xref: /freebsd/sys/dev/sound/pci/csa.c (revision 834063202a16592e1ef5c3a9fbd04ca5f1df3ed0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <dev/sound/pci/csareg.h>
50 #include <dev/sound/pci/csavar.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 
55 #include <dev/sound/pci/cs461x_dsp.h>
56 
57 SND_DECLARE_FILE("$FreeBSD$");
58 
59 /* This is the pci device id. */
60 #define CS4610_PCI_ID 0x60011013
61 #define CS4614_PCI_ID 0x60031013
62 #define CS4615_PCI_ID 0x60041013
63 
64 /* Here is the parameter structure per a device. */
65 struct csa_softc {
66 	device_t dev; /* device */
67 	csa_res res; /* resources */
68 
69 	device_t pcm; /* pcm device */
70 	driver_intr_t* pcmintr; /* pcm intr */
71 	void *pcmintr_arg; /* pcm intr arg */
72 	device_t midi; /* midi device */
73 	driver_intr_t* midiintr; /* midi intr */
74 	void *midiintr_arg; /* midi intr arg */
75 	void *ih; /* cookie */
76 
77 	struct csa_card *card;
78 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
79 };
80 
81 typedef struct csa_softc *sc_p;
82 
83 static int csa_probe(device_t dev);
84 static int csa_attach(device_t dev);
85 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
86 					      rman_res_t start, rman_res_t end,
87 					      rman_res_t count, u_int flags);
88 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
89 				   struct resource *r);
90 static int csa_setup_intr(device_t bus, device_t child,
91 			  struct resource *irq, int flags,
92 			  driver_filter_t *filter,
93 			  driver_intr_t *intr,  void *arg, void **cookiep);
94 static int csa_teardown_intr(device_t bus, device_t child,
95 			     struct resource *irq, void *cookie);
96 static driver_intr_t csa_intr;
97 static int csa_initialize(sc_p scp);
98 static int csa_downloadimage(csa_res *resp);
99 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
100 
101 static devclass_t csa_devclass;
102 
103 static void
104 amp_none(void)
105 {
106 }
107 
108 static void
109 amp_voyetra(void)
110 {
111 }
112 
113 static int
114 clkrun_hack(int run)
115 {
116 #ifdef __i386__
117 	devclass_t		pci_devclass;
118 	device_t		*pci_devices, *pci_children, *busp, *childp;
119 	int			pci_count = 0, pci_childcount = 0;
120 	int			i, j, port;
121 	u_int16_t		control;
122 	bus_space_tag_t		btag;
123 
124 	if ((pci_devclass = devclass_find("pci")) == NULL) {
125 		return ENXIO;
126 	}
127 
128 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
129 
130 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
131 		pci_childcount = 0;
132 		if (device_get_children(*busp, &pci_children, &pci_childcount))
133 			continue;
134 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
135 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
136 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
137 				/* XXX */
138 				btag = X86_BUS_SPACE_IO;
139 
140 				control = bus_space_read_2(btag, 0x0, port);
141 				control &= ~0x2000;
142 				control |= run? 0 : 0x2000;
143 				bus_space_write_2(btag, 0x0, port, control);
144 				free(pci_devices, M_TEMP);
145 				free(pci_children, M_TEMP);
146 				return 0;
147 			}
148 		}
149 		free(pci_children, M_TEMP);
150 	}
151 
152 	free(pci_devices, M_TEMP);
153 	return ENXIO;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 static struct csa_card cards_4610[] = {
160 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
161 };
162 
163 static struct csa_card cards_4614[] = {
164 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
165 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
166 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
167 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
168 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
169 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
170 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
171 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
172 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
173 };
174 
175 static struct csa_card cards_4615[] = {
176 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
177 };
178 
179 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
180 
181 struct card_type {
182 	u_int32_t devid;
183 	char *name;
184 	struct csa_card *cards;
185 };
186 
187 static struct card_type cards[] = {
188 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
189 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
190 	{CS4615_PCI_ID, "CS4615", cards_4615},
191 	{0, NULL, NULL},
192 };
193 
194 static struct card_type *
195 csa_findcard(device_t dev)
196 {
197 	int i;
198 
199 	i = 0;
200 	while (cards[i].devid != 0) {
201 		if (pci_get_devid(dev) == cards[i].devid)
202 			return &cards[i];
203 		i++;
204 	}
205 	return NULL;
206 }
207 
208 struct csa_card *
209 csa_findsubcard(device_t dev)
210 {
211 	int i;
212 	struct card_type *card;
213 	struct csa_card *subcard;
214 
215 	card = csa_findcard(dev);
216 	if (card == NULL)
217 		return &nocard;
218 	subcard = card->cards;
219 	i = 0;
220 	while (subcard[i].subvendor != 0) {
221 		if (pci_get_subvendor(dev) == subcard[i].subvendor
222 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
223 			return &subcard[i];
224 		}
225 		i++;
226 	}
227 	return &subcard[i];
228 }
229 
230 static int
231 csa_probe(device_t dev)
232 {
233 	struct card_type *card;
234 
235 	card = csa_findcard(dev);
236 	if (card) {
237 		device_set_desc(dev, card->name);
238 		return BUS_PROBE_DEFAULT;
239 	}
240 	return ENXIO;
241 }
242 
243 static int
244 csa_attach(device_t dev)
245 {
246 	sc_p scp;
247 	csa_res *resp;
248 	struct sndcard_func *func;
249 	int error = ENXIO;
250 
251 	scp = device_get_softc(dev);
252 
253 	/* Fill in the softc. */
254 	bzero(scp, sizeof(*scp));
255 	scp->dev = dev;
256 
257 	pci_enable_busmaster(dev);
258 
259 	/* Allocate the resources. */
260 	resp = &scp->res;
261 	scp->card = csa_findsubcard(dev);
262 	scp->binfo.card = scp->card;
263 	printf("csa: card is %s\n", scp->card->name);
264 	resp->io_rid = PCIR_BAR(0);
265 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
266 		&resp->io_rid, RF_ACTIVE);
267 	if (resp->io == NULL)
268 		return (ENXIO);
269 	resp->mem_rid = PCIR_BAR(1);
270 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
271 		&resp->mem_rid, RF_ACTIVE);
272 	if (resp->mem == NULL)
273 		goto err_io;
274 	resp->irq_rid = 0;
275 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
276 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
277 	if (resp->irq == NULL)
278 		goto err_mem;
279 
280 	/* Enable interrupt. */
281 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
282 		goto err_intr;
283 #if 0
284 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
285 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
286 #endif
287 
288 	/* Initialize the chip. */
289 	if (csa_initialize(scp))
290 		goto err_teardown;
291 
292 	/* Reset the Processor. */
293 	csa_resetdsp(resp);
294 
295 	/* Download the Processor Image to the processor. */
296 	if (csa_downloadimage(resp))
297 		goto err_teardown;
298 
299 	/* Attach the children. */
300 
301 	/* PCM Audio */
302 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
303 	if (func == NULL) {
304 		error = ENOMEM;
305 		goto err_teardown;
306 	}
307 	func->varinfo = &scp->binfo;
308 	func->func = SCF_PCM;
309 	scp->pcm = device_add_child(dev, "pcm", -1);
310 	device_set_ivars(scp->pcm, func);
311 
312 	/* Midi Interface */
313 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
314 	if (func == NULL) {
315 		error = ENOMEM;
316 		goto err_teardown;
317 	}
318 	func->varinfo = &scp->binfo;
319 	func->func = SCF_MIDI;
320 	scp->midi = device_add_child(dev, "midi", -1);
321 	device_set_ivars(scp->midi, func);
322 
323 	bus_generic_attach(dev);
324 
325 	return (0);
326 
327 err_teardown:
328 	bus_teardown_intr(dev, resp->irq, scp->ih);
329 err_intr:
330 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
331 err_mem:
332 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
333 err_io:
334 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
335 	return (error);
336 }
337 
338 static int
339 csa_detach(device_t dev)
340 {
341 	csa_res *resp;
342 	sc_p scp;
343 	struct sndcard_func *func;
344 	int err;
345 
346 	scp = device_get_softc(dev);
347 	resp = &scp->res;
348 
349 	if (scp->midi != NULL) {
350 		func = device_get_ivars(scp->midi);
351 		err = device_delete_child(dev, scp->midi);
352 		if (err != 0)
353 			return err;
354 		if (func != NULL)
355 			free(func, M_DEVBUF);
356 		scp->midi = NULL;
357 	}
358 
359 	if (scp->pcm != NULL) {
360 		func = device_get_ivars(scp->pcm);
361 		err = device_delete_child(dev, scp->pcm);
362 		if (err != 0)
363 			return err;
364 		if (func != NULL)
365 			free(func, M_DEVBUF);
366 		scp->pcm = NULL;
367 	}
368 
369 	bus_teardown_intr(dev, resp->irq, scp->ih);
370 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
371 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
372 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
373 
374 	return bus_generic_detach(dev);
375 }
376 
377 static int
378 csa_resume(device_t dev)
379 {
380 	csa_res *resp;
381 	sc_p scp;
382 
383 	scp = device_get_softc(dev);
384 	resp = &scp->res;
385 
386 	/* Initialize the chip. */
387 	if (csa_initialize(scp))
388 		return (ENXIO);
389 
390 	/* Reset the Processor. */
391 	csa_resetdsp(resp);
392 
393 	/* Download the Processor Image to the processor. */
394 	if (csa_downloadimage(resp))
395 		return (ENXIO);
396 
397 	return (bus_generic_resume(dev));
398 }
399 
400 static struct resource *
401 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
402 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
403 {
404 	sc_p scp;
405 	csa_res *resp;
406 	struct resource *res;
407 
408 	scp = device_get_softc(bus);
409 	resp = &scp->res;
410 	switch (type) {
411 	case SYS_RES_IRQ:
412 		if (*rid != 0)
413 			return (NULL);
414 		res = resp->irq;
415 		break;
416 	case SYS_RES_MEMORY:
417 		switch (*rid) {
418 		case PCIR_BAR(0):
419 			res = resp->io;
420 			break;
421 		case PCIR_BAR(1):
422 			res = resp->mem;
423 			break;
424 		default:
425 			return (NULL);
426 		}
427 		break;
428 	default:
429 		return (NULL);
430 	}
431 
432 	return res;
433 }
434 
435 static int
436 csa_release_resource(device_t bus, device_t child, int type, int rid,
437 			struct resource *r)
438 {
439 	return (0);
440 }
441 
442 /*
443  * The following three functions deal with interrupt handling.
444  * An interrupt is primarily handled by the bridge driver.
445  * The bridge driver then determines the child devices to pass
446  * the interrupt. Certain information of the device can be read
447  * only once(eg the value of HISR). The bridge driver is responsible
448  * to pass such the information to the children.
449  */
450 
451 static int
452 csa_setup_intr(device_t bus, device_t child,
453 	       struct resource *irq, int flags,
454 	       driver_filter_t *filter,
455 	       driver_intr_t *intr, void *arg, void **cookiep)
456 {
457 	sc_p scp;
458 	csa_res *resp;
459 	struct sndcard_func *func;
460 
461 	if (filter != NULL) {
462 		printf("ata-csa.c: we cannot use a filter here\n");
463 		return (EINVAL);
464 	}
465 	scp = device_get_softc(bus);
466 	resp = &scp->res;
467 
468 	/*
469 	 * Look at the function code of the child to determine
470 	 * the appropriate hander for it.
471 	 */
472 	func = device_get_ivars(child);
473 	if (func == NULL || irq != resp->irq)
474 		return (EINVAL);
475 
476 	switch (func->func) {
477 	case SCF_PCM:
478 		scp->pcmintr = intr;
479 		scp->pcmintr_arg = arg;
480 		break;
481 
482 	case SCF_MIDI:
483 		scp->midiintr = intr;
484 		scp->midiintr_arg = arg;
485 		break;
486 
487 	default:
488 		return (EINVAL);
489 	}
490 	*cookiep = scp;
491 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
492 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
493 
494 	return (0);
495 }
496 
497 static int
498 csa_teardown_intr(device_t bus, device_t child,
499 		  struct resource *irq, void *cookie)
500 {
501 	sc_p scp;
502 	csa_res *resp;
503 	struct sndcard_func *func;
504 
505 	scp = device_get_softc(bus);
506 	resp = &scp->res;
507 
508 	/*
509 	 * Look at the function code of the child to determine
510 	 * the appropriate hander for it.
511 	 */
512 	func = device_get_ivars(child);
513 	if (func == NULL || irq != resp->irq || cookie != scp)
514 		return (EINVAL);
515 
516 	switch (func->func) {
517 	case SCF_PCM:
518 		scp->pcmintr = NULL;
519 		scp->pcmintr_arg = NULL;
520 		break;
521 
522 	case SCF_MIDI:
523 		scp->midiintr = NULL;
524 		scp->midiintr_arg = NULL;
525 		break;
526 
527 	default:
528 		return (EINVAL);
529 	}
530 
531 	return (0);
532 }
533 
534 /* The interrupt handler */
535 static void
536 csa_intr(void *arg)
537 {
538 	sc_p scp = arg;
539 	csa_res *resp;
540 	u_int32_t hisr;
541 
542 	resp = &scp->res;
543 
544 	/* Is this interrupt for us? */
545 	hisr = csa_readio(resp, BA0_HISR);
546 	if ((hisr & 0x7fffffff) == 0) {
547 		/* Throw an eoi. */
548 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
549 		return;
550 	}
551 
552 	/*
553 	 * Pass the value of HISR via struct csa_bridgeinfo.
554 	 * The children get access through their ivars.
555 	 */
556 	scp->binfo.hisr = hisr;
557 
558 	/* Invoke the handlers of the children. */
559 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
560 		scp->pcmintr(scp->pcmintr_arg);
561 		hisr &= ~(HISR_VC0 | HISR_VC1);
562 	}
563 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
564 		scp->midiintr(scp->midiintr_arg);
565 		hisr &= ~HISR_MIDI;
566 	}
567 
568 	/* Throw an eoi. */
569 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
570 }
571 
572 static int
573 csa_initialize(sc_p scp)
574 {
575 	int i;
576 	u_int32_t acsts, acisv;
577 	csa_res *resp;
578 
579 	resp = &scp->res;
580 
581 	/*
582 	 * First, blast the clock control register to zero so that the PLL starts
583 	 * out in a known state, and blast the master serial port control register
584 	 * to zero so that the serial ports also start out in a known state.
585 	 */
586 	csa_writeio(resp, BA0_CLKCR1, 0);
587 	csa_writeio(resp, BA0_SERMC1, 0);
588 
589 	/*
590 	 * If we are in AC97 mode, then we must set the part to a host controlled
591 	 * AC-link.  Otherwise, we won't be able to bring up the link.
592 	 */
593 #if 1
594 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
595 #else
596 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
597 #endif /* 1 */
598 
599 	/*
600 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
601 	 * spec) and then drive it high.  This is done for non AC97 modes since
602 	 * there might be logic external to the CS461x that uses the ARST# line
603 	 * for a reset.
604 	 */
605 	csa_writeio(resp, BA0_ACCTL, 1);
606 	DELAY(50);
607 	csa_writeio(resp, BA0_ACCTL, 0);
608 	DELAY(50);
609 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
610 
611 	/*
612 	 * The first thing we do here is to enable sync generation.  As soon
613 	 * as we start receiving bit clock, we'll start producing the SYNC
614 	 * signal.
615 	 */
616 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
617 
618 	/*
619 	 * Now wait for a short while to allow the AC97 part to start
620 	 * generating bit clock (so we don't try to start the PLL without an
621 	 * input clock).
622 	 */
623 	DELAY(50000);
624 
625 	/*
626 	 * Set the serial port timing configuration, so that
627 	 * the clock control circuit gets its clock from the correct place.
628 	 */
629 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
630 	DELAY(700000);
631 
632 	/*
633 	 * Write the selected clock control setup to the hardware.  Do not turn on
634 	 * SWCE yet (if requested), so that the devices clocked by the output of
635 	 * PLL are not clocked until the PLL is stable.
636 	 */
637 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
638 	csa_writeio(resp, BA0_PLLM, 0x3a);
639 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
640 
641 	/*
642 	 * Power up the PLL.
643 	 */
644 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
645 
646 	/*
647 	 * Wait until the PLL has stabilized.
648 	 */
649 	DELAY(5000);
650 
651 	/*
652 	 * Turn on clocking of the core so that we can setup the serial ports.
653 	 */
654 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
655 
656 	/*
657 	 * Fill the serial port FIFOs with silence.
658 	 */
659 	csa_clearserialfifos(resp);
660 
661 	/*
662 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
663 	 */
664 #ifdef notdef
665 	csa_writeio(resp, BA0_SERBSP, 0);
666 #endif /* notdef */
667 
668 	/*
669 	 *  Write the serial port configuration to the part.  The master
670 	 *  enable bit is not set until all other values have been written.
671 	 */
672 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
673 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
674 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
675 
676 	/*
677 	 * Wait for the codec ready signal from the AC97 codec.
678 	 */
679 	acsts = 0;
680 	for (i = 0 ; i < 1000 ; i++) {
681 		/*
682 		 * First, lets wait a short while to let things settle out a bit,
683 		 * and to prevent retrying the read too quickly.
684 		 */
685 		DELAY(125);
686 
687 		/*
688 		 * Read the AC97 status register to see if we've seen a CODEC READY
689 		 * signal from the AC97 codec.
690 		 */
691 		acsts = csa_readio(resp, BA0_ACSTS);
692 		if ((acsts & ACSTS_CRDY) != 0)
693 			break;
694 	}
695 
696 	/*
697 	 * Make sure we sampled CODEC READY.
698 	 */
699 	if ((acsts & ACSTS_CRDY) == 0)
700 		return (ENXIO);
701 
702 	/*
703 	 * Assert the vaid frame signal so that we can start sending commands
704 	 * to the AC97 codec.
705 	 */
706 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
707 
708 	/*
709 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
710 	 * the codec is pumping ADC data across the AC-link.
711 	 */
712 	acisv = 0;
713 	for (i = 0 ; i < 1000 ; i++) {
714 		/*
715 		 * First, lets wait a short while to let things settle out a bit,
716 		 * and to prevent retrying the read too quickly.
717 		 */
718 #ifdef notdef
719 		DELAY(10000000L); /* clw */
720 #else
721 		DELAY(1000);
722 #endif /* notdef */
723 		/*
724 		 * Read the input slot valid register and see if input slots 3 and
725 		 * 4 are valid yet.
726 		 */
727 		acisv = csa_readio(resp, BA0_ACISV);
728 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
729 			break;
730 	}
731 	/*
732 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
733 	 * an error.
734 	 */
735 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
736 		return (ENXIO);
737 
738 	/*
739 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
740 	 * commense the transfer of digital audio data to the AC97 codec.
741 	 */
742 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
743 
744 	/*
745 	 * Power down the DAC and ADC.  We will power them up (if) when we need
746 	 * them.
747 	 */
748 #ifdef notdef
749 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
750 #endif /* notdef */
751 
752 	/*
753 	 * Turn off the Processor by turning off the software clock enable flag in
754 	 * the clock control register.
755 	 */
756 #ifdef notdef
757 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
758 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
759 #endif /* notdef */
760 
761 	/*
762 	 * Enable interrupts on the part.
763 	 */
764 #if 0
765 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
766 #endif /* notdef */
767 
768 	return (0);
769 }
770 
771 void
772 csa_clearserialfifos(csa_res *resp)
773 {
774 	int i, j, pwr;
775 	u_int8_t clkcr1, serbst;
776 
777 	/*
778 	 * See if the devices are powered down.  If so, we must power them up first
779 	 * or they will not respond.
780 	 */
781 	pwr = 1;
782 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
783 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
784 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
785 		pwr = 0;
786 	}
787 
788 	/*
789 	 * We want to clear out the serial port FIFOs so we don't end up playing
790 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
791 	 * with zero (silence).
792 	 */
793 	csa_writeio(resp, BA0_SERBWP, 0);
794 
795 	/* Fill all 256 sample FIFO locations. */
796 	serbst = 0;
797 	for (i = 0 ; i < 256 ; i++) {
798 		/* Make sure the previous FIFO write operation has completed. */
799 		for (j = 0 ; j < 5 ; j++) {
800 			DELAY(100);
801 			serbst = csa_readio(resp, BA0_SERBST);
802 			if ((serbst & SERBST_WBSY) == 0)
803 				break;
804 		}
805 		if ((serbst & SERBST_WBSY) != 0) {
806 			if (!pwr)
807 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
808 		}
809 		/* Write the serial port FIFO index. */
810 		csa_writeio(resp, BA0_SERBAD, i);
811 		/* Tell the serial port to load the new value into the FIFO location. */
812 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
813 	}
814 	/*
815 	 *  Now, if we powered up the devices, then power them back down again.
816 	 *  This is kinda ugly, but should never happen.
817 	 */
818 	if (!pwr)
819 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
820 }
821 
822 void
823 csa_resetdsp(csa_res *resp)
824 {
825 	int i;
826 
827 	/*
828 	 * Write the reset bit of the SP control register.
829 	 */
830 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
831 
832 	/*
833 	 * Write the control register.
834 	 */
835 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
836 
837 	/*
838 	 * Clear the trap registers.
839 	 */
840 	for (i = 0 ; i < 8 ; i++) {
841 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
842 		csa_writemem(resp, BA1_TWPR, 0xffff);
843 	}
844 	csa_writemem(resp, BA1_DREG, 0);
845 
846 	/*
847 	 * Set the frame timer to reflect the number of cycles per frame.
848 	 */
849 	csa_writemem(resp, BA1_FRMT, 0xadf);
850 }
851 
852 static int
853 csa_downloadimage(csa_res *resp)
854 {
855 	int ret;
856 	u_long ul, offset;
857 
858 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
859 	        /*
860 	         * DMA this block from host memory to the appropriate
861 	         * memory on the CSDevice.
862 	         */
863 		ret = csa_transferimage(resp,
864 		    cs461x_firmware.BA1Array + offset,
865 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
866 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
867 		if (ret)
868 			return (ret);
869 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
870 	}
871 	return (0);
872 }
873 
874 static int
875 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
876 {
877 	u_long ul;
878 
879 	/*
880 	 * We do not allow DMAs from host memory to host memory (although the DMA
881 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
882 	 * in size (because that DMA can not do that).  Return an error if either
883 	 * of these conditions exist.
884 	 */
885 	if ((len & 0x3) != 0)
886 		return (EINVAL);
887 
888 	/* Check the destination address that it is a multiple of 4 */
889 	if ((dest & 0x3) != 0)
890 		return (EINVAL);
891 
892 	/* Write the buffer out. */
893 	for (ul = 0 ; ul < len ; ul += 4)
894 		csa_writemem(resp, dest + ul, src[ul >> 2]);
895 	return (0);
896 }
897 
898 int
899 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
900 {
901 	int i;
902 	u_int32_t acctl, acsts;
903 
904 	/*
905 	 * Make sure that there is not data sitting around from a previous
906 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
907 	 */
908 	csa_readio(resp, BA0_ACSDA);
909 
910 	/*
911 	 * Setup the AC97 control registers on the CS461x to send the
912 	 * appropriate command to the AC97 to perform the read.
913 	 * ACCAD = Command Address Register = 46Ch
914 	 * ACCDA = Command Data Register = 470h
915 	 * ACCTL = Control Register = 460h
916 	 * set DCV - will clear when process completed
917 	 * set CRW - Read command
918 	 * set VFRM - valid frame enabled
919 	 * set ESYN - ASYNC generation enabled
920 	 * set RSTN - ARST# inactive, AC97 codec not reset
921 	 */
922 
923 	/*
924 	 * Get the actual AC97 register from the offset
925 	 */
926 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
927 	csa_writeio(resp, BA0_ACCDA, 0);
928 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
929 
930 	/*
931 	 * Wait for the read to occur.
932 	 */
933 	acctl = 0;
934 	for (i = 0 ; i < 10 ; i++) {
935 		/*
936 		 * First, we want to wait for a short time.
937 		 */
938 		DELAY(25);
939 
940 		/*
941 		 * Now, check to see if the read has completed.
942 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
943 		 */
944 		acctl = csa_readio(resp, BA0_ACCTL);
945 		if ((acctl & ACCTL_DCV) == 0)
946 			break;
947 	}
948 
949 	/*
950 	 * Make sure the read completed.
951 	 */
952 	if ((acctl & ACCTL_DCV) != 0)
953 		return (EAGAIN);
954 
955 	/*
956 	 * Wait for the valid status bit to go active.
957 	 */
958 	acsts = 0;
959 	for (i = 0 ; i < 10 ; i++) {
960 		/*
961 		 * Read the AC97 status register.
962 		 * ACSTS = Status Register = 464h
963 		 */
964 		acsts = csa_readio(resp, BA0_ACSTS);
965 		/*
966 		 * See if we have valid status.
967 		 * VSTS - Valid Status
968 		 */
969 		if ((acsts & ACSTS_VSTS) != 0)
970 			break;
971 		/*
972 		 * Wait for a short while.
973 		 */
974 		 DELAY(25);
975 	}
976 
977 	/*
978 	 * Make sure we got valid status.
979 	 */
980 	if ((acsts & ACSTS_VSTS) == 0)
981 		return (EAGAIN);
982 
983 	/*
984 	 * Read the data returned from the AC97 register.
985 	 * ACSDA = Status Data Register = 474h
986 	 */
987 	*data = csa_readio(resp, BA0_ACSDA);
988 
989 	return (0);
990 }
991 
992 int
993 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
994 {
995 	int i;
996 	u_int32_t acctl;
997 
998 	/*
999 	 * Setup the AC97 control registers on the CS461x to send the
1000 	 * appropriate command to the AC97 to perform the write.
1001 	 * ACCAD = Command Address Register = 46Ch
1002 	 * ACCDA = Command Data Register = 470h
1003 	 * ACCTL = Control Register = 460h
1004 	 * set DCV - will clear when process completed
1005 	 * set VFRM - valid frame enabled
1006 	 * set ESYN - ASYNC generation enabled
1007 	 * set RSTN - ARST# inactive, AC97 codec not reset
1008 	 */
1009 
1010 	/*
1011 	 * Get the actual AC97 register from the offset
1012 	 */
1013 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1014 	csa_writeio(resp, BA0_ACCDA, data);
1015 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1016 
1017 	/*
1018 	 * Wait for the write to occur.
1019 	 */
1020 	acctl = 0;
1021 	for (i = 0 ; i < 10 ; i++) {
1022 		/*
1023 		 * First, we want to wait for a short time.
1024 		 */
1025 		DELAY(25);
1026 
1027 		/*
1028 		 * Now, check to see if the read has completed.
1029 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1030 		 */
1031 		acctl = csa_readio(resp, BA0_ACCTL);
1032 		if ((acctl & ACCTL_DCV) == 0)
1033 			break;
1034 	}
1035 
1036 	/*
1037 	 * Make sure the write completed.
1038 	 */
1039 	if ((acctl & ACCTL_DCV) != 0)
1040 		return (EAGAIN);
1041 
1042 	return (0);
1043 }
1044 
1045 u_int32_t
1046 csa_readio(csa_res *resp, u_long offset)
1047 {
1048 	u_int32_t ul;
1049 
1050 	if (offset < BA0_AC97_RESET)
1051 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1052 	else {
1053 		if (csa_readcodec(resp, offset, &ul))
1054 			ul = 0;
1055 		return (ul);
1056 	}
1057 }
1058 
1059 void
1060 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1061 {
1062 	if (offset < BA0_AC97_RESET)
1063 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1064 	else
1065 		csa_writecodec(resp, offset, data);
1066 }
1067 
1068 u_int32_t
1069 csa_readmem(csa_res *resp, u_long offset)
1070 {
1071 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1072 }
1073 
1074 void
1075 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1076 {
1077 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1078 }
1079 
1080 static device_method_t csa_methods[] = {
1081 	/* Device interface */
1082 	DEVMETHOD(device_probe,		csa_probe),
1083 	DEVMETHOD(device_attach,	csa_attach),
1084 	DEVMETHOD(device_detach,	csa_detach),
1085 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1086 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1087 	DEVMETHOD(device_resume,	csa_resume),
1088 
1089 	/* Bus interface */
1090 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1091 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1092 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1093 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1094 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1095 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1096 
1097 	DEVMETHOD_END
1098 };
1099 
1100 static driver_t csa_driver = {
1101 	"csa",
1102 	csa_methods,
1103 	sizeof(struct csa_softc),
1104 };
1105 
1106 /*
1107  * csa can be attached to a pci bus.
1108  */
1109 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1110 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1111 MODULE_VERSION(snd_csa, 1);
1112