1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1999 Seigo Tanimura 5 * All rights reserved. 6 * 7 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in 8 * cwcealdr1.zip, the sample sources by Crystal Semiconductor. 9 * Copyright (c) 1996-1998 Crystal Semiconductor Corp. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/bus.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <machine/resource.h> 40 #include <machine/bus.h> 41 #include <sys/rman.h> 42 43 #ifdef HAVE_KERNEL_OPTION_HEADERS 44 #include "opt_snd.h" 45 #endif 46 47 #include <dev/sound/pcm/sound.h> 48 #include <dev/sound/pci/csareg.h> 49 #include <dev/sound/pci/csavar.h> 50 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 54 #include <dev/sound/pci/cs461x_dsp.h> 55 56 /* This is the pci device id. */ 57 #define CS4610_PCI_ID 0x60011013 58 #define CS4614_PCI_ID 0x60031013 59 #define CS4615_PCI_ID 0x60041013 60 61 /* Here is the parameter structure per a device. */ 62 struct csa_softc { 63 device_t dev; /* device */ 64 csa_res res; /* resources */ 65 66 device_t pcm; /* pcm device */ 67 driver_intr_t* pcmintr; /* pcm intr */ 68 void *pcmintr_arg; /* pcm intr arg */ 69 device_t midi; /* midi device */ 70 driver_intr_t* midiintr; /* midi intr */ 71 void *midiintr_arg; /* midi intr arg */ 72 void *ih; /* cookie */ 73 74 struct csa_card *card; 75 struct csa_bridgeinfo binfo; /* The state of this bridge. */ 76 }; 77 78 typedef struct csa_softc *sc_p; 79 80 static int csa_probe(device_t dev); 81 static int csa_attach(device_t dev); 82 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 83 rman_res_t start, rman_res_t end, 84 rman_res_t count, u_int flags); 85 static int csa_release_resource(device_t bus, device_t child, struct resource *r); 86 static int csa_setup_intr(device_t bus, device_t child, 87 struct resource *irq, int flags, 88 driver_filter_t *filter, 89 driver_intr_t *intr, void *arg, void **cookiep); 90 static int csa_teardown_intr(device_t bus, device_t child, 91 struct resource *irq, void *cookie); 92 static driver_intr_t csa_intr; 93 static int csa_initialize(sc_p scp); 94 static int csa_downloadimage(csa_res *resp); 95 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len); 96 97 static void 98 amp_none(void) 99 { 100 } 101 102 static void 103 amp_voyetra(void) 104 { 105 } 106 107 static int 108 clkrun_hack(int run) 109 { 110 #ifdef __i386__ 111 device_t child; 112 int port; 113 u_int16_t control; 114 bus_space_tag_t btag; 115 116 child = pci_find_device(0x8086, 0x7113); 117 if (child == NULL) 118 return (ENXIO); 119 120 port = (pci_read_config(child, 0x41, 1) << 8) + 0x10; 121 /* XXX */ 122 btag = X86_BUS_SPACE_IO; 123 124 control = bus_space_read_2(btag, 0x0, port); 125 control &= ~0x2000; 126 control |= run? 0 : 0x2000; 127 bus_space_write_2(btag, 0x0, port, control); 128 #endif 129 return (0); 130 } 131 132 static struct csa_card cards_4610[] = { 133 {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0}, 134 }; 135 136 static struct csa_card cards_4614[] = { 137 {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0}, 138 {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1}, 139 {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0}, 140 {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 141 {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0}, 142 {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0}, 143 {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0}, 144 {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0}, 145 {0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0}, 146 {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0}, 147 }; 148 149 static struct csa_card cards_4615[] = { 150 {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0}, 151 }; 152 153 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0}; 154 155 struct card_type { 156 u_int32_t devid; 157 char *name; 158 struct csa_card *cards; 159 }; 160 161 static struct card_type cards[] = { 162 {CS4610_PCI_ID, "CS4610/CS4611", cards_4610}, 163 {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614}, 164 {CS4615_PCI_ID, "CS4615", cards_4615}, 165 {0, NULL, NULL}, 166 }; 167 168 static struct card_type * 169 csa_findcard(device_t dev) 170 { 171 int i; 172 173 i = 0; 174 while (cards[i].devid != 0) { 175 if (pci_get_devid(dev) == cards[i].devid) 176 return &cards[i]; 177 i++; 178 } 179 return NULL; 180 } 181 182 struct csa_card * 183 csa_findsubcard(device_t dev) 184 { 185 int i; 186 struct card_type *card; 187 struct csa_card *subcard; 188 189 card = csa_findcard(dev); 190 if (card == NULL) 191 return &nocard; 192 subcard = card->cards; 193 i = 0; 194 while (subcard[i].subvendor != 0) { 195 if (pci_get_subvendor(dev) == subcard[i].subvendor 196 && pci_get_subdevice(dev) == subcard[i].subdevice) { 197 return &subcard[i]; 198 } 199 i++; 200 } 201 return &subcard[i]; 202 } 203 204 static int 205 csa_probe(device_t dev) 206 { 207 struct card_type *card; 208 209 card = csa_findcard(dev); 210 if (card) { 211 device_set_desc(dev, card->name); 212 return BUS_PROBE_DEFAULT; 213 } 214 return ENXIO; 215 } 216 217 static int 218 csa_attach(device_t dev) 219 { 220 sc_p scp; 221 csa_res *resp; 222 struct sndcard_func *func; 223 int error = ENXIO; 224 225 scp = device_get_softc(dev); 226 227 /* Fill in the softc. */ 228 bzero(scp, sizeof(*scp)); 229 scp->dev = dev; 230 231 pci_enable_busmaster(dev); 232 233 /* Allocate the resources. */ 234 resp = &scp->res; 235 scp->card = csa_findsubcard(dev); 236 scp->binfo.card = scp->card; 237 printf("csa: card is %s\n", scp->card->name); 238 resp->io_rid = PCIR_BAR(0); 239 resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 240 &resp->io_rid, RF_ACTIVE); 241 if (resp->io == NULL) 242 return (ENXIO); 243 resp->mem_rid = PCIR_BAR(1); 244 resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 245 &resp->mem_rid, RF_ACTIVE); 246 if (resp->mem == NULL) 247 goto err_io; 248 resp->irq_rid = 0; 249 resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, 250 &resp->irq_rid, RF_ACTIVE | RF_SHAREABLE); 251 if (resp->irq == NULL) 252 goto err_mem; 253 254 /* Enable interrupt. */ 255 if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih)) 256 goto err_intr; 257 #if 0 258 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 259 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 260 #endif 261 262 /* Initialize the chip. */ 263 if (csa_initialize(scp)) 264 goto err_teardown; 265 266 /* Reset the Processor. */ 267 csa_resetdsp(resp); 268 269 /* Download the Processor Image to the processor. */ 270 if (csa_downloadimage(resp)) 271 goto err_teardown; 272 273 /* Attach the children. */ 274 275 /* PCM Audio */ 276 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 277 if (func == NULL) { 278 error = ENOMEM; 279 goto err_teardown; 280 } 281 func->varinfo = &scp->binfo; 282 func->func = SCF_PCM; 283 scp->pcm = device_add_child(dev, "pcm", DEVICE_UNIT_ANY); 284 device_set_ivars(scp->pcm, func); 285 286 /* Midi Interface */ 287 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO); 288 if (func == NULL) { 289 error = ENOMEM; 290 goto err_teardown; 291 } 292 func->varinfo = &scp->binfo; 293 func->func = SCF_MIDI; 294 scp->midi = device_add_child(dev, "midi", DEVICE_UNIT_ANY); 295 device_set_ivars(scp->midi, func); 296 297 bus_generic_attach(dev); 298 299 return (0); 300 301 err_teardown: 302 bus_teardown_intr(dev, resp->irq, scp->ih); 303 err_intr: 304 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 305 err_mem: 306 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 307 err_io: 308 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 309 return (error); 310 } 311 312 static int 313 csa_detach(device_t dev) 314 { 315 csa_res *resp; 316 sc_p scp; 317 struct sndcard_func *func; 318 int err; 319 320 scp = device_get_softc(dev); 321 resp = &scp->res; 322 323 if (scp->midi != NULL) { 324 func = device_get_ivars(scp->midi); 325 err = device_delete_child(dev, scp->midi); 326 if (err != 0) 327 return err; 328 if (func != NULL) 329 free(func, M_DEVBUF); 330 scp->midi = NULL; 331 } 332 333 if (scp->pcm != NULL) { 334 func = device_get_ivars(scp->pcm); 335 err = device_delete_child(dev, scp->pcm); 336 if (err != 0) 337 return err; 338 if (func != NULL) 339 free(func, M_DEVBUF); 340 scp->pcm = NULL; 341 } 342 343 bus_teardown_intr(dev, resp->irq, scp->ih); 344 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq); 345 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem); 346 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io); 347 348 return bus_generic_detach(dev); 349 } 350 351 static int 352 csa_resume(device_t dev) 353 { 354 csa_res *resp; 355 sc_p scp; 356 357 scp = device_get_softc(dev); 358 resp = &scp->res; 359 360 /* Initialize the chip. */ 361 if (csa_initialize(scp)) 362 return (ENXIO); 363 364 /* Reset the Processor. */ 365 csa_resetdsp(resp); 366 367 /* Download the Processor Image to the processor. */ 368 if (csa_downloadimage(resp)) 369 return (ENXIO); 370 371 return (bus_generic_resume(dev)); 372 } 373 374 static struct resource * 375 csa_alloc_resource(device_t bus, device_t child, int type, int *rid, 376 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 377 { 378 sc_p scp; 379 csa_res *resp; 380 struct resource *res; 381 382 scp = device_get_softc(bus); 383 resp = &scp->res; 384 switch (type) { 385 case SYS_RES_IRQ: 386 if (*rid != 0) 387 return (NULL); 388 res = resp->irq; 389 break; 390 case SYS_RES_MEMORY: 391 switch (*rid) { 392 case PCIR_BAR(0): 393 res = resp->io; 394 break; 395 case PCIR_BAR(1): 396 res = resp->mem; 397 break; 398 default: 399 return (NULL); 400 } 401 break; 402 default: 403 return (NULL); 404 } 405 406 return res; 407 } 408 409 static int 410 csa_release_resource(device_t bus, device_t child, struct resource *r) 411 { 412 return (0); 413 } 414 415 /* 416 * The following three functions deal with interrupt handling. 417 * An interrupt is primarily handled by the bridge driver. 418 * The bridge driver then determines the child devices to pass 419 * the interrupt. Certain information of the device can be read 420 * only once(eg the value of HISR). The bridge driver is responsible 421 * to pass such the information to the children. 422 */ 423 424 static int 425 csa_setup_intr(device_t bus, device_t child, 426 struct resource *irq, int flags, 427 driver_filter_t *filter, 428 driver_intr_t *intr, void *arg, void **cookiep) 429 { 430 sc_p scp; 431 csa_res *resp; 432 struct sndcard_func *func; 433 434 if (filter != NULL) { 435 printf("ata-csa.c: we cannot use a filter here\n"); 436 return (EINVAL); 437 } 438 scp = device_get_softc(bus); 439 resp = &scp->res; 440 441 /* 442 * Look at the function code of the child to determine 443 * the appropriate handler for it. 444 */ 445 func = device_get_ivars(child); 446 if (func == NULL || irq != resp->irq) 447 return (EINVAL); 448 449 switch (func->func) { 450 case SCF_PCM: 451 scp->pcmintr = intr; 452 scp->pcmintr_arg = arg; 453 break; 454 455 case SCF_MIDI: 456 scp->midiintr = intr; 457 scp->midiintr_arg = arg; 458 break; 459 460 default: 461 return (EINVAL); 462 } 463 *cookiep = scp; 464 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0) 465 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 466 467 return (0); 468 } 469 470 static int 471 csa_teardown_intr(device_t bus, device_t child, 472 struct resource *irq, void *cookie) 473 { 474 sc_p scp; 475 csa_res *resp; 476 struct sndcard_func *func; 477 478 scp = device_get_softc(bus); 479 resp = &scp->res; 480 481 /* 482 * Look at the function code of the child to determine 483 * the appropriate handler for it. 484 */ 485 func = device_get_ivars(child); 486 if (func == NULL || irq != resp->irq || cookie != scp) 487 return (EINVAL); 488 489 switch (func->func) { 490 case SCF_PCM: 491 scp->pcmintr = NULL; 492 scp->pcmintr_arg = NULL; 493 break; 494 495 case SCF_MIDI: 496 scp->midiintr = NULL; 497 scp->midiintr_arg = NULL; 498 break; 499 500 default: 501 return (EINVAL); 502 } 503 504 return (0); 505 } 506 507 /* The interrupt handler */ 508 static void 509 csa_intr(void *arg) 510 { 511 sc_p scp = arg; 512 csa_res *resp; 513 u_int32_t hisr; 514 515 resp = &scp->res; 516 517 /* Is this interrupt for us? */ 518 hisr = csa_readio(resp, BA0_HISR); 519 if ((hisr & 0x7fffffff) == 0) { 520 /* Throw an eoi. */ 521 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 522 return; 523 } 524 525 /* 526 * Pass the value of HISR via struct csa_bridgeinfo. 527 * The children get access through their ivars. 528 */ 529 scp->binfo.hisr = hisr; 530 531 /* Invoke the handlers of the children. */ 532 if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) { 533 scp->pcmintr(scp->pcmintr_arg); 534 hisr &= ~(HISR_VC0 | HISR_VC1); 535 } 536 if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) { 537 scp->midiintr(scp->midiintr_arg); 538 hisr &= ~HISR_MIDI; 539 } 540 541 /* Throw an eoi. */ 542 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 543 } 544 545 static int 546 csa_initialize(sc_p scp) 547 { 548 int i; 549 u_int32_t acsts, acisv; 550 csa_res *resp; 551 552 resp = &scp->res; 553 554 /* 555 * First, blast the clock control register to zero so that the PLL starts 556 * out in a known state, and blast the master serial port control register 557 * to zero so that the serial ports also start out in a known state. 558 */ 559 csa_writeio(resp, BA0_CLKCR1, 0); 560 csa_writeio(resp, BA0_SERMC1, 0); 561 562 /* 563 * If we are in AC97 mode, then we must set the part to a host controlled 564 * AC-link. Otherwise, we won't be able to bring up the link. 565 */ 566 #if 1 567 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */ 568 #else 569 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */ 570 #endif /* 1 */ 571 572 /* 573 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97 574 * spec) and then drive it high. This is done for non AC97 modes since 575 * there might be logic external to the CS461x that uses the ARST# line 576 * for a reset. 577 */ 578 csa_writeio(resp, BA0_ACCTL, 1); 579 DELAY(50); 580 csa_writeio(resp, BA0_ACCTL, 0); 581 DELAY(50); 582 csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN); 583 584 /* 585 * The first thing we do here is to enable sync generation. As soon 586 * as we start receiving bit clock, we'll start producing the SYNC 587 * signal. 588 */ 589 csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN); 590 591 /* 592 * Now wait for a short while to allow the AC97 part to start 593 * generating bit clock (so we don't try to start the PLL without an 594 * input clock). 595 */ 596 DELAY(50000); 597 598 /* 599 * Set the serial port timing configuration, so that 600 * the clock control circuit gets its clock from the correct place. 601 */ 602 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97); 603 DELAY(700000); 604 605 /* 606 * Write the selected clock control setup to the hardware. Do not turn on 607 * SWCE yet (if requested), so that the devices clocked by the output of 608 * PLL are not clocked until the PLL is stable. 609 */ 610 csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ); 611 csa_writeio(resp, BA0_PLLM, 0x3a); 612 csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8); 613 614 /* 615 * Power up the PLL. 616 */ 617 csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP); 618 619 /* 620 * Wait until the PLL has stabilized. 621 */ 622 DELAY(5000); 623 624 /* 625 * Turn on clocking of the core so that we can setup the serial ports. 626 */ 627 csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE); 628 629 /* 630 * Fill the serial port FIFOs with silence. 631 */ 632 csa_clearserialfifos(resp); 633 634 /* 635 * Set the serial port FIFO pointer to the first sample in the FIFO. 636 */ 637 #ifdef notdef 638 csa_writeio(resp, BA0_SERBSP, 0); 639 #endif /* notdef */ 640 641 /* 642 * Write the serial port configuration to the part. The master 643 * enable bit is not set until all other values have been written. 644 */ 645 csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN); 646 csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN); 647 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE); 648 649 /* 650 * Wait for the codec ready signal from the AC97 codec. 651 */ 652 acsts = 0; 653 for (i = 0 ; i < 1000 ; i++) { 654 /* 655 * First, lets wait a short while to let things settle out a bit, 656 * and to prevent retrying the read too quickly. 657 */ 658 DELAY(125); 659 660 /* 661 * Read the AC97 status register to see if we've seen a CODEC READY 662 * signal from the AC97 codec. 663 */ 664 acsts = csa_readio(resp, BA0_ACSTS); 665 if ((acsts & ACSTS_CRDY) != 0) 666 break; 667 } 668 669 /* 670 * Make sure we sampled CODEC READY. 671 */ 672 if ((acsts & ACSTS_CRDY) == 0) 673 return (ENXIO); 674 675 /* 676 * Assert the vaid frame signal so that we can start sending commands 677 * to the AC97 codec. 678 */ 679 csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 680 681 /* 682 * Wait until we've sampled input slots 3 and 4 as valid, meaning that 683 * the codec is pumping ADC data across the AC-link. 684 */ 685 acisv = 0; 686 for (i = 0 ; i < 2000 ; i++) { 687 /* 688 * First, lets wait a short while to let things settle out a bit, 689 * and to prevent retrying the read too quickly. 690 */ 691 #ifdef notdef 692 DELAY(10000000L); /* clw */ 693 #else 694 DELAY(1000); 695 #endif /* notdef */ 696 /* 697 * Read the input slot valid register and see if input slots 3 and 698 * 4 are valid yet. 699 */ 700 acisv = csa_readio(resp, BA0_ACISV); 701 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4)) 702 break; 703 } 704 /* 705 * Make sure we sampled valid input slots 3 and 4. If not, then return 706 * an error. 707 */ 708 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) 709 return (ENXIO); 710 711 /* 712 * Now, assert valid frame and the slot 3 and 4 valid bits. This will 713 * commense the transfer of digital audio data to the AC97 codec. 714 */ 715 csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4); 716 717 /* 718 * Power down the DAC and ADC. We will power them up (if) when we need 719 * them. 720 */ 721 #ifdef notdef 722 csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300); 723 #endif /* notdef */ 724 725 /* 726 * Turn off the Processor by turning off the software clock enable flag in 727 * the clock control register. 728 */ 729 #ifdef notdef 730 clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE; 731 csa_writeio(resp, BA0_CLKCR1, clkcr1); 732 #endif /* notdef */ 733 734 /* 735 * Enable interrupts on the part. 736 */ 737 #if 0 738 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM); 739 #endif /* notdef */ 740 741 return (0); 742 } 743 744 void 745 csa_clearserialfifos(csa_res *resp) 746 { 747 int i, j, pwr; 748 u_int8_t clkcr1, serbst; 749 750 /* 751 * See if the devices are powered down. If so, we must power them up first 752 * or they will not respond. 753 */ 754 pwr = 1; 755 clkcr1 = csa_readio(resp, BA0_CLKCR1); 756 if ((clkcr1 & CLKCR1_SWCE) == 0) { 757 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE); 758 pwr = 0; 759 } 760 761 /* 762 * We want to clear out the serial port FIFOs so we don't end up playing 763 * whatever random garbage happens to be in them. We fill the sample FIFOs 764 * with zero (silence). 765 */ 766 csa_writeio(resp, BA0_SERBWP, 0); 767 768 /* Fill all 256 sample FIFO locations. */ 769 serbst = 0; 770 for (i = 0 ; i < 256 ; i++) { 771 /* Make sure the previous FIFO write operation has completed. */ 772 for (j = 0 ; j < 5 ; j++) { 773 DELAY(100); 774 serbst = csa_readio(resp, BA0_SERBST); 775 if ((serbst & SERBST_WBSY) == 0) 776 break; 777 } 778 if ((serbst & SERBST_WBSY) != 0) { 779 if (!pwr) 780 csa_writeio(resp, BA0_CLKCR1, clkcr1); 781 } 782 /* Write the serial port FIFO index. */ 783 csa_writeio(resp, BA0_SERBAD, i); 784 /* Tell the serial port to load the new value into the FIFO location. */ 785 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC); 786 } 787 /* 788 * Now, if we powered up the devices, then power them back down again. 789 * This is kinda ugly, but should never happen. 790 */ 791 if (!pwr) 792 csa_writeio(resp, BA0_CLKCR1, clkcr1); 793 } 794 795 void 796 csa_resetdsp(csa_res *resp) 797 { 798 int i; 799 800 /* 801 * Write the reset bit of the SP control register. 802 */ 803 csa_writemem(resp, BA1_SPCR, SPCR_RSTSP); 804 805 /* 806 * Write the control register. 807 */ 808 csa_writemem(resp, BA1_SPCR, SPCR_DRQEN); 809 810 /* 811 * Clear the trap registers. 812 */ 813 for (i = 0 ; i < 8 ; i++) { 814 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i); 815 csa_writemem(resp, BA1_TWPR, 0xffff); 816 } 817 csa_writemem(resp, BA1_DREG, 0); 818 819 /* 820 * Set the frame timer to reflect the number of cycles per frame. 821 */ 822 csa_writemem(resp, BA1_FRMT, 0xadf); 823 } 824 825 static int 826 csa_downloadimage(csa_res *resp) 827 { 828 int ret; 829 u_long ul, offset; 830 831 for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) { 832 /* 833 * DMA this block from host memory to the appropriate 834 * memory on the CSDevice. 835 */ 836 ret = csa_transferimage(resp, 837 cs461x_firmware.BA1Array + offset, 838 cs461x_firmware.MemoryStat[ul].ulDestAddr, 839 cs461x_firmware.MemoryStat[ul].ulSourceSize); 840 if (ret) 841 return (ret); 842 offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2; 843 } 844 return (0); 845 } 846 847 static int 848 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len) 849 { 850 u_long ul; 851 852 /* 853 * We do not allow DMAs from host memory to host memory (although the DMA 854 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes 855 * in size (because that DMA can not do that). Return an error if either 856 * of these conditions exist. 857 */ 858 if ((len & 0x3) != 0) 859 return (EINVAL); 860 861 /* Check the destination address that it is a multiple of 4 */ 862 if ((dest & 0x3) != 0) 863 return (EINVAL); 864 865 /* Write the buffer out. */ 866 for (ul = 0 ; ul < len ; ul += 4) 867 csa_writemem(resp, dest + ul, src[ul >> 2]); 868 return (0); 869 } 870 871 int 872 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data) 873 { 874 int i; 875 u_int32_t acctl, acsts; 876 877 /* 878 * Make sure that there is not data sitting around from a previous 879 * uncompleted access. ACSDA = Status Data Register = 47Ch 880 */ 881 csa_readio(resp, BA0_ACSDA); 882 883 /* 884 * Setup the AC97 control registers on the CS461x to send the 885 * appropriate command to the AC97 to perform the read. 886 * ACCAD = Command Address Register = 46Ch 887 * ACCDA = Command Data Register = 470h 888 * ACCTL = Control Register = 460h 889 * set DCV - will clear when process completed 890 * set CRW - Read command 891 * set VFRM - valid frame enabled 892 * set ESYN - ASYNC generation enabled 893 * set RSTN - ARST# inactive, AC97 codec not reset 894 */ 895 896 /* 897 * Get the actual AC97 register from the offset 898 */ 899 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 900 csa_writeio(resp, BA0_ACCDA, 0); 901 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 902 903 /* 904 * Wait for the read to occur. 905 */ 906 acctl = 0; 907 for (i = 0 ; i < 10 ; i++) { 908 /* 909 * First, we want to wait for a short time. 910 */ 911 DELAY(25); 912 913 /* 914 * Now, check to see if the read has completed. 915 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 916 */ 917 acctl = csa_readio(resp, BA0_ACCTL); 918 if ((acctl & ACCTL_DCV) == 0) 919 break; 920 } 921 922 /* 923 * Make sure the read completed. 924 */ 925 if ((acctl & ACCTL_DCV) != 0) 926 return (EAGAIN); 927 928 /* 929 * Wait for the valid status bit to go active. 930 */ 931 acsts = 0; 932 for (i = 0 ; i < 10 ; i++) { 933 /* 934 * Read the AC97 status register. 935 * ACSTS = Status Register = 464h 936 */ 937 acsts = csa_readio(resp, BA0_ACSTS); 938 /* 939 * See if we have valid status. 940 * VSTS - Valid Status 941 */ 942 if ((acsts & ACSTS_VSTS) != 0) 943 break; 944 /* 945 * Wait for a short while. 946 */ 947 DELAY(25); 948 } 949 950 /* 951 * Make sure we got valid status. 952 */ 953 if ((acsts & ACSTS_VSTS) == 0) 954 return (EAGAIN); 955 956 /* 957 * Read the data returned from the AC97 register. 958 * ACSDA = Status Data Register = 474h 959 */ 960 *data = csa_readio(resp, BA0_ACSDA); 961 962 return (0); 963 } 964 965 int 966 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data) 967 { 968 int i; 969 u_int32_t acctl; 970 971 /* 972 * Setup the AC97 control registers on the CS461x to send the 973 * appropriate command to the AC97 to perform the write. 974 * ACCAD = Command Address Register = 46Ch 975 * ACCDA = Command Data Register = 470h 976 * ACCTL = Control Register = 460h 977 * set DCV - will clear when process completed 978 * set VFRM - valid frame enabled 979 * set ESYN - ASYNC generation enabled 980 * set RSTN - ARST# inactive, AC97 codec not reset 981 */ 982 983 /* 984 * Get the actual AC97 register from the offset 985 */ 986 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET); 987 csa_writeio(resp, BA0_ACCDA, data); 988 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN); 989 990 /* 991 * Wait for the write to occur. 992 */ 993 acctl = 0; 994 for (i = 0 ; i < 10 ; i++) { 995 /* 996 * First, we want to wait for a short time. 997 */ 998 DELAY(25); 999 1000 /* 1001 * Now, check to see if the read has completed. 1002 * ACCTL = 460h, DCV should be reset by now and 460h = 17h 1003 */ 1004 acctl = csa_readio(resp, BA0_ACCTL); 1005 if ((acctl & ACCTL_DCV) == 0) 1006 break; 1007 } 1008 1009 /* 1010 * Make sure the write completed. 1011 */ 1012 if ((acctl & ACCTL_DCV) != 0) 1013 return (EAGAIN); 1014 1015 return (0); 1016 } 1017 1018 u_int32_t 1019 csa_readio(csa_res *resp, u_long offset) 1020 { 1021 u_int32_t ul; 1022 1023 if (offset < BA0_AC97_RESET) 1024 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff; 1025 else { 1026 if (csa_readcodec(resp, offset, &ul)) 1027 ul = 0; 1028 return (ul); 1029 } 1030 } 1031 1032 void 1033 csa_writeio(csa_res *resp, u_long offset, u_int32_t data) 1034 { 1035 if (offset < BA0_AC97_RESET) 1036 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data); 1037 else 1038 csa_writecodec(resp, offset, data); 1039 } 1040 1041 u_int32_t 1042 csa_readmem(csa_res *resp, u_long offset) 1043 { 1044 return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset); 1045 } 1046 1047 void 1048 csa_writemem(csa_res *resp, u_long offset, u_int32_t data) 1049 { 1050 bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data); 1051 } 1052 1053 static device_method_t csa_methods[] = { 1054 /* Device interface */ 1055 DEVMETHOD(device_probe, csa_probe), 1056 DEVMETHOD(device_attach, csa_attach), 1057 DEVMETHOD(device_detach, csa_detach), 1058 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1059 DEVMETHOD(device_suspend, bus_generic_suspend), 1060 DEVMETHOD(device_resume, csa_resume), 1061 1062 /* Bus interface */ 1063 DEVMETHOD(bus_alloc_resource, csa_alloc_resource), 1064 DEVMETHOD(bus_release_resource, csa_release_resource), 1065 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 1066 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 1067 DEVMETHOD(bus_setup_intr, csa_setup_intr), 1068 DEVMETHOD(bus_teardown_intr, csa_teardown_intr), 1069 1070 DEVMETHOD_END 1071 }; 1072 1073 static driver_t csa_driver = { 1074 "csa", 1075 csa_methods, 1076 sizeof(struct csa_softc), 1077 }; 1078 1079 /* 1080 * csa can be attached to a pci bus. 1081 */ 1082 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0); 1083 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); 1084 MODULE_VERSION(snd_csa, 1); 1085