xref: /freebsd/sys/dev/sound/pci/csa.c (revision aa24f48b361effe51163877d84f1b70d32b77e04)
1 /*-
2  * Copyright (c) 1999 Seigo Tanimura
3  * All rights reserved.
4  *
5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <machine/resource.h>
38 #include <machine/bus.h>
39 #include <sys/rman.h>
40 
41 #ifdef HAVE_KERNEL_OPTION_HEADERS
42 #include "opt_snd.h"
43 #endif
44 
45 #include <dev/sound/pcm/sound.h>
46 #include <dev/sound/chip.h>
47 #include <dev/sound/pci/csareg.h>
48 #include <dev/sound/pci/csavar.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <dev/sound/pci/cs461x_dsp.h>
54 
55 SND_DECLARE_FILE("$FreeBSD$");
56 
57 /* This is the pci device id. */
58 #define CS4610_PCI_ID 0x60011013
59 #define CS4614_PCI_ID 0x60031013
60 #define CS4615_PCI_ID 0x60041013
61 
62 /* Here is the parameter structure per a device. */
63 struct csa_softc {
64 	device_t dev; /* device */
65 	csa_res res; /* resources */
66 
67 	device_t pcm; /* pcm device */
68 	driver_intr_t* pcmintr; /* pcm intr */
69 	void *pcmintr_arg; /* pcm intr arg */
70 	device_t midi; /* midi device */
71 	driver_intr_t* midiintr; /* midi intr */
72 	void *midiintr_arg; /* midi intr arg */
73 	void *ih; /* cookie */
74 
75 	struct csa_card *card;
76 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
77 };
78 
79 typedef struct csa_softc *sc_p;
80 
81 static int csa_probe(device_t dev);
82 static int csa_attach(device_t dev);
83 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
84 					      rman_res_t start, rman_res_t end,
85 					      rman_res_t count, u_int flags);
86 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
87 				   struct resource *r);
88 static int csa_setup_intr(device_t bus, device_t child,
89 			  struct resource *irq, int flags,
90 			  driver_filter_t *filter,
91 			  driver_intr_t *intr,  void *arg, void **cookiep);
92 static int csa_teardown_intr(device_t bus, device_t child,
93 			     struct resource *irq, void *cookie);
94 static driver_intr_t csa_intr;
95 static int csa_initialize(sc_p scp);
96 static int csa_downloadimage(csa_res *resp);
97 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
98 
99 static devclass_t csa_devclass;
100 
101 static void
102 amp_none(void)
103 {
104 }
105 
106 static void
107 amp_voyetra(void)
108 {
109 }
110 
111 static int
112 clkrun_hack(int run)
113 {
114 #ifdef __i386__
115 	devclass_t		pci_devclass;
116 	device_t		*pci_devices, *pci_children, *busp, *childp;
117 	int			pci_count = 0, pci_childcount = 0;
118 	int			i, j, port;
119 	u_int16_t		control;
120 	bus_space_tag_t		btag;
121 
122 	if ((pci_devclass = devclass_find("pci")) == NULL) {
123 		return ENXIO;
124 	}
125 
126 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
127 
128 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
129 		pci_childcount = 0;
130 		if (device_get_children(*busp, &pci_children, &pci_childcount))
131 			continue;
132 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
133 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
134 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
135 				/* XXX */
136 				btag = X86_BUS_SPACE_IO;
137 
138 				control = bus_space_read_2(btag, 0x0, port);
139 				control &= ~0x2000;
140 				control |= run? 0 : 0x2000;
141 				bus_space_write_2(btag, 0x0, port, control);
142 				free(pci_devices, M_TEMP);
143 				free(pci_children, M_TEMP);
144 				return 0;
145 			}
146 		}
147 		free(pci_children, M_TEMP);
148 	}
149 
150 	free(pci_devices, M_TEMP);
151 	return ENXIO;
152 #else
153 	return 0;
154 #endif
155 }
156 
157 static struct csa_card cards_4610[] = {
158 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
159 };
160 
161 static struct csa_card cards_4614[] = {
162 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
163 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
164 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
165 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
166 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
167 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
168 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
169 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
170 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
171 };
172 
173 static struct csa_card cards_4615[] = {
174 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
175 };
176 
177 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
178 
179 struct card_type {
180 	u_int32_t devid;
181 	char *name;
182 	struct csa_card *cards;
183 };
184 
185 static struct card_type cards[] = {
186 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
187 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
188 	{CS4615_PCI_ID, "CS4615", cards_4615},
189 	{0, NULL, NULL},
190 };
191 
192 static struct card_type *
193 csa_findcard(device_t dev)
194 {
195 	int i;
196 
197 	i = 0;
198 	while (cards[i].devid != 0) {
199 		if (pci_get_devid(dev) == cards[i].devid)
200 			return &cards[i];
201 		i++;
202 	}
203 	return NULL;
204 }
205 
206 struct csa_card *
207 csa_findsubcard(device_t dev)
208 {
209 	int i;
210 	struct card_type *card;
211 	struct csa_card *subcard;
212 
213 	card = csa_findcard(dev);
214 	if (card == NULL)
215 		return &nocard;
216 	subcard = card->cards;
217 	i = 0;
218 	while (subcard[i].subvendor != 0) {
219 		if (pci_get_subvendor(dev) == subcard[i].subvendor
220 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
221 			return &subcard[i];
222 		}
223 		i++;
224 	}
225 	return &subcard[i];
226 }
227 
228 static int
229 csa_probe(device_t dev)
230 {
231 	struct card_type *card;
232 
233 	card = csa_findcard(dev);
234 	if (card) {
235 		device_set_desc(dev, card->name);
236 		return BUS_PROBE_DEFAULT;
237 	}
238 	return ENXIO;
239 }
240 
241 static int
242 csa_attach(device_t dev)
243 {
244 	sc_p scp;
245 	csa_res *resp;
246 	struct sndcard_func *func;
247 	int error = ENXIO;
248 
249 	scp = device_get_softc(dev);
250 
251 	/* Fill in the softc. */
252 	bzero(scp, sizeof(*scp));
253 	scp->dev = dev;
254 
255 	pci_enable_busmaster(dev);
256 
257 	/* Allocate the resources. */
258 	resp = &scp->res;
259 	scp->card = csa_findsubcard(dev);
260 	scp->binfo.card = scp->card;
261 	printf("csa: card is %s\n", scp->card->name);
262 	resp->io_rid = PCIR_BAR(0);
263 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
264 		&resp->io_rid, RF_ACTIVE);
265 	if (resp->io == NULL)
266 		return (ENXIO);
267 	resp->mem_rid = PCIR_BAR(1);
268 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
269 		&resp->mem_rid, RF_ACTIVE);
270 	if (resp->mem == NULL)
271 		goto err_io;
272 	resp->irq_rid = 0;
273 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
274 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
275 	if (resp->irq == NULL)
276 		goto err_mem;
277 
278 	/* Enable interrupt. */
279 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
280 		goto err_intr;
281 #if 0
282 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
283 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
284 #endif
285 
286 	/* Initialize the chip. */
287 	if (csa_initialize(scp))
288 		goto err_teardown;
289 
290 	/* Reset the Processor. */
291 	csa_resetdsp(resp);
292 
293 	/* Download the Processor Image to the processor. */
294 	if (csa_downloadimage(resp))
295 		goto err_teardown;
296 
297 	/* Attach the children. */
298 
299 	/* PCM Audio */
300 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
301 	if (func == NULL) {
302 		error = ENOMEM;
303 		goto err_teardown;
304 	}
305 	func->varinfo = &scp->binfo;
306 	func->func = SCF_PCM;
307 	scp->pcm = device_add_child(dev, "pcm", -1);
308 	device_set_ivars(scp->pcm, func);
309 
310 	/* Midi Interface */
311 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
312 	if (func == NULL) {
313 		error = ENOMEM;
314 		goto err_teardown;
315 	}
316 	func->varinfo = &scp->binfo;
317 	func->func = SCF_MIDI;
318 	scp->midi = device_add_child(dev, "midi", -1);
319 	device_set_ivars(scp->midi, func);
320 
321 	bus_generic_attach(dev);
322 
323 	return (0);
324 
325 err_teardown:
326 	bus_teardown_intr(dev, resp->irq, scp->ih);
327 err_intr:
328 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
329 err_mem:
330 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
331 err_io:
332 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
333 	return (error);
334 }
335 
336 static int
337 csa_detach(device_t dev)
338 {
339 	csa_res *resp;
340 	sc_p scp;
341 	struct sndcard_func *func;
342 	int err;
343 
344 	scp = device_get_softc(dev);
345 	resp = &scp->res;
346 
347 	if (scp->midi != NULL) {
348 		func = device_get_ivars(scp->midi);
349 		err = device_delete_child(dev, scp->midi);
350 		if (err != 0)
351 			return err;
352 		if (func != NULL)
353 			free(func, M_DEVBUF);
354 		scp->midi = NULL;
355 	}
356 
357 	if (scp->pcm != NULL) {
358 		func = device_get_ivars(scp->pcm);
359 		err = device_delete_child(dev, scp->pcm);
360 		if (err != 0)
361 			return err;
362 		if (func != NULL)
363 			free(func, M_DEVBUF);
364 		scp->pcm = NULL;
365 	}
366 
367 	bus_teardown_intr(dev, resp->irq, scp->ih);
368 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
369 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
370 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
371 
372 	return bus_generic_detach(dev);
373 }
374 
375 static int
376 csa_resume(device_t dev)
377 {
378 	csa_res *resp;
379 	sc_p scp;
380 
381 	scp = device_get_softc(dev);
382 	resp = &scp->res;
383 
384 	/* Initialize the chip. */
385 	if (csa_initialize(scp))
386 		return (ENXIO);
387 
388 	/* Reset the Processor. */
389 	csa_resetdsp(resp);
390 
391 	/* Download the Processor Image to the processor. */
392 	if (csa_downloadimage(resp))
393 		return (ENXIO);
394 
395 	return (bus_generic_resume(dev));
396 }
397 
398 static struct resource *
399 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
400 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
401 {
402 	sc_p scp;
403 	csa_res *resp;
404 	struct resource *res;
405 
406 	scp = device_get_softc(bus);
407 	resp = &scp->res;
408 	switch (type) {
409 	case SYS_RES_IRQ:
410 		if (*rid != 0)
411 			return (NULL);
412 		res = resp->irq;
413 		break;
414 	case SYS_RES_MEMORY:
415 		switch (*rid) {
416 		case PCIR_BAR(0):
417 			res = resp->io;
418 			break;
419 		case PCIR_BAR(1):
420 			res = resp->mem;
421 			break;
422 		default:
423 			return (NULL);
424 		}
425 		break;
426 	default:
427 		return (NULL);
428 	}
429 
430 	return res;
431 }
432 
433 static int
434 csa_release_resource(device_t bus, device_t child, int type, int rid,
435 			struct resource *r)
436 {
437 	return (0);
438 }
439 
440 /*
441  * The following three functions deal with interrupt handling.
442  * An interrupt is primarily handled by the bridge driver.
443  * The bridge driver then determines the child devices to pass
444  * the interrupt. Certain information of the device can be read
445  * only once(eg the value of HISR). The bridge driver is responsible
446  * to pass such the information to the children.
447  */
448 
449 static int
450 csa_setup_intr(device_t bus, device_t child,
451 	       struct resource *irq, int flags,
452 	       driver_filter_t *filter,
453 	       driver_intr_t *intr, void *arg, void **cookiep)
454 {
455 	sc_p scp;
456 	csa_res *resp;
457 	struct sndcard_func *func;
458 
459 	if (filter != NULL) {
460 		printf("ata-csa.c: we cannot use a filter here\n");
461 		return (EINVAL);
462 	}
463 	scp = device_get_softc(bus);
464 	resp = &scp->res;
465 
466 	/*
467 	 * Look at the function code of the child to determine
468 	 * the appropriate hander for it.
469 	 */
470 	func = device_get_ivars(child);
471 	if (func == NULL || irq != resp->irq)
472 		return (EINVAL);
473 
474 	switch (func->func) {
475 	case SCF_PCM:
476 		scp->pcmintr = intr;
477 		scp->pcmintr_arg = arg;
478 		break;
479 
480 	case SCF_MIDI:
481 		scp->midiintr = intr;
482 		scp->midiintr_arg = arg;
483 		break;
484 
485 	default:
486 		return (EINVAL);
487 	}
488 	*cookiep = scp;
489 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
490 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
491 
492 	return (0);
493 }
494 
495 static int
496 csa_teardown_intr(device_t bus, device_t child,
497 		  struct resource *irq, void *cookie)
498 {
499 	sc_p scp;
500 	csa_res *resp;
501 	struct sndcard_func *func;
502 
503 	scp = device_get_softc(bus);
504 	resp = &scp->res;
505 
506 	/*
507 	 * Look at the function code of the child to determine
508 	 * the appropriate hander for it.
509 	 */
510 	func = device_get_ivars(child);
511 	if (func == NULL || irq != resp->irq || cookie != scp)
512 		return (EINVAL);
513 
514 	switch (func->func) {
515 	case SCF_PCM:
516 		scp->pcmintr = NULL;
517 		scp->pcmintr_arg = NULL;
518 		break;
519 
520 	case SCF_MIDI:
521 		scp->midiintr = NULL;
522 		scp->midiintr_arg = NULL;
523 		break;
524 
525 	default:
526 		return (EINVAL);
527 	}
528 
529 	return (0);
530 }
531 
532 /* The interrupt handler */
533 static void
534 csa_intr(void *arg)
535 {
536 	sc_p scp = arg;
537 	csa_res *resp;
538 	u_int32_t hisr;
539 
540 	resp = &scp->res;
541 
542 	/* Is this interrupt for us? */
543 	hisr = csa_readio(resp, BA0_HISR);
544 	if ((hisr & 0x7fffffff) == 0) {
545 		/* Throw an eoi. */
546 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
547 		return;
548 	}
549 
550 	/*
551 	 * Pass the value of HISR via struct csa_bridgeinfo.
552 	 * The children get access through their ivars.
553 	 */
554 	scp->binfo.hisr = hisr;
555 
556 	/* Invoke the handlers of the children. */
557 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
558 		scp->pcmintr(scp->pcmintr_arg);
559 		hisr &= ~(HISR_VC0 | HISR_VC1);
560 	}
561 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
562 		scp->midiintr(scp->midiintr_arg);
563 		hisr &= ~HISR_MIDI;
564 	}
565 
566 	/* Throw an eoi. */
567 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
568 }
569 
570 static int
571 csa_initialize(sc_p scp)
572 {
573 	int i;
574 	u_int32_t acsts, acisv;
575 	csa_res *resp;
576 
577 	resp = &scp->res;
578 
579 	/*
580 	 * First, blast the clock control register to zero so that the PLL starts
581 	 * out in a known state, and blast the master serial port control register
582 	 * to zero so that the serial ports also start out in a known state.
583 	 */
584 	csa_writeio(resp, BA0_CLKCR1, 0);
585 	csa_writeio(resp, BA0_SERMC1, 0);
586 
587 	/*
588 	 * If we are in AC97 mode, then we must set the part to a host controlled
589 	 * AC-link.  Otherwise, we won't be able to bring up the link.
590 	 */
591 #if 1
592 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
593 #else
594 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
595 #endif /* 1 */
596 
597 	/*
598 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
599 	 * spec) and then drive it high.  This is done for non AC97 modes since
600 	 * there might be logic external to the CS461x that uses the ARST# line
601 	 * for a reset.
602 	 */
603 	csa_writeio(resp, BA0_ACCTL, 1);
604 	DELAY(50);
605 	csa_writeio(resp, BA0_ACCTL, 0);
606 	DELAY(50);
607 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
608 
609 	/*
610 	 * The first thing we do here is to enable sync generation.  As soon
611 	 * as we start receiving bit clock, we'll start producing the SYNC
612 	 * signal.
613 	 */
614 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
615 
616 	/*
617 	 * Now wait for a short while to allow the AC97 part to start
618 	 * generating bit clock (so we don't try to start the PLL without an
619 	 * input clock).
620 	 */
621 	DELAY(50000);
622 
623 	/*
624 	 * Set the serial port timing configuration, so that
625 	 * the clock control circuit gets its clock from the correct place.
626 	 */
627 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
628 	DELAY(700000);
629 
630 	/*
631 	 * Write the selected clock control setup to the hardware.  Do not turn on
632 	 * SWCE yet (if requested), so that the devices clocked by the output of
633 	 * PLL are not clocked until the PLL is stable.
634 	 */
635 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
636 	csa_writeio(resp, BA0_PLLM, 0x3a);
637 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
638 
639 	/*
640 	 * Power up the PLL.
641 	 */
642 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
643 
644 	/*
645 	 * Wait until the PLL has stabilized.
646 	 */
647 	DELAY(5000);
648 
649 	/*
650 	 * Turn on clocking of the core so that we can setup the serial ports.
651 	 */
652 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
653 
654 	/*
655 	 * Fill the serial port FIFOs with silence.
656 	 */
657 	csa_clearserialfifos(resp);
658 
659 	/*
660 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
661 	 */
662 #ifdef notdef
663 	csa_writeio(resp, BA0_SERBSP, 0);
664 #endif /* notdef */
665 
666 	/*
667 	 *  Write the serial port configuration to the part.  The master
668 	 *  enable bit is not set until all other values have been written.
669 	 */
670 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
671 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
672 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
673 
674 	/*
675 	 * Wait for the codec ready signal from the AC97 codec.
676 	 */
677 	acsts = 0;
678 	for (i = 0 ; i < 1000 ; i++) {
679 		/*
680 		 * First, lets wait a short while to let things settle out a bit,
681 		 * and to prevent retrying the read too quickly.
682 		 */
683 		DELAY(125);
684 
685 		/*
686 		 * Read the AC97 status register to see if we've seen a CODEC READY
687 		 * signal from the AC97 codec.
688 		 */
689 		acsts = csa_readio(resp, BA0_ACSTS);
690 		if ((acsts & ACSTS_CRDY) != 0)
691 			break;
692 	}
693 
694 	/*
695 	 * Make sure we sampled CODEC READY.
696 	 */
697 	if ((acsts & ACSTS_CRDY) == 0)
698 		return (ENXIO);
699 
700 	/*
701 	 * Assert the vaid frame signal so that we can start sending commands
702 	 * to the AC97 codec.
703 	 */
704 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
705 
706 	/*
707 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
708 	 * the codec is pumping ADC data across the AC-link.
709 	 */
710 	acisv = 0;
711 	for (i = 0 ; i < 1000 ; i++) {
712 		/*
713 		 * First, lets wait a short while to let things settle out a bit,
714 		 * and to prevent retrying the read too quickly.
715 		 */
716 #ifdef notdef
717 		DELAY(10000000L); /* clw */
718 #else
719 		DELAY(1000);
720 #endif /* notdef */
721 		/*
722 		 * Read the input slot valid register and see if input slots 3 and
723 		 * 4 are valid yet.
724 		 */
725 		acisv = csa_readio(resp, BA0_ACISV);
726 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
727 			break;
728 	}
729 	/*
730 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
731 	 * an error.
732 	 */
733 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
734 		return (ENXIO);
735 
736 	/*
737 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
738 	 * commense the transfer of digital audio data to the AC97 codec.
739 	 */
740 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
741 
742 	/*
743 	 * Power down the DAC and ADC.  We will power them up (if) when we need
744 	 * them.
745 	 */
746 #ifdef notdef
747 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
748 #endif /* notdef */
749 
750 	/*
751 	 * Turn off the Processor by turning off the software clock enable flag in
752 	 * the clock control register.
753 	 */
754 #ifdef notdef
755 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
756 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
757 #endif /* notdef */
758 
759 	/*
760 	 * Enable interrupts on the part.
761 	 */
762 #if 0
763 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
764 #endif /* notdef */
765 
766 	return (0);
767 }
768 
769 void
770 csa_clearserialfifos(csa_res *resp)
771 {
772 	int i, j, pwr;
773 	u_int8_t clkcr1, serbst;
774 
775 	/*
776 	 * See if the devices are powered down.  If so, we must power them up first
777 	 * or they will not respond.
778 	 */
779 	pwr = 1;
780 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
781 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
782 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
783 		pwr = 0;
784 	}
785 
786 	/*
787 	 * We want to clear out the serial port FIFOs so we don't end up playing
788 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
789 	 * with zero (silence).
790 	 */
791 	csa_writeio(resp, BA0_SERBWP, 0);
792 
793 	/* Fill all 256 sample FIFO locations. */
794 	serbst = 0;
795 	for (i = 0 ; i < 256 ; i++) {
796 		/* Make sure the previous FIFO write operation has completed. */
797 		for (j = 0 ; j < 5 ; j++) {
798 			DELAY(100);
799 			serbst = csa_readio(resp, BA0_SERBST);
800 			if ((serbst & SERBST_WBSY) == 0)
801 				break;
802 		}
803 		if ((serbst & SERBST_WBSY) != 0) {
804 			if (!pwr)
805 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
806 		}
807 		/* Write the serial port FIFO index. */
808 		csa_writeio(resp, BA0_SERBAD, i);
809 		/* Tell the serial port to load the new value into the FIFO location. */
810 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
811 	}
812 	/*
813 	 *  Now, if we powered up the devices, then power them back down again.
814 	 *  This is kinda ugly, but should never happen.
815 	 */
816 	if (!pwr)
817 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
818 }
819 
820 void
821 csa_resetdsp(csa_res *resp)
822 {
823 	int i;
824 
825 	/*
826 	 * Write the reset bit of the SP control register.
827 	 */
828 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
829 
830 	/*
831 	 * Write the control register.
832 	 */
833 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
834 
835 	/*
836 	 * Clear the trap registers.
837 	 */
838 	for (i = 0 ; i < 8 ; i++) {
839 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
840 		csa_writemem(resp, BA1_TWPR, 0xffff);
841 	}
842 	csa_writemem(resp, BA1_DREG, 0);
843 
844 	/*
845 	 * Set the frame timer to reflect the number of cycles per frame.
846 	 */
847 	csa_writemem(resp, BA1_FRMT, 0xadf);
848 }
849 
850 static int
851 csa_downloadimage(csa_res *resp)
852 {
853 	int ret;
854 	u_long ul, offset;
855 
856 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
857 	        /*
858 	         * DMA this block from host memory to the appropriate
859 	         * memory on the CSDevice.
860 	         */
861 		ret = csa_transferimage(resp,
862 		    cs461x_firmware.BA1Array + offset,
863 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
864 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
865 		if (ret)
866 			return (ret);
867 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
868 	}
869 	return (0);
870 }
871 
872 static int
873 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
874 {
875 	u_long ul;
876 
877 	/*
878 	 * We do not allow DMAs from host memory to host memory (although the DMA
879 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
880 	 * in size (because that DMA can not do that).  Return an error if either
881 	 * of these conditions exist.
882 	 */
883 	if ((len & 0x3) != 0)
884 		return (EINVAL);
885 
886 	/* Check the destination address that it is a multiple of 4 */
887 	if ((dest & 0x3) != 0)
888 		return (EINVAL);
889 
890 	/* Write the buffer out. */
891 	for (ul = 0 ; ul < len ; ul += 4)
892 		csa_writemem(resp, dest + ul, src[ul >> 2]);
893 	return (0);
894 }
895 
896 int
897 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
898 {
899 	int i;
900 	u_int32_t acctl, acsts;
901 
902 	/*
903 	 * Make sure that there is not data sitting around from a previous
904 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
905 	 */
906 	csa_readio(resp, BA0_ACSDA);
907 
908 	/*
909 	 * Setup the AC97 control registers on the CS461x to send the
910 	 * appropriate command to the AC97 to perform the read.
911 	 * ACCAD = Command Address Register = 46Ch
912 	 * ACCDA = Command Data Register = 470h
913 	 * ACCTL = Control Register = 460h
914 	 * set DCV - will clear when process completed
915 	 * set CRW - Read command
916 	 * set VFRM - valid frame enabled
917 	 * set ESYN - ASYNC generation enabled
918 	 * set RSTN - ARST# inactive, AC97 codec not reset
919 	 */
920 
921 	/*
922 	 * Get the actual AC97 register from the offset
923 	 */
924 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
925 	csa_writeio(resp, BA0_ACCDA, 0);
926 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
927 
928 	/*
929 	 * Wait for the read to occur.
930 	 */
931 	acctl = 0;
932 	for (i = 0 ; i < 10 ; i++) {
933 		/*
934 		 * First, we want to wait for a short time.
935 		 */
936 		DELAY(25);
937 
938 		/*
939 		 * Now, check to see if the read has completed.
940 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
941 		 */
942 		acctl = csa_readio(resp, BA0_ACCTL);
943 		if ((acctl & ACCTL_DCV) == 0)
944 			break;
945 	}
946 
947 	/*
948 	 * Make sure the read completed.
949 	 */
950 	if ((acctl & ACCTL_DCV) != 0)
951 		return (EAGAIN);
952 
953 	/*
954 	 * Wait for the valid status bit to go active.
955 	 */
956 	acsts = 0;
957 	for (i = 0 ; i < 10 ; i++) {
958 		/*
959 		 * Read the AC97 status register.
960 		 * ACSTS = Status Register = 464h
961 		 */
962 		acsts = csa_readio(resp, BA0_ACSTS);
963 		/*
964 		 * See if we have valid status.
965 		 * VSTS - Valid Status
966 		 */
967 		if ((acsts & ACSTS_VSTS) != 0)
968 			break;
969 		/*
970 		 * Wait for a short while.
971 		 */
972 		 DELAY(25);
973 	}
974 
975 	/*
976 	 * Make sure we got valid status.
977 	 */
978 	if ((acsts & ACSTS_VSTS) == 0)
979 		return (EAGAIN);
980 
981 	/*
982 	 * Read the data returned from the AC97 register.
983 	 * ACSDA = Status Data Register = 474h
984 	 */
985 	*data = csa_readio(resp, BA0_ACSDA);
986 
987 	return (0);
988 }
989 
990 int
991 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
992 {
993 	int i;
994 	u_int32_t acctl;
995 
996 	/*
997 	 * Setup the AC97 control registers on the CS461x to send the
998 	 * appropriate command to the AC97 to perform the write.
999 	 * ACCAD = Command Address Register = 46Ch
1000 	 * ACCDA = Command Data Register = 470h
1001 	 * ACCTL = Control Register = 460h
1002 	 * set DCV - will clear when process completed
1003 	 * set VFRM - valid frame enabled
1004 	 * set ESYN - ASYNC generation enabled
1005 	 * set RSTN - ARST# inactive, AC97 codec not reset
1006 	 */
1007 
1008 	/*
1009 	 * Get the actual AC97 register from the offset
1010 	 */
1011 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1012 	csa_writeio(resp, BA0_ACCDA, data);
1013 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1014 
1015 	/*
1016 	 * Wait for the write to occur.
1017 	 */
1018 	acctl = 0;
1019 	for (i = 0 ; i < 10 ; i++) {
1020 		/*
1021 		 * First, we want to wait for a short time.
1022 		 */
1023 		DELAY(25);
1024 
1025 		/*
1026 		 * Now, check to see if the read has completed.
1027 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1028 		 */
1029 		acctl = csa_readio(resp, BA0_ACCTL);
1030 		if ((acctl & ACCTL_DCV) == 0)
1031 			break;
1032 	}
1033 
1034 	/*
1035 	 * Make sure the write completed.
1036 	 */
1037 	if ((acctl & ACCTL_DCV) != 0)
1038 		return (EAGAIN);
1039 
1040 	return (0);
1041 }
1042 
1043 u_int32_t
1044 csa_readio(csa_res *resp, u_long offset)
1045 {
1046 	u_int32_t ul;
1047 
1048 	if (offset < BA0_AC97_RESET)
1049 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1050 	else {
1051 		if (csa_readcodec(resp, offset, &ul))
1052 			ul = 0;
1053 		return (ul);
1054 	}
1055 }
1056 
1057 void
1058 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1059 {
1060 	if (offset < BA0_AC97_RESET)
1061 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1062 	else
1063 		csa_writecodec(resp, offset, data);
1064 }
1065 
1066 u_int32_t
1067 csa_readmem(csa_res *resp, u_long offset)
1068 {
1069 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1070 }
1071 
1072 void
1073 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1074 {
1075 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1076 }
1077 
1078 static device_method_t csa_methods[] = {
1079 	/* Device interface */
1080 	DEVMETHOD(device_probe,		csa_probe),
1081 	DEVMETHOD(device_attach,	csa_attach),
1082 	DEVMETHOD(device_detach,	csa_detach),
1083 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1084 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1085 	DEVMETHOD(device_resume,	csa_resume),
1086 
1087 	/* Bus interface */
1088 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1089 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1090 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1091 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1092 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1093 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1094 
1095 	DEVMETHOD_END
1096 };
1097 
1098 static driver_t csa_driver = {
1099 	"csa",
1100 	csa_methods,
1101 	sizeof(struct csa_softc),
1102 };
1103 
1104 /*
1105  * csa can be attached to a pci bus.
1106  */
1107 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1108 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1109 MODULE_VERSION(snd_csa, 1);
1110