xref: /freebsd/sys/dev/sound/pci/csa.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 1999 Seigo Tanimura
3  * All rights reserved.
4  *
5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <machine/resource.h>
38 #include <machine/bus.h>
39 #include <sys/rman.h>
40 #include <sys/soundcard.h>
41 #include <dev/sound/pcm/sound.h>
42 #include <dev/sound/chip.h>
43 #include <dev/sound/pci/csareg.h>
44 #include <dev/sound/pci/csavar.h>
45 
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 
49 #include <gnu/dev/sound/pci/csaimg.h>
50 
51 SND_DECLARE_FILE("$FreeBSD$");
52 
53 /* This is the pci device id. */
54 #define CS4610_PCI_ID 0x60011013
55 #define CS4614_PCI_ID 0x60031013
56 #define CS4615_PCI_ID 0x60041013
57 
58 /* Here is the parameter structure per a device. */
59 struct csa_softc {
60 	device_t dev; /* device */
61 	csa_res res; /* resources */
62 
63 	device_t pcm; /* pcm device */
64 	driver_intr_t* pcmintr; /* pcm intr */
65 	void *pcmintr_arg; /* pcm intr arg */
66 	device_t midi; /* midi device */
67 	driver_intr_t* midiintr; /* midi intr */
68 	void *midiintr_arg; /* midi intr arg */
69 	void *ih; /* cookie */
70 
71 	struct csa_card *card;
72 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
73 };
74 
75 typedef struct csa_softc *sc_p;
76 
77 static int csa_probe(device_t dev);
78 static int csa_attach(device_t dev);
79 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
80 					      u_long start, u_long end, u_long count, u_int flags);
81 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
82 				   struct resource *r);
83 static int csa_setup_intr(device_t bus, device_t child,
84 			  struct resource *irq, int flags,
85 #if __FreeBSD_version >= 700031
86 			  driver_filter_t *filter,
87 #endif
88 			  driver_intr_t *intr,  void *arg, void **cookiep);
89 static int csa_teardown_intr(device_t bus, device_t child,
90 			     struct resource *irq, void *cookie);
91 static driver_intr_t csa_intr;
92 static int csa_initialize(sc_p scp);
93 static int csa_downloadimage(csa_res *resp);
94 
95 static devclass_t csa_devclass;
96 
97 static void
98 amp_none(void)
99 {
100 }
101 
102 static void
103 amp_voyetra(void)
104 {
105 }
106 
107 static int
108 clkrun_hack(int run)
109 {
110 #ifdef __i386__
111 	devclass_t		pci_devclass;
112 	device_t		*pci_devices, *pci_children, *busp, *childp;
113 	int			pci_count = 0, pci_childcount = 0;
114 	int			i, j, port;
115 	u_int16_t		control;
116 	bus_space_tag_t		btag;
117 
118 	if ((pci_devclass = devclass_find("pci")) == NULL) {
119 		return ENXIO;
120 	}
121 
122 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
123 
124 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
125 		pci_childcount = 0;
126 		if (device_get_children(*busp, &pci_children, &pci_childcount))
127 			continue;
128 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
129 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
130 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
131 				/* XXX */
132 				btag = I386_BUS_SPACE_IO;
133 
134 				control = bus_space_read_2(btag, 0x0, port);
135 				control &= ~0x2000;
136 				control |= run? 0 : 0x2000;
137 				bus_space_write_2(btag, 0x0, port, control);
138 				free(pci_devices, M_TEMP);
139 				free(pci_children, M_TEMP);
140 				return 0;
141 			}
142 		}
143 		free(pci_children, M_TEMP);
144 	}
145 
146 	free(pci_devices, M_TEMP);
147 	return ENXIO;
148 #else
149 	return 0;
150 #endif
151 }
152 
153 static struct csa_card cards_4610[] = {
154 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
155 };
156 
157 static struct csa_card cards_4614[] = {
158 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
159 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
160 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
161 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
162 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
163 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
164 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
165 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
166 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
167 };
168 
169 static struct csa_card cards_4615[] = {
170 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
171 };
172 
173 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
174 
175 struct card_type {
176 	u_int32_t devid;
177 	char *name;
178 	struct csa_card *cards;
179 };
180 
181 static struct card_type cards[] = {
182 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
183 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
184 	{CS4615_PCI_ID, "CS4615", cards_4615},
185 	{0, NULL, NULL},
186 };
187 
188 static struct card_type *
189 csa_findcard(device_t dev)
190 {
191 	int i;
192 
193 	i = 0;
194 	while (cards[i].devid != 0) {
195 		if (pci_get_devid(dev) == cards[i].devid)
196 			return &cards[i];
197 		i++;
198 	}
199 	return NULL;
200 }
201 
202 struct csa_card *
203 csa_findsubcard(device_t dev)
204 {
205 	int i;
206 	struct card_type *card;
207 	struct csa_card *subcard;
208 
209 	card = csa_findcard(dev);
210 	if (card == NULL)
211 		return &nocard;
212 	subcard = card->cards;
213 	i = 0;
214 	while (subcard[i].subvendor != 0) {
215 		if (pci_get_subvendor(dev) == subcard[i].subvendor
216 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
217 			return &subcard[i];
218 		}
219 		i++;
220 	}
221 	return &subcard[i];
222 }
223 
224 static int
225 csa_probe(device_t dev)
226 {
227 	struct card_type *card;
228 
229 	card = csa_findcard(dev);
230 	if (card) {
231 		device_set_desc(dev, card->name);
232 		return BUS_PROBE_DEFAULT;
233 	}
234 	return ENXIO;
235 }
236 
237 static int
238 csa_attach(device_t dev)
239 {
240 	u_int32_t stcmd;
241 	sc_p scp;
242 	csa_res *resp;
243 	struct sndcard_func *func;
244 	int error = ENXIO;
245 
246 	scp = device_get_softc(dev);
247 
248 	/* Fill in the softc. */
249 	bzero(scp, sizeof(*scp));
250 	scp->dev = dev;
251 
252 	/* Wake up the device. */
253 	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
254 	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
255 		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
256 		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
257 	}
258 
259 	/* Allocate the resources. */
260 	resp = &scp->res;
261 	scp->card = csa_findsubcard(dev);
262 	scp->binfo.card = scp->card;
263 	printf("csa: card is %s\n", scp->card->name);
264 	resp->io_rid = PCIR_BAR(0);
265 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
266 		&resp->io_rid, RF_ACTIVE);
267 	if (resp->io == NULL)
268 		return (ENXIO);
269 	resp->mem_rid = PCIR_BAR(1);
270 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
271 		&resp->mem_rid, RF_ACTIVE);
272 	if (resp->mem == NULL)
273 		goto err_io;
274 	resp->irq_rid = 0;
275 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
276 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
277 	if (resp->irq == NULL)
278 		goto err_mem;
279 
280 	/* Enable interrupt. */
281 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
282 		goto err_intr;
283 #if 0
284 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
285 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
286 #endif
287 
288 	/* Initialize the chip. */
289 	if (csa_initialize(scp))
290 		goto err_teardown;
291 
292 	/* Reset the Processor. */
293 	csa_resetdsp(resp);
294 
295 	/* Download the Processor Image to the processor. */
296 	if (csa_downloadimage(resp))
297 		goto err_teardown;
298 
299 	/* Attach the children. */
300 
301 	/* PCM Audio */
302 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
303 	if (func == NULL) {
304 		error = ENOMEM;
305 		goto err_teardown;
306 	}
307 	func->varinfo = &scp->binfo;
308 	func->func = SCF_PCM;
309 	scp->pcm = device_add_child(dev, "pcm", -1);
310 	device_set_ivars(scp->pcm, func);
311 
312 	/* Midi Interface */
313 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
314 	if (func == NULL) {
315 		error = ENOMEM;
316 		goto err_teardown;
317 	}
318 	func->varinfo = &scp->binfo;
319 	func->func = SCF_MIDI;
320 	scp->midi = device_add_child(dev, "midi", -1);
321 	device_set_ivars(scp->midi, func);
322 
323 	bus_generic_attach(dev);
324 
325 	return (0);
326 
327 err_teardown:
328 	bus_teardown_intr(dev, resp->irq, scp->ih);
329 err_intr:
330 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
331 err_mem:
332 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
333 err_io:
334 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
335 	return (error);
336 }
337 
338 static int
339 csa_detach(device_t dev)
340 {
341 	csa_res *resp;
342 	sc_p scp;
343 	struct sndcard_func *func;
344 	int err;
345 
346 	scp = device_get_softc(dev);
347 	resp = &scp->res;
348 
349 	if (scp->midi != NULL) {
350 		func = device_get_ivars(scp->midi);
351 		err = device_delete_child(dev, scp->midi);
352 		if (err != 0)
353 			return err;
354 		if (func != NULL)
355 			free(func, M_DEVBUF);
356 		scp->midi = NULL;
357 	}
358 
359 	if (scp->pcm != NULL) {
360 		func = device_get_ivars(scp->pcm);
361 		err = device_delete_child(dev, scp->pcm);
362 		if (err != 0)
363 			return err;
364 		if (func != NULL)
365 			free(func, M_DEVBUF);
366 		scp->pcm = NULL;
367 	}
368 
369 	bus_teardown_intr(dev, resp->irq, scp->ih);
370 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
371 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
372 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
373 
374 	return bus_generic_detach(dev);
375 }
376 
377 static int
378 csa_resume(device_t dev)
379 {
380 	csa_res *resp;
381 	sc_p scp;
382 
383 	scp = device_get_softc(dev);
384 	resp = &scp->res;
385 
386 	/* Initialize the chip. */
387 	if (csa_initialize(scp))
388 		return (ENXIO);
389 
390 	/* Reset the Processor. */
391 	csa_resetdsp(resp);
392 
393 	/* Download the Processor Image to the processor. */
394 	if (csa_downloadimage(resp))
395 		return (ENXIO);
396 
397 	return (bus_generic_resume(dev));
398 }
399 
400 static struct resource *
401 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
402 		      u_long start, u_long end, u_long count, u_int flags)
403 {
404 	sc_p scp;
405 	csa_res *resp;
406 	struct resource *res;
407 
408 	scp = device_get_softc(bus);
409 	resp = &scp->res;
410 	switch (type) {
411 	case SYS_RES_IRQ:
412 		if (*rid != 0)
413 			return (NULL);
414 		res = resp->irq;
415 		break;
416 	case SYS_RES_MEMORY:
417 		switch (*rid) {
418 		case PCIR_BAR(0):
419 			res = resp->io;
420 			break;
421 		case PCIR_BAR(1):
422 			res = resp->mem;
423 			break;
424 		default:
425 			return (NULL);
426 		}
427 		break;
428 	default:
429 		return (NULL);
430 	}
431 
432 	return res;
433 }
434 
435 static int
436 csa_release_resource(device_t bus, device_t child, int type, int rid,
437 			struct resource *r)
438 {
439 	return (0);
440 }
441 
442 /*
443  * The following three functions deal with interrupt handling.
444  * An interrupt is primarily handled by the bridge driver.
445  * The bridge driver then determines the child devices to pass
446  * the interrupt. Certain information of the device can be read
447  * only once(eg the value of HISR). The bridge driver is responsible
448  * to pass such the information to the children.
449  */
450 
451 static int
452 csa_setup_intr(device_t bus, device_t child,
453 	       struct resource *irq, int flags,
454 #if __FreeBSD_version >= 700031
455 	       driver_filter_t *filter,
456 #endif
457 	       driver_intr_t *intr, void *arg, void **cookiep)
458 {
459 	sc_p scp;
460 	csa_res *resp;
461 	struct sndcard_func *func;
462 
463 #if __FreeBSD_version >= 700031
464 	if (filter != NULL) {
465 		printf("ata-csa.c: we cannot use a filter here\n");
466 		return (EINVAL);
467 	}
468 #endif
469 	scp = device_get_softc(bus);
470 	resp = &scp->res;
471 
472 	/*
473 	 * Look at the function code of the child to determine
474 	 * the appropriate hander for it.
475 	 */
476 	func = device_get_ivars(child);
477 	if (func == NULL || irq != resp->irq)
478 		return (EINVAL);
479 
480 	switch (func->func) {
481 	case SCF_PCM:
482 		scp->pcmintr = intr;
483 		scp->pcmintr_arg = arg;
484 		break;
485 
486 	case SCF_MIDI:
487 		scp->midiintr = intr;
488 		scp->midiintr_arg = arg;
489 		break;
490 
491 	default:
492 		return (EINVAL);
493 	}
494 	*cookiep = scp;
495 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
496 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
497 
498 	return (0);
499 }
500 
501 static int
502 csa_teardown_intr(device_t bus, device_t child,
503 		  struct resource *irq, void *cookie)
504 {
505 	sc_p scp;
506 	csa_res *resp;
507 	struct sndcard_func *func;
508 
509 	scp = device_get_softc(bus);
510 	resp = &scp->res;
511 
512 	/*
513 	 * Look at the function code of the child to determine
514 	 * the appropriate hander for it.
515 	 */
516 	func = device_get_ivars(child);
517 	if (func == NULL || irq != resp->irq || cookie != scp)
518 		return (EINVAL);
519 
520 	switch (func->func) {
521 	case SCF_PCM:
522 		scp->pcmintr = NULL;
523 		scp->pcmintr_arg = NULL;
524 		break;
525 
526 	case SCF_MIDI:
527 		scp->midiintr = NULL;
528 		scp->midiintr_arg = NULL;
529 		break;
530 
531 	default:
532 		return (EINVAL);
533 	}
534 
535 	return (0);
536 }
537 
538 /* The interrupt handler */
539 static void
540 csa_intr(void *arg)
541 {
542 	sc_p scp = arg;
543 	csa_res *resp;
544 	u_int32_t hisr;
545 
546 	resp = &scp->res;
547 
548 	/* Is this interrupt for us? */
549 	hisr = csa_readio(resp, BA0_HISR);
550 	if ((hisr & 0x7fffffff) == 0) {
551 		/* Throw an eoi. */
552 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
553 		return;
554 	}
555 
556 	/*
557 	 * Pass the value of HISR via struct csa_bridgeinfo.
558 	 * The children get access through their ivars.
559 	 */
560 	scp->binfo.hisr = hisr;
561 
562 	/* Invoke the handlers of the children. */
563 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
564 		scp->pcmintr(scp->pcmintr_arg);
565 		hisr &= ~(HISR_VC0 | HISR_VC1);
566 	}
567 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
568 		scp->midiintr(scp->midiintr_arg);
569 		hisr &= ~HISR_MIDI;
570 	}
571 
572 	/* Throw an eoi. */
573 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
574 }
575 
576 static int
577 csa_initialize(sc_p scp)
578 {
579 	int i;
580 	u_int32_t acsts, acisv;
581 	csa_res *resp;
582 
583 	resp = &scp->res;
584 
585 	/*
586 	 * First, blast the clock control register to zero so that the PLL starts
587 	 * out in a known state, and blast the master serial port control register
588 	 * to zero so that the serial ports also start out in a known state.
589 	 */
590 	csa_writeio(resp, BA0_CLKCR1, 0);
591 	csa_writeio(resp, BA0_SERMC1, 0);
592 
593 	/*
594 	 * If we are in AC97 mode, then we must set the part to a host controlled
595 	 * AC-link.  Otherwise, we won't be able to bring up the link.
596 	 */
597 #if 1
598 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
599 #else
600 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
601 #endif /* 1 */
602 
603 	/*
604 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
605 	 * spec) and then drive it high.  This is done for non AC97 modes since
606 	 * there might be logic external to the CS461x that uses the ARST# line
607 	 * for a reset.
608 	 */
609 	csa_writeio(resp, BA0_ACCTL, 1);
610 	DELAY(50);
611 	csa_writeio(resp, BA0_ACCTL, 0);
612 	DELAY(50);
613 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
614 
615 	/*
616 	 * The first thing we do here is to enable sync generation.  As soon
617 	 * as we start receiving bit clock, we'll start producing the SYNC
618 	 * signal.
619 	 */
620 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
621 
622 	/*
623 	 * Now wait for a short while to allow the AC97 part to start
624 	 * generating bit clock (so we don't try to start the PLL without an
625 	 * input clock).
626 	 */
627 	DELAY(50000);
628 
629 	/*
630 	 * Set the serial port timing configuration, so that
631 	 * the clock control circuit gets its clock from the correct place.
632 	 */
633 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
634 	DELAY(700000);
635 
636 	/*
637 	 * Write the selected clock control setup to the hardware.  Do not turn on
638 	 * SWCE yet (if requested), so that the devices clocked by the output of
639 	 * PLL are not clocked until the PLL is stable.
640 	 */
641 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
642 	csa_writeio(resp, BA0_PLLM, 0x3a);
643 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
644 
645 	/*
646 	 * Power up the PLL.
647 	 */
648 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
649 
650 	/*
651 	 * Wait until the PLL has stabilized.
652 	 */
653 	DELAY(5000);
654 
655 	/*
656 	 * Turn on clocking of the core so that we can setup the serial ports.
657 	 */
658 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
659 
660 	/*
661 	 * Fill the serial port FIFOs with silence.
662 	 */
663 	csa_clearserialfifos(resp);
664 
665 	/*
666 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
667 	 */
668 #ifdef notdef
669 	csa_writeio(resp, BA0_SERBSP, 0);
670 #endif /* notdef */
671 
672 	/*
673 	 *  Write the serial port configuration to the part.  The master
674 	 *  enable bit is not set until all other values have been written.
675 	 */
676 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
677 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
678 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
679 
680 	/*
681 	 * Wait for the codec ready signal from the AC97 codec.
682 	 */
683 	acsts = 0;
684 	for (i = 0 ; i < 1000 ; i++) {
685 		/*
686 		 * First, lets wait a short while to let things settle out a bit,
687 		 * and to prevent retrying the read too quickly.
688 		 */
689 		DELAY(125);
690 
691 		/*
692 		 * Read the AC97 status register to see if we've seen a CODEC READY
693 		 * signal from the AC97 codec.
694 		 */
695 		acsts = csa_readio(resp, BA0_ACSTS);
696 		if ((acsts & ACSTS_CRDY) != 0)
697 			break;
698 	}
699 
700 	/*
701 	 * Make sure we sampled CODEC READY.
702 	 */
703 	if ((acsts & ACSTS_CRDY) == 0)
704 		return (ENXIO);
705 
706 	/*
707 	 * Assert the vaid frame signal so that we can start sending commands
708 	 * to the AC97 codec.
709 	 */
710 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
711 
712 	/*
713 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
714 	 * the codec is pumping ADC data across the AC-link.
715 	 */
716 	acisv = 0;
717 	for (i = 0 ; i < 1000 ; i++) {
718 		/*
719 		 * First, lets wait a short while to let things settle out a bit,
720 		 * and to prevent retrying the read too quickly.
721 		 */
722 #ifdef notdef
723 		DELAY(10000000L); /* clw */
724 #else
725 		DELAY(1000);
726 #endif /* notdef */
727 		/*
728 		 * Read the input slot valid register and see if input slots 3 and
729 		 * 4 are valid yet.
730 		 */
731 		acisv = csa_readio(resp, BA0_ACISV);
732 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
733 			break;
734 	}
735 	/*
736 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
737 	 * an error.
738 	 */
739 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
740 		return (ENXIO);
741 
742 	/*
743 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
744 	 * commense the transfer of digital audio data to the AC97 codec.
745 	 */
746 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
747 
748 	/*
749 	 * Power down the DAC and ADC.  We will power them up (if) when we need
750 	 * them.
751 	 */
752 #ifdef notdef
753 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
754 #endif /* notdef */
755 
756 	/*
757 	 * Turn off the Processor by turning off the software clock enable flag in
758 	 * the clock control register.
759 	 */
760 #ifdef notdef
761 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
762 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
763 #endif /* notdef */
764 
765 	/*
766 	 * Enable interrupts on the part.
767 	 */
768 #if 0
769 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
770 #endif /* notdef */
771 
772 	return (0);
773 }
774 
775 void
776 csa_clearserialfifos(csa_res *resp)
777 {
778 	int i, j, pwr;
779 	u_int8_t clkcr1, serbst;
780 
781 	/*
782 	 * See if the devices are powered down.  If so, we must power them up first
783 	 * or they will not respond.
784 	 */
785 	pwr = 1;
786 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
787 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
788 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
789 		pwr = 0;
790 	}
791 
792 	/*
793 	 * We want to clear out the serial port FIFOs so we don't end up playing
794 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
795 	 * with zero (silence).
796 	 */
797 	csa_writeio(resp, BA0_SERBWP, 0);
798 
799 	/* Fill all 256 sample FIFO locations. */
800 	serbst = 0;
801 	for (i = 0 ; i < 256 ; i++) {
802 		/* Make sure the previous FIFO write operation has completed. */
803 		for (j = 0 ; j < 5 ; j++) {
804 			DELAY(100);
805 			serbst = csa_readio(resp, BA0_SERBST);
806 			if ((serbst & SERBST_WBSY) == 0)
807 				break;
808 		}
809 		if ((serbst & SERBST_WBSY) != 0) {
810 			if (!pwr)
811 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
812 		}
813 		/* Write the serial port FIFO index. */
814 		csa_writeio(resp, BA0_SERBAD, i);
815 		/* Tell the serial port to load the new value into the FIFO location. */
816 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
817 	}
818 	/*
819 	 *  Now, if we powered up the devices, then power them back down again.
820 	 *  This is kinda ugly, but should never happen.
821 	 */
822 	if (!pwr)
823 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
824 }
825 
826 void
827 csa_resetdsp(csa_res *resp)
828 {
829 	int i;
830 
831 	/*
832 	 * Write the reset bit of the SP control register.
833 	 */
834 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
835 
836 	/*
837 	 * Write the control register.
838 	 */
839 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
840 
841 	/*
842 	 * Clear the trap registers.
843 	 */
844 	for (i = 0 ; i < 8 ; i++) {
845 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
846 		csa_writemem(resp, BA1_TWPR, 0xffff);
847 	}
848 	csa_writemem(resp, BA1_DREG, 0);
849 
850 	/*
851 	 * Set the frame timer to reflect the number of cycles per frame.
852 	 */
853 	csa_writemem(resp, BA1_FRMT, 0xadf);
854 }
855 
856 static int
857 csa_downloadimage(csa_res *resp)
858 {
859 	int i;
860 	u_int32_t tmp, src, dst, count, data;
861 
862 	for (i = 0; i < CLEAR__COUNT; i++) {
863 		dst = ClrStat[i].BA1__DestByteOffset;
864 		count = ClrStat[i].BA1__SourceSize;
865 		for (tmp = 0; tmp < count; tmp += 4)
866 			csa_writemem(resp, dst + tmp, 0x00000000);
867 	}
868 
869 	for (i = 0; i < FILL__COUNT; i++) {
870 		src = 0;
871 		dst = FillStat[i].Offset;
872 		count = FillStat[i].Size;
873 		for (tmp = 0; tmp < count; tmp += 4) {
874 			data = FillStat[i].pFill[src];
875 			csa_writemem(resp, dst + tmp, data);
876 			src++;
877 		}
878 	}
879 
880 	return (0);
881 }
882 
883 int
884 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
885 {
886 	int i;
887 	u_int32_t acsda, acctl, acsts;
888 
889 	/*
890 	 * Make sure that there is not data sitting around from a previous
891 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
892 	 */
893 	acsda = csa_readio(resp, BA0_ACSDA);
894 
895 	/*
896 	 * Setup the AC97 control registers on the CS461x to send the
897 	 * appropriate command to the AC97 to perform the read.
898 	 * ACCAD = Command Address Register = 46Ch
899 	 * ACCDA = Command Data Register = 470h
900 	 * ACCTL = Control Register = 460h
901 	 * set DCV - will clear when process completed
902 	 * set CRW - Read command
903 	 * set VFRM - valid frame enabled
904 	 * set ESYN - ASYNC generation enabled
905 	 * set RSTN - ARST# inactive, AC97 codec not reset
906 	 */
907 
908 	/*
909 	 * Get the actual AC97 register from the offset
910 	 */
911 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
912 	csa_writeio(resp, BA0_ACCDA, 0);
913 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
914 
915 	/*
916 	 * Wait for the read to occur.
917 	 */
918 	acctl = 0;
919 	for (i = 0 ; i < 10 ; i++) {
920 		/*
921 		 * First, we want to wait for a short time.
922 		 */
923 		DELAY(25);
924 
925 		/*
926 		 * Now, check to see if the read has completed.
927 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
928 		 */
929 		acctl = csa_readio(resp, BA0_ACCTL);
930 		if ((acctl & ACCTL_DCV) == 0)
931 			break;
932 	}
933 
934 	/*
935 	 * Make sure the read completed.
936 	 */
937 	if ((acctl & ACCTL_DCV) != 0)
938 		return (EAGAIN);
939 
940 	/*
941 	 * Wait for the valid status bit to go active.
942 	 */
943 	acsts = 0;
944 	for (i = 0 ; i < 10 ; i++) {
945 		/*
946 		 * Read the AC97 status register.
947 		 * ACSTS = Status Register = 464h
948 		 */
949 		acsts = csa_readio(resp, BA0_ACSTS);
950 		/*
951 		 * See if we have valid status.
952 		 * VSTS - Valid Status
953 		 */
954 		if ((acsts & ACSTS_VSTS) != 0)
955 			break;
956 		/*
957 		 * Wait for a short while.
958 		 */
959 		 DELAY(25);
960 	}
961 
962 	/*
963 	 * Make sure we got valid status.
964 	 */
965 	if ((acsts & ACSTS_VSTS) == 0)
966 		return (EAGAIN);
967 
968 	/*
969 	 * Read the data returned from the AC97 register.
970 	 * ACSDA = Status Data Register = 474h
971 	 */
972 	*data = csa_readio(resp, BA0_ACSDA);
973 
974 	return (0);
975 }
976 
977 int
978 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
979 {
980 	int i;
981 	u_int32_t acctl;
982 
983 	/*
984 	 * Setup the AC97 control registers on the CS461x to send the
985 	 * appropriate command to the AC97 to perform the write.
986 	 * ACCAD = Command Address Register = 46Ch
987 	 * ACCDA = Command Data Register = 470h
988 	 * ACCTL = Control Register = 460h
989 	 * set DCV - will clear when process completed
990 	 * set VFRM - valid frame enabled
991 	 * set ESYN - ASYNC generation enabled
992 	 * set RSTN - ARST# inactive, AC97 codec not reset
993 	 */
994 
995 	/*
996 	 * Get the actual AC97 register from the offset
997 	 */
998 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
999 	csa_writeio(resp, BA0_ACCDA, data);
1000 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1001 
1002 	/*
1003 	 * Wait for the write to occur.
1004 	 */
1005 	acctl = 0;
1006 	for (i = 0 ; i < 10 ; i++) {
1007 		/*
1008 		 * First, we want to wait for a short time.
1009 		 */
1010 		DELAY(25);
1011 
1012 		/*
1013 		 * Now, check to see if the read has completed.
1014 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1015 		 */
1016 		acctl = csa_readio(resp, BA0_ACCTL);
1017 		if ((acctl & ACCTL_DCV) == 0)
1018 			break;
1019 	}
1020 
1021 	/*
1022 	 * Make sure the write completed.
1023 	 */
1024 	if ((acctl & ACCTL_DCV) != 0)
1025 		return (EAGAIN);
1026 
1027 	return (0);
1028 }
1029 
1030 u_int32_t
1031 csa_readio(csa_res *resp, u_long offset)
1032 {
1033 	u_int32_t ul;
1034 
1035 	if (offset < BA0_AC97_RESET)
1036 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1037 	else {
1038 		if (csa_readcodec(resp, offset, &ul))
1039 			ul = 0;
1040 		return (ul);
1041 	}
1042 }
1043 
1044 void
1045 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1046 {
1047 	if (offset < BA0_AC97_RESET)
1048 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1049 	else
1050 		csa_writecodec(resp, offset, data);
1051 }
1052 
1053 u_int32_t
1054 csa_readmem(csa_res *resp, u_long offset)
1055 {
1056 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1057 }
1058 
1059 void
1060 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1061 {
1062 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1063 }
1064 
1065 static device_method_t csa_methods[] = {
1066 	/* Device interface */
1067 	DEVMETHOD(device_probe,		csa_probe),
1068 	DEVMETHOD(device_attach,	csa_attach),
1069 	DEVMETHOD(device_detach,	csa_detach),
1070 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1071 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1072 	DEVMETHOD(device_resume,	csa_resume),
1073 
1074 	/* Bus interface */
1075 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1076 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1077 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1078 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1079 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1080 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1081 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1082 
1083 	{ 0, 0 }
1084 };
1085 
1086 static driver_t csa_driver = {
1087 	"csa",
1088 	csa_methods,
1089 	sizeof(struct csa_softc),
1090 };
1091 
1092 /*
1093  * csa can be attached to a pci bus.
1094  */
1095 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1096 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1097 MODULE_VERSION(snd_csa, 1);
1098