xref: /freebsd/sys/dev/sound/pci/csa.c (revision 559a218c9b257775fb249b67945fe4a05b7a6b9f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <dev/sound/pci/csareg.h>
50 #include <dev/sound/pci/csavar.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 
55 #include <dev/sound/pci/cs461x_dsp.h>
56 
57 /* This is the pci device id. */
58 #define CS4610_PCI_ID 0x60011013
59 #define CS4614_PCI_ID 0x60031013
60 #define CS4615_PCI_ID 0x60041013
61 
62 /* Here is the parameter structure per a device. */
63 struct csa_softc {
64 	device_t dev; /* device */
65 	csa_res res; /* resources */
66 
67 	device_t pcm; /* pcm device */
68 	driver_intr_t* pcmintr; /* pcm intr */
69 	void *pcmintr_arg; /* pcm intr arg */
70 	device_t midi; /* midi device */
71 	driver_intr_t* midiintr; /* midi intr */
72 	void *midiintr_arg; /* midi intr arg */
73 	void *ih; /* cookie */
74 
75 	struct csa_card *card;
76 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
77 };
78 
79 typedef struct csa_softc *sc_p;
80 
81 static int csa_probe(device_t dev);
82 static int csa_attach(device_t dev);
83 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
84 					      rman_res_t start, rman_res_t end,
85 					      rman_res_t count, u_int flags);
86 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
87 				   struct resource *r);
88 static int csa_setup_intr(device_t bus, device_t child,
89 			  struct resource *irq, int flags,
90 			  driver_filter_t *filter,
91 			  driver_intr_t *intr,  void *arg, void **cookiep);
92 static int csa_teardown_intr(device_t bus, device_t child,
93 			     struct resource *irq, void *cookie);
94 static driver_intr_t csa_intr;
95 static int csa_initialize(sc_p scp);
96 static int csa_downloadimage(csa_res *resp);
97 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
98 
99 static void
100 amp_none(void)
101 {
102 }
103 
104 static void
105 amp_voyetra(void)
106 {
107 }
108 
109 static int
110 clkrun_hack(int run)
111 {
112 #ifdef __i386__
113 	devclass_t		pci_devclass;
114 	device_t		*pci_devices, *pci_children, *busp, *childp;
115 	int			pci_count = 0, pci_childcount = 0;
116 	int			i, j, port;
117 	u_int16_t		control;
118 	bus_space_tag_t		btag;
119 
120 	if ((pci_devclass = devclass_find("pci")) == NULL) {
121 		return ENXIO;
122 	}
123 
124 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
125 
126 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
127 		pci_childcount = 0;
128 		if (device_get_children(*busp, &pci_children, &pci_childcount))
129 			continue;
130 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
131 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
132 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
133 				/* XXX */
134 				btag = X86_BUS_SPACE_IO;
135 
136 				control = bus_space_read_2(btag, 0x0, port);
137 				control &= ~0x2000;
138 				control |= run? 0 : 0x2000;
139 				bus_space_write_2(btag, 0x0, port, control);
140 				free(pci_devices, M_TEMP);
141 				free(pci_children, M_TEMP);
142 				return 0;
143 			}
144 		}
145 		free(pci_children, M_TEMP);
146 	}
147 
148 	free(pci_devices, M_TEMP);
149 	return ENXIO;
150 #else
151 	return 0;
152 #endif
153 }
154 
155 static struct csa_card cards_4610[] = {
156 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
157 };
158 
159 static struct csa_card cards_4614[] = {
160 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
161 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
162 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
163 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
164 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
165 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
166 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
167 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
168 	{0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
169 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
170 };
171 
172 static struct csa_card cards_4615[] = {
173 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
174 };
175 
176 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
177 
178 struct card_type {
179 	u_int32_t devid;
180 	char *name;
181 	struct csa_card *cards;
182 };
183 
184 static struct card_type cards[] = {
185 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
186 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
187 	{CS4615_PCI_ID, "CS4615", cards_4615},
188 	{0, NULL, NULL},
189 };
190 
191 static struct card_type *
192 csa_findcard(device_t dev)
193 {
194 	int i;
195 
196 	i = 0;
197 	while (cards[i].devid != 0) {
198 		if (pci_get_devid(dev) == cards[i].devid)
199 			return &cards[i];
200 		i++;
201 	}
202 	return NULL;
203 }
204 
205 struct csa_card *
206 csa_findsubcard(device_t dev)
207 {
208 	int i;
209 	struct card_type *card;
210 	struct csa_card *subcard;
211 
212 	card = csa_findcard(dev);
213 	if (card == NULL)
214 		return &nocard;
215 	subcard = card->cards;
216 	i = 0;
217 	while (subcard[i].subvendor != 0) {
218 		if (pci_get_subvendor(dev) == subcard[i].subvendor
219 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
220 			return &subcard[i];
221 		}
222 		i++;
223 	}
224 	return &subcard[i];
225 }
226 
227 static int
228 csa_probe(device_t dev)
229 {
230 	struct card_type *card;
231 
232 	card = csa_findcard(dev);
233 	if (card) {
234 		device_set_desc(dev, card->name);
235 		return BUS_PROBE_DEFAULT;
236 	}
237 	return ENXIO;
238 }
239 
240 static int
241 csa_attach(device_t dev)
242 {
243 	sc_p scp;
244 	csa_res *resp;
245 	struct sndcard_func *func;
246 	int error = ENXIO;
247 
248 	scp = device_get_softc(dev);
249 
250 	/* Fill in the softc. */
251 	bzero(scp, sizeof(*scp));
252 	scp->dev = dev;
253 
254 	pci_enable_busmaster(dev);
255 
256 	/* Allocate the resources. */
257 	resp = &scp->res;
258 	scp->card = csa_findsubcard(dev);
259 	scp->binfo.card = scp->card;
260 	printf("csa: card is %s\n", scp->card->name);
261 	resp->io_rid = PCIR_BAR(0);
262 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
263 		&resp->io_rid, RF_ACTIVE);
264 	if (resp->io == NULL)
265 		return (ENXIO);
266 	resp->mem_rid = PCIR_BAR(1);
267 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
268 		&resp->mem_rid, RF_ACTIVE);
269 	if (resp->mem == NULL)
270 		goto err_io;
271 	resp->irq_rid = 0;
272 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
273 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
274 	if (resp->irq == NULL)
275 		goto err_mem;
276 
277 	/* Enable interrupt. */
278 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
279 		goto err_intr;
280 #if 0
281 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
282 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
283 #endif
284 
285 	/* Initialize the chip. */
286 	if (csa_initialize(scp))
287 		goto err_teardown;
288 
289 	/* Reset the Processor. */
290 	csa_resetdsp(resp);
291 
292 	/* Download the Processor Image to the processor. */
293 	if (csa_downloadimage(resp))
294 		goto err_teardown;
295 
296 	/* Attach the children. */
297 
298 	/* PCM Audio */
299 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
300 	if (func == NULL) {
301 		error = ENOMEM;
302 		goto err_teardown;
303 	}
304 	func->varinfo = &scp->binfo;
305 	func->func = SCF_PCM;
306 	scp->pcm = device_add_child(dev, "pcm", -1);
307 	device_set_ivars(scp->pcm, func);
308 
309 	/* Midi Interface */
310 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
311 	if (func == NULL) {
312 		error = ENOMEM;
313 		goto err_teardown;
314 	}
315 	func->varinfo = &scp->binfo;
316 	func->func = SCF_MIDI;
317 	scp->midi = device_add_child(dev, "midi", -1);
318 	device_set_ivars(scp->midi, func);
319 
320 	bus_generic_attach(dev);
321 
322 	return (0);
323 
324 err_teardown:
325 	bus_teardown_intr(dev, resp->irq, scp->ih);
326 err_intr:
327 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
328 err_mem:
329 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
330 err_io:
331 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
332 	return (error);
333 }
334 
335 static int
336 csa_detach(device_t dev)
337 {
338 	csa_res *resp;
339 	sc_p scp;
340 	struct sndcard_func *func;
341 	int err;
342 
343 	scp = device_get_softc(dev);
344 	resp = &scp->res;
345 
346 	if (scp->midi != NULL) {
347 		func = device_get_ivars(scp->midi);
348 		err = device_delete_child(dev, scp->midi);
349 		if (err != 0)
350 			return err;
351 		if (func != NULL)
352 			free(func, M_DEVBUF);
353 		scp->midi = NULL;
354 	}
355 
356 	if (scp->pcm != NULL) {
357 		func = device_get_ivars(scp->pcm);
358 		err = device_delete_child(dev, scp->pcm);
359 		if (err != 0)
360 			return err;
361 		if (func != NULL)
362 			free(func, M_DEVBUF);
363 		scp->pcm = NULL;
364 	}
365 
366 	bus_teardown_intr(dev, resp->irq, scp->ih);
367 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
368 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
369 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
370 
371 	return bus_generic_detach(dev);
372 }
373 
374 static int
375 csa_resume(device_t dev)
376 {
377 	csa_res *resp;
378 	sc_p scp;
379 
380 	scp = device_get_softc(dev);
381 	resp = &scp->res;
382 
383 	/* Initialize the chip. */
384 	if (csa_initialize(scp))
385 		return (ENXIO);
386 
387 	/* Reset the Processor. */
388 	csa_resetdsp(resp);
389 
390 	/* Download the Processor Image to the processor. */
391 	if (csa_downloadimage(resp))
392 		return (ENXIO);
393 
394 	return (bus_generic_resume(dev));
395 }
396 
397 static struct resource *
398 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
399 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
400 {
401 	sc_p scp;
402 	csa_res *resp;
403 	struct resource *res;
404 
405 	scp = device_get_softc(bus);
406 	resp = &scp->res;
407 	switch (type) {
408 	case SYS_RES_IRQ:
409 		if (*rid != 0)
410 			return (NULL);
411 		res = resp->irq;
412 		break;
413 	case SYS_RES_MEMORY:
414 		switch (*rid) {
415 		case PCIR_BAR(0):
416 			res = resp->io;
417 			break;
418 		case PCIR_BAR(1):
419 			res = resp->mem;
420 			break;
421 		default:
422 			return (NULL);
423 		}
424 		break;
425 	default:
426 		return (NULL);
427 	}
428 
429 	return res;
430 }
431 
432 static int
433 csa_release_resource(device_t bus, device_t child, int type, int rid,
434 			struct resource *r)
435 {
436 	return (0);
437 }
438 
439 /*
440  * The following three functions deal with interrupt handling.
441  * An interrupt is primarily handled by the bridge driver.
442  * The bridge driver then determines the child devices to pass
443  * the interrupt. Certain information of the device can be read
444  * only once(eg the value of HISR). The bridge driver is responsible
445  * to pass such the information to the children.
446  */
447 
448 static int
449 csa_setup_intr(device_t bus, device_t child,
450 	       struct resource *irq, int flags,
451 	       driver_filter_t *filter,
452 	       driver_intr_t *intr, void *arg, void **cookiep)
453 {
454 	sc_p scp;
455 	csa_res *resp;
456 	struct sndcard_func *func;
457 
458 	if (filter != NULL) {
459 		printf("ata-csa.c: we cannot use a filter here\n");
460 		return (EINVAL);
461 	}
462 	scp = device_get_softc(bus);
463 	resp = &scp->res;
464 
465 	/*
466 	 * Look at the function code of the child to determine
467 	 * the appropriate handler for it.
468 	 */
469 	func = device_get_ivars(child);
470 	if (func == NULL || irq != resp->irq)
471 		return (EINVAL);
472 
473 	switch (func->func) {
474 	case SCF_PCM:
475 		scp->pcmintr = intr;
476 		scp->pcmintr_arg = arg;
477 		break;
478 
479 	case SCF_MIDI:
480 		scp->midiintr = intr;
481 		scp->midiintr_arg = arg;
482 		break;
483 
484 	default:
485 		return (EINVAL);
486 	}
487 	*cookiep = scp;
488 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
489 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
490 
491 	return (0);
492 }
493 
494 static int
495 csa_teardown_intr(device_t bus, device_t child,
496 		  struct resource *irq, void *cookie)
497 {
498 	sc_p scp;
499 	csa_res *resp;
500 	struct sndcard_func *func;
501 
502 	scp = device_get_softc(bus);
503 	resp = &scp->res;
504 
505 	/*
506 	 * Look at the function code of the child to determine
507 	 * the appropriate handler for it.
508 	 */
509 	func = device_get_ivars(child);
510 	if (func == NULL || irq != resp->irq || cookie != scp)
511 		return (EINVAL);
512 
513 	switch (func->func) {
514 	case SCF_PCM:
515 		scp->pcmintr = NULL;
516 		scp->pcmintr_arg = NULL;
517 		break;
518 
519 	case SCF_MIDI:
520 		scp->midiintr = NULL;
521 		scp->midiintr_arg = NULL;
522 		break;
523 
524 	default:
525 		return (EINVAL);
526 	}
527 
528 	return (0);
529 }
530 
531 /* The interrupt handler */
532 static void
533 csa_intr(void *arg)
534 {
535 	sc_p scp = arg;
536 	csa_res *resp;
537 	u_int32_t hisr;
538 
539 	resp = &scp->res;
540 
541 	/* Is this interrupt for us? */
542 	hisr = csa_readio(resp, BA0_HISR);
543 	if ((hisr & 0x7fffffff) == 0) {
544 		/* Throw an eoi. */
545 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
546 		return;
547 	}
548 
549 	/*
550 	 * Pass the value of HISR via struct csa_bridgeinfo.
551 	 * The children get access through their ivars.
552 	 */
553 	scp->binfo.hisr = hisr;
554 
555 	/* Invoke the handlers of the children. */
556 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
557 		scp->pcmintr(scp->pcmintr_arg);
558 		hisr &= ~(HISR_VC0 | HISR_VC1);
559 	}
560 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
561 		scp->midiintr(scp->midiintr_arg);
562 		hisr &= ~HISR_MIDI;
563 	}
564 
565 	/* Throw an eoi. */
566 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
567 }
568 
569 static int
570 csa_initialize(sc_p scp)
571 {
572 	int i;
573 	u_int32_t acsts, acisv;
574 	csa_res *resp;
575 
576 	resp = &scp->res;
577 
578 	/*
579 	 * First, blast the clock control register to zero so that the PLL starts
580 	 * out in a known state, and blast the master serial port control register
581 	 * to zero so that the serial ports also start out in a known state.
582 	 */
583 	csa_writeio(resp, BA0_CLKCR1, 0);
584 	csa_writeio(resp, BA0_SERMC1, 0);
585 
586 	/*
587 	 * If we are in AC97 mode, then we must set the part to a host controlled
588 	 * AC-link.  Otherwise, we won't be able to bring up the link.
589 	 */
590 #if 1
591 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
592 #else
593 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
594 #endif /* 1 */
595 
596 	/*
597 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
598 	 * spec) and then drive it high.  This is done for non AC97 modes since
599 	 * there might be logic external to the CS461x that uses the ARST# line
600 	 * for a reset.
601 	 */
602 	csa_writeio(resp, BA0_ACCTL, 1);
603 	DELAY(50);
604 	csa_writeio(resp, BA0_ACCTL, 0);
605 	DELAY(50);
606 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
607 
608 	/*
609 	 * The first thing we do here is to enable sync generation.  As soon
610 	 * as we start receiving bit clock, we'll start producing the SYNC
611 	 * signal.
612 	 */
613 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
614 
615 	/*
616 	 * Now wait for a short while to allow the AC97 part to start
617 	 * generating bit clock (so we don't try to start the PLL without an
618 	 * input clock).
619 	 */
620 	DELAY(50000);
621 
622 	/*
623 	 * Set the serial port timing configuration, so that
624 	 * the clock control circuit gets its clock from the correct place.
625 	 */
626 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
627 	DELAY(700000);
628 
629 	/*
630 	 * Write the selected clock control setup to the hardware.  Do not turn on
631 	 * SWCE yet (if requested), so that the devices clocked by the output of
632 	 * PLL are not clocked until the PLL is stable.
633 	 */
634 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
635 	csa_writeio(resp, BA0_PLLM, 0x3a);
636 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
637 
638 	/*
639 	 * Power up the PLL.
640 	 */
641 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
642 
643 	/*
644 	 * Wait until the PLL has stabilized.
645 	 */
646 	DELAY(5000);
647 
648 	/*
649 	 * Turn on clocking of the core so that we can setup the serial ports.
650 	 */
651 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
652 
653 	/*
654 	 * Fill the serial port FIFOs with silence.
655 	 */
656 	csa_clearserialfifos(resp);
657 
658 	/*
659 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
660 	 */
661 #ifdef notdef
662 	csa_writeio(resp, BA0_SERBSP, 0);
663 #endif /* notdef */
664 
665 	/*
666 	 *  Write the serial port configuration to the part.  The master
667 	 *  enable bit is not set until all other values have been written.
668 	 */
669 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
670 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
671 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
672 
673 	/*
674 	 * Wait for the codec ready signal from the AC97 codec.
675 	 */
676 	acsts = 0;
677 	for (i = 0 ; i < 1000 ; i++) {
678 		/*
679 		 * First, lets wait a short while to let things settle out a bit,
680 		 * and to prevent retrying the read too quickly.
681 		 */
682 		DELAY(125);
683 
684 		/*
685 		 * Read the AC97 status register to see if we've seen a CODEC READY
686 		 * signal from the AC97 codec.
687 		 */
688 		acsts = csa_readio(resp, BA0_ACSTS);
689 		if ((acsts & ACSTS_CRDY) != 0)
690 			break;
691 	}
692 
693 	/*
694 	 * Make sure we sampled CODEC READY.
695 	 */
696 	if ((acsts & ACSTS_CRDY) == 0)
697 		return (ENXIO);
698 
699 	/*
700 	 * Assert the vaid frame signal so that we can start sending commands
701 	 * to the AC97 codec.
702 	 */
703 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
704 
705 	/*
706 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
707 	 * the codec is pumping ADC data across the AC-link.
708 	 */
709 	acisv = 0;
710 	for (i = 0 ; i < 2000 ; i++) {
711 		/*
712 		 * First, lets wait a short while to let things settle out a bit,
713 		 * and to prevent retrying the read too quickly.
714 		 */
715 #ifdef notdef
716 		DELAY(10000000L); /* clw */
717 #else
718 		DELAY(1000);
719 #endif /* notdef */
720 		/*
721 		 * Read the input slot valid register and see if input slots 3 and
722 		 * 4 are valid yet.
723 		 */
724 		acisv = csa_readio(resp, BA0_ACISV);
725 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
726 			break;
727 	}
728 	/*
729 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
730 	 * an error.
731 	 */
732 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
733 		return (ENXIO);
734 
735 	/*
736 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
737 	 * commense the transfer of digital audio data to the AC97 codec.
738 	 */
739 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
740 
741 	/*
742 	 * Power down the DAC and ADC.  We will power them up (if) when we need
743 	 * them.
744 	 */
745 #ifdef notdef
746 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
747 #endif /* notdef */
748 
749 	/*
750 	 * Turn off the Processor by turning off the software clock enable flag in
751 	 * the clock control register.
752 	 */
753 #ifdef notdef
754 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
755 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
756 #endif /* notdef */
757 
758 	/*
759 	 * Enable interrupts on the part.
760 	 */
761 #if 0
762 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
763 #endif /* notdef */
764 
765 	return (0);
766 }
767 
768 void
769 csa_clearserialfifos(csa_res *resp)
770 {
771 	int i, j, pwr;
772 	u_int8_t clkcr1, serbst;
773 
774 	/*
775 	 * See if the devices are powered down.  If so, we must power them up first
776 	 * or they will not respond.
777 	 */
778 	pwr = 1;
779 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
780 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
781 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
782 		pwr = 0;
783 	}
784 
785 	/*
786 	 * We want to clear out the serial port FIFOs so we don't end up playing
787 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
788 	 * with zero (silence).
789 	 */
790 	csa_writeio(resp, BA0_SERBWP, 0);
791 
792 	/* Fill all 256 sample FIFO locations. */
793 	serbst = 0;
794 	for (i = 0 ; i < 256 ; i++) {
795 		/* Make sure the previous FIFO write operation has completed. */
796 		for (j = 0 ; j < 5 ; j++) {
797 			DELAY(100);
798 			serbst = csa_readio(resp, BA0_SERBST);
799 			if ((serbst & SERBST_WBSY) == 0)
800 				break;
801 		}
802 		if ((serbst & SERBST_WBSY) != 0) {
803 			if (!pwr)
804 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
805 		}
806 		/* Write the serial port FIFO index. */
807 		csa_writeio(resp, BA0_SERBAD, i);
808 		/* Tell the serial port to load the new value into the FIFO location. */
809 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
810 	}
811 	/*
812 	 *  Now, if we powered up the devices, then power them back down again.
813 	 *  This is kinda ugly, but should never happen.
814 	 */
815 	if (!pwr)
816 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
817 }
818 
819 void
820 csa_resetdsp(csa_res *resp)
821 {
822 	int i;
823 
824 	/*
825 	 * Write the reset bit of the SP control register.
826 	 */
827 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
828 
829 	/*
830 	 * Write the control register.
831 	 */
832 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
833 
834 	/*
835 	 * Clear the trap registers.
836 	 */
837 	for (i = 0 ; i < 8 ; i++) {
838 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
839 		csa_writemem(resp, BA1_TWPR, 0xffff);
840 	}
841 	csa_writemem(resp, BA1_DREG, 0);
842 
843 	/*
844 	 * Set the frame timer to reflect the number of cycles per frame.
845 	 */
846 	csa_writemem(resp, BA1_FRMT, 0xadf);
847 }
848 
849 static int
850 csa_downloadimage(csa_res *resp)
851 {
852 	int ret;
853 	u_long ul, offset;
854 
855 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
856 	        /*
857 	         * DMA this block from host memory to the appropriate
858 	         * memory on the CSDevice.
859 	         */
860 		ret = csa_transferimage(resp,
861 		    cs461x_firmware.BA1Array + offset,
862 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
863 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
864 		if (ret)
865 			return (ret);
866 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
867 	}
868 	return (0);
869 }
870 
871 static int
872 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
873 {
874 	u_long ul;
875 
876 	/*
877 	 * We do not allow DMAs from host memory to host memory (although the DMA
878 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
879 	 * in size (because that DMA can not do that).  Return an error if either
880 	 * of these conditions exist.
881 	 */
882 	if ((len & 0x3) != 0)
883 		return (EINVAL);
884 
885 	/* Check the destination address that it is a multiple of 4 */
886 	if ((dest & 0x3) != 0)
887 		return (EINVAL);
888 
889 	/* Write the buffer out. */
890 	for (ul = 0 ; ul < len ; ul += 4)
891 		csa_writemem(resp, dest + ul, src[ul >> 2]);
892 	return (0);
893 }
894 
895 int
896 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
897 {
898 	int i;
899 	u_int32_t acctl, acsts;
900 
901 	/*
902 	 * Make sure that there is not data sitting around from a previous
903 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
904 	 */
905 	csa_readio(resp, BA0_ACSDA);
906 
907 	/*
908 	 * Setup the AC97 control registers on the CS461x to send the
909 	 * appropriate command to the AC97 to perform the read.
910 	 * ACCAD = Command Address Register = 46Ch
911 	 * ACCDA = Command Data Register = 470h
912 	 * ACCTL = Control Register = 460h
913 	 * set DCV - will clear when process completed
914 	 * set CRW - Read command
915 	 * set VFRM - valid frame enabled
916 	 * set ESYN - ASYNC generation enabled
917 	 * set RSTN - ARST# inactive, AC97 codec not reset
918 	 */
919 
920 	/*
921 	 * Get the actual AC97 register from the offset
922 	 */
923 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
924 	csa_writeio(resp, BA0_ACCDA, 0);
925 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
926 
927 	/*
928 	 * Wait for the read to occur.
929 	 */
930 	acctl = 0;
931 	for (i = 0 ; i < 10 ; i++) {
932 		/*
933 		 * First, we want to wait for a short time.
934 		 */
935 		DELAY(25);
936 
937 		/*
938 		 * Now, check to see if the read has completed.
939 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
940 		 */
941 		acctl = csa_readio(resp, BA0_ACCTL);
942 		if ((acctl & ACCTL_DCV) == 0)
943 			break;
944 	}
945 
946 	/*
947 	 * Make sure the read completed.
948 	 */
949 	if ((acctl & ACCTL_DCV) != 0)
950 		return (EAGAIN);
951 
952 	/*
953 	 * Wait for the valid status bit to go active.
954 	 */
955 	acsts = 0;
956 	for (i = 0 ; i < 10 ; i++) {
957 		/*
958 		 * Read the AC97 status register.
959 		 * ACSTS = Status Register = 464h
960 		 */
961 		acsts = csa_readio(resp, BA0_ACSTS);
962 		/*
963 		 * See if we have valid status.
964 		 * VSTS - Valid Status
965 		 */
966 		if ((acsts & ACSTS_VSTS) != 0)
967 			break;
968 		/*
969 		 * Wait for a short while.
970 		 */
971 		 DELAY(25);
972 	}
973 
974 	/*
975 	 * Make sure we got valid status.
976 	 */
977 	if ((acsts & ACSTS_VSTS) == 0)
978 		return (EAGAIN);
979 
980 	/*
981 	 * Read the data returned from the AC97 register.
982 	 * ACSDA = Status Data Register = 474h
983 	 */
984 	*data = csa_readio(resp, BA0_ACSDA);
985 
986 	return (0);
987 }
988 
989 int
990 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
991 {
992 	int i;
993 	u_int32_t acctl;
994 
995 	/*
996 	 * Setup the AC97 control registers on the CS461x to send the
997 	 * appropriate command to the AC97 to perform the write.
998 	 * ACCAD = Command Address Register = 46Ch
999 	 * ACCDA = Command Data Register = 470h
1000 	 * ACCTL = Control Register = 460h
1001 	 * set DCV - will clear when process completed
1002 	 * set VFRM - valid frame enabled
1003 	 * set ESYN - ASYNC generation enabled
1004 	 * set RSTN - ARST# inactive, AC97 codec not reset
1005 	 */
1006 
1007 	/*
1008 	 * Get the actual AC97 register from the offset
1009 	 */
1010 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1011 	csa_writeio(resp, BA0_ACCDA, data);
1012 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1013 
1014 	/*
1015 	 * Wait for the write to occur.
1016 	 */
1017 	acctl = 0;
1018 	for (i = 0 ; i < 10 ; i++) {
1019 		/*
1020 		 * First, we want to wait for a short time.
1021 		 */
1022 		DELAY(25);
1023 
1024 		/*
1025 		 * Now, check to see if the read has completed.
1026 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1027 		 */
1028 		acctl = csa_readio(resp, BA0_ACCTL);
1029 		if ((acctl & ACCTL_DCV) == 0)
1030 			break;
1031 	}
1032 
1033 	/*
1034 	 * Make sure the write completed.
1035 	 */
1036 	if ((acctl & ACCTL_DCV) != 0)
1037 		return (EAGAIN);
1038 
1039 	return (0);
1040 }
1041 
1042 u_int32_t
1043 csa_readio(csa_res *resp, u_long offset)
1044 {
1045 	u_int32_t ul;
1046 
1047 	if (offset < BA0_AC97_RESET)
1048 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1049 	else {
1050 		if (csa_readcodec(resp, offset, &ul))
1051 			ul = 0;
1052 		return (ul);
1053 	}
1054 }
1055 
1056 void
1057 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1058 {
1059 	if (offset < BA0_AC97_RESET)
1060 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1061 	else
1062 		csa_writecodec(resp, offset, data);
1063 }
1064 
1065 u_int32_t
1066 csa_readmem(csa_res *resp, u_long offset)
1067 {
1068 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1069 }
1070 
1071 void
1072 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1073 {
1074 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1075 }
1076 
1077 static device_method_t csa_methods[] = {
1078 	/* Device interface */
1079 	DEVMETHOD(device_probe,		csa_probe),
1080 	DEVMETHOD(device_attach,	csa_attach),
1081 	DEVMETHOD(device_detach,	csa_detach),
1082 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1083 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1084 	DEVMETHOD(device_resume,	csa_resume),
1085 
1086 	/* Bus interface */
1087 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1088 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1089 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1090 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1091 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1092 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1093 
1094 	DEVMETHOD_END
1095 };
1096 
1097 static driver_t csa_driver = {
1098 	"csa",
1099 	csa_methods,
1100 	sizeof(struct csa_softc),
1101 };
1102 
1103 /*
1104  * csa can be attached to a pci bus.
1105  */
1106 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1107 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1108 MODULE_VERSION(snd_csa, 1);
1109