1 /* 2 * Copyright (c) 1999 Seigo Tanimura 3 * All rights reserved. 4 * 5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in 6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor. 7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/bus.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <machine/resource.h> 38 #include <machine/bus.h> 39 #include <sys/rman.h> 40 #include <sys/soundcard.h> 41 #include <dev/sound/pcm/sound.h> 42 #include <dev/sound/chip.h> 43 #include <dev/sound/pci/csareg.h> 44 #include <dev/sound/pci/csavar.h> 45 46 #include <pci/pcireg.h> 47 #include <pci/pcivar.h> 48 49 #include <gnu/dev/sound/pci/csaimg.h> 50 51 SND_DECLARE_FILE("$FreeBSD$"); 52 53 /* This is the pci device id. */ 54 #define CS4610_PCI_ID 0x60011013 55 #define CS4614_PCI_ID 0x60031013 56 #define CS4615_PCI_ID 0x60041013 57 58 /* Here is the parameter structure per a device. */ 59 struct csa_softc { 60 device_t dev; /* device */ 61 csa_res res; /* resources */ 62 63 device_t pcm; /* pcm device */ 64 driver_intr_t* pcmintr; /* pcm intr */ 65 void *pcmintr_arg; /* pcm intr arg */ 66 device_t midi; /* midi device */ 67 driver_intr_t* midiintr; /* midi intr */ 68 void *midiintr_arg; /* midi intr arg */ 69 void *ih; /* cookie */ 70 71 struct csa_card *card; 72 struct csa_bridgeinfo binfo; /* The state of this bridge. */ 73 }; 74 75 typedef struct csa_softc *sc_p; 76 77 static int csa_probe(device_t dev); 78 static int csa_attach(device_t dev); 79 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 80 u_long start, u_long end, u_long count, u_int flags); 81 static int csa_release_resource(device_t bus, device_t child, int type, int rid, 82 struct resource *r); 83 static int csa_setup_intr(device_t bus, device_t child, 84 struct resource *irq, int flags, 85 driver_intr_t *intr, void *arg, void **cookiep); 86 static int csa_teardown_intr(device_t bus, device_t child, 87 struct resource *irq, void *cookie); 88 static driver_intr_t csa_intr; 89 static int csa_initialize(sc_p scp); 90 static void csa_resetdsp(csa_res *resp); 91 static int csa_downloadimage(csa_res *resp); 92 93 static devclass_t csa_devclass; 94 95 static void 96 amp_none(void) 97 { 98 } 99 100 static void 101 amp_voyetra(void) 102 { 103 } 104 105 static int 106 clkrun_hack(int run) 107 { 108 #ifdef __i386__ 109 devclass_t pci_devclass; 110 device_t *pci_devices, *pci_children, *busp, *childp; 111 int pci_count = 0, pci_childcount = 0; 112 int i, j, port; 113 u_int16_t control; 114 bus_space_tag_t btag; 115 116 if ((pci_devclass = devclass_find("pci")) == NULL) { 117 return ENXIO; 118 } 119 120 devclass_get_devices(pci_devclass, &pci_devices, &pci_count); 121 122 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { 123 pci_childcount = 0; 124 device_get_children(*busp, &pci_children, &pci_childcount); 125 for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) { 126 if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) { 127 port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10; 128 /* XXX */ 129 btag = I386_BUS_SPACE_IO; 130 131 control = bus_space_read_2(btag, 0x0, port); 132 control &= ~0x2000; 133 control |= run? 0 : 0x2000; 134 bus_space_write_2(btag, 0x0, port, control); 135 free(pci_devices, M_TEMP); 136 free(pci_children, M_TEMP); 137 return 0; 138 } 139 } 140 free(pci_children, M_TEMP); 141 } 142 143 free(pci_devices, M_TEMP); 144 return ENXIO; 145 #else 146 return 0; 147 #endif 148 } 149 150 static struct csa_card cards_4610[] = { 151 {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0}, 152 }; 153 154 static struct csa_card cards_4614[] = { 155 {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0}, 156 {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1}, 157 {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0}, 158 {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 159 {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 160 {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0}, 161 {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0}, 162 {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0}, 163 {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0}, 164 }; 165 166 static struct csa_card cards_4615[] = { 167 {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0}, 168 }; 169 170 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0}; 171 172 struct card_type { 173 u_int32_t devid; 174 char *name; 175 struct csa_card *cards; 176 }; 177 178 static struct card_type cards[] = { 179 {CS4610_PCI_ID, "CS4610/CS4611", cards_4610}, 180 {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614}, 181 {CS4615_PCI_ID, "CS4615", cards_4615}, 182 {0, NULL, NULL}, 183 }; 184 185 static struct card_type * 186 csa_findcard(device_t dev) 187 { 188 int i; 189 190 i = 0; 191 while (cards[i].devid != 0) { 192 if (pci_get_devid(dev) == cards[i].devid) 193 return &cards[i]; 194 i++; 195 } 196 return NULL; 197 } 198 199 struct csa_card * 200 csa_findsubcard(device_t dev) 201 { 202 int i; 203 struct card_type *card; 204 struct csa_card *subcard; 205 206 card = csa_findcard(dev); 207 if (card == NULL) 208 return &nocard; 209 subcard = card->cards; 210 i = 0; 211 while (subcard[i].subvendor != 0) { 212 if (pci_get_subvendor(dev) == subcard[i].subvendor 213 && pci_get_subdevice(dev) == subcard[i].subdevice) { 214 return &subcard[i]; 215 } 216 i++; 217 } 218 return &subcard[i]; 219 } 220 221 static int 222 csa_probe(device_t dev) 223 { 224 struct card_type *card; 225 226 card = csa_findcard(dev); 227 if (card) { 228 device_set_desc(dev, card->name); 229 return 0; 230 } 231 return ENXIO; 232 } 233 234 static int 235 csa_attach(device_t dev) 236 { 237 u_int32_t stcmd; 238 sc_p scp; 239 csa_res *resp; 240 struct sndcard_func *func; 241 int error = ENXIO; 242 243 scp = device_get_softc(dev); 244 245 /* Fill in the softc. */ 246 bzero(scp, sizeof(*scp)); 247 scp->dev = dev; 248 249 /* Wake up the device. */ 250 stcmd = pci_read_config(dev, PCIR_COMMAND, 2); 251 if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) { 252 stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); 253 pci_write_config(dev, PCIR_COMMAND, stcmd, 2); 254 } 255 256 /* Allocate the resources. */ 257 resp = &scp->res; 258 scp->card = csa_findsubcard(dev); 259 scp->binfo.card = scp->card; 260 printf("csa: card is %s\n", scp->card->name); 261 resp->io_rid = PCIR_MAPS; 262 resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, 1, RF_ACTIVE); 263 if (resp->io == NULL) 264 return (ENXIO); 265 resp->mem_rid = PCIR_MAPS + 4; 266 resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, 1, RF_ACTIVE); 267 if (resp->mem == NULL) 268 goto err_io; 269 resp->irq_rid = 0; 270 resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); 271 if (resp->irq == NULL) 272 goto err_mem; 273 274 /* Enable interrupt. */ 275 if (snd_setup_intr(dev, resp->irq, INTR_MPSAFE, csa_intr, scp, &scp->ih)) 276 goto err_intr; 277 #if 0 278 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 279 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 280 #endif 281 282 /* Initialize the chip. */ 283 if (csa_initialize(scp)) 284 goto err_teardown; 285 286 /* Reset the Processor. */ 287 csa_resetdsp(resp); 288 289 /* Download the Processor Image to the processor. */ 290 if (csa_downloadimage(resp)) 291 goto err_teardown; 292 293 /* Attach the children. */ 294 295 /* PCM Audio */ 296 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 297 if (func == NULL) { 298 error = ENOMEM; 299 goto err_teardown; 300 } 301 func->varinfo = &scp->binfo; 302 func->func = SCF_PCM; 303 scp->pcm = device_add_child(dev, "pcm", -1); 304 device_set_ivars(scp->pcm, func); 305 306 /* Midi Interface */ 307 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 308 if (func == NULL) { 309 error = ENOMEM; 310 goto err_teardown; 311 } 312 func->varinfo = &scp->binfo; 313 func->func = SCF_MIDI; 314 scp->midi = device_add_child(dev, "midi", -1); 315 device_set_ivars(scp->midi, func); 316 317 bus_generic_attach(dev); 318 319 return (0); 320 321 err_teardown: 322 bus_teardown_intr(dev, resp->irq, scp->ih); 323 err_intr: 324 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 325 err_mem: 326 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 327 err_io: 328 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 329 return (error); 330 } 331 332 static int 333 csa_detach(device_t dev) 334 { 335 csa_res *resp; 336 sc_p scp; 337 int err; 338 339 scp = device_get_softc(dev); 340 resp = &scp->res; 341 342 err = 0; 343 if (scp->midi != NULL) 344 err = device_delete_child(dev, scp->midi); 345 if (err) 346 return err; 347 scp->midi = NULL; 348 349 if (scp->pcm != NULL) 350 err = device_delete_child(dev, scp->pcm); 351 if (err) 352 return err; 353 scp->pcm = NULL; 354 355 bus_teardown_intr(dev, resp->irq, scp->ih); 356 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 357 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 358 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 359 360 return bus_generic_detach(dev); 361 } 362 363 static struct resource * 364 csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 365 u_long start, u_long end, u_long count, u_int flags) 366 { 367 sc_p scp; 368 csa_res *resp; 369 struct resource *res; 370 371 scp = device_get_softc(bus); 372 resp = &scp->res; 373 switch (type) { 374 case SYS_RES_IRQ: 375 if (*rid != 0) 376 return (NULL); 377 res = resp->irq; 378 break; 379 case SYS_RES_MEMORY: 380 switch (*rid) { 381 case PCIR_MAPS: 382 res = resp->io; 383 break; 384 case PCIR_MAPS + 4: 385 res = resp->mem; 386 break; 387 default: 388 return (NULL); 389 } 390 break; 391 default: 392 return (NULL); 393 } 394 395 return res; 396 } 397 398 static int 399 csa_release_resource(device_t bus, device_t child, int type, int rid, 400 struct resource *r) 401 { 402 return (0); 403 } 404 405 /* 406 * The following three functions deal with interrupt handling. 407 * An interrupt is primarily handled by the bridge driver. 408 * The bridge driver then determines the child devices to pass 409 * the interrupt. Certain information of the device can be read 410 * only once(eg the value of HISR). The bridge driver is responsible 411 * to pass such the information to the children. 412 */ 413 414 static int 415 csa_setup_intr(device_t bus, device_t child, 416 struct resource *irq, int flags, 417 driver_intr_t *intr, void *arg, void **cookiep) 418 { 419 sc_p scp; 420 csa_res *resp; 421 struct sndcard_func *func; 422 423 scp = device_get_softc(bus); 424 resp = &scp->res; 425 426 /* 427 * Look at the function code of the child to determine 428 * the appropriate hander for it. 429 */ 430 func = device_get_ivars(child); 431 if (func == NULL || irq != resp->irq) 432 return (EINVAL); 433 434 switch (func->func) { 435 case SCF_PCM: 436 scp->pcmintr = intr; 437 scp->pcmintr_arg = arg; 438 break; 439 440 case SCF_MIDI: 441 scp->midiintr = intr; 442 scp->midiintr_arg = arg; 443 break; 444 445 default: 446 return (EINVAL); 447 } 448 *cookiep = scp; 449 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 450 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 451 452 return (0); 453 } 454 455 static int 456 csa_teardown_intr(device_t bus, device_t child, 457 struct resource *irq, void *cookie) 458 { 459 sc_p scp; 460 csa_res *resp; 461 struct sndcard_func *func; 462 463 scp = device_get_softc(bus); 464 resp = &scp->res; 465 466 /* 467 * Look at the function code of the child to determine 468 * the appropriate hander for it. 469 */ 470 func = device_get_ivars(child); 471 if (func == NULL || irq != resp->irq || cookie != scp) 472 return (EINVAL); 473 474 switch (func->func) { 475 case SCF_PCM: 476 scp->pcmintr = NULL; 477 scp->pcmintr_arg = NULL; 478 break; 479 480 case SCF_MIDI: 481 scp->midiintr = NULL; 482 scp->midiintr_arg = NULL; 483 break; 484 485 default: 486 return (EINVAL); 487 } 488 489 return (0); 490 } 491 492 /* The interrupt handler */ 493 static void 494 csa_intr(void *arg) 495 { 496 sc_p scp = arg; 497 csa_res *resp; 498 u_int32_t hisr; 499 500 resp = &scp->res; 501 502 /* Is this interrupt for us? */ 503 hisr = csa_readio(resp, BA0_HISR); 504 if ((hisr & 0x7fffffff) == 0) { 505 /* Throw an eoi. */ 506 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 507 return; 508 } 509 510 /* 511 * Pass the value of HISR via struct csa_bridgeinfo. 512 * The children get access through their ivars. 513 */ 514 scp->binfo.hisr = hisr; 515 516 /* Invoke the handlers of the children. */ 517 if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) { 518 scp->pcmintr(scp->pcmintr_arg); 519 hisr &= ~(HISR_VC0 | HISR_VC1); 520 } 521 if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) { 522 scp->midiintr(scp->midiintr_arg); 523 hisr &= ~HISR_MIDI; 524 } 525 526 /* Throw an eoi. */ 527 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 528 } 529 530 static int 531 csa_initialize(sc_p scp) 532 { 533 int i; 534 u_int32_t acsts, acisv; 535 csa_res *resp; 536 537 resp = &scp->res; 538 539 /* 540 * First, blast the clock control register to zero so that the PLL starts 541 * out in a known state, and blast the master serial port control register 542 * to zero so that the serial ports also start out in a known state. 543 */ 544 csa_writeio(resp, BA0_CLKCR1, 0); 545 csa_writeio(resp, BA0_SERMC1, 0); 546 547 /* 548 * If we are in AC97 mode, then we must set the part to a host controlled 549 * AC-link. Otherwise, we won't be able to bring up the link. 550 */ 551 #if 1 552 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */ 553 #else 554 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */ 555 #endif /* 1 */ 556 557 /* 558 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97 559 * spec) and then drive it high. This is done for non AC97 modes since 560 * there might be logic external to the CS461x that uses the ARST# line 561 * for a reset. 562 */ 563 csa_writeio(resp, BA0_ACCTL, 1); 564 DELAY(50); 565 csa_writeio(resp, BA0_ACCTL, 0); 566 DELAY(50); 567 csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN); 568 569 /* 570 * The first thing we do here is to enable sync generation. As soon 571 * as we start receiving bit clock, we'll start producing the SYNC 572 * signal. 573 */ 574 csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN); 575 576 /* 577 * Now wait for a short while to allow the AC97 part to start 578 * generating bit clock (so we don't try to start the PLL without an 579 * input clock). 580 */ 581 DELAY(50000); 582 583 /* 584 * Set the serial port timing configuration, so that 585 * the clock control circuit gets its clock from the correct place. 586 */ 587 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97); 588 DELAY(700000); 589 590 /* 591 * Write the selected clock control setup to the hardware. Do not turn on 592 * SWCE yet (if requested), so that the devices clocked by the output of 593 * PLL are not clocked until the PLL is stable. 594 */ 595 csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ); 596 csa_writeio(resp, BA0_PLLM, 0x3a); 597 csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8); 598 599 /* 600 * Power up the PLL. 601 */ 602 csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP); 603 604 /* 605 * Wait until the PLL has stabilized. 606 */ 607 DELAY(5000); 608 609 /* 610 * Turn on clocking of the core so that we can setup the serial ports. 611 */ 612 csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE); 613 614 /* 615 * Fill the serial port FIFOs with silence. 616 */ 617 csa_clearserialfifos(resp); 618 619 /* 620 * Set the serial port FIFO pointer to the first sample in the FIFO. 621 */ 622 #if notdef 623 csa_writeio(resp, BA0_SERBSP, 0); 624 #endif /* notdef */ 625 626 /* 627 * Write the serial port configuration to the part. The master 628 * enable bit is not set until all other values have been written. 629 */ 630 csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN); 631 csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN); 632 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE); 633 634 /* 635 * Wait for the codec ready signal from the AC97 codec. 636 */ 637 acsts = 0; 638 for (i = 0 ; i < 1000 ; i++) { 639 /* 640 * First, lets wait a short while to let things settle out a bit, 641 * and to prevent retrying the read too quickly. 642 */ 643 DELAY(125); 644 645 /* 646 * Read the AC97 status register to see if we've seen a CODEC READY 647 * signal from the AC97 codec. 648 */ 649 acsts = csa_readio(resp, BA0_ACSTS); 650 if ((acsts & ACSTS_CRDY) != 0) 651 break; 652 } 653 654 /* 655 * Make sure we sampled CODEC READY. 656 */ 657 if ((acsts & ACSTS_CRDY) == 0) 658 return (ENXIO); 659 660 /* 661 * Assert the vaid frame signal so that we can start sending commands 662 * to the AC97 codec. 663 */ 664 csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 665 666 /* 667 * Wait until we've sampled input slots 3 and 4 as valid, meaning that 668 * the codec is pumping ADC data across the AC-link. 669 */ 670 acisv = 0; 671 for (i = 0 ; i < 1000 ; i++) { 672 /* 673 * First, lets wait a short while to let things settle out a bit, 674 * and to prevent retrying the read too quickly. 675 */ 676 #if notdef 677 DELAY(10000000L); /* clw */ 678 #else 679 DELAY(1000); 680 #endif /* notdef */ 681 /* 682 * Read the input slot valid register and see if input slots 3 and 683 * 4 are valid yet. 684 */ 685 acisv = csa_readio(resp, BA0_ACISV); 686 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4)) 687 break; 688 } 689 /* 690 * Make sure we sampled valid input slots 3 and 4. If not, then return 691 * an error. 692 */ 693 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) 694 return (ENXIO); 695 696 /* 697 * Now, assert valid frame and the slot 3 and 4 valid bits. This will 698 * commense the transfer of digital audio data to the AC97 codec. 699 */ 700 csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4); 701 702 /* 703 * Power down the DAC and ADC. We will power them up (if) when we need 704 * them. 705 */ 706 #if notdef 707 csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300); 708 #endif /* notdef */ 709 710 /* 711 * Turn off the Processor by turning off the software clock enable flag in 712 * the clock control register. 713 */ 714 #if notdef 715 clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE; 716 csa_writeio(resp, BA0_CLKCR1, clkcr1); 717 #endif /* notdef */ 718 719 /* 720 * Enable interrupts on the part. 721 */ 722 #if 0 723 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 724 #endif /* notdef */ 725 726 return (0); 727 } 728 729 void 730 csa_clearserialfifos(csa_res *resp) 731 { 732 int i, j, pwr; 733 u_int8_t clkcr1, serbst; 734 735 /* 736 * See if the devices are powered down. If so, we must power them up first 737 * or they will not respond. 738 */ 739 pwr = 1; 740 clkcr1 = csa_readio(resp, BA0_CLKCR1); 741 if ((clkcr1 & CLKCR1_SWCE) == 0) { 742 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE); 743 pwr = 0; 744 } 745 746 /* 747 * We want to clear out the serial port FIFOs so we don't end up playing 748 * whatever random garbage happens to be in them. We fill the sample FIFOs 749 * with zero (silence). 750 */ 751 csa_writeio(resp, BA0_SERBWP, 0); 752 753 /* Fill all 256 sample FIFO locations. */ 754 serbst = 0; 755 for (i = 0 ; i < 256 ; i++) { 756 /* Make sure the previous FIFO write operation has completed. */ 757 for (j = 0 ; j < 5 ; j++) { 758 DELAY(100); 759 serbst = csa_readio(resp, BA0_SERBST); 760 if ((serbst & SERBST_WBSY) == 0) 761 break; 762 } 763 if ((serbst & SERBST_WBSY) != 0) { 764 if (!pwr) 765 csa_writeio(resp, BA0_CLKCR1, clkcr1); 766 } 767 /* Write the serial port FIFO index. */ 768 csa_writeio(resp, BA0_SERBAD, i); 769 /* Tell the serial port to load the new value into the FIFO location. */ 770 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC); 771 } 772 /* 773 * Now, if we powered up the devices, then power them back down again. 774 * This is kinda ugly, but should never happen. 775 */ 776 if (!pwr) 777 csa_writeio(resp, BA0_CLKCR1, clkcr1); 778 } 779 780 static void 781 csa_resetdsp(csa_res *resp) 782 { 783 int i; 784 785 /* 786 * Write the reset bit of the SP control register. 787 */ 788 csa_writemem(resp, BA1_SPCR, SPCR_RSTSP); 789 790 /* 791 * Write the control register. 792 */ 793 csa_writemem(resp, BA1_SPCR, SPCR_DRQEN); 794 795 /* 796 * Clear the trap registers. 797 */ 798 for (i = 0 ; i < 8 ; i++) { 799 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i); 800 csa_writemem(resp, BA1_TWPR, 0xffff); 801 } 802 csa_writemem(resp, BA1_DREG, 0); 803 804 /* 805 * Set the frame timer to reflect the number of cycles per frame. 806 */ 807 csa_writemem(resp, BA1_FRMT, 0xadf); 808 } 809 810 static int 811 csa_downloadimage(csa_res *resp) 812 { 813 int i; 814 u_int32_t tmp, src, dst, count, data; 815 816 for (i = 0; i < CLEAR__COUNT; i++) { 817 dst = ClrStat[i].BA1__DestByteOffset; 818 count = ClrStat[i].BA1__SourceSize; 819 for (tmp = 0; tmp < count; tmp += 4) 820 csa_writemem(resp, dst + tmp, 0x00000000); 821 } 822 823 for (i = 0; i < FILL__COUNT; i++) { 824 src = 0; 825 dst = FillStat[i].Offset; 826 count = FillStat[i].Size; 827 for (tmp = 0; tmp < count; tmp += 4) { 828 data = FillStat[i].pFill[src]; 829 csa_writemem(resp, dst + tmp, data); 830 src++; 831 } 832 } 833 834 return (0); 835 } 836 837 int 838 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data) 839 { 840 int i; 841 u_int32_t acsda, acctl, acsts; 842 843 /* 844 * Make sure that there is not data sitting around from a previous 845 * uncompleted access. ACSDA = Status Data Register = 47Ch 846 */ 847 acsda = csa_readio(resp, BA0_ACSDA); 848 849 /* 850 * Setup the AC97 control registers on the CS461x to send the 851 * appropriate command to the AC97 to perform the read. 852 * ACCAD = Command Address Register = 46Ch 853 * ACCDA = Command Data Register = 470h 854 * ACCTL = Control Register = 460h 855 * set DCV - will clear when process completed 856 * set CRW - Read command 857 * set VFRM - valid frame enabled 858 * set ESYN - ASYNC generation enabled 859 * set RSTN - ARST# inactive, AC97 codec not reset 860 */ 861 862 /* 863 * Get the actual AC97 register from the offset 864 */ 865 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 866 csa_writeio(resp, BA0_ACCDA, 0); 867 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 868 869 /* 870 * Wait for the read to occur. 871 */ 872 acctl = 0; 873 for (i = 0 ; i < 10 ; i++) { 874 /* 875 * First, we want to wait for a short time. 876 */ 877 DELAY(25); 878 879 /* 880 * Now, check to see if the read has completed. 881 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 882 */ 883 acctl = csa_readio(resp, BA0_ACCTL); 884 if ((acctl & ACCTL_DCV) == 0) 885 break; 886 } 887 888 /* 889 * Make sure the read completed. 890 */ 891 if ((acctl & ACCTL_DCV) != 0) 892 return (EAGAIN); 893 894 /* 895 * Wait for the valid status bit to go active. 896 */ 897 acsts = 0; 898 for (i = 0 ; i < 10 ; i++) { 899 /* 900 * Read the AC97 status register. 901 * ACSTS = Status Register = 464h 902 */ 903 acsts = csa_readio(resp, BA0_ACSTS); 904 /* 905 * See if we have valid status. 906 * VSTS - Valid Status 907 */ 908 if ((acsts & ACSTS_VSTS) != 0) 909 break; 910 /* 911 * Wait for a short while. 912 */ 913 DELAY(25); 914 } 915 916 /* 917 * Make sure we got valid status. 918 */ 919 if ((acsts & ACSTS_VSTS) == 0) 920 return (EAGAIN); 921 922 /* 923 * Read the data returned from the AC97 register. 924 * ACSDA = Status Data Register = 474h 925 */ 926 *data = csa_readio(resp, BA0_ACSDA); 927 928 return (0); 929 } 930 931 int 932 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data) 933 { 934 int i; 935 u_int32_t acctl; 936 937 /* 938 * Setup the AC97 control registers on the CS461x to send the 939 * appropriate command to the AC97 to perform the write. 940 * ACCAD = Command Address Register = 46Ch 941 * ACCDA = Command Data Register = 470h 942 * ACCTL = Control Register = 460h 943 * set DCV - will clear when process completed 944 * set VFRM - valid frame enabled 945 * set ESYN - ASYNC generation enabled 946 * set RSTN - ARST# inactive, AC97 codec not reset 947 */ 948 949 /* 950 * Get the actual AC97 register from the offset 951 */ 952 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 953 csa_writeio(resp, BA0_ACCDA, data); 954 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 955 956 /* 957 * Wait for the write to occur. 958 */ 959 acctl = 0; 960 for (i = 0 ; i < 10 ; i++) { 961 /* 962 * First, we want to wait for a short time. 963 */ 964 DELAY(25); 965 966 /* 967 * Now, check to see if the read has completed. 968 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 969 */ 970 acctl = csa_readio(resp, BA0_ACCTL); 971 if ((acctl & ACCTL_DCV) == 0) 972 break; 973 } 974 975 /* 976 * Make sure the write completed. 977 */ 978 if ((acctl & ACCTL_DCV) != 0) 979 return (EAGAIN); 980 981 return (0); 982 } 983 984 u_int32_t 985 csa_readio(csa_res *resp, u_long offset) 986 { 987 u_int32_t ul; 988 989 if (offset < BA0_AC97_RESET) 990 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff; 991 else { 992 if (csa_readcodec(resp, offset, &ul)) 993 ul = 0; 994 return (ul); 995 } 996 } 997 998 void 999 csa_writeio(csa_res *resp, u_long offset, u_int32_t data) 1000 { 1001 if (offset < BA0_AC97_RESET) 1002 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data); 1003 else 1004 csa_writecodec(resp, offset, data); 1005 } 1006 1007 u_int32_t 1008 csa_readmem(csa_res *resp, u_long offset) 1009 { 1010 return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset); 1011 } 1012 1013 void 1014 csa_writemem(csa_res *resp, u_long offset, u_int32_t data) 1015 { 1016 bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data); 1017 } 1018 1019 static device_method_t csa_methods[] = { 1020 /* Device interface */ 1021 DEVMETHOD(device_probe, csa_probe), 1022 DEVMETHOD(device_attach, csa_attach), 1023 DEVMETHOD(device_detach, csa_detach), 1024 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1025 DEVMETHOD(device_suspend, bus_generic_suspend), 1026 DEVMETHOD(device_resume, bus_generic_resume), 1027 1028 /* Bus interface */ 1029 DEVMETHOD(bus_print_child, bus_generic_print_child), 1030 DEVMETHOD(bus_alloc_resource, csa_alloc_resource), 1031 DEVMETHOD(bus_release_resource, csa_release_resource), 1032 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1033 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1034 DEVMETHOD(bus_setup_intr, csa_setup_intr), 1035 DEVMETHOD(bus_teardown_intr, csa_teardown_intr), 1036 1037 { 0, 0 } 1038 }; 1039 1040 static driver_t csa_driver = { 1041 "csa", 1042 csa_methods, 1043 sizeof(struct csa_softc), 1044 }; 1045 1046 /* 1047 * csa can be attached to a pci bus. 1048 */ 1049 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0); 1050 MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER); 1051 MODULE_VERSION(snd_csa, 1); 1052