1 /* 2 * Copyright (c) 1999 Seigo Tanimura 3 * All rights reserved. 4 * 5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in 6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor. 7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/bus.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <machine/resource.h> 40 #include <machine/bus.h> 41 #include <machine/clock.h> 42 #include <sys/rman.h> 43 #include <sys/soundcard.h> 44 #include <dev/sound/pcm/sound.h> 45 #include <dev/sound/chip.h> 46 #include <dev/sound/pci/csareg.h> 47 #include <dev/sound/pci/csavar.h> 48 49 #include <pci/pcireg.h> 50 #include <pci/pcivar.h> 51 52 #include <dev/sound/pci/csaimg.h> 53 54 /* Here is the parameter structure per a device. */ 55 struct csa_softc { 56 device_t dev; /* device */ 57 csa_res res; /* resources */ 58 59 device_t pcm; /* pcm device */ 60 driver_intr_t* pcmintr; /* pcm intr */ 61 void *pcmintr_arg; /* pcm intr arg */ 62 device_t midi; /* midi device */ 63 driver_intr_t* midiintr; /* midi intr */ 64 void *midiintr_arg; /* midi intr arg */ 65 void *ih; /* cookie */ 66 67 struct csa_bridgeinfo binfo; /* The state of this bridge. */ 68 }; 69 70 typedef struct csa_softc *sc_p; 71 72 static int csa_probe(device_t dev); 73 static int csa_attach(device_t dev); 74 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 75 u_long start, u_long end, u_long count, u_int flags); 76 static int csa_release_resource(device_t bus, device_t child, int type, int rid, 77 struct resource *r); 78 static int csa_setup_intr(device_t bus, device_t child, 79 struct resource *irq, int flags, 80 driver_intr_t *intr, void *arg, void **cookiep); 81 static int csa_teardown_intr(device_t bus, device_t child, 82 struct resource *irq, void *cookie); 83 static driver_intr_t csa_intr; 84 static int csa_initialize(sc_p scp); 85 static void csa_resetdsp(csa_res *resp); 86 static int csa_downloadimage(csa_res *resp); 87 static int csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len); 88 89 static devclass_t csa_devclass; 90 91 static int 92 csa_probe(device_t dev) 93 { 94 char *s; 95 96 s = NULL; 97 switch (pci_get_devid(dev)) { 98 case CS4610_PCI_ID: 99 s = "Crystal Semiconductor CS4610/4611 Audio accelerator"; 100 break; 101 case CS4614_PCI_ID: 102 s = "Crystal Semiconductor CS4614/4622/4624 Audio accelerator/4280 Audio controller"; 103 break; 104 case CS4615_PCI_ID: 105 s = "Crystal Semiconductor CS4615 Audio accelerator"; 106 break; 107 } 108 109 if (s != NULL) { 110 device_set_desc(dev, s); 111 return (0); 112 } 113 114 return (ENXIO); 115 } 116 117 static int 118 csa_attach(device_t dev) 119 { 120 u_int32_t stcmd; 121 sc_p scp; 122 csa_res *resp; 123 struct sndcard_func *func; 124 125 scp = device_get_softc(dev); 126 127 /* Fill in the softc. */ 128 bzero(scp, sizeof(*scp)); 129 scp->dev = dev; 130 131 /* Wake up the device. */ 132 stcmd = pci_read_config(dev, PCIR_COMMAND, 4); 133 if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) { 134 stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); 135 pci_write_config(dev, PCIR_COMMAND, 4, stcmd); 136 } 137 138 /* Allocate the resources. */ 139 resp = &scp->res; 140 resp->io_rid = CS461x_IO_OFFSET; 141 resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, CS461x_IO_SIZE, RF_ACTIVE); 142 if (resp->io == NULL) 143 return (ENXIO); 144 resp->mem_rid = CS461x_MEM_OFFSET; 145 resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, CS461x_MEM_SIZE, RF_ACTIVE); 146 if (resp->mem == NULL) { 147 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 148 return (ENXIO); 149 } 150 resp->irq_rid = 0; 151 resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 152 if (resp->irq == NULL) { 153 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 154 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 155 return (ENXIO); 156 } 157 158 /* Enable interrupt. */ 159 if (bus_setup_intr(dev, resp->irq, INTR_TYPE_TTY, csa_intr, scp, &scp->ih)) { 160 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 161 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 162 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 163 return (ENXIO); 164 } 165 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 166 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 167 168 /* Initialize the chip. */ 169 if (csa_initialize(scp)) { 170 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 171 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 172 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 173 return (ENXIO); 174 } 175 176 /* Reset the Processor. */ 177 csa_resetdsp(resp); 178 179 /* Download the Processor Image to the processor. */ 180 if (csa_downloadimage(resp)) { 181 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 182 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 183 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 184 return (ENXIO); 185 } 186 187 /* Attach the children. */ 188 189 /* PCM Audio */ 190 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT); 191 if (func == NULL) 192 return (ENOMEM); 193 bzero(func, sizeof(*func)); 194 func->varinfo = &scp->binfo; 195 func->func = SCF_PCM; 196 scp->pcm = device_add_child(dev, "pcm", -1); 197 device_set_ivars(scp->pcm, func); 198 199 /* Midi Interface */ 200 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT); 201 if (func == NULL) 202 return (ENOMEM); 203 bzero(func, sizeof(*func)); 204 func->varinfo = &scp->binfo; 205 func->func = SCF_MIDI; 206 scp->midi = device_add_child(dev, "midi", -1); 207 device_set_ivars(scp->midi, func); 208 209 bus_generic_attach(dev); 210 211 return (0); 212 } 213 214 static struct resource * 215 csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 216 u_long start, u_long end, u_long count, u_int flags) 217 { 218 sc_p scp; 219 csa_res *resp; 220 struct resource *res; 221 222 scp = device_get_softc(bus); 223 resp = &scp->res; 224 switch (type) { 225 case SYS_RES_IRQ: 226 if (*rid != 0) 227 return (NULL); 228 res = resp->irq; 229 break; 230 case SYS_RES_MEMORY: 231 switch (*rid) { 232 case CS461x_IO_OFFSET: 233 res = resp->io; 234 break; 235 case CS461x_MEM_OFFSET: 236 res = resp->mem; 237 break; 238 default: 239 return (NULL); 240 } 241 break; 242 default: 243 return (NULL); 244 } 245 246 return res; 247 } 248 249 static int 250 csa_release_resource(device_t bus, device_t child, int type, int rid, 251 struct resource *r) 252 { 253 return (0); 254 } 255 256 /* 257 * The following three functions deal with interrupt handling. 258 * An interrupt is primarily handled by the bridge driver. 259 * The bridge driver then determines the child devices to pass 260 * the interrupt. Certain information of the device can be read 261 * only once(eg the value of HISR). The bridge driver is responsible 262 * to pass such the information to the children. 263 */ 264 265 static int 266 csa_setup_intr(device_t bus, device_t child, 267 struct resource *irq, int flags, 268 driver_intr_t *intr, void *arg, void **cookiep) 269 { 270 sc_p scp; 271 csa_res *resp; 272 struct sndcard_func *func; 273 274 scp = device_get_softc(bus); 275 resp = &scp->res; 276 277 /* 278 * Look at the function code of the child to determine 279 * the appropriate hander for it. 280 */ 281 func = device_get_ivars(child); 282 if (func == NULL || irq != resp->irq) 283 return (EINVAL); 284 285 switch (func->func) { 286 case SCF_PCM: 287 scp->pcmintr = intr; 288 scp->pcmintr_arg = arg; 289 break; 290 291 case SCF_MIDI: 292 scp->midiintr = intr; 293 scp->midiintr_arg = arg; 294 break; 295 296 default: 297 return (EINVAL); 298 } 299 *cookiep = scp; 300 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 301 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 302 303 return (0); 304 } 305 306 static int 307 csa_teardown_intr(device_t bus, device_t child, 308 struct resource *irq, void *cookie) 309 { 310 sc_p scp; 311 csa_res *resp; 312 struct sndcard_func *func; 313 314 scp = device_get_softc(bus); 315 resp = &scp->res; 316 317 /* 318 * Look at the function code of the child to determine 319 * the appropriate hander for it. 320 */ 321 func = device_get_ivars(child); 322 if (func == NULL || irq != resp->irq || cookie != scp) 323 return (EINVAL); 324 325 switch (func->func) { 326 case SCF_PCM: 327 scp->pcmintr = NULL; 328 scp->pcmintr_arg = NULL; 329 break; 330 331 case SCF_MIDI: 332 scp->midiintr = NULL; 333 scp->midiintr_arg = NULL; 334 break; 335 336 default: 337 return (EINVAL); 338 } 339 340 return (0); 341 } 342 343 /* The interrupt handler */ 344 static void 345 csa_intr(void *arg) 346 { 347 sc_p scp = arg; 348 csa_res *resp; 349 u_int32_t hisr; 350 351 resp = &scp->res; 352 353 /* Is this interrupt for us? */ 354 hisr = csa_readio(resp, BA0_HISR); 355 if ((hisr & ~HISR_INTENA) == 0) { 356 /* Throw an eoi. */ 357 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 358 return; 359 } 360 361 /* 362 * Pass the value of HISR via struct csa_bridgeinfo. 363 * The children get access through their ivars. 364 */ 365 scp->binfo.hisr = hisr; 366 367 /* Invoke the handlers of the children. */ 368 if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) 369 scp->pcmintr(scp->pcmintr_arg); 370 if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) 371 scp->midiintr(scp->midiintr_arg); 372 373 /* Throw an eoi. */ 374 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 375 } 376 377 static int 378 csa_initialize(sc_p scp) 379 { 380 int i; 381 u_int32_t acsts, acisv; 382 csa_res *resp; 383 384 resp = &scp->res; 385 386 /* 387 * First, blast the clock control register to zero so that the PLL starts 388 * out in a known state, and blast the master serial port control register 389 * to zero so that the serial ports also start out in a known state. 390 */ 391 csa_writeio(resp, BA0_CLKCR1, 0); 392 csa_writeio(resp, BA0_SERMC1, 0); 393 394 /* 395 * If we are in AC97 mode, then we must set the part to a host controlled 396 * AC-link. Otherwise, we won't be able to bring up the link. 397 */ 398 #if 1 399 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */ 400 #else 401 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */ 402 #endif /* 1 */ 403 404 /* 405 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97 406 * spec) and then drive it high. This is done for non AC97 modes since 407 * there might be logic external to the CS461x that uses the ARST# line 408 * for a reset. 409 */ 410 csa_writeio(resp, BA0_ACCTL, 0); 411 DELAY(100); 412 csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN); 413 414 /* 415 * The first thing we do here is to enable sync generation. As soon 416 * as we start receiving bit clock, we'll start producing the SYNC 417 * signal. 418 */ 419 csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN); 420 421 /* 422 * Now wait for a short while to allow the AC97 part to start 423 * generating bit clock (so we don't try to start the PLL without an 424 * input clock). 425 */ 426 DELAY(50000); 427 428 /* 429 * Set the serial port timing configuration, so that 430 * the clock control circuit gets its clock from the correct place. 431 */ 432 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97); 433 434 /* 435 * Write the selected clock control setup to the hardware. Do not turn on 436 * SWCE yet (if requested), so that the devices clocked by the output of 437 * PLL are not clocked until the PLL is stable. 438 */ 439 csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ); 440 csa_writeio(resp, BA0_PLLM, 0x3a); 441 csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8); 442 443 /* 444 * Power up the PLL. 445 */ 446 csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP); 447 448 /* 449 * Wait until the PLL has stabilized. 450 */ 451 DELAY(50000); 452 453 /* 454 * Turn on clocking of the core so that we can setup the serial ports. 455 */ 456 csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE); 457 458 /* 459 * Fill the serial port FIFOs with silence. 460 */ 461 csa_clearserialfifos(resp); 462 463 /* 464 * Set the serial port FIFO pointer to the first sample in the FIFO. 465 */ 466 #if notdef 467 csa_writeio(resp, BA0_SERBSP, 0); 468 #endif /* notdef */ 469 470 /* 471 * Write the serial port configuration to the part. The master 472 * enable bit is not set until all other values have been written. 473 */ 474 csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN); 475 csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN); 476 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE); 477 478 /* 479 * Wait for the codec ready signal from the AC97 codec. 480 */ 481 acsts = 0; 482 for (i = 0 ; i < 1000 ; i++) { 483 /* 484 * First, lets wait a short while to let things settle out a bit, 485 * and to prevent retrying the read too quickly. 486 */ 487 DELAY(125); 488 489 /* 490 * Read the AC97 status register to see if we've seen a CODEC READY 491 * signal from the AC97 codec. 492 */ 493 acsts = csa_readio(resp, BA0_ACSTS); 494 if ((acsts & ACSTS_CRDY) != 0) 495 break; 496 } 497 498 /* 499 * Make sure we sampled CODEC READY. 500 */ 501 if ((acsts & ACSTS_CRDY) == 0) 502 return (ENXIO); 503 504 /* 505 * Assert the vaid frame signal so that we can start sending commands 506 * to the AC97 codec. 507 */ 508 csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 509 510 /* 511 * Wait until we've sampled input slots 3 and 4 as valid, meaning that 512 * the codec is pumping ADC data across the AC-link. 513 */ 514 acisv = 0; 515 for (i = 0 ; i < 1000 ; i++) { 516 /* 517 * First, lets wait a short while to let things settle out a bit, 518 * and to prevent retrying the read too quickly. 519 */ 520 #if notdef 521 DELAY(10000000L); /* clw */ 522 #else 523 DELAY(1000); 524 #endif /* notdef */ 525 /* 526 * Read the input slot valid register and see if input slots 3 and 527 * 4 are valid yet. 528 */ 529 acisv = csa_readio(resp, BA0_ACISV); 530 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4)) 531 break; 532 } 533 /* 534 * Make sure we sampled valid input slots 3 and 4. If not, then return 535 * an error. 536 */ 537 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) 538 return (ENXIO); 539 540 /* 541 * Now, assert valid frame and the slot 3 and 4 valid bits. This will 542 * commense the transfer of digital audio data to the AC97 codec. 543 */ 544 csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4); 545 546 /* 547 * Power down the DAC and ADC. We will power them up (if) when we need 548 * them. 549 */ 550 #if notdef 551 csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300); 552 #endif /* notdef */ 553 554 /* 555 * Turn off the Processor by turning off the software clock enable flag in 556 * the clock control register. 557 */ 558 #if notdef 559 clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE; 560 csa_writeio(resp, BA0_CLKCR1, clkcr1); 561 #endif /* notdef */ 562 563 /* 564 * Enable interrupts on the part. 565 */ 566 #if notdef 567 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 568 #endif /* notdef */ 569 570 return (0); 571 } 572 573 void 574 csa_clearserialfifos(csa_res *resp) 575 { 576 int i, j, pwr; 577 u_int8_t clkcr1, serbst; 578 579 /* 580 * See if the devices are powered down. If so, we must power them up first 581 * or they will not respond. 582 */ 583 pwr = 1; 584 clkcr1 = csa_readio(resp, BA0_CLKCR1); 585 if ((clkcr1 & CLKCR1_SWCE) == 0) { 586 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE); 587 pwr = 0; 588 } 589 590 /* 591 * We want to clear out the serial port FIFOs so we don't end up playing 592 * whatever random garbage happens to be in them. We fill the sample FIFOs 593 * with zero (silence). 594 */ 595 csa_writeio(resp, BA0_SERBWP, 0); 596 597 /* Fill all 256 sample FIFO locations. */ 598 serbst = 0; 599 for (i = 0 ; i < 256 ; i++) { 600 /* Make sure the previous FIFO write operation has completed. */ 601 for (j = 0 ; j < 5 ; j++) { 602 DELAY(100); 603 serbst = csa_readio(resp, BA0_SERBST); 604 if ((serbst & SERBST_WBSY) == 0) 605 break; 606 } 607 if ((serbst & SERBST_WBSY) != 0) { 608 if (!pwr) 609 csa_writeio(resp, BA0_CLKCR1, clkcr1); 610 } 611 /* Write the serial port FIFO index. */ 612 csa_writeio(resp, BA0_SERBAD, i); 613 /* Tell the serial port to load the new value into the FIFO location. */ 614 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC); 615 } 616 /* 617 * Now, if we powered up the devices, then power them back down again. 618 * This is kinda ugly, but should never happen. 619 */ 620 if (!pwr) 621 csa_writeio(resp, BA0_CLKCR1, clkcr1); 622 } 623 624 static void 625 csa_resetdsp(csa_res *resp) 626 { 627 int i; 628 629 /* 630 * Write the reset bit of the SP control register. 631 */ 632 csa_writemem(resp, BA1_SPCR, SPCR_RSTSP); 633 634 /* 635 * Write the control register. 636 */ 637 csa_writemem(resp, BA1_SPCR, SPCR_DRQEN); 638 639 /* 640 * Clear the trap registers. 641 */ 642 for (i = 0 ; i < 8 ; i++) { 643 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i); 644 csa_writemem(resp, BA1_TWPR, 0xffff); 645 } 646 csa_writemem(resp, BA1_DREG, 0); 647 648 /* 649 * Set the frame timer to reflect the number of cycles per frame. 650 */ 651 csa_writemem(resp, BA1_FRMT, 0xadf); 652 } 653 654 static int 655 csa_downloadimage(csa_res *resp) 656 { 657 int ret; 658 u_long ul, offset; 659 660 for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) { 661 /* 662 * DMA this block from host memory to the appropriate 663 * memory on the CSDevice. 664 */ 665 ret = csa_transferimage( 666 resp, 667 BA1Struct.BA1Array + offset, 668 BA1Struct.MemoryStat[ul].ulDestByteOffset, 669 BA1Struct.MemoryStat[ul].ulSourceByteSize); 670 if (ret) 671 return (ret); 672 offset += BA1Struct.MemoryStat[ul].ulSourceByteSize >> 2; 673 } 674 675 return (0); 676 } 677 678 static int 679 csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len) 680 { 681 u_long ul; 682 683 /* 684 * We do not allow DMAs from host memory to host memory (although the DMA 685 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes 686 * in size (because that DMA can not do that). Return an error if either 687 * of these conditions exist. 688 */ 689 if ((len & 0x3) != 0) 690 return (EINVAL); 691 692 /* Check the destination address that it is a multiple of 4 */ 693 if ((dest & 0x3) != 0) 694 return (EINVAL); 695 696 /* Write the buffer out. */ 697 for (ul = 0 ; ul < len ; ul += 4) 698 csa_writemem(resp, dest + ul, src[ul >> 2]); 699 700 return (0); 701 } 702 703 int 704 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data) 705 { 706 int i; 707 u_int32_t acsda, acctl, acsts; 708 709 /* 710 * Make sure that there is not data sitting around from a previous 711 * uncompleted access. ACSDA = Status Data Register = 47Ch 712 */ 713 acsda = csa_readio(resp, BA0_ACSDA); 714 715 /* 716 * Setup the AC97 control registers on the CS461x to send the 717 * appropriate command to the AC97 to perform the read. 718 * ACCAD = Command Address Register = 46Ch 719 * ACCDA = Command Data Register = 470h 720 * ACCTL = Control Register = 460h 721 * set DCV - will clear when process completed 722 * set CRW - Read command 723 * set VFRM - valid frame enabled 724 * set ESYN - ASYNC generation enabled 725 * set RSTN - ARST# inactive, AC97 codec not reset 726 */ 727 728 /* 729 * Get the actual AC97 register from the offset 730 */ 731 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 732 csa_writeio(resp, BA0_ACCDA, 0); 733 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 734 735 /* 736 * Wait for the read to occur. 737 */ 738 acctl = 0; 739 for (i = 0 ; i < 10 ; i++) { 740 /* 741 * First, we want to wait for a short time. 742 */ 743 DELAY(25); 744 745 /* 746 * Now, check to see if the read has completed. 747 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 748 */ 749 acctl = csa_readio(resp, BA0_ACCTL); 750 if ((acctl & ACCTL_DCV) == 0) 751 break; 752 } 753 754 /* 755 * Make sure the read completed. 756 */ 757 if ((acctl & ACCTL_DCV) != 0) 758 return (EAGAIN); 759 760 /* 761 * Wait for the valid status bit to go active. 762 */ 763 acsts = 0; 764 for (i = 0 ; i < 10 ; i++) { 765 /* 766 * Read the AC97 status register. 767 * ACSTS = Status Register = 464h 768 */ 769 acsts = csa_readio(resp, BA0_ACSTS); 770 /* 771 * See if we have valid status. 772 * VSTS - Valid Status 773 */ 774 if ((acsts & ACSTS_VSTS) != 0) 775 break; 776 /* 777 * Wait for a short while. 778 */ 779 DELAY(25); 780 } 781 782 /* 783 * Make sure we got valid status. 784 */ 785 if ((acsts & ACSTS_VSTS) == 0) 786 return (EAGAIN); 787 788 /* 789 * Read the data returned from the AC97 register. 790 * ACSDA = Status Data Register = 474h 791 */ 792 *data = csa_readio(resp, BA0_ACSDA); 793 794 return (0); 795 } 796 797 int 798 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data) 799 { 800 int i; 801 u_int32_t acctl; 802 803 /* 804 * Setup the AC97 control registers on the CS461x to send the 805 * appropriate command to the AC97 to perform the write. 806 * ACCAD = Command Address Register = 46Ch 807 * ACCDA = Command Data Register = 470h 808 * ACCTL = Control Register = 460h 809 * set DCV - will clear when process completed 810 * set VFRM - valid frame enabled 811 * set ESYN - ASYNC generation enabled 812 * set RSTN - ARST# inactive, AC97 codec not reset 813 */ 814 815 /* 816 * Get the actual AC97 register from the offset 817 */ 818 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 819 csa_writeio(resp, BA0_ACCDA, data); 820 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 821 822 /* 823 * Wait for the write to occur. 824 */ 825 acctl = 0; 826 for (i = 0 ; i < 10 ; i++) { 827 /* 828 * First, we want to wait for a short time. 829 */ 830 DELAY(25); 831 832 /* 833 * Now, check to see if the read has completed. 834 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 835 */ 836 acctl = csa_readio(resp, BA0_ACCTL); 837 if ((acctl & ACCTL_DCV) == 0) 838 break; 839 } 840 841 /* 842 * Make sure the write completed. 843 */ 844 if ((acctl & ACCTL_DCV) != 0) 845 return (EAGAIN); 846 847 return (0); 848 } 849 850 u_int32_t 851 csa_readio(csa_res *resp, u_long offset) 852 { 853 u_int32_t ul; 854 855 if (offset < BA0_AC97_RESET) 856 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff; 857 else { 858 if (csa_readcodec(resp, offset, &ul)) 859 ul = 0; 860 return (ul); 861 } 862 } 863 864 void 865 csa_writeio(csa_res *resp, u_long offset, u_int32_t data) 866 { 867 if (offset < BA0_AC97_RESET) 868 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data); 869 else 870 csa_writecodec(resp, offset, data); 871 } 872 873 u_int32_t 874 csa_readmem(csa_res *resp, u_long offset) 875 { 876 return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset) & 0xffffffff; 877 } 878 879 void 880 csa_writemem(csa_res *resp, u_long offset, u_int32_t data) 881 { 882 bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data); 883 } 884 885 static device_method_t csa_methods[] = { 886 /* Device interface */ 887 DEVMETHOD(device_probe, csa_probe), 888 DEVMETHOD(device_attach, csa_attach), 889 DEVMETHOD(device_detach, bus_generic_detach), 890 DEVMETHOD(device_shutdown, bus_generic_shutdown), 891 DEVMETHOD(device_suspend, bus_generic_suspend), 892 DEVMETHOD(device_resume, bus_generic_resume), 893 894 /* Bus interface */ 895 DEVMETHOD(bus_print_child, bus_generic_print_child), 896 DEVMETHOD(bus_alloc_resource, csa_alloc_resource), 897 DEVMETHOD(bus_release_resource, csa_release_resource), 898 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 899 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 900 DEVMETHOD(bus_setup_intr, csa_setup_intr), 901 DEVMETHOD(bus_teardown_intr, csa_teardown_intr), 902 903 { 0, 0 } 904 }; 905 906 static driver_t csa_driver = { 907 "csa", 908 csa_methods, 909 sizeof(struct csa_softc), 910 }; 911 912 /* 913 * csa can be attached to a pci bus. 914 */ 915 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0); 916 MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER); 917 MODULE_VERSION(snd_csa, 1); 918