1034 static device_method_t csa_methods[] = {
1035 	/* Device interface */
1036 	DEVMETHOD(device_probe,		csa_probe),
1037 	DEVMETHOD(device_attach,	csa_attach),
1038 	DEVMETHOD(device_detach,	csa_detach),
1039 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1040 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1041 	DEVMETHOD(device_resume,	csa_resume),
1042 
1043 	/* Bus interface */
1044 	DEVMETHOD(bus_child_deleted,	csa_child_deleted),
1045 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1046 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1047 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1048 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1049 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1050 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1051 
1052 	DEVMETHOD_END
1053 };
1054 
1055 static driver_t csa_driver = {
1056 	"csa",
1057 	csa_methods,
1058 	sizeof(struct csa_softc),
1059 };
1060 
1061 /*
1062  * csa can be attached to a pci bus.
1063  */
1064 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1065 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1066 MODULE_VERSION(snd_csa, 1);
1067