xref: /freebsd/sys/dev/sound/pci/csa.c (revision 3047fefe49f57a673de8df152c199de12ec2c6d3)
1 /*
2  * Copyright (c) 1999 Seigo Tanimura
3  * All rights reserved.
4  *
5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <machine/resource.h>
38 #include <machine/bus.h>
39 #include <sys/rman.h>
40 #include <sys/soundcard.h>
41 #include <dev/sound/pcm/sound.h>
42 #include <dev/sound/chip.h>
43 #include <dev/sound/pci/csareg.h>
44 #include <dev/sound/pci/csavar.h>
45 
46 #include <pci/pcireg.h>
47 #include <pci/pcivar.h>
48 
49 #include <gnu/dev/sound/pci/csaimg.h>
50 
51 SND_DECLARE_FILE("$FreeBSD$");
52 
53 /* This is the pci device id. */
54 #define CS4610_PCI_ID 0x60011013
55 #define CS4614_PCI_ID 0x60031013
56 #define CS4615_PCI_ID 0x60041013
57 
58 /* Here is the parameter structure per a device. */
59 struct csa_softc {
60 	device_t dev; /* device */
61 	csa_res res; /* resources */
62 
63 	device_t pcm; /* pcm device */
64 	driver_intr_t* pcmintr; /* pcm intr */
65 	void *pcmintr_arg; /* pcm intr arg */
66 	device_t midi; /* midi device */
67 	driver_intr_t* midiintr; /* midi intr */
68 	void *midiintr_arg; /* midi intr arg */
69 	void *ih; /* cookie */
70 
71 	struct csa_card *card;
72 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
73 };
74 
75 typedef struct csa_softc *sc_p;
76 
77 static int csa_probe(device_t dev);
78 static int csa_attach(device_t dev);
79 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
80 					      u_long start, u_long end, u_long count, u_int flags);
81 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
82 				   struct resource *r);
83 static int csa_setup_intr(device_t bus, device_t child,
84 			  struct resource *irq, int flags,
85 			  driver_intr_t *intr, void *arg, void **cookiep);
86 static int csa_teardown_intr(device_t bus, device_t child,
87 			     struct resource *irq, void *cookie);
88 static driver_intr_t csa_intr;
89 static int csa_initialize(sc_p scp);
90 static void csa_resetdsp(csa_res *resp);
91 static int csa_downloadimage(csa_res *resp);
92 
93 static devclass_t csa_devclass;
94 
95 static void
96 amp_none(void)
97 {
98 }
99 
100 static void
101 amp_voyetra(void)
102 {
103 }
104 
105 static int
106 clkrun_hack(int run)
107 {
108 #ifdef __i386__
109 	devclass_t		pci_devclass;
110 	device_t		*pci_devices, *pci_children, *busp, *childp;
111 	int			pci_count = 0, pci_childcount = 0;
112 	int			i, j, port;
113 	u_int16_t		control;
114 	bus_space_tag_t		btag;
115 
116 	if ((pci_devclass = devclass_find("pci")) == NULL) {
117 		return ENXIO;
118 	}
119 
120 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
121 
122 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
123 		pci_childcount = 0;
124 		device_get_children(*busp, &pci_children, &pci_childcount);
125 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
126 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
127 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
128 				/* XXX */
129 				btag = I386_BUS_SPACE_IO;
130 
131 				control = bus_space_read_2(btag, 0x0, port);
132 				control &= ~0x2000;
133 				control |= run? 0 : 0x2000;
134 				bus_space_write_2(btag, 0x0, port, control);
135 				free(pci_devices, M_TEMP);
136 				free(pci_children, M_TEMP);
137 				return 0;
138 			}
139 		}
140 		free(pci_children, M_TEMP);
141 	}
142 
143 	free(pci_devices, M_TEMP);
144 	return ENXIO;
145 #else
146 	return 0;
147 #endif
148 }
149 
150 static struct csa_card cards_4610[] = {
151 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
152 };
153 
154 static struct csa_card cards_4614[] = {
155 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
156 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
157 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
158 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
159 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
160 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
161 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
162 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
163 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
164 };
165 
166 static struct csa_card cards_4615[] = {
167 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
168 };
169 
170 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
171 
172 struct card_type {
173 	u_int32_t devid;
174 	char *name;
175 	struct csa_card *cards;
176 };
177 
178 static struct card_type cards[] = {
179 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
180 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
181 	{CS4615_PCI_ID, "CS4615", cards_4615},
182 	{0, NULL, NULL},
183 };
184 
185 static struct card_type *
186 csa_findcard(device_t dev)
187 {
188 	int i;
189 
190 	i = 0;
191 	while (cards[i].devid != 0) {
192 		if (pci_get_devid(dev) == cards[i].devid)
193 			return &cards[i];
194 		i++;
195 	}
196 	return NULL;
197 }
198 
199 struct csa_card *
200 csa_findsubcard(device_t dev)
201 {
202 	int i;
203 	struct card_type *card;
204 	struct csa_card *subcard;
205 
206 	card = csa_findcard(dev);
207 	if (card == NULL)
208 		return &nocard;
209 	subcard = card->cards;
210 	i = 0;
211 	while (subcard[i].subvendor != 0) {
212 		if (pci_get_subvendor(dev) == subcard[i].subvendor
213 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
214 			return &subcard[i];
215 		}
216 		i++;
217 	}
218 	return &subcard[i];
219 }
220 
221 static int
222 csa_probe(device_t dev)
223 {
224 	struct card_type *card;
225 
226 	card = csa_findcard(dev);
227 	if (card) {
228 		device_set_desc(dev, card->name);
229 		return 0;
230 	}
231 	return ENXIO;
232 }
233 
234 static int
235 csa_attach(device_t dev)
236 {
237 	u_int32_t stcmd;
238 	sc_p scp;
239 	csa_res *resp;
240 	struct sndcard_func *func;
241 	int error = ENXIO;
242 
243 	scp = device_get_softc(dev);
244 
245 	/* Fill in the softc. */
246 	bzero(scp, sizeof(*scp));
247 	scp->dev = dev;
248 
249 	/* Wake up the device. */
250 	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
251 	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
252 		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
253 		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
254 	}
255 
256 	/* Allocate the resources. */
257 	resp = &scp->res;
258 	scp->card = csa_findsubcard(dev);
259 	scp->binfo.card = scp->card;
260 	printf("csa: card is %s\n", scp->card->name);
261 	resp->io_rid = PCIR_MAPS;
262 	resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, 1, RF_ACTIVE);
263 	if (resp->io == NULL)
264 		return (ENXIO);
265 	resp->mem_rid = PCIR_MAPS + 4;
266 	resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, 1, RF_ACTIVE);
267 	if (resp->mem == NULL)
268 		goto err_io;
269 	resp->irq_rid = 0;
270 	resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
271 	if (resp->irq == NULL)
272 		goto err_mem;
273 
274 	/* Enable interrupt. */
275 	if (snd_setup_intr(dev, resp->irq, INTR_MPSAFE, csa_intr, scp, &scp->ih))
276 		goto err_intr;
277 #if 0
278 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
279 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
280 #endif
281 
282 	/* Initialize the chip. */
283 	if (csa_initialize(scp))
284 		goto err_teardown;
285 
286 	/* Reset the Processor. */
287 	csa_resetdsp(resp);
288 
289 	/* Download the Processor Image to the processor. */
290 	if (csa_downloadimage(resp))
291 		goto err_teardown;
292 
293 	/* Attach the children. */
294 
295 	/* PCM Audio */
296 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
297 	if (func == NULL) {
298 		error = ENOMEM;
299 		goto err_teardown;
300 	}
301 	func->varinfo = &scp->binfo;
302 	func->func = SCF_PCM;
303 	scp->pcm = device_add_child(dev, "pcm", -1);
304 	device_set_ivars(scp->pcm, func);
305 
306 	/* Midi Interface */
307 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
308 	if (func == NULL) {
309 		error = ENOMEM;
310 		goto err_teardown;
311 	}
312 	func->varinfo = &scp->binfo;
313 	func->func = SCF_MIDI;
314 	scp->midi = device_add_child(dev, "midi", -1);
315 	device_set_ivars(scp->midi, func);
316 
317 	bus_generic_attach(dev);
318 
319 	return (0);
320 
321 err_teardown:
322 	bus_teardown_intr(dev, resp->irq, scp->ih);
323 err_intr:
324 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
325 err_mem:
326 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
327 err_io:
328 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
329 	return (error);
330 }
331 
332 static int
333 csa_detach(device_t dev)
334 {
335 	csa_res *resp;
336 	sc_p scp;
337 	int err;
338 
339 	scp = device_get_softc(dev);
340 	resp = &scp->res;
341 
342 	err = 0;
343 	if (scp->midi != NULL)
344 		err = device_delete_child(dev, scp->midi);
345 	if (err)
346 		return err;
347 	scp->midi = NULL;
348 
349 	if (scp->pcm != NULL)
350 		err = device_delete_child(dev, scp->pcm);
351 	if (err)
352 		return err;
353 	scp->pcm = NULL;
354 
355 	bus_teardown_intr(dev, resp->irq, scp->ih);
356 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
357 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
358 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
359 
360 	return bus_generic_detach(dev);
361 }
362 
363 static int
364 csa_resume(device_t dev)
365 {
366 	csa_detach(dev);
367 	csa_attach(dev);
368 
369 	return 0;
370 }
371 
372 static struct resource *
373 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
374 		      u_long start, u_long end, u_long count, u_int flags)
375 {
376 	sc_p scp;
377 	csa_res *resp;
378 	struct resource *res;
379 
380 	scp = device_get_softc(bus);
381 	resp = &scp->res;
382 	switch (type) {
383 	case SYS_RES_IRQ:
384 		if (*rid != 0)
385 			return (NULL);
386 		res = resp->irq;
387 		break;
388 	case SYS_RES_MEMORY:
389 		switch (*rid) {
390 		case PCIR_MAPS:
391 			res = resp->io;
392 			break;
393 		case PCIR_MAPS + 4:
394 			res = resp->mem;
395 			break;
396 		default:
397 			return (NULL);
398 		}
399 		break;
400 	default:
401 		return (NULL);
402 	}
403 
404 	return res;
405 }
406 
407 static int
408 csa_release_resource(device_t bus, device_t child, int type, int rid,
409 			struct resource *r)
410 {
411 	return (0);
412 }
413 
414 /*
415  * The following three functions deal with interrupt handling.
416  * An interrupt is primarily handled by the bridge driver.
417  * The bridge driver then determines the child devices to pass
418  * the interrupt. Certain information of the device can be read
419  * only once(eg the value of HISR). The bridge driver is responsible
420  * to pass such the information to the children.
421  */
422 
423 static int
424 csa_setup_intr(device_t bus, device_t child,
425 	       struct resource *irq, int flags,
426 	       driver_intr_t *intr, void *arg, void **cookiep)
427 {
428 	sc_p scp;
429 	csa_res *resp;
430 	struct sndcard_func *func;
431 
432 	scp = device_get_softc(bus);
433 	resp = &scp->res;
434 
435 	/*
436 	 * Look at the function code of the child to determine
437 	 * the appropriate hander for it.
438 	 */
439 	func = device_get_ivars(child);
440 	if (func == NULL || irq != resp->irq)
441 		return (EINVAL);
442 
443 	switch (func->func) {
444 	case SCF_PCM:
445 		scp->pcmintr = intr;
446 		scp->pcmintr_arg = arg;
447 		break;
448 
449 	case SCF_MIDI:
450 		scp->midiintr = intr;
451 		scp->midiintr_arg = arg;
452 		break;
453 
454 	default:
455 		return (EINVAL);
456 	}
457 	*cookiep = scp;
458 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
459 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
460 
461 	return (0);
462 }
463 
464 static int
465 csa_teardown_intr(device_t bus, device_t child,
466 		  struct resource *irq, void *cookie)
467 {
468 	sc_p scp;
469 	csa_res *resp;
470 	struct sndcard_func *func;
471 
472 	scp = device_get_softc(bus);
473 	resp = &scp->res;
474 
475 	/*
476 	 * Look at the function code of the child to determine
477 	 * the appropriate hander for it.
478 	 */
479 	func = device_get_ivars(child);
480 	if (func == NULL || irq != resp->irq || cookie != scp)
481 		return (EINVAL);
482 
483 	switch (func->func) {
484 	case SCF_PCM:
485 		scp->pcmintr = NULL;
486 		scp->pcmintr_arg = NULL;
487 		break;
488 
489 	case SCF_MIDI:
490 		scp->midiintr = NULL;
491 		scp->midiintr_arg = NULL;
492 		break;
493 
494 	default:
495 		return (EINVAL);
496 	}
497 
498 	return (0);
499 }
500 
501 /* The interrupt handler */
502 static void
503 csa_intr(void *arg)
504 {
505 	sc_p scp = arg;
506 	csa_res *resp;
507 	u_int32_t hisr;
508 
509 	resp = &scp->res;
510 
511 	/* Is this interrupt for us? */
512 	hisr = csa_readio(resp, BA0_HISR);
513 	if ((hisr & 0x7fffffff) == 0) {
514 		/* Throw an eoi. */
515 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
516 		return;
517 	}
518 
519 	/*
520 	 * Pass the value of HISR via struct csa_bridgeinfo.
521 	 * The children get access through their ivars.
522 	 */
523 	scp->binfo.hisr = hisr;
524 
525 	/* Invoke the handlers of the children. */
526 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
527 		scp->pcmintr(scp->pcmintr_arg);
528 		hisr &= ~(HISR_VC0 | HISR_VC1);
529 	}
530 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
531 		scp->midiintr(scp->midiintr_arg);
532 		hisr &= ~HISR_MIDI;
533 	}
534 
535 	/* Throw an eoi. */
536 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
537 }
538 
539 static int
540 csa_initialize(sc_p scp)
541 {
542 	int i;
543 	u_int32_t acsts, acisv;
544 	csa_res *resp;
545 
546 	resp = &scp->res;
547 
548 	/*
549 	 * First, blast the clock control register to zero so that the PLL starts
550 	 * out in a known state, and blast the master serial port control register
551 	 * to zero so that the serial ports also start out in a known state.
552 	 */
553 	csa_writeio(resp, BA0_CLKCR1, 0);
554 	csa_writeio(resp, BA0_SERMC1, 0);
555 
556 	/*
557 	 * If we are in AC97 mode, then we must set the part to a host controlled
558 	 * AC-link.  Otherwise, we won't be able to bring up the link.
559 	 */
560 #if 1
561 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
562 #else
563 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
564 #endif /* 1 */
565 
566 	/*
567 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
568 	 * spec) and then drive it high.  This is done for non AC97 modes since
569 	 * there might be logic external to the CS461x that uses the ARST# line
570 	 * for a reset.
571 	 */
572 	csa_writeio(resp, BA0_ACCTL, 1);
573 	DELAY(50);
574 	csa_writeio(resp, BA0_ACCTL, 0);
575 	DELAY(50);
576 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
577 
578 	/*
579 	 * The first thing we do here is to enable sync generation.  As soon
580 	 * as we start receiving bit clock, we'll start producing the SYNC
581 	 * signal.
582 	 */
583 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
584 
585 	/*
586 	 * Now wait for a short while to allow the AC97 part to start
587 	 * generating bit clock (so we don't try to start the PLL without an
588 	 * input clock).
589 	 */
590 	DELAY(50000);
591 
592 	/*
593 	 * Set the serial port timing configuration, so that
594 	 * the clock control circuit gets its clock from the correct place.
595 	 */
596 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
597 	DELAY(700000);
598 
599 	/*
600 	 * Write the selected clock control setup to the hardware.  Do not turn on
601 	 * SWCE yet (if requested), so that the devices clocked by the output of
602 	 * PLL are not clocked until the PLL is stable.
603 	 */
604 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
605 	csa_writeio(resp, BA0_PLLM, 0x3a);
606 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
607 
608 	/*
609 	 * Power up the PLL.
610 	 */
611 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
612 
613 	/*
614 	 * Wait until the PLL has stabilized.
615 	 */
616 	DELAY(5000);
617 
618 	/*
619 	 * Turn on clocking of the core so that we can setup the serial ports.
620 	 */
621 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
622 
623 	/*
624 	 * Fill the serial port FIFOs with silence.
625 	 */
626 	csa_clearserialfifos(resp);
627 
628 	/*
629 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
630 	 */
631 #if notdef
632 	csa_writeio(resp, BA0_SERBSP, 0);
633 #endif /* notdef */
634 
635 	/*
636 	 *  Write the serial port configuration to the part.  The master
637 	 *  enable bit is not set until all other values have been written.
638 	 */
639 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
640 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
641 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
642 
643 	/*
644 	 * Wait for the codec ready signal from the AC97 codec.
645 	 */
646 	acsts = 0;
647 	for (i = 0 ; i < 1000 ; i++) {
648 		/*
649 		 * First, lets wait a short while to let things settle out a bit,
650 		 * and to prevent retrying the read too quickly.
651 		 */
652 		DELAY(125);
653 
654 		/*
655 		 * Read the AC97 status register to see if we've seen a CODEC READY
656 		 * signal from the AC97 codec.
657 		 */
658 		acsts = csa_readio(resp, BA0_ACSTS);
659 		if ((acsts & ACSTS_CRDY) != 0)
660 			break;
661 	}
662 
663 	/*
664 	 * Make sure we sampled CODEC READY.
665 	 */
666 	if ((acsts & ACSTS_CRDY) == 0)
667 		return (ENXIO);
668 
669 	/*
670 	 * Assert the vaid frame signal so that we can start sending commands
671 	 * to the AC97 codec.
672 	 */
673 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
674 
675 	/*
676 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
677 	 * the codec is pumping ADC data across the AC-link.
678 	 */
679 	acisv = 0;
680 	for (i = 0 ; i < 1000 ; i++) {
681 		/*
682 		 * First, lets wait a short while to let things settle out a bit,
683 		 * and to prevent retrying the read too quickly.
684 		 */
685 #if notdef
686 		DELAY(10000000L); /* clw */
687 #else
688 		DELAY(1000);
689 #endif /* notdef */
690 		/*
691 		 * Read the input slot valid register and see if input slots 3 and
692 		 * 4 are valid yet.
693 		 */
694 		acisv = csa_readio(resp, BA0_ACISV);
695 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
696 			break;
697 	}
698 	/*
699 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
700 	 * an error.
701 	 */
702 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
703 		return (ENXIO);
704 
705 	/*
706 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
707 	 * commense the transfer of digital audio data to the AC97 codec.
708 	 */
709 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
710 
711 	/*
712 	 * Power down the DAC and ADC.  We will power them up (if) when we need
713 	 * them.
714 	 */
715 #if notdef
716 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
717 #endif /* notdef */
718 
719 	/*
720 	 * Turn off the Processor by turning off the software clock enable flag in
721 	 * the clock control register.
722 	 */
723 #if notdef
724 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
725 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
726 #endif /* notdef */
727 
728 	/*
729 	 * Enable interrupts on the part.
730 	 */
731 #if 0
732 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
733 #endif /* notdef */
734 
735 	return (0);
736 }
737 
738 void
739 csa_clearserialfifos(csa_res *resp)
740 {
741 	int i, j, pwr;
742 	u_int8_t clkcr1, serbst;
743 
744 	/*
745 	 * See if the devices are powered down.  If so, we must power them up first
746 	 * or they will not respond.
747 	 */
748 	pwr = 1;
749 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
750 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
751 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
752 		pwr = 0;
753 	}
754 
755 	/*
756 	 * We want to clear out the serial port FIFOs so we don't end up playing
757 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
758 	 * with zero (silence).
759 	 */
760 	csa_writeio(resp, BA0_SERBWP, 0);
761 
762 	/* Fill all 256 sample FIFO locations. */
763 	serbst = 0;
764 	for (i = 0 ; i < 256 ; i++) {
765 		/* Make sure the previous FIFO write operation has completed. */
766 		for (j = 0 ; j < 5 ; j++) {
767 			DELAY(100);
768 			serbst = csa_readio(resp, BA0_SERBST);
769 			if ((serbst & SERBST_WBSY) == 0)
770 				break;
771 		}
772 		if ((serbst & SERBST_WBSY) != 0) {
773 			if (!pwr)
774 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
775 		}
776 		/* Write the serial port FIFO index. */
777 		csa_writeio(resp, BA0_SERBAD, i);
778 		/* Tell the serial port to load the new value into the FIFO location. */
779 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
780 	}
781 	/*
782 	 *  Now, if we powered up the devices, then power them back down again.
783 	 *  This is kinda ugly, but should never happen.
784 	 */
785 	if (!pwr)
786 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
787 }
788 
789 static void
790 csa_resetdsp(csa_res *resp)
791 {
792 	int i;
793 
794 	/*
795 	 * Write the reset bit of the SP control register.
796 	 */
797 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
798 
799 	/*
800 	 * Write the control register.
801 	 */
802 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
803 
804 	/*
805 	 * Clear the trap registers.
806 	 */
807 	for (i = 0 ; i < 8 ; i++) {
808 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
809 		csa_writemem(resp, BA1_TWPR, 0xffff);
810 	}
811 	csa_writemem(resp, BA1_DREG, 0);
812 
813 	/*
814 	 * Set the frame timer to reflect the number of cycles per frame.
815 	 */
816 	csa_writemem(resp, BA1_FRMT, 0xadf);
817 }
818 
819 static int
820 csa_downloadimage(csa_res *resp)
821 {
822 	int i;
823 	u_int32_t tmp, src, dst, count, data;
824 
825 	for (i = 0; i < CLEAR__COUNT; i++) {
826 		dst = ClrStat[i].BA1__DestByteOffset;
827 		count = ClrStat[i].BA1__SourceSize;
828 		for (tmp = 0; tmp < count; tmp += 4)
829 			csa_writemem(resp, dst + tmp, 0x00000000);
830 	}
831 
832 	for (i = 0; i < FILL__COUNT; i++) {
833 		src = 0;
834 		dst = FillStat[i].Offset;
835 		count = FillStat[i].Size;
836 		for (tmp = 0; tmp < count; tmp += 4) {
837 			data = FillStat[i].pFill[src];
838 			csa_writemem(resp, dst + tmp, data);
839 			src++;
840 		}
841 	}
842 
843 	return (0);
844 }
845 
846 int
847 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
848 {
849 	int i;
850 	u_int32_t acsda, acctl, acsts;
851 
852 	/*
853 	 * Make sure that there is not data sitting around from a previous
854 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
855 	 */
856 	acsda = csa_readio(resp, BA0_ACSDA);
857 
858 	/*
859 	 * Setup the AC97 control registers on the CS461x to send the
860 	 * appropriate command to the AC97 to perform the read.
861 	 * ACCAD = Command Address Register = 46Ch
862 	 * ACCDA = Command Data Register = 470h
863 	 * ACCTL = Control Register = 460h
864 	 * set DCV - will clear when process completed
865 	 * set CRW - Read command
866 	 * set VFRM - valid frame enabled
867 	 * set ESYN - ASYNC generation enabled
868 	 * set RSTN - ARST# inactive, AC97 codec not reset
869 	 */
870 
871 	/*
872 	 * Get the actual AC97 register from the offset
873 	 */
874 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
875 	csa_writeio(resp, BA0_ACCDA, 0);
876 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
877 
878 	/*
879 	 * Wait for the read to occur.
880 	 */
881 	acctl = 0;
882 	for (i = 0 ; i < 10 ; i++) {
883 		/*
884 		 * First, we want to wait for a short time.
885 		 */
886 		DELAY(25);
887 
888 		/*
889 		 * Now, check to see if the read has completed.
890 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
891 		 */
892 		acctl = csa_readio(resp, BA0_ACCTL);
893 		if ((acctl & ACCTL_DCV) == 0)
894 			break;
895 	}
896 
897 	/*
898 	 * Make sure the read completed.
899 	 */
900 	if ((acctl & ACCTL_DCV) != 0)
901 		return (EAGAIN);
902 
903 	/*
904 	 * Wait for the valid status bit to go active.
905 	 */
906 	acsts = 0;
907 	for (i = 0 ; i < 10 ; i++) {
908 		/*
909 		 * Read the AC97 status register.
910 		 * ACSTS = Status Register = 464h
911 		 */
912 		acsts = csa_readio(resp, BA0_ACSTS);
913 		/*
914 		 * See if we have valid status.
915 		 * VSTS - Valid Status
916 		 */
917 		if ((acsts & ACSTS_VSTS) != 0)
918 			break;
919 		/*
920 		 * Wait for a short while.
921 		 */
922 		 DELAY(25);
923 	}
924 
925 	/*
926 	 * Make sure we got valid status.
927 	 */
928 	if ((acsts & ACSTS_VSTS) == 0)
929 		return (EAGAIN);
930 
931 	/*
932 	 * Read the data returned from the AC97 register.
933 	 * ACSDA = Status Data Register = 474h
934 	 */
935 	*data = csa_readio(resp, BA0_ACSDA);
936 
937 	return (0);
938 }
939 
940 int
941 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
942 {
943 	int i;
944 	u_int32_t acctl;
945 
946 	/*
947 	 * Setup the AC97 control registers on the CS461x to send the
948 	 * appropriate command to the AC97 to perform the write.
949 	 * ACCAD = Command Address Register = 46Ch
950 	 * ACCDA = Command Data Register = 470h
951 	 * ACCTL = Control Register = 460h
952 	 * set DCV - will clear when process completed
953 	 * set VFRM - valid frame enabled
954 	 * set ESYN - ASYNC generation enabled
955 	 * set RSTN - ARST# inactive, AC97 codec not reset
956 	 */
957 
958 	/*
959 	 * Get the actual AC97 register from the offset
960 	 */
961 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
962 	csa_writeio(resp, BA0_ACCDA, data);
963 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
964 
965 	/*
966 	 * Wait for the write to occur.
967 	 */
968 	acctl = 0;
969 	for (i = 0 ; i < 10 ; i++) {
970 		/*
971 		 * First, we want to wait for a short time.
972 		 */
973 		DELAY(25);
974 
975 		/*
976 		 * Now, check to see if the read has completed.
977 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
978 		 */
979 		acctl = csa_readio(resp, BA0_ACCTL);
980 		if ((acctl & ACCTL_DCV) == 0)
981 			break;
982 	}
983 
984 	/*
985 	 * Make sure the write completed.
986 	 */
987 	if ((acctl & ACCTL_DCV) != 0)
988 		return (EAGAIN);
989 
990 	return (0);
991 }
992 
993 u_int32_t
994 csa_readio(csa_res *resp, u_long offset)
995 {
996 	u_int32_t ul;
997 
998 	if (offset < BA0_AC97_RESET)
999 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1000 	else {
1001 		if (csa_readcodec(resp, offset, &ul))
1002 			ul = 0;
1003 		return (ul);
1004 	}
1005 }
1006 
1007 void
1008 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1009 {
1010 	if (offset < BA0_AC97_RESET)
1011 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1012 	else
1013 		csa_writecodec(resp, offset, data);
1014 }
1015 
1016 u_int32_t
1017 csa_readmem(csa_res *resp, u_long offset)
1018 {
1019 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1020 }
1021 
1022 void
1023 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1024 {
1025 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1026 }
1027 
1028 static device_method_t csa_methods[] = {
1029 	/* Device interface */
1030 	DEVMETHOD(device_probe,		csa_probe),
1031 	DEVMETHOD(device_attach,	csa_attach),
1032 	DEVMETHOD(device_detach,	csa_detach),
1033 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1034 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1035 	DEVMETHOD(device_resume,	csa_resume),
1036 
1037 	/* Bus interface */
1038 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1039 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1040 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1041 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1042 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1043 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1044 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1045 
1046 	{ 0, 0 }
1047 };
1048 
1049 static driver_t csa_driver = {
1050 	"csa",
1051 	csa_methods,
1052 	sizeof(struct csa_softc),
1053 };
1054 
1055 /*
1056  * csa can be attached to a pci bus.
1057  */
1058 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1059 MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
1060 MODULE_VERSION(snd_csa, 1);
1061