xref: /freebsd/sys/dev/sk/if_sk.c (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 /*
56  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
57  * the SK-984x series adapters, both single port and dual port.
58  * References:
59  * 	The XaQti XMAC II datasheet,
60  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
61  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
62  *
63  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
64  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
65  * convenience to others until Vitesse corrects this problem:
66  *
67  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
68  *
69  * Written by Bill Paul <wpaul@ee.columbia.edu>
70  * Department of Electrical Engineering
71  * Columbia University, New York City
72  */
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/bus.h>
93 #include <sys/endian.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sockio.h>
100 #include <sys/queue.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 
117 #include <machine/bus.h>
118 #include <machine/in_cksum.h>
119 #include <machine/resource.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #if 0
130 #define SK_USEIOSPACE
131 #endif
132 
133 #include <dev/sk/if_skreg.h>
134 #include <dev/sk/xmaciireg.h>
135 #include <dev/sk/yukonreg.h>
136 
137 MODULE_DEPEND(sk, pci, 1, 1, 1);
138 MODULE_DEPEND(sk, ether, 1, 1, 1);
139 MODULE_DEPEND(sk, miibus, 1, 1, 1);
140 
141 /* "device miibus" required.  See GENERIC if you get errors here. */
142 #include "miibus_if.h"
143 
144 static const struct sk_type sk_devs[] = {
145 	{
146 		VENDORID_SK,
147 		DEVICEID_SK_V1,
148 		"SysKonnect Gigabit Ethernet (V1.0)"
149 	},
150 	{
151 		VENDORID_SK,
152 		DEVICEID_SK_V2,
153 		"SysKonnect Gigabit Ethernet (V2.0)"
154 	},
155 	{
156 		VENDORID_MARVELL,
157 		DEVICEID_SK_V2,
158 		"Marvell Gigabit Ethernet"
159 	},
160 	{
161 		VENDORID_MARVELL,
162 		DEVICEID_BELKIN_5005,
163 		"Belkin F5D5005 Gigabit Ethernet"
164 	},
165 	{
166 		VENDORID_3COM,
167 		DEVICEID_3COM_3C940,
168 		"3Com 3C940 Gigabit Ethernet"
169 	},
170 	{
171 		VENDORID_LINKSYS,
172 		DEVICEID_LINKSYS_EG1032,
173 		"Linksys EG1032 Gigabit Ethernet"
174 	},
175 	{
176 		VENDORID_DLINK,
177 		DEVICEID_DLINK_DGE530T_A1,
178 		"D-Link DGE-530T Gigabit Ethernet"
179 	},
180 	{
181 		VENDORID_DLINK,
182 		DEVICEID_DLINK_DGE530T_B1,
183 		"D-Link DGE-530T Gigabit Ethernet"
184 	},
185 	{ 0, 0, NULL }
186 };
187 
188 static int skc_probe(device_t);
189 static int skc_attach(device_t);
190 static int skc_detach(device_t);
191 static int skc_shutdown(device_t);
192 static int skc_suspend(device_t);
193 static int skc_resume(device_t);
194 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
195 static int sk_detach(device_t);
196 static int sk_probe(device_t);
197 static int sk_attach(device_t);
198 static void sk_tick(void *);
199 static void sk_yukon_tick(void *);
200 static void sk_intr(void *);
201 static void sk_intr_xmac(struct sk_if_softc *);
202 static void sk_intr_bcom(struct sk_if_softc *);
203 static void sk_intr_yukon(struct sk_if_softc *);
204 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
205 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
206 static void sk_rxeof(struct sk_if_softc *);
207 static void sk_jumbo_rxeof(struct sk_if_softc *);
208 static void sk_txeof(struct sk_if_softc *);
209 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
210 static int sk_encap(struct sk_if_softc *, struct mbuf **);
211 static void sk_start(struct ifnet *);
212 static void sk_start_locked(struct ifnet *);
213 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
214 static void sk_init(void *);
215 static void sk_init_locked(struct sk_if_softc *);
216 static void sk_init_xmac(struct sk_if_softc *);
217 static void sk_init_yukon(struct sk_if_softc *);
218 static void sk_stop(struct sk_if_softc *);
219 static void sk_watchdog(void *);
220 static int sk_ifmedia_upd(struct ifnet *);
221 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
222 static void sk_reset(struct sk_softc *);
223 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
224 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
225 static int sk_newbuf(struct sk_if_softc *, int);
226 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
227 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
228 static int sk_dma_alloc(struct sk_if_softc *);
229 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
230 static void sk_dma_free(struct sk_if_softc *);
231 static void sk_dma_jumbo_free(struct sk_if_softc *);
232 static int sk_init_rx_ring(struct sk_if_softc *);
233 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
234 static void sk_init_tx_ring(struct sk_if_softc *);
235 static u_int32_t sk_win_read_4(struct sk_softc *, int);
236 static u_int16_t sk_win_read_2(struct sk_softc *, int);
237 static u_int8_t sk_win_read_1(struct sk_softc *, int);
238 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
241 
242 static int sk_miibus_readreg(device_t, int, int);
243 static int sk_miibus_writereg(device_t, int, int, int);
244 static void sk_miibus_statchg(device_t);
245 
246 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
247 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
248 						int);
249 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
250 
251 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
252 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
253 						int);
254 static void sk_marv_miibus_statchg(struct sk_if_softc *);
255 
256 static uint32_t sk_xmchash(const uint8_t *);
257 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
258 static void sk_rxfilter(struct sk_if_softc *);
259 static void sk_rxfilter_genesis(struct sk_if_softc *);
260 static void sk_rxfilter_yukon(struct sk_if_softc *);
261 
262 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
263 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
264 
265 /* Tunables. */
266 static int jumbo_disable = 0;
267 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
268 
269 /*
270  * It seems that SK-NET GENESIS supports very simple checksum offload
271  * capability for Tx and I believe it can generate 0 checksum value for
272  * UDP packets in Tx as the hardware can't differenciate UDP packets from
273  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
274  * means sender didn't perforam checksum computation. For the safety I
275  * disabled UDP checksum offload capability at the moment. Alternatively
276  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
277  * offload routine.
278  */
279 #define SK_CSUM_FEATURES	(CSUM_TCP)
280 
281 /*
282  * Note that we have newbus methods for both the GEnesis controller
283  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
284  * the miibus code is a child of the XMACs. We need to do it this way
285  * so that the miibus drivers can access the PHY registers on the
286  * right PHY. It's not quite what I had in mind, but it's the only
287  * design that achieves the desired effect.
288  */
289 static device_method_t skc_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		skc_probe),
292 	DEVMETHOD(device_attach,	skc_attach),
293 	DEVMETHOD(device_detach,	skc_detach),
294 	DEVMETHOD(device_suspend,	skc_suspend),
295 	DEVMETHOD(device_resume,	skc_resume),
296 	DEVMETHOD(device_shutdown,	skc_shutdown),
297 
298 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
299 
300 	DEVMETHOD_END
301 };
302 
303 static driver_t skc_driver = {
304 	"skc",
305 	skc_methods,
306 	sizeof(struct sk_softc)
307 };
308 
309 static devclass_t skc_devclass;
310 
311 static device_method_t sk_methods[] = {
312 	/* Device interface */
313 	DEVMETHOD(device_probe,		sk_probe),
314 	DEVMETHOD(device_attach,	sk_attach),
315 	DEVMETHOD(device_detach,	sk_detach),
316 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
322 
323 	DEVMETHOD_END
324 };
325 
326 static driver_t sk_driver = {
327 	"sk",
328 	sk_methods,
329 	sizeof(struct sk_if_softc)
330 };
331 
332 static devclass_t sk_devclass;
333 
334 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
335 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
336 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
337 
338 static struct resource_spec sk_res_spec_io[] = {
339 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 static struct resource_spec sk_res_spec_mem[] = {
345 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
346 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
347 	{ -1,			0,		0 }
348 };
349 
350 #define SK_SETBIT(sc, reg, x)		\
351 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
352 
353 #define SK_CLRBIT(sc, reg, x)		\
354 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_4(sc, reg, x)	\
357 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
360 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
361 
362 #define SK_WIN_SETBIT_2(sc, reg, x)	\
363 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
364 
365 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
366 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
367 
368 static u_int32_t
369 sk_win_read_4(sc, reg)
370 	struct sk_softc		*sc;
371 	int			reg;
372 {
373 #ifdef SK_USEIOSPACE
374 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
375 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
376 #else
377 	return(CSR_READ_4(sc, reg));
378 #endif
379 }
380 
381 static u_int16_t
382 sk_win_read_2(sc, reg)
383 	struct sk_softc		*sc;
384 	int			reg;
385 {
386 #ifdef SK_USEIOSPACE
387 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
388 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
389 #else
390 	return(CSR_READ_2(sc, reg));
391 #endif
392 }
393 
394 static u_int8_t
395 sk_win_read_1(sc, reg)
396 	struct sk_softc		*sc;
397 	int			reg;
398 {
399 #ifdef SK_USEIOSPACE
400 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
401 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
402 #else
403 	return(CSR_READ_1(sc, reg));
404 #endif
405 }
406 
407 static void
408 sk_win_write_4(sc, reg, val)
409 	struct sk_softc		*sc;
410 	int			reg;
411 	u_int32_t		val;
412 {
413 #ifdef SK_USEIOSPACE
414 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
415 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
416 #else
417 	CSR_WRITE_4(sc, reg, val);
418 #endif
419 	return;
420 }
421 
422 static void
423 sk_win_write_2(sc, reg, val)
424 	struct sk_softc		*sc;
425 	int			reg;
426 	u_int32_t		val;
427 {
428 #ifdef SK_USEIOSPACE
429 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
430 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
431 #else
432 	CSR_WRITE_2(sc, reg, val);
433 #endif
434 	return;
435 }
436 
437 static void
438 sk_win_write_1(sc, reg, val)
439 	struct sk_softc		*sc;
440 	int			reg;
441 	u_int32_t		val;
442 {
443 #ifdef SK_USEIOSPACE
444 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
445 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
446 #else
447 	CSR_WRITE_1(sc, reg, val);
448 #endif
449 	return;
450 }
451 
452 static int
453 sk_miibus_readreg(dev, phy, reg)
454 	device_t		dev;
455 	int			phy, reg;
456 {
457 	struct sk_if_softc	*sc_if;
458 	int			v;
459 
460 	sc_if = device_get_softc(dev);
461 
462 	SK_IF_MII_LOCK(sc_if);
463 	switch(sc_if->sk_softc->sk_type) {
464 	case SK_GENESIS:
465 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
466 		break;
467 	case SK_YUKON:
468 	case SK_YUKON_LITE:
469 	case SK_YUKON_LP:
470 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
471 		break;
472 	default:
473 		v = 0;
474 		break;
475 	}
476 	SK_IF_MII_UNLOCK(sc_if);
477 
478 	return (v);
479 }
480 
481 static int
482 sk_miibus_writereg(dev, phy, reg, val)
483 	device_t		dev;
484 	int			phy, reg, val;
485 {
486 	struct sk_if_softc	*sc_if;
487 	int			v;
488 
489 	sc_if = device_get_softc(dev);
490 
491 	SK_IF_MII_LOCK(sc_if);
492 	switch(sc_if->sk_softc->sk_type) {
493 	case SK_GENESIS:
494 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
495 		break;
496 	case SK_YUKON:
497 	case SK_YUKON_LITE:
498 	case SK_YUKON_LP:
499 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
500 		break;
501 	default:
502 		v = 0;
503 		break;
504 	}
505 	SK_IF_MII_UNLOCK(sc_if);
506 
507 	return (v);
508 }
509 
510 static void
511 sk_miibus_statchg(dev)
512 	device_t		dev;
513 {
514 	struct sk_if_softc	*sc_if;
515 
516 	sc_if = device_get_softc(dev);
517 
518 	SK_IF_MII_LOCK(sc_if);
519 	switch(sc_if->sk_softc->sk_type) {
520 	case SK_GENESIS:
521 		sk_xmac_miibus_statchg(sc_if);
522 		break;
523 	case SK_YUKON:
524 	case SK_YUKON_LITE:
525 	case SK_YUKON_LP:
526 		sk_marv_miibus_statchg(sc_if);
527 		break;
528 	}
529 	SK_IF_MII_UNLOCK(sc_if);
530 
531 	return;
532 }
533 
534 static int
535 sk_xmac_miibus_readreg(sc_if, phy, reg)
536 	struct sk_if_softc	*sc_if;
537 	int			phy, reg;
538 {
539 	int			i;
540 
541 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
542 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
543 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
544 		for (i = 0; i < SK_TIMEOUT; i++) {
545 			DELAY(1);
546 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
547 			    XM_MMUCMD_PHYDATARDY)
548 				break;
549 		}
550 
551 		if (i == SK_TIMEOUT) {
552 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
553 			return(0);
554 		}
555 	}
556 	DELAY(1);
557 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
558 
559 	return(i);
560 }
561 
562 static int
563 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
564 	struct sk_if_softc	*sc_if;
565 	int			phy, reg, val;
566 {
567 	int			i;
568 
569 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
570 	for (i = 0; i < SK_TIMEOUT; i++) {
571 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
572 			break;
573 	}
574 
575 	if (i == SK_TIMEOUT) {
576 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
577 		return (ETIMEDOUT);
578 	}
579 
580 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
581 	for (i = 0; i < SK_TIMEOUT; i++) {
582 		DELAY(1);
583 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
584 			break;
585 	}
586 	if (i == SK_TIMEOUT)
587 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
588 
589 	return(0);
590 }
591 
592 static void
593 sk_xmac_miibus_statchg(sc_if)
594 	struct sk_if_softc	*sc_if;
595 {
596 	struct mii_data		*mii;
597 
598 	mii = device_get_softc(sc_if->sk_miibus);
599 
600 	/*
601 	 * If this is a GMII PHY, manually set the XMAC's
602 	 * duplex mode accordingly.
603 	 */
604 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
605 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
606 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607 		} else {
608 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609 		}
610 	}
611 }
612 
613 static int
614 sk_marv_miibus_readreg(sc_if, phy, reg)
615 	struct sk_if_softc	*sc_if;
616 	int			phy, reg;
617 {
618 	u_int16_t		val;
619 	int			i;
620 
621 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
622 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
623 		return(0);
624 	}
625 
626         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
627 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
628 
629 	for (i = 0; i < SK_TIMEOUT; i++) {
630 		DELAY(1);
631 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
632 		if (val & YU_SMICR_READ_VALID)
633 			break;
634 	}
635 
636 	if (i == SK_TIMEOUT) {
637 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
638 		return(0);
639 	}
640 
641 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
642 
643 	return(val);
644 }
645 
646 static int
647 sk_marv_miibus_writereg(sc_if, phy, reg, val)
648 	struct sk_if_softc	*sc_if;
649 	int			phy, reg, val;
650 {
651 	int			i;
652 
653 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
654 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
655 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
656 
657 	for (i = 0; i < SK_TIMEOUT; i++) {
658 		DELAY(1);
659 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
660 			break;
661 	}
662 	if (i == SK_TIMEOUT)
663 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
664 
665 	return(0);
666 }
667 
668 static void
669 sk_marv_miibus_statchg(sc_if)
670 	struct sk_if_softc	*sc_if;
671 {
672 	return;
673 }
674 
675 #define HASH_BITS		6
676 
677 static u_int32_t
678 sk_xmchash(addr)
679 	const uint8_t *addr;
680 {
681 	uint32_t crc;
682 
683 	/* Compute CRC for the address value. */
684 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
685 
686 	return (~crc & ((1 << HASH_BITS) - 1));
687 }
688 
689 static void
690 sk_setfilt(sc_if, addr, slot)
691 	struct sk_if_softc	*sc_if;
692 	u_int16_t		*addr;
693 	int			slot;
694 {
695 	int			base;
696 
697 	base = XM_RXFILT_ENTRY(slot);
698 
699 	SK_XM_WRITE_2(sc_if, base, addr[0]);
700 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
701 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
702 
703 	return;
704 }
705 
706 static void
707 sk_rxfilter(sc_if)
708 	struct sk_if_softc	*sc_if;
709 {
710 	struct sk_softc		*sc;
711 
712 	SK_IF_LOCK_ASSERT(sc_if);
713 
714 	sc = sc_if->sk_softc;
715 	if (sc->sk_type == SK_GENESIS)
716 		sk_rxfilter_genesis(sc_if);
717 	else
718 		sk_rxfilter_yukon(sc_if);
719 }
720 
721 struct sk_add_maddr_genesis_ctx {
722 	struct sk_if_softc *sc_if;
723 	uint32_t hashes[2];
724 	uint32_t mode;
725 };
726 
727 static u_int
728 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
729 {
730 	struct sk_add_maddr_genesis_ctx *ctx = arg;
731 	int h;
732 
733 	/*
734 	 * Program the first XM_RXFILT_MAX multicast groups
735 	 * into the perfect filter.
736 	 */
737 	if (cnt + 1 < XM_RXFILT_MAX) {
738 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
739 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
740 		return (1);
741 	}
742 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
743 	if (h < 32)
744 		ctx->hashes[0] |= (1 << h);
745 	else
746 		ctx->hashes[1] |= (1 << (h - 32));
747 	ctx->mode |= XM_MODE_RX_USE_HASH;
748 
749 	return (1);
750 }
751 
752 static void
753 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
754 {
755 	struct ifnet		*ifp = sc_if->sk_ifp;
756 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
757 	int			i;
758 	u_int16_t		dummy[] = { 0, 0, 0 };
759 
760 	SK_IF_LOCK_ASSERT(sc_if);
761 
762 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
763 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
764 	    XM_MODE_RX_USE_PERFECT);
765 	/* First, zot all the existing perfect filters. */
766 	for (i = 1; i < XM_RXFILT_MAX; i++)
767 		sk_setfilt(sc_if, dummy, i);
768 
769 	/* Now program new ones. */
770 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
771 		if (ifp->if_flags & IFF_ALLMULTI)
772 			ctx.mode |= XM_MODE_RX_USE_HASH;
773 		if (ifp->if_flags & IFF_PROMISC)
774 			ctx.mode |= XM_MODE_RX_PROMISC;
775 		ctx.hashes[0] = 0xFFFFFFFF;
776 		ctx.hashes[1] = 0xFFFFFFFF;
777 	} else
778 		/* XXX want to maintain reverse semantics */
779 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
780 
781 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
782 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
783 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
784 }
785 
786 static u_int
787 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
788 {
789 	uint32_t crc, *hashes = arg;
790 
791 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
792 	/* Just want the 6 least significant bits. */
793 	crc &= 0x3f;
794 	/* Set the corresponding bit in the hash table. */
795 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
796 
797 	return (1);
798 }
799 
800 static void
801 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
802 {
803 	struct ifnet		*ifp;
804 	uint32_t		hashes[2] = { 0, 0 }, mode;
805 
806 	SK_IF_LOCK_ASSERT(sc_if);
807 
808 	ifp = sc_if->sk_ifp;
809 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
810 	if (ifp->if_flags & IFF_PROMISC)
811 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
812 	else if (ifp->if_flags & IFF_ALLMULTI) {
813 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
814 		hashes[0] = 0xFFFFFFFF;
815 		hashes[1] = 0xFFFFFFFF;
816 	} else {
817 		mode |= YU_RCR_UFLEN;
818 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
819 		if (hashes[0] != 0 || hashes[1] != 0)
820 			mode |= YU_RCR_MUFLEN;
821 	}
822 
823 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
824 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
825 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
826 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
827 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
828 }
829 
830 static int
831 sk_init_rx_ring(sc_if)
832 	struct sk_if_softc	*sc_if;
833 {
834 	struct sk_ring_data	*rd;
835 	bus_addr_t		addr;
836 	u_int32_t		csum_start;
837 	int			i;
838 
839 	sc_if->sk_cdata.sk_rx_cons = 0;
840 
841 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
842 	    ETHER_HDR_LEN;
843 	rd = &sc_if->sk_rdata;
844 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
845 	for (i = 0; i < SK_RX_RING_CNT; i++) {
846 		if (sk_newbuf(sc_if, i) != 0)
847 			return (ENOBUFS);
848 		if (i == (SK_RX_RING_CNT - 1))
849 			addr = SK_RX_RING_ADDR(sc_if, 0);
850 		else
851 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
852 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
853 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
854 	}
855 
856 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
857 	    sc_if->sk_cdata.sk_rx_ring_map,
858 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
859 
860 	return(0);
861 }
862 
863 static int
864 sk_init_jumbo_rx_ring(sc_if)
865 	struct sk_if_softc	*sc_if;
866 {
867 	struct sk_ring_data	*rd;
868 	bus_addr_t		addr;
869 	u_int32_t		csum_start;
870 	int			i;
871 
872 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
873 
874 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
875 	    ETHER_HDR_LEN;
876 	rd = &sc_if->sk_rdata;
877 	bzero(rd->sk_jumbo_rx_ring,
878 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
879 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
880 		if (sk_jumbo_newbuf(sc_if, i) != 0)
881 			return (ENOBUFS);
882 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
883 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
884 		else
885 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
886 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
887 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
888 	}
889 
890 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
891 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
892 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893 
894 	return (0);
895 }
896 
897 static void
898 sk_init_tx_ring(sc_if)
899 	struct sk_if_softc	*sc_if;
900 {
901 	struct sk_ring_data	*rd;
902 	struct sk_txdesc	*txd;
903 	bus_addr_t		addr;
904 	int			i;
905 
906 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
907 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
908 
909 	sc_if->sk_cdata.sk_tx_prod = 0;
910 	sc_if->sk_cdata.sk_tx_cons = 0;
911 	sc_if->sk_cdata.sk_tx_cnt = 0;
912 
913 	rd = &sc_if->sk_rdata;
914 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
915 	for (i = 0; i < SK_TX_RING_CNT; i++) {
916 		if (i == (SK_TX_RING_CNT - 1))
917 			addr = SK_TX_RING_ADDR(sc_if, 0);
918 		else
919 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
920 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
921 		txd = &sc_if->sk_cdata.sk_txdesc[i];
922 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
923 	}
924 
925 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
926 	    sc_if->sk_cdata.sk_tx_ring_map,
927 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
928 }
929 
930 static __inline void
931 sk_discard_rxbuf(sc_if, idx)
932 	struct sk_if_softc	*sc_if;
933 	int			idx;
934 {
935 	struct sk_rx_desc	*r;
936 	struct sk_rxdesc	*rxd;
937 	struct mbuf		*m;
938 
939 
940 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
941 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
942 	m = rxd->rx_m;
943 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
944 }
945 
946 static __inline void
947 sk_discard_jumbo_rxbuf(sc_if, idx)
948 	struct sk_if_softc	*sc_if;
949 	int			idx;
950 {
951 	struct sk_rx_desc	*r;
952 	struct sk_rxdesc	*rxd;
953 	struct mbuf		*m;
954 
955 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
956 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
957 	m = rxd->rx_m;
958 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
959 }
960 
961 static int
962 sk_newbuf(sc_if, idx)
963 	struct sk_if_softc	*sc_if;
964 	int 			idx;
965 {
966 	struct sk_rx_desc	*r;
967 	struct sk_rxdesc	*rxd;
968 	struct mbuf		*m;
969 	bus_dma_segment_t	segs[1];
970 	bus_dmamap_t		map;
971 	int			nsegs;
972 
973 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
974 	if (m == NULL)
975 		return (ENOBUFS);
976 	m->m_len = m->m_pkthdr.len = MCLBYTES;
977 	m_adj(m, ETHER_ALIGN);
978 
979 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
980 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
981 		m_freem(m);
982 		return (ENOBUFS);
983 	}
984 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
985 
986 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
987 	if (rxd->rx_m != NULL) {
988 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
989 		    BUS_DMASYNC_POSTREAD);
990 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
991 	}
992 	map = rxd->rx_dmamap;
993 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
994 	sc_if->sk_cdata.sk_rx_sparemap = map;
995 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
996 	    BUS_DMASYNC_PREREAD);
997 	rxd->rx_m = m;
998 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
999 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1000 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1001 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1002 
1003 	return (0);
1004 }
1005 
1006 static int
1007 sk_jumbo_newbuf(sc_if, idx)
1008 	struct sk_if_softc	*sc_if;
1009 	int			idx;
1010 {
1011 	struct sk_rx_desc	*r;
1012 	struct sk_rxdesc	*rxd;
1013 	struct mbuf		*m;
1014 	bus_dma_segment_t	segs[1];
1015 	bus_dmamap_t		map;
1016 	int			nsegs;
1017 
1018 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1019 	if (m == NULL)
1020 		return (ENOBUFS);
1021 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1022 	/*
1023 	 * Adjust alignment so packet payload begins on a
1024 	 * longword boundary. Mandatory for Alpha, useful on
1025 	 * x86 too.
1026 	 */
1027 	m_adj(m, ETHER_ALIGN);
1028 
1029 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1030 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1031 		m_freem(m);
1032 		return (ENOBUFS);
1033 	}
1034 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1035 
1036 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1037 	if (rxd->rx_m != NULL) {
1038 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1039 		    BUS_DMASYNC_POSTREAD);
1040 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1041 		    rxd->rx_dmamap);
1042 	}
1043 	map = rxd->rx_dmamap;
1044 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1045 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1046 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1047 	    BUS_DMASYNC_PREREAD);
1048 	rxd->rx_m = m;
1049 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1050 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1051 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1052 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1053 
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Set media options.
1059  */
1060 static int
1061 sk_ifmedia_upd(ifp)
1062 	struct ifnet		*ifp;
1063 {
1064 	struct sk_if_softc	*sc_if = ifp->if_softc;
1065 	struct mii_data		*mii;
1066 
1067 	mii = device_get_softc(sc_if->sk_miibus);
1068 	sk_init(sc_if);
1069 	mii_mediachg(mii);
1070 
1071 	return(0);
1072 }
1073 
1074 /*
1075  * Report current media status.
1076  */
1077 static void
1078 sk_ifmedia_sts(ifp, ifmr)
1079 	struct ifnet		*ifp;
1080 	struct ifmediareq	*ifmr;
1081 {
1082 	struct sk_if_softc	*sc_if;
1083 	struct mii_data		*mii;
1084 
1085 	sc_if = ifp->if_softc;
1086 	mii = device_get_softc(sc_if->sk_miibus);
1087 
1088 	mii_pollstat(mii);
1089 	ifmr->ifm_active = mii->mii_media_active;
1090 	ifmr->ifm_status = mii->mii_media_status;
1091 
1092 	return;
1093 }
1094 
1095 static int
1096 sk_ioctl(ifp, command, data)
1097 	struct ifnet		*ifp;
1098 	u_long			command;
1099 	caddr_t			data;
1100 {
1101 	struct sk_if_softc	*sc_if = ifp->if_softc;
1102 	struct ifreq		*ifr = (struct ifreq *) data;
1103 	int			error, mask;
1104 	struct mii_data		*mii;
1105 
1106 	error = 0;
1107 	switch(command) {
1108 	case SIOCSIFMTU:
1109 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1110 			error = EINVAL;
1111 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1112 			if (sc_if->sk_jumbo_disable != 0 &&
1113 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1114 				error = EINVAL;
1115 			else {
1116 				SK_IF_LOCK(sc_if);
1117 				ifp->if_mtu = ifr->ifr_mtu;
1118 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1119 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1120 					sk_init_locked(sc_if);
1121 				}
1122 				SK_IF_UNLOCK(sc_if);
1123 			}
1124 		}
1125 		break;
1126 	case SIOCSIFFLAGS:
1127 		SK_IF_LOCK(sc_if);
1128 		if (ifp->if_flags & IFF_UP) {
1129 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1130 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1131 				    & (IFF_PROMISC | IFF_ALLMULTI))
1132 					sk_rxfilter(sc_if);
1133 			} else
1134 				sk_init_locked(sc_if);
1135 		} else {
1136 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1137 				sk_stop(sc_if);
1138 		}
1139 		sc_if->sk_if_flags = ifp->if_flags;
1140 		SK_IF_UNLOCK(sc_if);
1141 		break;
1142 	case SIOCADDMULTI:
1143 	case SIOCDELMULTI:
1144 		SK_IF_LOCK(sc_if);
1145 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1146 			sk_rxfilter(sc_if);
1147 		SK_IF_UNLOCK(sc_if);
1148 		break;
1149 	case SIOCGIFMEDIA:
1150 	case SIOCSIFMEDIA:
1151 		mii = device_get_softc(sc_if->sk_miibus);
1152 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1153 		break;
1154 	case SIOCSIFCAP:
1155 		SK_IF_LOCK(sc_if);
1156 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1157 			SK_IF_UNLOCK(sc_if);
1158 			break;
1159 		}
1160 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1161 		if ((mask & IFCAP_TXCSUM) != 0 &&
1162 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1163 			ifp->if_capenable ^= IFCAP_TXCSUM;
1164 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1165 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1166 			else
1167 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1168 		}
1169 		if ((mask & IFCAP_RXCSUM) != 0 &&
1170 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1171 			ifp->if_capenable ^= IFCAP_RXCSUM;
1172 		SK_IF_UNLOCK(sc_if);
1173 		break;
1174 	default:
1175 		error = ether_ioctl(ifp, command, data);
1176 		break;
1177 	}
1178 
1179 	return (error);
1180 }
1181 
1182 /*
1183  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1184  * IDs against our list and return a device name if we find a match.
1185  */
1186 static int
1187 skc_probe(dev)
1188 	device_t		dev;
1189 {
1190 	const struct sk_type	*t = sk_devs;
1191 
1192 	while(t->sk_name != NULL) {
1193 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1194 		    (pci_get_device(dev) == t->sk_did)) {
1195 			/*
1196 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1197 			 * Rev. 3 is supported by re(4).
1198 			 */
1199 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1200 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1201 				(pci_get_subdevice(dev) !=
1202 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1203 				t++;
1204 				continue;
1205 			}
1206 			device_set_desc(dev, t->sk_name);
1207 			return (BUS_PROBE_DEFAULT);
1208 		}
1209 		t++;
1210 	}
1211 
1212 	return(ENXIO);
1213 }
1214 
1215 /*
1216  * Force the GEnesis into reset, then bring it out of reset.
1217  */
1218 static void
1219 sk_reset(sc)
1220 	struct sk_softc		*sc;
1221 {
1222 
1223 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1224 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1225 	if (SK_YUKON_FAMILY(sc->sk_type))
1226 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1227 
1228 	DELAY(1000);
1229 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1230 	DELAY(2);
1231 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1232 	if (SK_YUKON_FAMILY(sc->sk_type))
1233 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1234 
1235 	if (sc->sk_type == SK_GENESIS) {
1236 		/* Configure packet arbiter */
1237 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1238 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1239 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1240 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1241 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1242 	}
1243 
1244 	/* Enable RAM interface */
1245 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1246 
1247 	/*
1248          * Configure interrupt moderation. The moderation timer
1249 	 * defers interrupts specified in the interrupt moderation
1250 	 * timer mask based on the timeout specified in the interrupt
1251 	 * moderation timer init register. Each bit in the timer
1252 	 * register represents one tick, so to specify a timeout in
1253 	 * microseconds, we have to multiply by the correct number of
1254 	 * ticks-per-microsecond.
1255 	 */
1256 	switch (sc->sk_type) {
1257 	case SK_GENESIS:
1258 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1259 		break;
1260 	default:
1261 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1262 		break;
1263 	}
1264 	if (bootverbose)
1265 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1266 		    sc->sk_int_mod);
1267 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1268 	    sc->sk_int_ticks));
1269 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1270 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1271 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1272 
1273 	return;
1274 }
1275 
1276 static int
1277 sk_probe(dev)
1278 	device_t		dev;
1279 {
1280 	struct sk_softc		*sc;
1281 
1282 	sc = device_get_softc(device_get_parent(dev));
1283 
1284 	/*
1285 	 * Not much to do here. We always know there will be
1286 	 * at least one XMAC present, and if there are two,
1287 	 * skc_attach() will create a second device instance
1288 	 * for us.
1289 	 */
1290 	switch (sc->sk_type) {
1291 	case SK_GENESIS:
1292 		device_set_desc(dev, "XaQti Corp. XMAC II");
1293 		break;
1294 	case SK_YUKON:
1295 	case SK_YUKON_LITE:
1296 	case SK_YUKON_LP:
1297 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1298 		break;
1299 	}
1300 
1301 	return (BUS_PROBE_DEFAULT);
1302 }
1303 
1304 /*
1305  * Each XMAC chip is attached as a separate logical IP interface.
1306  * Single port cards will have only one logical interface of course.
1307  */
1308 static int
1309 sk_attach(dev)
1310 	device_t		dev;
1311 {
1312 	struct sk_softc		*sc;
1313 	struct sk_if_softc	*sc_if;
1314 	struct ifnet		*ifp;
1315 	u_int32_t		r;
1316 	int			error, i, phy, port;
1317 	u_char			eaddr[6];
1318 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1319 
1320 	if (dev == NULL)
1321 		return(EINVAL);
1322 
1323 	error = 0;
1324 	sc_if = device_get_softc(dev);
1325 	sc = device_get_softc(device_get_parent(dev));
1326 	port = *(int *)device_get_ivars(dev);
1327 
1328 	sc_if->sk_if_dev = dev;
1329 	sc_if->sk_port = port;
1330 	sc_if->sk_softc = sc;
1331 	sc->sk_if[port] = sc_if;
1332 	if (port == SK_PORT_A)
1333 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1334 	if (port == SK_PORT_B)
1335 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1336 
1337 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1338 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1339 
1340 	if (sk_dma_alloc(sc_if) != 0) {
1341 		error = ENOMEM;
1342 		goto fail;
1343 	}
1344 	sk_dma_jumbo_alloc(sc_if);
1345 
1346 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1347 	if (ifp == NULL) {
1348 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1349 		error = ENOSPC;
1350 		goto fail;
1351 	}
1352 	ifp->if_softc = sc_if;
1353 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1354 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1355 	/*
1356 	 * SK_GENESIS has a bug in checksum offload - From linux.
1357 	 */
1358 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1359 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1360 		ifp->if_hwassist = 0;
1361 	} else {
1362 		ifp->if_capabilities = 0;
1363 		ifp->if_hwassist = 0;
1364 	}
1365 	ifp->if_capenable = ifp->if_capabilities;
1366 	/*
1367 	 * Some revision of Yukon controller generates corrupted
1368 	 * frame when TX checksum offloading is enabled.  The
1369 	 * frame has a valid checksum value so payload might be
1370 	 * modified during TX checksum calculation. Disable TX
1371 	 * checksum offloading but give users chance to enable it
1372 	 * when they know their controller works without problems
1373 	 * with TX checksum offloading.
1374 	 */
1375 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1376 	ifp->if_ioctl = sk_ioctl;
1377 	ifp->if_start = sk_start;
1378 	ifp->if_init = sk_init;
1379 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1380 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1381 	IFQ_SET_READY(&ifp->if_snd);
1382 
1383 	/*
1384 	 * Get station address for this interface. Note that
1385 	 * dual port cards actually come with three station
1386 	 * addresses: one for each port, plus an extra. The
1387 	 * extra one is used by the SysKonnect driver software
1388 	 * as a 'virtual' station address for when both ports
1389 	 * are operating in failover mode. Currently we don't
1390 	 * use this extra address.
1391 	 */
1392 	SK_IF_LOCK(sc_if);
1393 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1394 		eaddr[i] =
1395 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1396 
1397 	/* Verify whether the station address is invalid or not. */
1398 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1399 		device_printf(sc_if->sk_if_dev,
1400 		    "Generating random ethernet address\n");
1401 		r = arc4random();
1402 		/*
1403 		 * Set OUI to convenient locally assigned address.  'b'
1404 		 * is 0x62, which has the locally assigned bit set, and
1405 		 * the broadcast/multicast bit clear.
1406 		 */
1407 		eaddr[0] = 'b';
1408 		eaddr[1] = 's';
1409 		eaddr[2] = 'd';
1410 		eaddr[3] = (r >> 16) & 0xff;
1411 		eaddr[4] = (r >>  8) & 0xff;
1412 		eaddr[5] = (r >>  0) & 0xff;
1413 	}
1414 	/*
1415 	 * Set up RAM buffer addresses. The NIC will have a certain
1416 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1417 	 * need to divide this up a) between the transmitter and
1418  	 * receiver and b) between the two XMACs, if this is a
1419 	 * dual port NIC. Our algotithm is to divide up the memory
1420 	 * evenly so that everyone gets a fair share.
1421 	 *
1422 	 * Just to be contrary, Yukon2 appears to have separate memory
1423 	 * for each MAC.
1424 	 */
1425 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1426 		u_int32_t		chunk, val;
1427 
1428 		chunk = sc->sk_ramsize / 2;
1429 		val = sc->sk_rboff / sizeof(u_int64_t);
1430 		sc_if->sk_rx_ramstart = val;
1431 		val += (chunk / sizeof(u_int64_t));
1432 		sc_if->sk_rx_ramend = val - 1;
1433 		sc_if->sk_tx_ramstart = val;
1434 		val += (chunk / sizeof(u_int64_t));
1435 		sc_if->sk_tx_ramend = val - 1;
1436 	} else {
1437 		u_int32_t		chunk, val;
1438 
1439 		chunk = sc->sk_ramsize / 4;
1440 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1441 		    sizeof(u_int64_t);
1442 		sc_if->sk_rx_ramstart = val;
1443 		val += (chunk / sizeof(u_int64_t));
1444 		sc_if->sk_rx_ramend = val - 1;
1445 		sc_if->sk_tx_ramstart = val;
1446 		val += (chunk / sizeof(u_int64_t));
1447 		sc_if->sk_tx_ramend = val - 1;
1448 	}
1449 
1450 	/* Read and save PHY type and set PHY address */
1451 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1452 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1453 		switch(sc_if->sk_phytype) {
1454 		case SK_PHYTYPE_XMAC:
1455 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1456 			break;
1457 		case SK_PHYTYPE_BCOM:
1458 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1459 			break;
1460 		default:
1461 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1462 			    sc_if->sk_phytype);
1463 			error = ENODEV;
1464 			SK_IF_UNLOCK(sc_if);
1465 			goto fail;
1466 		}
1467 	} else {
1468 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1469 		    sc->sk_pmd != 'S') {
1470 			/* not initialized, punt */
1471 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1472 			sc->sk_coppertype = 1;
1473 		}
1474 
1475 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1476 
1477 		if (!(sc->sk_coppertype))
1478 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1479 	}
1480 
1481 	/*
1482 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1483 	 */
1484 	SK_IF_UNLOCK(sc_if);
1485 	ether_ifattach(ifp, eaddr);
1486 	SK_IF_LOCK(sc_if);
1487 
1488 	/*
1489 	 * The hardware should be ready for VLAN_MTU by default:
1490 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1491 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1492 	 *
1493 	 */
1494         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1495         ifp->if_capenable |= IFCAP_VLAN_MTU;
1496 	/*
1497 	 * Tell the upper layer(s) we support long frames.
1498 	 * Must appear after the call to ether_ifattach() because
1499 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1500 	 */
1501         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1502 
1503 	/*
1504 	 * Do miibus setup.
1505 	 */
1506 	phy = MII_PHY_ANY;
1507 	switch (sc->sk_type) {
1508 	case SK_GENESIS:
1509 		sk_init_xmac(sc_if);
1510 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1511 			phy = 0;
1512 		break;
1513 	case SK_YUKON:
1514 	case SK_YUKON_LITE:
1515 	case SK_YUKON_LP:
1516 		sk_init_yukon(sc_if);
1517 		phy = 0;
1518 		break;
1519 	}
1520 
1521 	SK_IF_UNLOCK(sc_if);
1522 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1523 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1524 	if (error != 0) {
1525 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1526 		ether_ifdetach(ifp);
1527 		goto fail;
1528 	}
1529 
1530 fail:
1531 	if (error) {
1532 		/* Access should be ok even though lock has been dropped */
1533 		sc->sk_if[port] = NULL;
1534 		sk_detach(dev);
1535 	}
1536 
1537 	return(error);
1538 }
1539 
1540 /*
1541  * Attach the interface. Allocate softc structures, do ifmedia
1542  * setup and ethernet/BPF attach.
1543  */
1544 static int
1545 skc_attach(dev)
1546 	device_t		dev;
1547 {
1548 	struct sk_softc		*sc;
1549 	int			error = 0, *port;
1550 	uint8_t			skrs;
1551 	const char		*pname = NULL;
1552 	char			*revstr;
1553 
1554 	sc = device_get_softc(dev);
1555 	sc->sk_dev = dev;
1556 
1557 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1558 	    MTX_DEF);
1559 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1560 	/*
1561 	 * Map control/status registers.
1562 	 */
1563 	pci_enable_busmaster(dev);
1564 
1565 	/* Allocate resources */
1566 #ifdef SK_USEIOSPACE
1567 	sc->sk_res_spec = sk_res_spec_io;
1568 #else
1569 	sc->sk_res_spec = sk_res_spec_mem;
1570 #endif
1571 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1572 	if (error) {
1573 		if (sc->sk_res_spec == sk_res_spec_mem)
1574 			sc->sk_res_spec = sk_res_spec_io;
1575 		else
1576 			sc->sk_res_spec = sk_res_spec_mem;
1577 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1578 		if (error) {
1579 			device_printf(dev, "couldn't allocate %s resources\n",
1580 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1581 			    "I/O");
1582 			goto fail;
1583 		}
1584 	}
1585 
1586 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1587 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1588 
1589 	/* Bail out if chip is not recognized. */
1590 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1591 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1592 		    sc->sk_type, sc->sk_rev);
1593 		error = ENXIO;
1594 		goto fail;
1595 	}
1596 
1597 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1598 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1599 		OID_AUTO, "int_mod",
1600 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1601 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1602 		"SK interrupt moderation");
1603 
1604 	/* Pull in device tunables. */
1605 	sc->sk_int_mod = SK_IM_DEFAULT;
1606 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1607 		"int_mod", &sc->sk_int_mod);
1608 	if (error == 0) {
1609 		if (sc->sk_int_mod < SK_IM_MIN ||
1610 		    sc->sk_int_mod > SK_IM_MAX) {
1611 			device_printf(dev, "int_mod value out of range; "
1612 			    "using default: %d\n", SK_IM_DEFAULT);
1613 			sc->sk_int_mod = SK_IM_DEFAULT;
1614 		}
1615 	}
1616 
1617 	/* Reset the adapter. */
1618 	sk_reset(sc);
1619 
1620 	skrs = sk_win_read_1(sc, SK_EPROM0);
1621 	if (sc->sk_type == SK_GENESIS) {
1622 		/* Read and save RAM size and RAMbuffer offset */
1623 		switch(skrs) {
1624 		case SK_RAMSIZE_512K_64:
1625 			sc->sk_ramsize = 0x80000;
1626 			sc->sk_rboff = SK_RBOFF_0;
1627 			break;
1628 		case SK_RAMSIZE_1024K_64:
1629 			sc->sk_ramsize = 0x100000;
1630 			sc->sk_rboff = SK_RBOFF_80000;
1631 			break;
1632 		case SK_RAMSIZE_1024K_128:
1633 			sc->sk_ramsize = 0x100000;
1634 			sc->sk_rboff = SK_RBOFF_0;
1635 			break;
1636 		case SK_RAMSIZE_2048K_128:
1637 			sc->sk_ramsize = 0x200000;
1638 			sc->sk_rboff = SK_RBOFF_0;
1639 			break;
1640 		default:
1641 			device_printf(dev, "unknown ram size: %d\n", skrs);
1642 			error = ENXIO;
1643 			goto fail;
1644 		}
1645 	} else { /* SK_YUKON_FAMILY */
1646 		if (skrs == 0x00)
1647 			sc->sk_ramsize = 0x20000;
1648 		else
1649 			sc->sk_ramsize = skrs * (1<<12);
1650 		sc->sk_rboff = SK_RBOFF_0;
1651 	}
1652 
1653 	/* Read and save physical media type */
1654 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1655 
1656 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1657 		 sc->sk_coppertype = 1;
1658 	 else
1659 		 sc->sk_coppertype = 0;
1660 
1661 	/* Determine whether to name it with VPD PN or just make it up.
1662 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1663 	switch (pci_get_device(dev)) {
1664 	case DEVICEID_SK_V1:
1665 	case DEVICEID_BELKIN_5005:
1666 	case DEVICEID_3COM_3C940:
1667 	case DEVICEID_LINKSYS_EG1032:
1668 	case DEVICEID_DLINK_DGE530T_A1:
1669 	case DEVICEID_DLINK_DGE530T_B1:
1670 		/* Stay with VPD PN. */
1671 		(void) pci_get_vpd_ident(dev, &pname);
1672 		break;
1673 	case DEVICEID_SK_V2:
1674 		/* YUKON VPD PN might bear no resemblance to reality. */
1675 		switch (sc->sk_type) {
1676 		case SK_GENESIS:
1677 			/* Stay with VPD PN. */
1678 			(void) pci_get_vpd_ident(dev, &pname);
1679 			break;
1680 		case SK_YUKON:
1681 			pname = "Marvell Yukon Gigabit Ethernet";
1682 			break;
1683 		case SK_YUKON_LITE:
1684 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1685 			break;
1686 		case SK_YUKON_LP:
1687 			pname = "Marvell Yukon LP Gigabit Ethernet";
1688 			break;
1689 		default:
1690 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1691 			break;
1692 		}
1693 
1694 		/* Yukon Lite Rev. A0 needs special test. */
1695 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1696 			u_int32_t far;
1697 			u_int8_t testbyte;
1698 
1699 			/* Save flash address register before testing. */
1700 			far = sk_win_read_4(sc, SK_EP_ADDR);
1701 
1702 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1703 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1704 
1705 			if (testbyte != 0x00) {
1706 				/* Yukon Lite Rev. A0 detected. */
1707 				sc->sk_type = SK_YUKON_LITE;
1708 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1709 				/* Restore flash address register. */
1710 				sk_win_write_4(sc, SK_EP_ADDR, far);
1711 			}
1712 		}
1713 		break;
1714 	default:
1715 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1716 			"chipver=%02x, rev=%x\n",
1717 			pci_get_vendor(dev), pci_get_device(dev),
1718 			sc->sk_type, sc->sk_rev);
1719 		error = ENXIO;
1720 		goto fail;
1721 	}
1722 
1723 	if (sc->sk_type == SK_YUKON_LITE) {
1724 		switch (sc->sk_rev) {
1725 		case SK_YUKON_LITE_REV_A0:
1726 			revstr = "A0";
1727 			break;
1728 		case SK_YUKON_LITE_REV_A1:
1729 			revstr = "A1";
1730 			break;
1731 		case SK_YUKON_LITE_REV_A3:
1732 			revstr = "A3";
1733 			break;
1734 		default:
1735 			revstr = "";
1736 			break;
1737 		}
1738 	} else {
1739 		revstr = "";
1740 	}
1741 
1742 	/* Announce the product name and more VPD data if there. */
1743 	if (pname != NULL)
1744 		device_printf(dev, "%s rev. %s(0x%x)\n",
1745 			pname, revstr, sc->sk_rev);
1746 
1747 	if (bootverbose) {
1748 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1749 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1750 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1751 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1752 	}
1753 
1754 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1755 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1756 		device_printf(dev, "failed to add child for PORT_A\n");
1757 		error = ENXIO;
1758 		goto fail;
1759 	}
1760 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1761 	if (port == NULL) {
1762 		device_printf(dev, "failed to allocate memory for "
1763 		    "ivars of PORT_A\n");
1764 		error = ENXIO;
1765 		goto fail;
1766 	}
1767 	*port = SK_PORT_A;
1768 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1769 
1770 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1771 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1772 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1773 			device_printf(dev, "failed to add child for PORT_B\n");
1774 			error = ENXIO;
1775 			goto fail;
1776 		}
1777 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1778 		if (port == NULL) {
1779 			device_printf(dev, "failed to allocate memory for "
1780 			    "ivars of PORT_B\n");
1781 			error = ENXIO;
1782 			goto fail;
1783 		}
1784 		*port = SK_PORT_B;
1785 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1786 	}
1787 
1788 	/* Turn on the 'driver is loaded' LED. */
1789 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1790 
1791 	error = bus_generic_attach(dev);
1792 	if (error) {
1793 		device_printf(dev, "failed to attach port(s)\n");
1794 		goto fail;
1795 	}
1796 
1797 	/* Hook interrupt last to avoid having to lock softc */
1798 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1799 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1800 
1801 	if (error) {
1802 		device_printf(dev, "couldn't set up irq\n");
1803 		goto fail;
1804 	}
1805 
1806 fail:
1807 	if (error)
1808 		skc_detach(dev);
1809 
1810 	return(error);
1811 }
1812 
1813 /*
1814  * Shutdown hardware and free up resources. This can be called any
1815  * time after the mutex has been initialized. It is called in both
1816  * the error case in attach and the normal detach case so it needs
1817  * to be careful about only freeing resources that have actually been
1818  * allocated.
1819  */
1820 static int
1821 sk_detach(dev)
1822 	device_t		dev;
1823 {
1824 	struct sk_if_softc	*sc_if;
1825 	struct ifnet		*ifp;
1826 
1827 	sc_if = device_get_softc(dev);
1828 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1829 	    ("sk mutex not initialized in sk_detach"));
1830 	SK_IF_LOCK(sc_if);
1831 
1832 	ifp = sc_if->sk_ifp;
1833 	/* These should only be active if attach_xmac succeeded */
1834 	if (device_is_attached(dev)) {
1835 		sk_stop(sc_if);
1836 		/* Can't hold locks while calling detach */
1837 		SK_IF_UNLOCK(sc_if);
1838 		callout_drain(&sc_if->sk_tick_ch);
1839 		callout_drain(&sc_if->sk_watchdog_ch);
1840 		ether_ifdetach(ifp);
1841 		SK_IF_LOCK(sc_if);
1842 	}
1843 	/*
1844 	 * We're generally called from skc_detach() which is using
1845 	 * device_delete_child() to get to here. It's already trashed
1846 	 * miibus for us, so don't do it here or we'll panic.
1847 	 */
1848 	/*
1849 	if (sc_if->sk_miibus != NULL)
1850 		device_delete_child(dev, sc_if->sk_miibus);
1851 	*/
1852 	bus_generic_detach(dev);
1853 	sk_dma_jumbo_free(sc_if);
1854 	sk_dma_free(sc_if);
1855 	SK_IF_UNLOCK(sc_if);
1856 	if (ifp)
1857 		if_free(ifp);
1858 
1859 	return(0);
1860 }
1861 
1862 static int
1863 skc_detach(dev)
1864 	device_t		dev;
1865 {
1866 	struct sk_softc		*sc;
1867 
1868 	sc = device_get_softc(dev);
1869 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1870 
1871 	if (device_is_alive(dev)) {
1872 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1873 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1874 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1875 		}
1876 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1877 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1878 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1879 		}
1880 		bus_generic_detach(dev);
1881 	}
1882 
1883 	if (sc->sk_intrhand)
1884 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1885 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1886 
1887 	mtx_destroy(&sc->sk_mii_mtx);
1888 	mtx_destroy(&sc->sk_mtx);
1889 
1890 	return(0);
1891 }
1892 
1893 static bus_dma_tag_t
1894 skc_get_dma_tag(device_t bus, device_t child __unused)
1895 {
1896 
1897 	return (bus_get_dma_tag(bus));
1898 }
1899 
1900 struct sk_dmamap_arg {
1901 	bus_addr_t	sk_busaddr;
1902 };
1903 
1904 static void
1905 sk_dmamap_cb(arg, segs, nseg, error)
1906 	void			*arg;
1907 	bus_dma_segment_t	*segs;
1908 	int			nseg;
1909 	int			error;
1910 {
1911 	struct sk_dmamap_arg	*ctx;
1912 
1913 	if (error != 0)
1914 		return;
1915 
1916 	ctx = arg;
1917 	ctx->sk_busaddr = segs[0].ds_addr;
1918 }
1919 
1920 /*
1921  * Allocate jumbo buffer storage. The SysKonnect adapters support
1922  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1923  * use them in their drivers. In order for us to use them, we need
1924  * large 9K receive buffers, however standard mbuf clusters are only
1925  * 2048 bytes in size. Consequently, we need to allocate and manage
1926  * our own jumbo buffer pool. Fortunately, this does not require an
1927  * excessive amount of additional code.
1928  */
1929 static int
1930 sk_dma_alloc(sc_if)
1931 	struct sk_if_softc	*sc_if;
1932 {
1933 	struct sk_dmamap_arg	ctx;
1934 	struct sk_txdesc	*txd;
1935 	struct sk_rxdesc	*rxd;
1936 	int			error, i;
1937 
1938 	/* create parent tag */
1939 	/*
1940 	 * XXX
1941 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1942 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1943 	 * However bz@ reported that it does not work on amd64 with > 4GB
1944 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1945 	 * by limiting DMA address to be in 32bit address space.
1946 	 */
1947 	error = bus_dma_tag_create(
1948 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1949 		    1, 0,			/* algnmnt, boundary */
1950 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1951 		    BUS_SPACE_MAXADDR,		/* highaddr */
1952 		    NULL, NULL,			/* filter, filterarg */
1953 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1954 		    0,				/* nsegments */
1955 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1956 		    0,				/* flags */
1957 		    NULL, NULL,			/* lockfunc, lockarg */
1958 		    &sc_if->sk_cdata.sk_parent_tag);
1959 	if (error != 0) {
1960 		device_printf(sc_if->sk_if_dev,
1961 		    "failed to create parent DMA tag\n");
1962 		goto fail;
1963 	}
1964 
1965 	/* create tag for Tx ring */
1966 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1967 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1968 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1969 		    BUS_SPACE_MAXADDR,		/* highaddr */
1970 		    NULL, NULL,			/* filter, filterarg */
1971 		    SK_TX_RING_SZ,		/* maxsize */
1972 		    1,				/* nsegments */
1973 		    SK_TX_RING_SZ,		/* maxsegsize */
1974 		    0,				/* flags */
1975 		    NULL, NULL,			/* lockfunc, lockarg */
1976 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1977 	if (error != 0) {
1978 		device_printf(sc_if->sk_if_dev,
1979 		    "failed to allocate Tx ring DMA tag\n");
1980 		goto fail;
1981 	}
1982 
1983 	/* create tag for Rx ring */
1984 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1985 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1986 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1987 		    BUS_SPACE_MAXADDR,		/* highaddr */
1988 		    NULL, NULL,			/* filter, filterarg */
1989 		    SK_RX_RING_SZ,		/* maxsize */
1990 		    1,				/* nsegments */
1991 		    SK_RX_RING_SZ,		/* maxsegsize */
1992 		    0,				/* flags */
1993 		    NULL, NULL,			/* lockfunc, lockarg */
1994 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1995 	if (error != 0) {
1996 		device_printf(sc_if->sk_if_dev,
1997 		    "failed to allocate Rx ring DMA tag\n");
1998 		goto fail;
1999 	}
2000 
2001 	/* create tag for Tx buffers */
2002 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2003 		    1, 0,			/* algnmnt, boundary */
2004 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2005 		    BUS_SPACE_MAXADDR,		/* highaddr */
2006 		    NULL, NULL,			/* filter, filterarg */
2007 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2008 		    SK_MAXTXSEGS,		/* nsegments */
2009 		    MCLBYTES,			/* maxsegsize */
2010 		    0,				/* flags */
2011 		    NULL, NULL,			/* lockfunc, lockarg */
2012 		    &sc_if->sk_cdata.sk_tx_tag);
2013 	if (error != 0) {
2014 		device_printf(sc_if->sk_if_dev,
2015 		    "failed to allocate Tx DMA tag\n");
2016 		goto fail;
2017 	}
2018 
2019 	/* create tag for Rx buffers */
2020 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2021 		    1, 0,			/* algnmnt, boundary */
2022 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2023 		    BUS_SPACE_MAXADDR,		/* highaddr */
2024 		    NULL, NULL,			/* filter, filterarg */
2025 		    MCLBYTES,			/* maxsize */
2026 		    1,				/* nsegments */
2027 		    MCLBYTES,			/* maxsegsize */
2028 		    0,				/* flags */
2029 		    NULL, NULL,			/* lockfunc, lockarg */
2030 		    &sc_if->sk_cdata.sk_rx_tag);
2031 	if (error != 0) {
2032 		device_printf(sc_if->sk_if_dev,
2033 		    "failed to allocate Rx DMA tag\n");
2034 		goto fail;
2035 	}
2036 
2037 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2038 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2039 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2040 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2041 	if (error != 0) {
2042 		device_printf(sc_if->sk_if_dev,
2043 		    "failed to allocate DMA'able memory for Tx ring\n");
2044 		goto fail;
2045 	}
2046 
2047 	ctx.sk_busaddr = 0;
2048 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2049 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2050 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2051 	if (error != 0) {
2052 		device_printf(sc_if->sk_if_dev,
2053 		    "failed to load DMA'able memory for Tx ring\n");
2054 		goto fail;
2055 	}
2056 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2057 
2058 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2059 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2060 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2061 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2062 	if (error != 0) {
2063 		device_printf(sc_if->sk_if_dev,
2064 		    "failed to allocate DMA'able memory for Rx ring\n");
2065 		goto fail;
2066 	}
2067 
2068 	ctx.sk_busaddr = 0;
2069 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2070 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2071 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2072 	if (error != 0) {
2073 		device_printf(sc_if->sk_if_dev,
2074 		    "failed to load DMA'able memory for Rx ring\n");
2075 		goto fail;
2076 	}
2077 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2078 
2079 	/* create DMA maps for Tx buffers */
2080 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2081 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2082 		txd->tx_m = NULL;
2083 		txd->tx_dmamap = NULL;
2084 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2085 		    &txd->tx_dmamap);
2086 		if (error != 0) {
2087 			device_printf(sc_if->sk_if_dev,
2088 			    "failed to create Tx dmamap\n");
2089 			goto fail;
2090 		}
2091 	}
2092 
2093 	/* create DMA maps for Rx buffers */
2094 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2095 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2096 		device_printf(sc_if->sk_if_dev,
2097 		    "failed to create spare Rx dmamap\n");
2098 		goto fail;
2099 	}
2100 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2101 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2102 		rxd->rx_m = NULL;
2103 		rxd->rx_dmamap = NULL;
2104 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2105 		    &rxd->rx_dmamap);
2106 		if (error != 0) {
2107 			device_printf(sc_if->sk_if_dev,
2108 			    "failed to create Rx dmamap\n");
2109 			goto fail;
2110 		}
2111 	}
2112 
2113 fail:
2114 	return (error);
2115 }
2116 
2117 static int
2118 sk_dma_jumbo_alloc(sc_if)
2119 	struct sk_if_softc	*sc_if;
2120 {
2121 	struct sk_dmamap_arg	ctx;
2122 	struct sk_rxdesc	*jrxd;
2123 	int			error, i;
2124 
2125 	if (jumbo_disable != 0) {
2126 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2127 		sc_if->sk_jumbo_disable = 1;
2128 		return (0);
2129 	}
2130 	/* create tag for jumbo Rx ring */
2131 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2132 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2133 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2134 		    BUS_SPACE_MAXADDR,		/* highaddr */
2135 		    NULL, NULL,			/* filter, filterarg */
2136 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2137 		    1,				/* nsegments */
2138 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2139 		    0,				/* flags */
2140 		    NULL, NULL,			/* lockfunc, lockarg */
2141 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2142 	if (error != 0) {
2143 		device_printf(sc_if->sk_if_dev,
2144 		    "failed to allocate jumbo Rx ring DMA tag\n");
2145 		goto jumbo_fail;
2146 	}
2147 
2148 	/* create tag for jumbo Rx buffers */
2149 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2150 		    1, 0,			/* algnmnt, boundary */
2151 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2152 		    BUS_SPACE_MAXADDR,		/* highaddr */
2153 		    NULL, NULL,			/* filter, filterarg */
2154 		    MJUM9BYTES,			/* maxsize */
2155 		    1,				/* nsegments */
2156 		    MJUM9BYTES,			/* maxsegsize */
2157 		    0,				/* flags */
2158 		    NULL, NULL,			/* lockfunc, lockarg */
2159 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2160 	if (error != 0) {
2161 		device_printf(sc_if->sk_if_dev,
2162 		    "failed to allocate jumbo Rx DMA tag\n");
2163 		goto jumbo_fail;
2164 	}
2165 
2166 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2167 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2168 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2169 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2170 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2171 	if (error != 0) {
2172 		device_printf(sc_if->sk_if_dev,
2173 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2174 		goto jumbo_fail;
2175 	}
2176 
2177 	ctx.sk_busaddr = 0;
2178 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2179 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2180 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2181 	    &ctx, BUS_DMA_NOWAIT);
2182 	if (error != 0) {
2183 		device_printf(sc_if->sk_if_dev,
2184 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2185 		goto jumbo_fail;
2186 	}
2187 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2188 
2189 	/* create DMA maps for jumbo Rx buffers */
2190 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2191 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2192 		device_printf(sc_if->sk_if_dev,
2193 		    "failed to create spare jumbo Rx dmamap\n");
2194 		goto jumbo_fail;
2195 	}
2196 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2197 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2198 		jrxd->rx_m = NULL;
2199 		jrxd->rx_dmamap = NULL;
2200 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2201 		    &jrxd->rx_dmamap);
2202 		if (error != 0) {
2203 			device_printf(sc_if->sk_if_dev,
2204 			    "failed to create jumbo Rx dmamap\n");
2205 			goto jumbo_fail;
2206 		}
2207 	}
2208 
2209 	return (0);
2210 
2211 jumbo_fail:
2212 	sk_dma_jumbo_free(sc_if);
2213 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2214 	    "resource shortage\n");
2215 	sc_if->sk_jumbo_disable = 1;
2216 	return (0);
2217 }
2218 
2219 static void
2220 sk_dma_free(sc_if)
2221 	struct sk_if_softc	*sc_if;
2222 {
2223 	struct sk_txdesc	*txd;
2224 	struct sk_rxdesc	*rxd;
2225 	int			i;
2226 
2227 	/* Tx ring */
2228 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2229 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2230 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2231 			    sc_if->sk_cdata.sk_tx_ring_map);
2232 		if (sc_if->sk_rdata.sk_tx_ring)
2233 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2234 			    sc_if->sk_rdata.sk_tx_ring,
2235 			    sc_if->sk_cdata.sk_tx_ring_map);
2236 		sc_if->sk_rdata.sk_tx_ring = NULL;
2237 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2238 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2239 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2240 	}
2241 	/* Rx ring */
2242 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2243 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2244 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2245 			    sc_if->sk_cdata.sk_rx_ring_map);
2246 		if (sc_if->sk_rdata.sk_rx_ring)
2247 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2248 			    sc_if->sk_rdata.sk_rx_ring,
2249 			    sc_if->sk_cdata.sk_rx_ring_map);
2250 		sc_if->sk_rdata.sk_rx_ring = NULL;
2251 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2252 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2253 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2254 	}
2255 	/* Tx buffers */
2256 	if (sc_if->sk_cdata.sk_tx_tag) {
2257 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2258 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2259 			if (txd->tx_dmamap) {
2260 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2261 				    txd->tx_dmamap);
2262 				txd->tx_dmamap = NULL;
2263 			}
2264 		}
2265 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2266 		sc_if->sk_cdata.sk_tx_tag = NULL;
2267 	}
2268 	/* Rx buffers */
2269 	if (sc_if->sk_cdata.sk_rx_tag) {
2270 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2271 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2272 			if (rxd->rx_dmamap) {
2273 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2274 				    rxd->rx_dmamap);
2275 				rxd->rx_dmamap = NULL;
2276 			}
2277 		}
2278 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2279 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2280 			    sc_if->sk_cdata.sk_rx_sparemap);
2281 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2282 		}
2283 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2284 		sc_if->sk_cdata.sk_rx_tag = NULL;
2285 	}
2286 
2287 	if (sc_if->sk_cdata.sk_parent_tag) {
2288 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2289 		sc_if->sk_cdata.sk_parent_tag = NULL;
2290 	}
2291 }
2292 
2293 static void
2294 sk_dma_jumbo_free(sc_if)
2295 	struct sk_if_softc	*sc_if;
2296 {
2297 	struct sk_rxdesc	*jrxd;
2298 	int			i;
2299 
2300 	/* jumbo Rx ring */
2301 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2302 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2303 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2304 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2305 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2306 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2307 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2308 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2309 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2310 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2311 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2312 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2313 	}
2314 
2315 	/* jumbo Rx buffers */
2316 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2317 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2318 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2319 			if (jrxd->rx_dmamap) {
2320 				bus_dmamap_destroy(
2321 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2322 				    jrxd->rx_dmamap);
2323 				jrxd->rx_dmamap = NULL;
2324 			}
2325 		}
2326 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2327 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2328 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2329 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2330 		}
2331 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2332 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2333 	}
2334 }
2335 
2336 static void
2337 sk_txcksum(ifp, m, f)
2338 	struct ifnet		*ifp;
2339 	struct mbuf		*m;
2340 	struct sk_tx_desc	*f;
2341 {
2342 	struct ip		*ip;
2343 	u_int16_t		offset;
2344 	u_int8_t 		*p;
2345 
2346 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2347 	for(; m && m->m_len == 0; m = m->m_next)
2348 		;
2349 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2350 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2351 		/* checksum may be corrupted */
2352 		goto sendit;
2353 	}
2354 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2355 		if (m->m_len != ETHER_HDR_LEN) {
2356 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2357 			    __func__);
2358 			/* checksum may be corrupted */
2359 			goto sendit;
2360 		}
2361 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2362 			;
2363 		if (m == NULL) {
2364 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2365 			/* checksum may be corrupted */
2366 			goto sendit;
2367 		}
2368 		ip = mtod(m, struct ip *);
2369 	} else {
2370 		p = mtod(m, u_int8_t *);
2371 		p += ETHER_HDR_LEN;
2372 		ip = (struct ip *)p;
2373 	}
2374 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2375 
2376 sendit:
2377 	f->sk_csum_startval = 0;
2378 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2379 	    (offset << 16));
2380 }
2381 
2382 static int
2383 sk_encap(sc_if, m_head)
2384         struct sk_if_softc	*sc_if;
2385         struct mbuf		**m_head;
2386 {
2387 	struct sk_txdesc	*txd;
2388 	struct sk_tx_desc	*f = NULL;
2389 	struct mbuf		*m;
2390 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2391 	u_int32_t		cflags, frag, si, sk_ctl;
2392 	int			error, i, nseg;
2393 
2394 	SK_IF_LOCK_ASSERT(sc_if);
2395 
2396 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2397 		return (ENOBUFS);
2398 
2399 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2400 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2401 	if (error == EFBIG) {
2402 		m = m_defrag(*m_head, M_NOWAIT);
2403 		if (m == NULL) {
2404 			m_freem(*m_head);
2405 			*m_head = NULL;
2406 			return (ENOMEM);
2407 		}
2408 		*m_head = m;
2409 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2410 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2411 		if (error != 0) {
2412 			m_freem(*m_head);
2413 			*m_head = NULL;
2414 			return (error);
2415 		}
2416 	} else if (error != 0)
2417 		return (error);
2418 	if (nseg == 0) {
2419 		m_freem(*m_head);
2420 		*m_head = NULL;
2421 		return (EIO);
2422 	}
2423 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2424 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2425 		return (ENOBUFS);
2426 	}
2427 
2428 	m = *m_head;
2429 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2430 		cflags = SK_OPCODE_CSUM;
2431 	else
2432 		cflags = SK_OPCODE_DEFAULT;
2433 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2434 	for (i = 0; i < nseg; i++) {
2435 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2436 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2437 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2438 		sk_ctl = txsegs[i].ds_len | cflags;
2439 		if (i == 0) {
2440 			if (cflags == SK_OPCODE_CSUM)
2441 				sk_txcksum(sc_if->sk_ifp, m, f);
2442 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2443 		} else
2444 			sk_ctl |= SK_TXCTL_OWN;
2445 		f->sk_ctl = htole32(sk_ctl);
2446 		sc_if->sk_cdata.sk_tx_cnt++;
2447 		SK_INC(frag, SK_TX_RING_CNT);
2448 	}
2449 	sc_if->sk_cdata.sk_tx_prod = frag;
2450 
2451 	/* set EOF on the last desciptor */
2452 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2453 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2454 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2455 
2456 	/* turn the first descriptor ownership to NIC */
2457 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2458 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2459 
2460 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2461 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2462 	txd->tx_m = m;
2463 
2464 	/* sync descriptors */
2465 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2466 	    BUS_DMASYNC_PREWRITE);
2467 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2468 	    sc_if->sk_cdata.sk_tx_ring_map,
2469 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2470 
2471 	return (0);
2472 }
2473 
2474 static void
2475 sk_start(ifp)
2476 	struct ifnet		*ifp;
2477 {
2478 	struct sk_if_softc *sc_if;
2479 
2480 	sc_if = ifp->if_softc;
2481 
2482 	SK_IF_LOCK(sc_if);
2483 	sk_start_locked(ifp);
2484 	SK_IF_UNLOCK(sc_if);
2485 
2486 	return;
2487 }
2488 
2489 static void
2490 sk_start_locked(ifp)
2491 	struct ifnet		*ifp;
2492 {
2493         struct sk_softc		*sc;
2494         struct sk_if_softc	*sc_if;
2495         struct mbuf		*m_head;
2496 	int			enq;
2497 
2498 	sc_if = ifp->if_softc;
2499 	sc = sc_if->sk_softc;
2500 
2501 	SK_IF_LOCK_ASSERT(sc_if);
2502 
2503 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2504 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2505 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2506 		if (m_head == NULL)
2507 			break;
2508 
2509 		/*
2510 		 * Pack the data into the transmit ring. If we
2511 		 * don't have room, set the OACTIVE flag and wait
2512 		 * for the NIC to drain the ring.
2513 		 */
2514 		if (sk_encap(sc_if, &m_head)) {
2515 			if (m_head == NULL)
2516 				break;
2517 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2518 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2519 			break;
2520 		}
2521 
2522 		enq++;
2523 		/*
2524 		 * If there's a BPF listener, bounce a copy of this frame
2525 		 * to him.
2526 		 */
2527 		BPF_MTAP(ifp, m_head);
2528 	}
2529 
2530 	if (enq > 0) {
2531 		/* Transmit */
2532 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2533 
2534 		/* Set a timeout in case the chip goes out to lunch. */
2535 		sc_if->sk_watchdog_timer = 5;
2536 	}
2537 }
2538 
2539 
2540 static void
2541 sk_watchdog(arg)
2542 	void			*arg;
2543 {
2544 	struct sk_if_softc	*sc_if;
2545 	struct ifnet		*ifp;
2546 
2547 	ifp = arg;
2548 	sc_if = ifp->if_softc;
2549 
2550 	SK_IF_LOCK_ASSERT(sc_if);
2551 
2552 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2553 		goto done;
2554 
2555 	/*
2556 	 * Reclaim first as there is a possibility of losing Tx completion
2557 	 * interrupts.
2558 	 */
2559 	sk_txeof(sc_if);
2560 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2561 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2562 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2563 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2564 		sk_init_locked(sc_if);
2565 	}
2566 
2567 done:
2568 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2569 
2570 	return;
2571 }
2572 
2573 static int
2574 skc_shutdown(dev)
2575 	device_t		dev;
2576 {
2577 	struct sk_softc		*sc;
2578 
2579 	sc = device_get_softc(dev);
2580 	SK_LOCK(sc);
2581 
2582 	/* Turn off the 'driver is loaded' LED. */
2583 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2584 
2585 	/*
2586 	 * Reset the GEnesis controller. Doing this should also
2587 	 * assert the resets on the attached XMAC(s).
2588 	 */
2589 	sk_reset(sc);
2590 	SK_UNLOCK(sc);
2591 
2592 	return (0);
2593 }
2594 
2595 static int
2596 skc_suspend(dev)
2597 	device_t		dev;
2598 {
2599 	struct sk_softc		*sc;
2600 	struct sk_if_softc	*sc_if0, *sc_if1;
2601 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2602 
2603 	sc = device_get_softc(dev);
2604 
2605 	SK_LOCK(sc);
2606 
2607 	sc_if0 = sc->sk_if[SK_PORT_A];
2608 	sc_if1 = sc->sk_if[SK_PORT_B];
2609 	if (sc_if0 != NULL)
2610 		ifp0 = sc_if0->sk_ifp;
2611 	if (sc_if1 != NULL)
2612 		ifp1 = sc_if1->sk_ifp;
2613 	if (ifp0 != NULL)
2614 		sk_stop(sc_if0);
2615 	if (ifp1 != NULL)
2616 		sk_stop(sc_if1);
2617 	sc->sk_suspended = 1;
2618 
2619 	SK_UNLOCK(sc);
2620 
2621 	return (0);
2622 }
2623 
2624 static int
2625 skc_resume(dev)
2626 	device_t		dev;
2627 {
2628 	struct sk_softc		*sc;
2629 	struct sk_if_softc	*sc_if0, *sc_if1;
2630 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2631 
2632 	sc = device_get_softc(dev);
2633 
2634 	SK_LOCK(sc);
2635 
2636 	sc_if0 = sc->sk_if[SK_PORT_A];
2637 	sc_if1 = sc->sk_if[SK_PORT_B];
2638 	if (sc_if0 != NULL)
2639 		ifp0 = sc_if0->sk_ifp;
2640 	if (sc_if1 != NULL)
2641 		ifp1 = sc_if1->sk_ifp;
2642 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2643 		sk_init_locked(sc_if0);
2644 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2645 		sk_init_locked(sc_if1);
2646 	sc->sk_suspended = 0;
2647 
2648 	SK_UNLOCK(sc);
2649 
2650 	return (0);
2651 }
2652 
2653 /*
2654  * According to the data sheet from SK-NET GENESIS the hardware can compute
2655  * two Rx checksums at the same time(Each checksum start position is
2656  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2657  * does not work at least on my Yukon hardware. I tried every possible ways
2658  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2659  * checksum offload was disabled at the moment and only IP checksum offload
2660  * was enabled.
2661  * As nomral IP header size is 20 bytes I can't expect it would give an
2662  * increase in throughput. However it seems it doesn't hurt performance in
2663  * my testing. If there is a more detailed information for checksum secret
2664  * of the hardware in question please contact yongari@FreeBSD.org to add
2665  * TCP/UDP checksum offload support.
2666  */
2667 static __inline void
2668 sk_rxcksum(ifp, m, csum)
2669 	struct ifnet		*ifp;
2670 	struct mbuf		*m;
2671 	u_int32_t		csum;
2672 {
2673 	struct ether_header	*eh;
2674 	struct ip		*ip;
2675 	int32_t			hlen, len, pktlen;
2676 	u_int16_t		csum1, csum2, ipcsum;
2677 
2678 	pktlen = m->m_pkthdr.len;
2679 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2680 		return;
2681 	eh = mtod(m, struct ether_header *);
2682 	if (eh->ether_type != htons(ETHERTYPE_IP))
2683 		return;
2684 	ip = (struct ip *)(eh + 1);
2685 	if (ip->ip_v != IPVERSION)
2686 		return;
2687 	hlen = ip->ip_hl << 2;
2688 	pktlen -= sizeof(struct ether_header);
2689 	if (hlen < sizeof(struct ip))
2690 		return;
2691 	if (ntohs(ip->ip_len) < hlen)
2692 		return;
2693 	if (ntohs(ip->ip_len) != pktlen)
2694 		return;
2695 
2696 	csum1 = htons(csum & 0xffff);
2697 	csum2 = htons((csum >> 16) & 0xffff);
2698 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2699 	/* checksum fixup for IP options */
2700 	len = hlen - sizeof(struct ip);
2701 	if (len > 0) {
2702 		/*
2703 		 * If the second checksum value is correct we can compute IP
2704 		 * checksum with simple math. Unfortunately the second checksum
2705 		 * value is wrong so we can't verify the checksum from the
2706 		 * value(It seems there is some magic here to get correct
2707 		 * value). If the second checksum value is correct it also
2708 		 * means we can get TCP/UDP checksum) here. However, it still
2709 		 * needs pseudo header checksum calculation due to hardware
2710 		 * limitations.
2711 		 */
2712 		return;
2713 	}
2714 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2715 	if (ipcsum == 0xffff)
2716 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2717 }
2718 
2719 static __inline int
2720 sk_rxvalid(sc, stat, len)
2721 	struct sk_softc		*sc;
2722 	u_int32_t		stat, len;
2723 {
2724 
2725 	if (sc->sk_type == SK_GENESIS) {
2726 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2727 		    XM_RXSTAT_BYTES(stat) != len)
2728 			return (0);
2729 	} else {
2730 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2731 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2732 		    YU_RXSTAT_JABBER)) != 0 ||
2733 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2734 		    YU_RXSTAT_BYTES(stat) != len)
2735 			return (0);
2736 	}
2737 
2738 	return (1);
2739 }
2740 
2741 static void
2742 sk_rxeof(sc_if)
2743 	struct sk_if_softc	*sc_if;
2744 {
2745 	struct sk_softc		*sc;
2746 	struct mbuf		*m;
2747 	struct ifnet		*ifp;
2748 	struct sk_rx_desc	*cur_rx;
2749 	struct sk_rxdesc	*rxd;
2750 	int			cons, prog;
2751 	u_int32_t		csum, rxstat, sk_ctl;
2752 
2753 	sc = sc_if->sk_softc;
2754 	ifp = sc_if->sk_ifp;
2755 
2756 	SK_IF_LOCK_ASSERT(sc_if);
2757 
2758 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2759 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2760 
2761 	prog = 0;
2762 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2763 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2764 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2765 		sk_ctl = le32toh(cur_rx->sk_ctl);
2766 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2767 			break;
2768 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2769 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2770 
2771 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2772 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2773 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2774 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2775 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2776 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2777 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2778 			sk_discard_rxbuf(sc_if, cons);
2779 			continue;
2780 		}
2781 
2782 		m = rxd->rx_m;
2783 		csum = le32toh(cur_rx->sk_csum);
2784 		if (sk_newbuf(sc_if, cons) != 0) {
2785 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2786 			/* reuse old buffer */
2787 			sk_discard_rxbuf(sc_if, cons);
2788 			continue;
2789 		}
2790 		m->m_pkthdr.rcvif = ifp;
2791 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2792 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2793 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2794 			sk_rxcksum(ifp, m, csum);
2795 		SK_IF_UNLOCK(sc_if);
2796 		(*ifp->if_input)(ifp, m);
2797 		SK_IF_LOCK(sc_if);
2798 	}
2799 
2800 	if (prog > 0) {
2801 		sc_if->sk_cdata.sk_rx_cons = cons;
2802 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2803 		    sc_if->sk_cdata.sk_rx_ring_map,
2804 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2805 	}
2806 }
2807 
2808 static void
2809 sk_jumbo_rxeof(sc_if)
2810 	struct sk_if_softc	*sc_if;
2811 {
2812 	struct sk_softc		*sc;
2813 	struct mbuf		*m;
2814 	struct ifnet		*ifp;
2815 	struct sk_rx_desc	*cur_rx;
2816 	struct sk_rxdesc	*jrxd;
2817 	int			cons, prog;
2818 	u_int32_t		csum, rxstat, sk_ctl;
2819 
2820 	sc = sc_if->sk_softc;
2821 	ifp = sc_if->sk_ifp;
2822 
2823 	SK_IF_LOCK_ASSERT(sc_if);
2824 
2825 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2826 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2827 
2828 	prog = 0;
2829 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2830 	    prog < SK_JUMBO_RX_RING_CNT;
2831 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2832 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2833 		sk_ctl = le32toh(cur_rx->sk_ctl);
2834 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2835 			break;
2836 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2837 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2838 
2839 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2840 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2841 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2842 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2843 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2844 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2845 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2846 			sk_discard_jumbo_rxbuf(sc_if, cons);
2847 			continue;
2848 		}
2849 
2850 		m = jrxd->rx_m;
2851 		csum = le32toh(cur_rx->sk_csum);
2852 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2853 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2854 			/* reuse old buffer */
2855 			sk_discard_jumbo_rxbuf(sc_if, cons);
2856 			continue;
2857 		}
2858 		m->m_pkthdr.rcvif = ifp;
2859 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2860 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2861 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2862 			sk_rxcksum(ifp, m, csum);
2863 		SK_IF_UNLOCK(sc_if);
2864 		(*ifp->if_input)(ifp, m);
2865 		SK_IF_LOCK(sc_if);
2866 	}
2867 
2868 	if (prog > 0) {
2869 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2870 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2871 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2872 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2873 	}
2874 }
2875 
2876 static void
2877 sk_txeof(sc_if)
2878 	struct sk_if_softc	*sc_if;
2879 {
2880 	struct sk_txdesc	*txd;
2881 	struct sk_tx_desc	*cur_tx;
2882 	struct ifnet		*ifp;
2883 	u_int32_t		idx, sk_ctl;
2884 
2885 	ifp = sc_if->sk_ifp;
2886 
2887 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2888 	if (txd == NULL)
2889 		return;
2890 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2891 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2892 	/*
2893 	 * Go through our tx ring and free mbufs for those
2894 	 * frames that have been sent.
2895 	 */
2896 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2897 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2898 			break;
2899 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2900 		sk_ctl = le32toh(cur_tx->sk_ctl);
2901 		if (sk_ctl & SK_TXCTL_OWN)
2902 			break;
2903 		sc_if->sk_cdata.sk_tx_cnt--;
2904 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2905 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2906 			continue;
2907 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2908 		    BUS_DMASYNC_POSTWRITE);
2909 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2910 
2911 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2912 		m_freem(txd->tx_m);
2913 		txd->tx_m = NULL;
2914 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2915 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2916 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2917 	}
2918 	sc_if->sk_cdata.sk_tx_cons = idx;
2919 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2920 
2921 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2922 	    sc_if->sk_cdata.sk_tx_ring_map,
2923 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2924 }
2925 
2926 static void
2927 sk_tick(xsc_if)
2928 	void			*xsc_if;
2929 {
2930 	struct sk_if_softc	*sc_if;
2931 	struct mii_data		*mii;
2932 	struct ifnet		*ifp;
2933 	int			i;
2934 
2935 	sc_if = xsc_if;
2936 	ifp = sc_if->sk_ifp;
2937 	mii = device_get_softc(sc_if->sk_miibus);
2938 
2939 	if (!(ifp->if_flags & IFF_UP))
2940 		return;
2941 
2942 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2943 		sk_intr_bcom(sc_if);
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * According to SysKonnect, the correct way to verify that
2949 	 * the link has come back up is to poll bit 0 of the GPIO
2950 	 * register three times. This pin has the signal from the
2951 	 * link_sync pin connected to it; if we read the same link
2952 	 * state 3 times in a row, we know the link is up.
2953 	 */
2954 	for (i = 0; i < 3; i++) {
2955 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2956 			break;
2957 	}
2958 
2959 	if (i != 3) {
2960 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2961 		return;
2962 	}
2963 
2964 	/* Turn the GP0 interrupt back on. */
2965 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2966 	SK_XM_READ_2(sc_if, XM_ISR);
2967 	mii_tick(mii);
2968 	callout_stop(&sc_if->sk_tick_ch);
2969 }
2970 
2971 static void
2972 sk_yukon_tick(xsc_if)
2973 	void			*xsc_if;
2974 {
2975 	struct sk_if_softc	*sc_if;
2976 	struct mii_data		*mii;
2977 
2978 	sc_if = xsc_if;
2979 	mii = device_get_softc(sc_if->sk_miibus);
2980 
2981 	mii_tick(mii);
2982 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2983 }
2984 
2985 static void
2986 sk_intr_bcom(sc_if)
2987 	struct sk_if_softc	*sc_if;
2988 {
2989 	struct mii_data		*mii;
2990 	struct ifnet		*ifp;
2991 	int			status;
2992 	mii = device_get_softc(sc_if->sk_miibus);
2993 	ifp = sc_if->sk_ifp;
2994 
2995 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2996 
2997 	/*
2998 	 * Read the PHY interrupt register to make sure
2999 	 * we clear any pending interrupts.
3000 	 */
3001 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3002 
3003 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3004 		sk_init_xmac(sc_if);
3005 		return;
3006 	}
3007 
3008 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3009 		int			lstat;
3010 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3011 		    BRGPHY_MII_AUXSTS);
3012 
3013 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3014 			mii_mediachg(mii);
3015 			/* Turn off the link LED. */
3016 			SK_IF_WRITE_1(sc_if, 0,
3017 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3018 			sc_if->sk_link = 0;
3019 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3020 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3021 	    		    BRGPHY_MII_IMR, 0xFF00);
3022 			mii_tick(mii);
3023 			sc_if->sk_link = 1;
3024 			/* Turn on the link LED. */
3025 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3026 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3027 			    SK_LINKLED_BLINK_OFF);
3028 		} else {
3029 			mii_tick(mii);
3030 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3031 		}
3032 	}
3033 
3034 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3035 
3036 	return;
3037 }
3038 
3039 static void
3040 sk_intr_xmac(sc_if)
3041 	struct sk_if_softc	*sc_if;
3042 {
3043 	struct sk_softc		*sc;
3044 	u_int16_t		status;
3045 
3046 	sc = sc_if->sk_softc;
3047 	status = SK_XM_READ_2(sc_if, XM_ISR);
3048 
3049 	/*
3050 	 * Link has gone down. Start MII tick timeout to
3051 	 * watch for link resync.
3052 	 */
3053 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3054 		if (status & XM_ISR_GP0_SET) {
3055 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3056 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3057 		}
3058 
3059 		if (status & XM_ISR_AUTONEG_DONE) {
3060 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3061 		}
3062 	}
3063 
3064 	if (status & XM_IMR_TX_UNDERRUN)
3065 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3066 
3067 	if (status & XM_IMR_RX_OVERRUN)
3068 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3069 
3070 	status = SK_XM_READ_2(sc_if, XM_ISR);
3071 
3072 	return;
3073 }
3074 
3075 static void
3076 sk_intr_yukon(sc_if)
3077 	struct sk_if_softc	*sc_if;
3078 {
3079 	u_int8_t status;
3080 
3081 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3082 	/* RX overrun */
3083 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3084 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3085 		    SK_RFCTL_RX_FIFO_OVER);
3086 	}
3087 	/* TX underrun */
3088 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3089 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3090 		    SK_TFCTL_TX_FIFO_UNDER);
3091 	}
3092 }
3093 
3094 static void
3095 sk_intr(xsc)
3096 	void			*xsc;
3097 {
3098 	struct sk_softc		*sc = xsc;
3099 	struct sk_if_softc	*sc_if0, *sc_if1;
3100 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3101 	u_int32_t		status;
3102 
3103 	SK_LOCK(sc);
3104 
3105 	status = CSR_READ_4(sc, SK_ISSR);
3106 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3107 		goto done_locked;
3108 
3109 	sc_if0 = sc->sk_if[SK_PORT_A];
3110 	sc_if1 = sc->sk_if[SK_PORT_B];
3111 
3112 	if (sc_if0 != NULL)
3113 		ifp0 = sc_if0->sk_ifp;
3114 	if (sc_if1 != NULL)
3115 		ifp1 = sc_if1->sk_ifp;
3116 
3117 	for (; (status &= sc->sk_intrmask) != 0;) {
3118 		/* Handle receive interrupts first. */
3119 		if (status & SK_ISR_RX1_EOF) {
3120 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3121 				sk_jumbo_rxeof(sc_if0);
3122 			else
3123 				sk_rxeof(sc_if0);
3124 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3125 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3126 		}
3127 		if (status & SK_ISR_RX2_EOF) {
3128 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3129 				sk_jumbo_rxeof(sc_if1);
3130 			else
3131 				sk_rxeof(sc_if1);
3132 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3133 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3134 		}
3135 
3136 		/* Then transmit interrupts. */
3137 		if (status & SK_ISR_TX1_S_EOF) {
3138 			sk_txeof(sc_if0);
3139 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3140 		}
3141 		if (status & SK_ISR_TX2_S_EOF) {
3142 			sk_txeof(sc_if1);
3143 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3144 		}
3145 
3146 		/* Then MAC interrupts. */
3147 		if (status & SK_ISR_MAC1 &&
3148 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3149 			if (sc->sk_type == SK_GENESIS)
3150 				sk_intr_xmac(sc_if0);
3151 			else
3152 				sk_intr_yukon(sc_if0);
3153 		}
3154 
3155 		if (status & SK_ISR_MAC2 &&
3156 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3157 			if (sc->sk_type == SK_GENESIS)
3158 				sk_intr_xmac(sc_if1);
3159 			else
3160 				sk_intr_yukon(sc_if1);
3161 		}
3162 
3163 		if (status & SK_ISR_EXTERNAL_REG) {
3164 			if (ifp0 != NULL &&
3165 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3166 				sk_intr_bcom(sc_if0);
3167 			if (ifp1 != NULL &&
3168 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3169 				sk_intr_bcom(sc_if1);
3170 		}
3171 		status = CSR_READ_4(sc, SK_ISSR);
3172 	}
3173 
3174 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3175 
3176 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3177 		sk_start_locked(ifp0);
3178 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3179 		sk_start_locked(ifp1);
3180 
3181 done_locked:
3182 	SK_UNLOCK(sc);
3183 }
3184 
3185 static void
3186 sk_init_xmac(sc_if)
3187 	struct sk_if_softc	*sc_if;
3188 {
3189 	struct sk_softc		*sc;
3190 	struct ifnet		*ifp;
3191 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3192 	static const struct sk_bcom_hack bhack[] = {
3193 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3194 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3195 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3196 	{ 0, 0 } };
3197 
3198 	SK_IF_LOCK_ASSERT(sc_if);
3199 
3200 	sc = sc_if->sk_softc;
3201 	ifp = sc_if->sk_ifp;
3202 
3203 	/* Unreset the XMAC. */
3204 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3205 	DELAY(1000);
3206 
3207 	/* Reset the XMAC's internal state. */
3208 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3209 
3210 	/* Save the XMAC II revision */
3211 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3212 
3213 	/*
3214 	 * Perform additional initialization for external PHYs,
3215 	 * namely for the 1000baseTX cards that use the XMAC's
3216 	 * GMII mode.
3217 	 */
3218 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3219 		int			i = 0;
3220 		u_int32_t		val;
3221 
3222 		/* Take PHY out of reset. */
3223 		val = sk_win_read_4(sc, SK_GPIO);
3224 		if (sc_if->sk_port == SK_PORT_A)
3225 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3226 		else
3227 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3228 		sk_win_write_4(sc, SK_GPIO, val);
3229 
3230 		/* Enable GMII mode on the XMAC. */
3231 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3232 
3233 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3234 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3235 		DELAY(10000);
3236 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3237 		    BRGPHY_MII_IMR, 0xFFF0);
3238 
3239 		/*
3240 		 * Early versions of the BCM5400 apparently have
3241 		 * a bug that requires them to have their reserved
3242 		 * registers initialized to some magic values. I don't
3243 		 * know what the numbers do, I'm just the messenger.
3244 		 */
3245 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3246 		    == 0x6041) {
3247 			while(bhack[i].reg) {
3248 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3249 				    bhack[i].reg, bhack[i].val);
3250 				i++;
3251 			}
3252 		}
3253 	}
3254 
3255 	/* Set station address */
3256 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3257 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3258 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3259 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3260 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3261 
3262 	if (ifp->if_flags & IFF_BROADCAST) {
3263 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3264 	} else {
3265 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3266 	}
3267 
3268 	/* We don't need the FCS appended to the packet. */
3269 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3270 
3271 	/* We want short frames padded to 60 bytes. */
3272 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3273 
3274 	/*
3275 	 * Enable the reception of all error frames. This is is
3276 	 * a necessary evil due to the design of the XMAC. The
3277 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3278 	 * frames can be up to 9000 bytes in length. When bad
3279 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3280 	 * in 'store and forward' mode. For this to work, the
3281 	 * entire frame has to fit into the FIFO, but that means
3282 	 * that jumbo frames larger than 8192 bytes will be
3283 	 * truncated. Disabling all bad frame filtering causes
3284 	 * the RX FIFO to operate in streaming mode, in which
3285 	 * case the XMAC will start transferring frames out of the
3286 	 * RX FIFO as soon as the FIFO threshold is reached.
3287 	 */
3288 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3289 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3290 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3291 		    XM_MODE_RX_INRANGELEN);
3292 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3293 	} else
3294 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3295 
3296 	/*
3297 	 * Bump up the transmit threshold. This helps hold off transmit
3298 	 * underruns when we're blasting traffic from both ports at once.
3299 	 */
3300 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3301 
3302 	/* Set Rx filter */
3303 	sk_rxfilter_genesis(sc_if);
3304 
3305 	/* Clear and enable interrupts */
3306 	SK_XM_READ_2(sc_if, XM_ISR);
3307 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3308 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3309 	else
3310 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3311 
3312 	/* Configure MAC arbiter */
3313 	switch(sc_if->sk_xmac_rev) {
3314 	case XM_XMAC_REV_B2:
3315 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3317 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3318 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3319 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3320 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3321 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3322 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3323 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3324 		break;
3325 	case XM_XMAC_REV_C1:
3326 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3328 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3329 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3330 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3331 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3332 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3333 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3334 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3335 		break;
3336 	default:
3337 		break;
3338 	}
3339 	sk_win_write_2(sc, SK_MACARB_CTL,
3340 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3341 
3342 	sc_if->sk_link = 1;
3343 
3344 	return;
3345 }
3346 
3347 static void
3348 sk_init_yukon(sc_if)
3349 	struct sk_if_softc	*sc_if;
3350 {
3351 	u_int32_t		phy, v;
3352 	u_int16_t		reg;
3353 	struct sk_softc		*sc;
3354 	struct ifnet		*ifp;
3355 	u_int8_t		*eaddr;
3356 	int			i;
3357 
3358 	SK_IF_LOCK_ASSERT(sc_if);
3359 
3360 	sc = sc_if->sk_softc;
3361 	ifp = sc_if->sk_ifp;
3362 
3363 	if (sc->sk_type == SK_YUKON_LITE &&
3364 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3365 		/*
3366 		 * Workaround code for COMA mode, set PHY reset.
3367 		 * Otherwise it will not correctly take chip out of
3368 		 * powerdown (coma)
3369 		 */
3370 		v = sk_win_read_4(sc, SK_GPIO);
3371 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3372 		sk_win_write_4(sc, SK_GPIO, v);
3373 	}
3374 
3375 	/* GMAC and GPHY Reset */
3376 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3377 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3378 	DELAY(1000);
3379 
3380 	if (sc->sk_type == SK_YUKON_LITE &&
3381 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3382 		/*
3383 		 * Workaround code for COMA mode, clear PHY reset
3384 		 */
3385 		v = sk_win_read_4(sc, SK_GPIO);
3386 		v |= SK_GPIO_DIR9;
3387 		v &= ~SK_GPIO_DAT9;
3388 		sk_win_write_4(sc, SK_GPIO, v);
3389 	}
3390 
3391 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3392 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3393 
3394 	if (sc->sk_coppertype)
3395 		phy |= SK_GPHY_COPPER;
3396 	else
3397 		phy |= SK_GPHY_FIBER;
3398 
3399 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3400 	DELAY(1000);
3401 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3402 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3403 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3404 
3405 	/* unused read of the interrupt source register */
3406 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3407 
3408 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3409 
3410 	/* MIB Counter Clear Mode set */
3411 	reg |= YU_PAR_MIB_CLR;
3412 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3413 
3414 	/* MIB Counter Clear Mode clear */
3415 	reg &= ~YU_PAR_MIB_CLR;
3416 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3417 
3418 	/* receive control reg */
3419 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3420 
3421 	/* transmit parameter register */
3422 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3423 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3424 
3425 	/* serial mode register */
3426 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3427 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3428 		reg |= YU_SMR_MFL_JUMBO;
3429 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3430 
3431 	/* Setup Yukon's station address */
3432 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3433 	for (i = 0; i < 3; i++)
3434 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3435 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3436 	/* Set GMAC source address of flow control. */
3437 	for (i = 0; i < 3; i++)
3438 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3439 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3440 	/* Set GMAC virtual address. */
3441 	for (i = 0; i < 3; i++)
3442 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3443 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3444 
3445 	/* Set Rx filter */
3446 	sk_rxfilter_yukon(sc_if);
3447 
3448 	/* enable interrupt mask for counter overflows */
3449 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3450 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3451 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3452 
3453 	/* Configure RX MAC FIFO Flush Mask */
3454 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3455 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3456 	    YU_RXSTAT_JABBER;
3457 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3458 
3459 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3460 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3461 		v = SK_TFCTL_OPERATION_ON;
3462 	else
3463 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3464 	/* Configure RX MAC FIFO */
3465 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3466 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3467 
3468 	/* Increase flush threshould to 64 bytes */
3469 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3470 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3471 
3472 	/* Configure TX MAC FIFO */
3473 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3474 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3475 }
3476 
3477 /*
3478  * Note that to properly initialize any part of the GEnesis chip,
3479  * you first have to take it out of reset mode.
3480  */
3481 static void
3482 sk_init(xsc)
3483 	void			*xsc;
3484 {
3485 	struct sk_if_softc	*sc_if = xsc;
3486 
3487 	SK_IF_LOCK(sc_if);
3488 	sk_init_locked(sc_if);
3489 	SK_IF_UNLOCK(sc_if);
3490 
3491 	return;
3492 }
3493 
3494 static void
3495 sk_init_locked(sc_if)
3496 	struct sk_if_softc	*sc_if;
3497 {
3498 	struct sk_softc		*sc;
3499 	struct ifnet		*ifp;
3500 	struct mii_data		*mii;
3501 	u_int16_t		reg;
3502 	u_int32_t		imr;
3503 	int			error;
3504 
3505 	SK_IF_LOCK_ASSERT(sc_if);
3506 
3507 	ifp = sc_if->sk_ifp;
3508 	sc = sc_if->sk_softc;
3509 	mii = device_get_softc(sc_if->sk_miibus);
3510 
3511 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3512 		return;
3513 
3514 	/* Cancel pending I/O and free all RX/TX buffers. */
3515 	sk_stop(sc_if);
3516 
3517 	if (sc->sk_type == SK_GENESIS) {
3518 		/* Configure LINK_SYNC LED */
3519 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3520 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3521 			SK_LINKLED_LINKSYNC_ON);
3522 
3523 		/* Configure RX LED */
3524 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3525 			SK_RXLEDCTL_COUNTER_START);
3526 
3527 		/* Configure TX LED */
3528 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3529 			SK_TXLEDCTL_COUNTER_START);
3530 	}
3531 
3532 	/*
3533 	 * Configure descriptor poll timer
3534 	 *
3535 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3536 	 * transmit command due to CPU/cache related interim storage problems
3537 	 * under certain conditions. The document recommends a polling
3538 	 * mechanism to send a Start transmit command to initiate transfer
3539 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3540 	 * enables descriptor poll timer to initiate descriptor processing
3541 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3542 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3543 	 * command instead of waiting for next descriptor polling time.
3544 	 * The same rule may apply to Rx side too but it seems that is not
3545 	 * needed at the moment.
3546 	 * Since sk(4) uses descriptor polling as a last resort there is no
3547 	 * need to set smaller polling time than maximum allowable one.
3548 	 */
3549 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3550 
3551 	/* Configure I2C registers */
3552 
3553 	/* Configure XMAC(s) */
3554 	switch (sc->sk_type) {
3555 	case SK_GENESIS:
3556 		sk_init_xmac(sc_if);
3557 		break;
3558 	case SK_YUKON:
3559 	case SK_YUKON_LITE:
3560 	case SK_YUKON_LP:
3561 		sk_init_yukon(sc_if);
3562 		break;
3563 	}
3564 	mii_mediachg(mii);
3565 
3566 	if (sc->sk_type == SK_GENESIS) {
3567 		/* Configure MAC FIFOs */
3568 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3569 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3570 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3571 
3572 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3573 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3574 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3575 	}
3576 
3577 	/* Configure transmit arbiter(s) */
3578 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3579 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3580 
3581 	/* Configure RAMbuffers */
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3583 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3584 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3585 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3586 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3587 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3588 
3589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3591 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3592 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3593 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3594 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3595 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3596 
3597 	/* Configure BMUs */
3598 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3599 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3600 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3601 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3602 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3603 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3604 	} else {
3605 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3606 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3607 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3608 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3609 	}
3610 
3611 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3612 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3613 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3614 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3615 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3616 
3617 	/* Init descriptors */
3618 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3619 		error = sk_init_jumbo_rx_ring(sc_if);
3620 	else
3621 		error = sk_init_rx_ring(sc_if);
3622 	if (error != 0) {
3623 		device_printf(sc_if->sk_if_dev,
3624 		    "initialization failed: no memory for rx buffers\n");
3625 		sk_stop(sc_if);
3626 		return;
3627 	}
3628 	sk_init_tx_ring(sc_if);
3629 
3630 	/* Set interrupt moderation if changed via sysctl. */
3631 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3632 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3633 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3634 		    sc->sk_int_ticks));
3635 		if (bootverbose)
3636 			device_printf(sc_if->sk_if_dev,
3637 			    "interrupt moderation is %d us.\n",
3638 			    sc->sk_int_mod);
3639 	}
3640 
3641 	/* Configure interrupt handling */
3642 	CSR_READ_4(sc, SK_ISSR);
3643 	if (sc_if->sk_port == SK_PORT_A)
3644 		sc->sk_intrmask |= SK_INTRS1;
3645 	else
3646 		sc->sk_intrmask |= SK_INTRS2;
3647 
3648 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3649 
3650 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3651 
3652 	/* Start BMUs. */
3653 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3654 
3655 	switch(sc->sk_type) {
3656 	case SK_GENESIS:
3657 		/* Enable XMACs TX and RX state machines */
3658 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3659 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3660 		break;
3661 	case SK_YUKON:
3662 	case SK_YUKON_LITE:
3663 	case SK_YUKON_LP:
3664 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3665 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3666 #if 0
3667 		/* XXX disable 100Mbps and full duplex mode? */
3668 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3669 #endif
3670 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3671 	}
3672 
3673 	/* Activate descriptor polling timer */
3674 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3675 	/* start transfer of Tx descriptors */
3676 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3677 
3678 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3679 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3680 
3681 	switch (sc->sk_type) {
3682 	case SK_YUKON:
3683 	case SK_YUKON_LITE:
3684 	case SK_YUKON_LP:
3685 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3686 		break;
3687 	}
3688 
3689 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3690 
3691 	return;
3692 }
3693 
3694 static void
3695 sk_stop(sc_if)
3696 	struct sk_if_softc	*sc_if;
3697 {
3698 	int			i;
3699 	struct sk_softc		*sc;
3700 	struct sk_txdesc	*txd;
3701 	struct sk_rxdesc	*rxd;
3702 	struct sk_rxdesc	*jrxd;
3703 	struct ifnet		*ifp;
3704 	u_int32_t		val;
3705 
3706 	SK_IF_LOCK_ASSERT(sc_if);
3707 	sc = sc_if->sk_softc;
3708 	ifp = sc_if->sk_ifp;
3709 
3710 	callout_stop(&sc_if->sk_tick_ch);
3711 	callout_stop(&sc_if->sk_watchdog_ch);
3712 
3713 	/* stop Tx descriptor polling timer */
3714 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3715 	/* stop transfer of Tx descriptors */
3716 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3717 	for (i = 0; i < SK_TIMEOUT; i++) {
3718 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3719 		if ((val & SK_TXBMU_TX_STOP) == 0)
3720 			break;
3721 		DELAY(1);
3722 	}
3723 	if (i == SK_TIMEOUT)
3724 		device_printf(sc_if->sk_if_dev,
3725 		    "can not stop transfer of Tx descriptor\n");
3726 	/* stop transfer of Rx descriptors */
3727 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3728 	for (i = 0; i < SK_TIMEOUT; i++) {
3729 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3730 		if ((val & SK_RXBMU_RX_STOP) == 0)
3731 			break;
3732 		DELAY(1);
3733 	}
3734 	if (i == SK_TIMEOUT)
3735 		device_printf(sc_if->sk_if_dev,
3736 		    "can not stop transfer of Rx descriptor\n");
3737 
3738 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3739 		/* Put PHY back into reset. */
3740 		val = sk_win_read_4(sc, SK_GPIO);
3741 		if (sc_if->sk_port == SK_PORT_A) {
3742 			val |= SK_GPIO_DIR0;
3743 			val &= ~SK_GPIO_DAT0;
3744 		} else {
3745 			val |= SK_GPIO_DIR2;
3746 			val &= ~SK_GPIO_DAT2;
3747 		}
3748 		sk_win_write_4(sc, SK_GPIO, val);
3749 	}
3750 
3751 	/* Turn off various components of this interface. */
3752 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3753 	switch (sc->sk_type) {
3754 	case SK_GENESIS:
3755 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3756 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3757 		break;
3758 	case SK_YUKON:
3759 	case SK_YUKON_LITE:
3760 	case SK_YUKON_LP:
3761 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3762 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3763 		break;
3764 	}
3765 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3766 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3767 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3769 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3770 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3771 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3772 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3773 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3774 
3775 	/* Disable interrupts */
3776 	if (sc_if->sk_port == SK_PORT_A)
3777 		sc->sk_intrmask &= ~SK_INTRS1;
3778 	else
3779 		sc->sk_intrmask &= ~SK_INTRS2;
3780 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3781 
3782 	SK_XM_READ_2(sc_if, XM_ISR);
3783 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3784 
3785 	/* Free RX and TX mbufs still in the queues. */
3786 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3787 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3788 		if (rxd->rx_m != NULL) {
3789 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3790 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3791 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3792 			    rxd->rx_dmamap);
3793 			m_freem(rxd->rx_m);
3794 			rxd->rx_m = NULL;
3795 		}
3796 	}
3797 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3798 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3799 		if (jrxd->rx_m != NULL) {
3800 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3801 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3802 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3803 			    jrxd->rx_dmamap);
3804 			m_freem(jrxd->rx_m);
3805 			jrxd->rx_m = NULL;
3806 		}
3807 	}
3808 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3809 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3810 		if (txd->tx_m != NULL) {
3811 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3812 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3813 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3814 			    txd->tx_dmamap);
3815 			m_freem(txd->tx_m);
3816 			txd->tx_m = NULL;
3817 		}
3818 	}
3819 
3820 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3821 
3822 	return;
3823 }
3824 
3825 static int
3826 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3827 {
3828 	int error, value;
3829 
3830 	if (!arg1)
3831 		return (EINVAL);
3832 	value = *(int *)arg1;
3833 	error = sysctl_handle_int(oidp, &value, 0, req);
3834 	if (error || !req->newptr)
3835 		return (error);
3836 	if (value < low || value > high)
3837 		return (EINVAL);
3838 	*(int *)arg1 = value;
3839 	return (0);
3840 }
3841 
3842 static int
3843 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3844 {
3845 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3846 }
3847