xref: /freebsd/sys/dev/sk/if_sk.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/module.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/sysctl.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus_pio.h>
110 #include <machine/bus_memio.h>
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #include <dev/mii/brgphyreg.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 #if 0
124 #define SK_USEIOSPACE
125 #endif
126 
127 #include <pci/if_skreg.h>
128 #include <pci/xmaciireg.h>
129 #include <pci/yukonreg.h>
130 
131 MODULE_DEPEND(sk, pci, 1, 1, 1);
132 MODULE_DEPEND(sk, ether, 1, 1, 1);
133 MODULE_DEPEND(sk, miibus, 1, 1, 1);
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 #ifndef lint
139 static const char rcsid[] =
140   "$FreeBSD$";
141 #endif
142 
143 static struct sk_type sk_devs[] = {
144 	{
145 		VENDORID_SK,
146 		DEVICEID_SK_V1,
147 		"SysKonnect Gigabit Ethernet (V1.0)"
148 	},
149 	{
150 		VENDORID_SK,
151 		DEVICEID_SK_V2,
152 		"SysKonnect Gigabit Ethernet (V2.0)"
153 	},
154 	{
155 		VENDORID_MARVELL,
156 		DEVICEID_SK_V2,
157 		"Marvell Gigabit Ethernet"
158 	},
159 	{
160 		VENDORID_MARVELL,
161 		DEVICEID_BELKIN_5005,
162 		"Belkin F5D5005 Gigabit Ethernet"
163 	},
164 	{
165 		VENDORID_3COM,
166 		DEVICEID_3COM_3C940,
167 		"3Com 3C940 Gigabit Ethernet"
168 	},
169 	{
170 		VENDORID_LINKSYS,
171 		DEVICEID_LINKSYS_EG1032,
172 		"Linksys EG1032 Gigabit Ethernet"
173 	},
174 	{
175 		VENDORID_DLINK,
176 		DEVICEID_DLINK_DGE530T,
177 		"D-Link DGE-530T Gigabit Ethernet"
178 	},
179 	{ 0, 0, NULL }
180 };
181 
182 static int skc_probe(device_t);
183 static int skc_attach(device_t);
184 static int skc_detach(device_t);
185 static void skc_shutdown(device_t);
186 static int sk_detach(device_t);
187 static int sk_probe(device_t);
188 static int sk_attach(device_t);
189 static void sk_tick(void *);
190 static void sk_intr(void *);
191 static void sk_intr_xmac(struct sk_if_softc *);
192 static void sk_intr_bcom(struct sk_if_softc *);
193 static void sk_intr_yukon(struct sk_if_softc *);
194 static void sk_rxeof(struct sk_if_softc *);
195 static void sk_txeof(struct sk_if_softc *);
196 static int sk_encap(struct sk_if_softc *, struct mbuf *,
197 					u_int32_t *);
198 static void sk_start(struct ifnet *);
199 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
200 static void sk_init(void *);
201 static void sk_init_xmac(struct sk_if_softc *);
202 static void sk_init_yukon(struct sk_if_softc *);
203 static void sk_stop(struct sk_if_softc *);
204 static void sk_watchdog(struct ifnet *);
205 static int sk_ifmedia_upd(struct ifnet *);
206 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
207 static void sk_reset(struct sk_softc *);
208 static int sk_newbuf(struct sk_if_softc *,
209 					struct sk_chain *, struct mbuf *);
210 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
211 static void sk_free_jumbo_mem(struct sk_if_softc *);
212 static void *sk_jalloc(struct sk_if_softc *);
213 static void sk_jfree(void *, void *);
214 static int sk_init_rx_ring(struct sk_if_softc *);
215 static void sk_init_tx_ring(struct sk_if_softc *);
216 static u_int32_t sk_win_read_4(struct sk_softc *, int);
217 static u_int16_t sk_win_read_2(struct sk_softc *, int);
218 static u_int8_t sk_win_read_1(struct sk_softc *, int);
219 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
220 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
221 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
222 static u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
223 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
224 static void sk_vpd_read(struct sk_softc *);
225 
226 static int sk_miibus_readreg(device_t, int, int);
227 static int sk_miibus_writereg(device_t, int, int, int);
228 static void sk_miibus_statchg(device_t);
229 
230 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
231 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
232 						int);
233 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
234 
235 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
236 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
237 						int);
238 static void sk_marv_miibus_statchg(struct sk_if_softc *);
239 
240 static uint32_t sk_xmchash(const uint8_t *);
241 static uint32_t sk_gmchash(const uint8_t *);
242 static void sk_setfilt(struct sk_if_softc *, caddr_t, int);
243 static void sk_setmulti(struct sk_if_softc *);
244 static void sk_setpromisc(struct sk_if_softc *);
245 
246 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
247 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
248 
249 #ifdef SK_USEIOSPACE
250 #define SK_RES		SYS_RES_IOPORT
251 #define SK_RID		SK_PCI_LOIO
252 #else
253 #define SK_RES		SYS_RES_MEMORY
254 #define SK_RID		SK_PCI_LOMEM
255 #endif
256 
257 /*
258  * Note that we have newbus methods for both the GEnesis controller
259  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
260  * the miibus code is a child of the XMACs. We need to do it this way
261  * so that the miibus drivers can access the PHY registers on the
262  * right PHY. It's not quite what I had in mind, but it's the only
263  * design that achieves the desired effect.
264  */
265 static device_method_t skc_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		skc_probe),
268 	DEVMETHOD(device_attach,	skc_attach),
269 	DEVMETHOD(device_detach,	skc_detach),
270 	DEVMETHOD(device_shutdown,	skc_shutdown),
271 
272 	/* bus interface */
273 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
274 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
275 
276 	{ 0, 0 }
277 };
278 
279 static driver_t skc_driver = {
280 	"skc",
281 	skc_methods,
282 	sizeof(struct sk_softc)
283 };
284 
285 static devclass_t skc_devclass;
286 
287 static device_method_t sk_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		sk_probe),
290 	DEVMETHOD(device_attach,	sk_attach),
291 	DEVMETHOD(device_detach,	sk_detach),
292 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	/* MII interface */
299 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
300 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
301 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t sk_driver = {
307 	"sk",
308 	sk_methods,
309 	sizeof(struct sk_if_softc)
310 };
311 
312 static devclass_t sk_devclass;
313 
314 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
315 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
316 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
317 
318 #define SK_SETBIT(sc, reg, x)		\
319 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
320 
321 #define SK_CLRBIT(sc, reg, x)		\
322 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
323 
324 #define SK_WIN_SETBIT_4(sc, reg, x)	\
325 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
326 
327 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
328 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
329 
330 #define SK_WIN_SETBIT_2(sc, reg, x)	\
331 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
332 
333 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
334 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
335 
336 static u_int32_t
337 sk_win_read_4(sc, reg)
338 	struct sk_softc		*sc;
339 	int			reg;
340 {
341 #ifdef SK_USEIOSPACE
342 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
343 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
344 #else
345 	return(CSR_READ_4(sc, reg));
346 #endif
347 }
348 
349 static u_int16_t
350 sk_win_read_2(sc, reg)
351 	struct sk_softc		*sc;
352 	int			reg;
353 {
354 #ifdef SK_USEIOSPACE
355 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
356 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
357 #else
358 	return(CSR_READ_2(sc, reg));
359 #endif
360 }
361 
362 static u_int8_t
363 sk_win_read_1(sc, reg)
364 	struct sk_softc		*sc;
365 	int			reg;
366 {
367 #ifdef SK_USEIOSPACE
368 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
369 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
370 #else
371 	return(CSR_READ_1(sc, reg));
372 #endif
373 }
374 
375 static void
376 sk_win_write_4(sc, reg, val)
377 	struct sk_softc		*sc;
378 	int			reg;
379 	u_int32_t		val;
380 {
381 #ifdef SK_USEIOSPACE
382 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
383 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
384 #else
385 	CSR_WRITE_4(sc, reg, val);
386 #endif
387 	return;
388 }
389 
390 static void
391 sk_win_write_2(sc, reg, val)
392 	struct sk_softc		*sc;
393 	int			reg;
394 	u_int32_t		val;
395 {
396 #ifdef SK_USEIOSPACE
397 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
398 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
399 #else
400 	CSR_WRITE_2(sc, reg, val);
401 #endif
402 	return;
403 }
404 
405 static void
406 sk_win_write_1(sc, reg, val)
407 	struct sk_softc		*sc;
408 	int			reg;
409 	u_int32_t		val;
410 {
411 #ifdef SK_USEIOSPACE
412 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
413 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
414 #else
415 	CSR_WRITE_1(sc, reg, val);
416 #endif
417 	return;
418 }
419 
420 /*
421  * The VPD EEPROM contains Vital Product Data, as suggested in
422  * the PCI 2.1 specification. The VPD data is separared into areas
423  * denoted by resource IDs. The SysKonnect VPD contains an ID string
424  * resource (the name of the adapter), a read-only area resource
425  * containing various key/data fields and a read/write area which
426  * can be used to store asset management information or log messages.
427  * We read the ID string and read-only into buffers attached to
428  * the controller softc structure for later use. At the moment,
429  * we only use the ID string during skc_attach().
430  */
431 static u_int8_t
432 sk_vpd_readbyte(sc, addr)
433 	struct sk_softc		*sc;
434 	int			addr;
435 {
436 	int			i;
437 
438 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
439 	for (i = 0; i < SK_TIMEOUT; i++) {
440 		DELAY(1);
441 		if (sk_win_read_2(sc,
442 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
443 			break;
444 	}
445 
446 	if (i == SK_TIMEOUT)
447 		return(0);
448 
449 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
450 }
451 
452 static void
453 sk_vpd_read_res(sc, res, addr)
454 	struct sk_softc		*sc;
455 	struct vpd_res		*res;
456 	int			addr;
457 {
458 	int			i;
459 	u_int8_t		*ptr;
460 
461 	ptr = (u_int8_t *)res;
462 	for (i = 0; i < sizeof(struct vpd_res); i++)
463 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
464 
465 	return;
466 }
467 
468 static void
469 sk_vpd_read(sc)
470 	struct sk_softc		*sc;
471 {
472 	int			pos = 0, i;
473 	struct vpd_res		res;
474 
475 	if (sc->sk_vpd_prodname != NULL)
476 		free(sc->sk_vpd_prodname, M_DEVBUF);
477 	if (sc->sk_vpd_readonly != NULL)
478 		free(sc->sk_vpd_readonly, M_DEVBUF);
479 	sc->sk_vpd_prodname = NULL;
480 	sc->sk_vpd_readonly = NULL;
481 	sc->sk_vpd_readonly_len = 0;
482 
483 	sk_vpd_read_res(sc, &res, pos);
484 
485 	/*
486 	 * Bail out quietly if the eeprom appears to be missing or empty.
487 	 */
488 	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
489 		return;
490 
491 	if (res.vr_id != VPD_RES_ID) {
492 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
493 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
494 		return;
495 	}
496 
497 	pos += sizeof(res);
498 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
499 	if (sc->sk_vpd_prodname != NULL) {
500 		for (i = 0; i < res.vr_len; i++)
501 			sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
502 		sc->sk_vpd_prodname[i] = '\0';
503 	}
504 	pos += res.vr_len;
505 
506 	sk_vpd_read_res(sc, &res, pos);
507 
508 	if (res.vr_id != VPD_RES_READ) {
509 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
510 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
511 		return;
512 	}
513 
514 	pos += sizeof(res);
515 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
516 	for (i = 0; i < res.vr_len; i++)
517 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
518 	sc->sk_vpd_readonly_len = res.vr_len;
519 
520 	return;
521 }
522 
523 static int
524 sk_miibus_readreg(dev, phy, reg)
525 	device_t		dev;
526 	int			phy, reg;
527 {
528 	struct sk_if_softc	*sc_if;
529 
530 	sc_if = device_get_softc(dev);
531 
532 	switch(sc_if->sk_softc->sk_type) {
533 	case SK_GENESIS:
534 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
535 	case SK_YUKON:
536 	case SK_YUKON_LITE:
537 	case SK_YUKON_LP:
538 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
539 	}
540 
541 	return(0);
542 }
543 
544 static int
545 sk_miibus_writereg(dev, phy, reg, val)
546 	device_t		dev;
547 	int			phy, reg, val;
548 {
549 	struct sk_if_softc	*sc_if;
550 
551 	sc_if = device_get_softc(dev);
552 
553 	switch(sc_if->sk_softc->sk_type) {
554 	case SK_GENESIS:
555 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
556 	case SK_YUKON:
557 	case SK_YUKON_LITE:
558 	case SK_YUKON_LP:
559 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
560 	}
561 
562 	return(0);
563 }
564 
565 static void
566 sk_miibus_statchg(dev)
567 	device_t		dev;
568 {
569 	struct sk_if_softc	*sc_if;
570 
571 	sc_if = device_get_softc(dev);
572 
573 	switch(sc_if->sk_softc->sk_type) {
574 	case SK_GENESIS:
575 		sk_xmac_miibus_statchg(sc_if);
576 		break;
577 	case SK_YUKON:
578 	case SK_YUKON_LITE:
579 	case SK_YUKON_LP:
580 		sk_marv_miibus_statchg(sc_if);
581 		break;
582 	}
583 
584 	return;
585 }
586 
587 static int
588 sk_xmac_miibus_readreg(sc_if, phy, reg)
589 	struct sk_if_softc	*sc_if;
590 	int			phy, reg;
591 {
592 	int			i;
593 
594 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
595 		return(0);
596 
597 	SK_IF_LOCK(sc_if);
598 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
599 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
600 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
601 		for (i = 0; i < SK_TIMEOUT; i++) {
602 			DELAY(1);
603 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
604 			    XM_MMUCMD_PHYDATARDY)
605 				break;
606 		}
607 
608 		if (i == SK_TIMEOUT) {
609 			printf("sk%d: phy failed to come ready\n",
610 			    sc_if->sk_unit);
611 			SK_IF_UNLOCK(sc_if);
612 			return(0);
613 		}
614 	}
615 	DELAY(1);
616 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
617 	SK_IF_UNLOCK(sc_if);
618 	return(i);
619 }
620 
621 static int
622 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
623 	struct sk_if_softc	*sc_if;
624 	int			phy, reg, val;
625 {
626 	int			i;
627 
628 	SK_IF_LOCK(sc_if);
629 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
630 	for (i = 0; i < SK_TIMEOUT; i++) {
631 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
632 			break;
633 	}
634 
635 	if (i == SK_TIMEOUT) {
636 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
637 		SK_IF_UNLOCK(sc_if);
638 		return(ETIMEDOUT);
639 	}
640 
641 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
642 	for (i = 0; i < SK_TIMEOUT; i++) {
643 		DELAY(1);
644 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
645 			break;
646 	}
647 	SK_IF_UNLOCK(sc_if);
648 	if (i == SK_TIMEOUT)
649 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
650 
651 	return(0);
652 }
653 
654 static void
655 sk_xmac_miibus_statchg(sc_if)
656 	struct sk_if_softc	*sc_if;
657 {
658 	struct mii_data		*mii;
659 
660 	mii = device_get_softc(sc_if->sk_miibus);
661 
662 	SK_IF_LOCK(sc_if);
663 	/*
664 	 * If this is a GMII PHY, manually set the XMAC's
665 	 * duplex mode accordingly.
666 	 */
667 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
668 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
669 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
670 		} else {
671 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
672 		}
673 	}
674 	SK_IF_UNLOCK(sc_if);
675 
676 	return;
677 }
678 
679 static int
680 sk_marv_miibus_readreg(sc_if, phy, reg)
681 	struct sk_if_softc	*sc_if;
682 	int			phy, reg;
683 {
684 	u_int16_t		val;
685 	int			i;
686 
687 	if (phy != 0 ||
688 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
689 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
690 		return(0);
691 	}
692 
693 	SK_IF_LOCK(sc_if);
694         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
695 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
696 
697 	for (i = 0; i < SK_TIMEOUT; i++) {
698 		DELAY(1);
699 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
700 		if (val & YU_SMICR_READ_VALID)
701 			break;
702 	}
703 
704 	if (i == SK_TIMEOUT) {
705 		printf("sk%d: phy failed to come ready\n",
706 		    sc_if->sk_unit);
707 		SK_IF_UNLOCK(sc_if);
708 		return(0);
709 	}
710 
711 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
712 	SK_IF_UNLOCK(sc_if);
713 
714 	return(val);
715 }
716 
717 static int
718 sk_marv_miibus_writereg(sc_if, phy, reg, val)
719 	struct sk_if_softc	*sc_if;
720 	int			phy, reg, val;
721 {
722 	int			i;
723 
724 	SK_IF_LOCK(sc_if);
725 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
726 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
727 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
728 
729 	for (i = 0; i < SK_TIMEOUT; i++) {
730 		DELAY(1);
731 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
732 			break;
733 	}
734 	SK_IF_UNLOCK(sc_if);
735 
736 	return(0);
737 }
738 
739 static void
740 sk_marv_miibus_statchg(sc_if)
741 	struct sk_if_softc	*sc_if;
742 {
743 	return;
744 }
745 
746 #define HASH_BITS		6
747 
748 static u_int32_t
749 sk_xmchash(addr)
750 	const uint8_t *addr;
751 {
752 	uint32_t crc;
753 
754 	/* Compute CRC for the address value. */
755 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
756 
757 	return (~crc & ((1 << HASH_BITS) - 1));
758 }
759 
760 /* gmchash is just a big endian crc */
761 static u_int32_t
762 sk_gmchash(addr)
763 	const uint8_t *addr;
764 {
765 	uint32_t crc;
766 
767 	/* Compute CRC for the address value. */
768 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
769 
770 	return (crc & ((1 << HASH_BITS) - 1));
771 }
772 
773 static void
774 sk_setfilt(sc_if, addr, slot)
775 	struct sk_if_softc	*sc_if;
776 	caddr_t			addr;
777 	int			slot;
778 {
779 	int			base;
780 
781 	base = XM_RXFILT_ENTRY(slot);
782 
783 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
784 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
785 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
786 
787 	return;
788 }
789 
790 static void
791 sk_setmulti(sc_if)
792 	struct sk_if_softc	*sc_if;
793 {
794 	struct sk_softc		*sc = sc_if->sk_softc;
795 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
796 	u_int32_t		hashes[2] = { 0, 0 };
797 	int			h = 0, i;
798 	struct ifmultiaddr	*ifma;
799 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
800 
801 
802 	/* First, zot all the existing filters. */
803 	switch(sc->sk_type) {
804 	case SK_GENESIS:
805 		for (i = 1; i < XM_RXFILT_MAX; i++)
806 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
807 
808 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
809 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
810 		break;
811 	case SK_YUKON:
812 	case SK_YUKON_LITE:
813 	case SK_YUKON_LP:
814 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
815 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
816 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
817 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
818 		break;
819 	}
820 
821 	/* Now program new ones. */
822 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
823 		hashes[0] = 0xFFFFFFFF;
824 		hashes[1] = 0xFFFFFFFF;
825 	} else {
826 		i = 1;
827 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
828 			if (ifma->ifma_addr->sa_family != AF_LINK)
829 				continue;
830 			/*
831 			 * Program the first XM_RXFILT_MAX multicast groups
832 			 * into the perfect filter. For all others,
833 			 * use the hash table.
834 			 */
835 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
836 				sk_setfilt(sc_if,
837 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
838 				i++;
839 				continue;
840 			}
841 
842 			switch(sc->sk_type) {
843 			case SK_GENESIS:
844 				h = sk_xmchash(
845 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
846 				break;
847 			case SK_YUKON:
848 			case SK_YUKON_LITE:
849 			case SK_YUKON_LP:
850 				h = sk_gmchash(
851 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
852 				break;
853 			}
854 			if (h < 32)
855 				hashes[0] |= (1 << h);
856 			else
857 				hashes[1] |= (1 << (h - 32));
858 		}
859 	}
860 
861 	switch(sc->sk_type) {
862 	case SK_GENESIS:
863 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
864 			       XM_MODE_RX_USE_PERFECT);
865 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
866 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
867 		break;
868 	case SK_YUKON:
869 	case SK_YUKON_LITE:
870 	case SK_YUKON_LP:
871 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
872 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
873 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
874 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
875 		break;
876 	}
877 
878 	return;
879 }
880 
881 static void
882 sk_setpromisc(sc_if)
883 	struct sk_if_softc	*sc_if;
884 {
885 	struct sk_softc		*sc = sc_if->sk_softc;
886 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
887 
888 	switch(sc->sk_type) {
889 	case SK_GENESIS:
890 		if (ifp->if_flags & IFF_PROMISC) {
891 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
892 		} else {
893 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
894 		}
895 		break;
896 	case SK_YUKON:
897 	case SK_YUKON_LITE:
898 	case SK_YUKON_LP:
899 		if (ifp->if_flags & IFF_PROMISC) {
900 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
901 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
902 		} else {
903 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
904 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
905 		}
906 		break;
907 	}
908 
909 	return;
910 }
911 
912 static int
913 sk_init_rx_ring(sc_if)
914 	struct sk_if_softc	*sc_if;
915 {
916 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
917 	struct sk_ring_data	*rd = sc_if->sk_rdata;
918 	int			i;
919 
920 	bzero((char *)rd->sk_rx_ring,
921 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
922 
923 	for (i = 0; i < SK_RX_RING_CNT; i++) {
924 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
925 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
926 			return(ENOBUFS);
927 		if (i == (SK_RX_RING_CNT - 1)) {
928 			cd->sk_rx_chain[i].sk_next =
929 			    &cd->sk_rx_chain[0];
930 			rd->sk_rx_ring[i].sk_next =
931 			    vtophys(&rd->sk_rx_ring[0]);
932 		} else {
933 			cd->sk_rx_chain[i].sk_next =
934 			    &cd->sk_rx_chain[i + 1];
935 			rd->sk_rx_ring[i].sk_next =
936 			    vtophys(&rd->sk_rx_ring[i + 1]);
937 		}
938 	}
939 
940 	sc_if->sk_cdata.sk_rx_prod = 0;
941 	sc_if->sk_cdata.sk_rx_cons = 0;
942 
943 	return(0);
944 }
945 
946 static void
947 sk_init_tx_ring(sc_if)
948 	struct sk_if_softc	*sc_if;
949 {
950 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
951 	struct sk_ring_data	*rd = sc_if->sk_rdata;
952 	int			i;
953 
954 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
955 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
956 
957 	for (i = 0; i < SK_TX_RING_CNT; i++) {
958 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
959 		if (i == (SK_TX_RING_CNT - 1)) {
960 			cd->sk_tx_chain[i].sk_next =
961 			    &cd->sk_tx_chain[0];
962 			rd->sk_tx_ring[i].sk_next =
963 			    vtophys(&rd->sk_tx_ring[0]);
964 		} else {
965 			cd->sk_tx_chain[i].sk_next =
966 			    &cd->sk_tx_chain[i + 1];
967 			rd->sk_tx_ring[i].sk_next =
968 			    vtophys(&rd->sk_tx_ring[i + 1]);
969 		}
970 	}
971 
972 	sc_if->sk_cdata.sk_tx_prod = 0;
973 	sc_if->sk_cdata.sk_tx_cons = 0;
974 	sc_if->sk_cdata.sk_tx_cnt = 0;
975 
976 	return;
977 }
978 
979 static int
980 sk_newbuf(sc_if, c, m)
981 	struct sk_if_softc	*sc_if;
982 	struct sk_chain		*c;
983 	struct mbuf		*m;
984 {
985 	struct mbuf		*m_new = NULL;
986 	struct sk_rx_desc	*r;
987 
988 	if (m == NULL) {
989 		caddr_t			*buf = NULL;
990 
991 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
992 		if (m_new == NULL)
993 			return(ENOBUFS);
994 
995 		/* Allocate the jumbo buffer */
996 		buf = sk_jalloc(sc_if);
997 		if (buf == NULL) {
998 			m_freem(m_new);
999 #ifdef SK_VERBOSE
1000 			printf("sk%d: jumbo allocation failed "
1001 			    "-- packet dropped!\n", sc_if->sk_unit);
1002 #endif
1003 			return(ENOBUFS);
1004 		}
1005 
1006 		/* Attach the buffer to the mbuf */
1007 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
1008 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
1009 		m_new->m_data = (void *)buf;
1010 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
1011 	} else {
1012 		/*
1013 	 	 * We're re-using a previously allocated mbuf;
1014 		 * be sure to re-init pointers and lengths to
1015 		 * default values.
1016 		 */
1017 		m_new = m;
1018 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
1019 		m_new->m_data = m_new->m_ext.ext_buf;
1020 	}
1021 
1022 	/*
1023 	 * Adjust alignment so packet payload begins on a
1024 	 * longword boundary. Mandatory for Alpha, useful on
1025 	 * x86 too.
1026 	 */
1027 	m_adj(m_new, ETHER_ALIGN);
1028 
1029 	r = c->sk_desc;
1030 	c->sk_mbuf = m_new;
1031 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1032 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1033 
1034 	return(0);
1035 }
1036 
1037 /*
1038  * Allocate jumbo buffer storage. The SysKonnect adapters support
1039  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1040  * use them in their drivers. In order for us to use them, we need
1041  * large 9K receive buffers, however standard mbuf clusters are only
1042  * 2048 bytes in size. Consequently, we need to allocate and manage
1043  * our own jumbo buffer pool. Fortunately, this does not require an
1044  * excessive amount of additional code.
1045  */
1046 static int
1047 sk_alloc_jumbo_mem(sc_if)
1048 	struct sk_if_softc	*sc_if;
1049 {
1050 	caddr_t			ptr;
1051 	register int		i;
1052 	struct sk_jpool_entry   *entry;
1053 
1054 	/* Grab a big chunk o' storage. */
1055 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1056 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1057 
1058 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1059 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1060 		return(ENOBUFS);
1061 	}
1062 
1063 	mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF);
1064 
1065 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1066 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1067 
1068 	/*
1069 	 * Now divide it up into 9K pieces and save the addresses
1070 	 * in an array.
1071 	 */
1072 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1073 	for (i = 0; i < SK_JSLOTS; i++) {
1074 		sc_if->sk_cdata.sk_jslots[i] = ptr;
1075 		ptr += SK_JLEN;
1076 		entry = malloc(sizeof(struct sk_jpool_entry),
1077 		    M_DEVBUF, M_NOWAIT);
1078 		if (entry == NULL) {
1079 			sk_free_jumbo_mem(sc_if);
1080 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1081 			printf("sk%d: no memory for jumbo "
1082 			    "buffer queue!\n", sc_if->sk_unit);
1083 			return(ENOBUFS);
1084 		}
1085 		entry->slot = i;
1086 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1087 		    entry, jpool_entries);
1088 	}
1089 
1090 	return(0);
1091 }
1092 
1093 static void
1094 sk_free_jumbo_mem(sc_if)
1095 	struct sk_if_softc	*sc_if;
1096 {
1097 	struct sk_jpool_entry	*entry;
1098 
1099 	SK_JLIST_LOCK(sc_if);
1100 
1101 	/* We cannot release external mbuf storage while in use. */
1102 	if (!SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) {
1103 		printf("sk%d: will leak jumbo buffer memory!\n", sc_if->sk_unit);
1104 		SK_JLIST_UNLOCK(sc_if);
1105 		return;
1106 	}
1107 
1108 	while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) {
1109 		entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1110 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1111 		free(entry, M_DEVBUF);
1112 	}
1113 
1114 	SK_JLIST_UNLOCK(sc_if);
1115 
1116 	mtx_destroy(&sc_if->sk_jlist_mtx);
1117 
1118 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1119 
1120 	return;
1121 }
1122 
1123 /*
1124  * Allocate a jumbo buffer.
1125  */
1126 static void *
1127 sk_jalloc(sc_if)
1128 	struct sk_if_softc	*sc_if;
1129 {
1130 	struct sk_jpool_entry   *entry;
1131 
1132 	SK_JLIST_LOCK(sc_if);
1133 
1134 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1135 
1136 	if (entry == NULL) {
1137 #ifdef SK_VERBOSE
1138 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1139 #endif
1140 		SK_JLIST_UNLOCK(sc_if);
1141 		return(NULL);
1142 	}
1143 
1144 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1145 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1146 
1147 	SK_JLIST_UNLOCK(sc_if);
1148 
1149 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1150 }
1151 
1152 /*
1153  * Release a jumbo buffer.
1154  */
1155 static void
1156 sk_jfree(buf, args)
1157 	void			*buf;
1158 	void			*args;
1159 {
1160 	struct sk_if_softc	*sc_if;
1161 	int		        i;
1162 	struct sk_jpool_entry   *entry;
1163 
1164 	/* Extract the softc struct pointer. */
1165 	sc_if = (struct sk_if_softc *)args;
1166 	if (sc_if == NULL)
1167 		panic("sk_jfree: didn't get softc pointer!");
1168 
1169 	SK_JLIST_LOCK(sc_if);
1170 
1171 	/* calculate the slot this buffer belongs to */
1172 	i = ((vm_offset_t)buf
1173 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1174 
1175 	if ((i < 0) || (i >= SK_JSLOTS))
1176 		panic("sk_jfree: asked to free buffer that we don't manage!");
1177 
1178 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1179 	if (entry == NULL)
1180 		panic("sk_jfree: buffer not in use!");
1181 	entry->slot = i;
1182 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1183 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1184 	if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead))
1185 		wakeup(sc_if);
1186 
1187 	SK_JLIST_UNLOCK(sc_if);
1188 	return;
1189 }
1190 
1191 /*
1192  * Set media options.
1193  */
1194 static int
1195 sk_ifmedia_upd(ifp)
1196 	struct ifnet		*ifp;
1197 {
1198 	struct sk_if_softc	*sc_if = ifp->if_softc;
1199 	struct mii_data		*mii;
1200 
1201 	mii = device_get_softc(sc_if->sk_miibus);
1202 	sk_init(sc_if);
1203 	mii_mediachg(mii);
1204 
1205 	return(0);
1206 }
1207 
1208 /*
1209  * Report current media status.
1210  */
1211 static void
1212 sk_ifmedia_sts(ifp, ifmr)
1213 	struct ifnet		*ifp;
1214 	struct ifmediareq	*ifmr;
1215 {
1216 	struct sk_if_softc	*sc_if;
1217 	struct mii_data		*mii;
1218 
1219 	sc_if = ifp->if_softc;
1220 	mii = device_get_softc(sc_if->sk_miibus);
1221 
1222 	mii_pollstat(mii);
1223 	ifmr->ifm_active = mii->mii_media_active;
1224 	ifmr->ifm_status = mii->mii_media_status;
1225 
1226 	return;
1227 }
1228 
1229 static int
1230 sk_ioctl(ifp, command, data)
1231 	struct ifnet		*ifp;
1232 	u_long			command;
1233 	caddr_t			data;
1234 {
1235 	struct sk_if_softc	*sc_if = ifp->if_softc;
1236 	struct ifreq		*ifr = (struct ifreq *) data;
1237 	int			error = 0;
1238 	struct mii_data		*mii;
1239 
1240 	switch(command) {
1241 	case SIOCSIFMTU:
1242 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1243 			error = EINVAL;
1244 		else {
1245 			ifp->if_mtu = ifr->ifr_mtu;
1246 			ifp->if_flags &= ~IFF_RUNNING;
1247 			sk_init(sc_if);
1248 		}
1249 		break;
1250 	case SIOCSIFFLAGS:
1251 		SK_IF_LOCK(sc_if);
1252 		if (ifp->if_flags & IFF_UP) {
1253 			if (ifp->if_flags & IFF_RUNNING) {
1254 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1255 				    & IFF_PROMISC) {
1256 					sk_setpromisc(sc_if);
1257 					sk_setmulti(sc_if);
1258 				}
1259 			} else
1260 				sk_init(sc_if);
1261 		} else {
1262 			if (ifp->if_flags & IFF_RUNNING)
1263 				sk_stop(sc_if);
1264 		}
1265 		sc_if->sk_if_flags = ifp->if_flags;
1266 		SK_IF_UNLOCK(sc_if);
1267 		error = 0;
1268 		break;
1269 	case SIOCADDMULTI:
1270 	case SIOCDELMULTI:
1271 		if (ifp->if_flags & IFF_RUNNING) {
1272 			SK_IF_LOCK(sc_if);
1273 			sk_setmulti(sc_if);
1274 			SK_IF_UNLOCK(sc_if);
1275 			error = 0;
1276 		}
1277 		break;
1278 	case SIOCGIFMEDIA:
1279 	case SIOCSIFMEDIA:
1280 		mii = device_get_softc(sc_if->sk_miibus);
1281 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1282 		break;
1283 	default:
1284 		error = ether_ioctl(ifp, command, data);
1285 		break;
1286 	}
1287 
1288 	return(error);
1289 }
1290 
1291 /*
1292  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1293  * IDs against our list and return a device name if we find a match.
1294  */
1295 static int
1296 skc_probe(dev)
1297 	device_t		dev;
1298 {
1299 	struct sk_softc		*sc;
1300 	struct sk_type		*t = sk_devs;
1301 
1302 	sc = device_get_softc(dev);
1303 
1304 	while(t->sk_name != NULL) {
1305 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1306 		    (pci_get_device(dev) == t->sk_did)) {
1307 			device_set_desc(dev, t->sk_name);
1308 			return (BUS_PROBE_DEFAULT);
1309 		}
1310 		t++;
1311 	}
1312 
1313 	return(ENXIO);
1314 }
1315 
1316 /*
1317  * Force the GEnesis into reset, then bring it out of reset.
1318  */
1319 static void
1320 sk_reset(sc)
1321 	struct sk_softc		*sc;
1322 {
1323 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1324 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1325 	if (SK_YUKON_FAMILY(sc->sk_type))
1326 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1327 
1328 	DELAY(1000);
1329 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1330 	DELAY(2);
1331 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1332 	if (SK_YUKON_FAMILY(sc->sk_type))
1333 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1334 
1335 	if (sc->sk_type == SK_GENESIS) {
1336 		/* Configure packet arbiter */
1337 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1338 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1339 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1340 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1341 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1342 	}
1343 
1344 	/* Enable RAM interface */
1345 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1346 
1347 	/*
1348          * Configure interrupt moderation. The moderation timer
1349 	 * defers interrupts specified in the interrupt moderation
1350 	 * timer mask based on the timeout specified in the interrupt
1351 	 * moderation timer init register. Each bit in the timer
1352 	 * register represents 18.825ns, so to specify a timeout in
1353 	 * microseconds, we have to multiply by 54.
1354 	 */
1355 	printf("skc%d: interrupt moderation is %d us\n",
1356 	    sc->sk_unit, sc->sk_int_mod);
1357 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1358 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1359 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1360 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1361 
1362 	return;
1363 }
1364 
1365 static int
1366 sk_probe(dev)
1367 	device_t		dev;
1368 {
1369 	struct sk_softc		*sc;
1370 
1371 	sc = device_get_softc(device_get_parent(dev));
1372 
1373 	/*
1374 	 * Not much to do here. We always know there will be
1375 	 * at least one XMAC present, and if there are two,
1376 	 * skc_attach() will create a second device instance
1377 	 * for us.
1378 	 */
1379 	switch (sc->sk_type) {
1380 	case SK_GENESIS:
1381 		device_set_desc(dev, "XaQti Corp. XMAC II");
1382 		break;
1383 	case SK_YUKON:
1384 	case SK_YUKON_LITE:
1385 	case SK_YUKON_LP:
1386 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1387 		break;
1388 	}
1389 
1390 	return (BUS_PROBE_DEFAULT);
1391 }
1392 
1393 /*
1394  * Each XMAC chip is attached as a separate logical IP interface.
1395  * Single port cards will have only one logical interface of course.
1396  */
1397 static int
1398 sk_attach(dev)
1399 	device_t		dev;
1400 {
1401 	struct sk_softc		*sc;
1402 	struct sk_if_softc	*sc_if;
1403 	struct ifnet		*ifp;
1404 	int			i, port, error;
1405 
1406 	if (dev == NULL)
1407 		return(EINVAL);
1408 
1409 	error = 0;
1410 	sc_if = device_get_softc(dev);
1411 	sc = device_get_softc(device_get_parent(dev));
1412 	port = *(int *)device_get_ivars(dev);
1413 
1414 	sc_if->sk_dev = dev;
1415 	sc_if->sk_unit = device_get_unit(dev);
1416 	sc_if->sk_port = port;
1417 	sc_if->sk_softc = sc;
1418 	sc->sk_if[port] = sc_if;
1419 	if (port == SK_PORT_A)
1420 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1421 	if (port == SK_PORT_B)
1422 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1423 
1424 	/* Allocate the descriptor queues. */
1425 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1426 	    M_NOWAIT, M_ZERO, 0xffffffff, PAGE_SIZE, 0);
1427 
1428 	if (sc_if->sk_rdata == NULL) {
1429 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1430 		error = ENOMEM;
1431 		goto fail;
1432 	}
1433 
1434 	/* Try to allocate memory for jumbo buffers. */
1435 	if (sk_alloc_jumbo_mem(sc_if)) {
1436 		printf("sk%d: jumbo buffer allocation failed\n",
1437 		    sc_if->sk_unit);
1438 		error = ENOMEM;
1439 		goto fail;
1440 	}
1441 
1442 	ifp = &sc_if->arpcom.ac_if;
1443 	ifp->if_softc = sc_if;
1444 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1445 	ifp->if_mtu = ETHERMTU;
1446 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1447 	ifp->if_ioctl = sk_ioctl;
1448 	ifp->if_start = sk_start;
1449 	ifp->if_watchdog = sk_watchdog;
1450 	ifp->if_init = sk_init;
1451 	ifp->if_baudrate = 1000000000;
1452 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1453 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1454 	IFQ_SET_READY(&ifp->if_snd);
1455 
1456 	callout_handle_init(&sc_if->sk_tick_ch);
1457 
1458 	/*
1459 	 * Get station address for this interface. Note that
1460 	 * dual port cards actually come with three station
1461 	 * addresses: one for each port, plus an extra. The
1462 	 * extra one is used by the SysKonnect driver software
1463 	 * as a 'virtual' station address for when both ports
1464 	 * are operating in failover mode. Currently we don't
1465 	 * use this extra address.
1466 	 */
1467 	SK_LOCK(sc);
1468 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1469 		sc_if->arpcom.ac_enaddr[i] =
1470 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1471 
1472 	/*
1473 	 * Set up RAM buffer addresses. The NIC will have a certain
1474 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1475 	 * need to divide this up a) between the transmitter and
1476  	 * receiver and b) between the two XMACs, if this is a
1477 	 * dual port NIC. Our algotithm is to divide up the memory
1478 	 * evenly so that everyone gets a fair share.
1479 	 */
1480 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1481 		u_int32_t		chunk, val;
1482 
1483 		chunk = sc->sk_ramsize / 2;
1484 		val = sc->sk_rboff / sizeof(u_int64_t);
1485 		sc_if->sk_rx_ramstart = val;
1486 		val += (chunk / sizeof(u_int64_t));
1487 		sc_if->sk_rx_ramend = val - 1;
1488 		sc_if->sk_tx_ramstart = val;
1489 		val += (chunk / sizeof(u_int64_t));
1490 		sc_if->sk_tx_ramend = val - 1;
1491 	} else {
1492 		u_int32_t		chunk, val;
1493 
1494 		chunk = sc->sk_ramsize / 4;
1495 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1496 		    sizeof(u_int64_t);
1497 		sc_if->sk_rx_ramstart = val;
1498 		val += (chunk / sizeof(u_int64_t));
1499 		sc_if->sk_rx_ramend = val - 1;
1500 		sc_if->sk_tx_ramstart = val;
1501 		val += (chunk / sizeof(u_int64_t));
1502 		sc_if->sk_tx_ramend = val - 1;
1503 	}
1504 
1505 	/* Read and save PHY type and set PHY address */
1506 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1507 	switch(sc_if->sk_phytype) {
1508 	case SK_PHYTYPE_XMAC:
1509 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1510 		break;
1511 	case SK_PHYTYPE_BCOM:
1512 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1513 		break;
1514 	case SK_PHYTYPE_MARV_COPPER:
1515 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1516 		break;
1517 	default:
1518 		printf("skc%d: unsupported PHY type: %d\n",
1519 		    sc->sk_unit, sc_if->sk_phytype);
1520 		error = ENODEV;
1521 		SK_UNLOCK(sc);
1522 		goto fail;
1523 	}
1524 
1525 
1526 	/*
1527 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1528 	 */
1529 	SK_UNLOCK(sc);
1530 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1531 	SK_LOCK(sc);
1532 
1533 	/*
1534 	 * Do miibus setup.
1535 	 */
1536 	switch (sc->sk_type) {
1537 	case SK_GENESIS:
1538 		sk_init_xmac(sc_if);
1539 		break;
1540 	case SK_YUKON:
1541 	case SK_YUKON_LITE:
1542 	case SK_YUKON_LP:
1543 		sk_init_yukon(sc_if);
1544 		break;
1545 	}
1546 
1547 	SK_UNLOCK(sc);
1548 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1549 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1550 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1551 		ether_ifdetach(ifp);
1552 		error = ENXIO;
1553 		goto fail;
1554 	}
1555 
1556 fail:
1557 	if (error) {
1558 		/* Access should be ok even though lock has been dropped */
1559 		sc->sk_if[port] = NULL;
1560 		sk_detach(dev);
1561 	}
1562 
1563 	return(error);
1564 }
1565 
1566 /*
1567  * Attach the interface. Allocate softc structures, do ifmedia
1568  * setup and ethernet/BPF attach.
1569  */
1570 static int
1571 skc_attach(dev)
1572 	device_t		dev;
1573 {
1574 	struct sk_softc		*sc;
1575 	int			unit, error = 0, rid, *port;
1576 	uint8_t			skrs;
1577 	char			*pname, *revstr;
1578 
1579 	sc = device_get_softc(dev);
1580 	unit = device_get_unit(dev);
1581 
1582 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1583 	    MTX_DEF | MTX_RECURSE);
1584 	/*
1585 	 * Map control/status registers.
1586 	 */
1587 	pci_enable_busmaster(dev);
1588 
1589 	rid = SK_RID;
1590 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1591 
1592 	if (sc->sk_res == NULL) {
1593 		printf("sk%d: couldn't map ports/memory\n", unit);
1594 		error = ENXIO;
1595 		goto fail;
1596 	}
1597 
1598 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1599 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1600 
1601 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1602 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1603 
1604 	/* Bail out if chip is not recognized. */
1605 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1606 		printf("skc%d: unknown device: chipver=%02x, rev=%x\n",
1607 			unit, sc->sk_type, sc->sk_rev);
1608 		error = ENXIO;
1609 		goto fail;
1610 	}
1611 
1612 	/* Allocate interrupt */
1613 	rid = 0;
1614 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1615 	    RF_SHAREABLE | RF_ACTIVE);
1616 
1617 	if (sc->sk_irq == NULL) {
1618 		printf("skc%d: couldn't map interrupt\n", unit);
1619 		error = ENXIO;
1620 		goto fail;
1621 	}
1622 
1623 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1624 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1625 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1626 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1627 		"SK interrupt moderation");
1628 
1629 	/* Pull in device tunables. */
1630 	sc->sk_int_mod = SK_IM_DEFAULT;
1631 	error = resource_int_value(device_get_name(dev), unit,
1632 		"int_mod", &sc->sk_int_mod);
1633 	if (error == 0) {
1634 		if (sc->sk_int_mod < SK_IM_MIN ||
1635 		    sc->sk_int_mod > SK_IM_MAX) {
1636 			printf("skc%d: int_mod value out of range; "
1637 			    "using default: %d\n", unit, SK_IM_DEFAULT);
1638 			sc->sk_int_mod = SK_IM_DEFAULT;
1639 		}
1640 	}
1641 
1642 	/* Reset the adapter. */
1643 	sk_reset(sc);
1644 
1645 	sc->sk_unit = unit;
1646 
1647 	/* Read and save vital product data from EEPROM. */
1648 	sk_vpd_read(sc);
1649 
1650 	skrs = sk_win_read_1(sc, SK_EPROM0);
1651 	if (sc->sk_type == SK_GENESIS) {
1652 		/* Read and save RAM size and RAMbuffer offset */
1653 		switch(skrs) {
1654 		case SK_RAMSIZE_512K_64:
1655 			sc->sk_ramsize = 0x80000;
1656 			sc->sk_rboff = SK_RBOFF_0;
1657 			break;
1658 		case SK_RAMSIZE_1024K_64:
1659 			sc->sk_ramsize = 0x100000;
1660 			sc->sk_rboff = SK_RBOFF_80000;
1661 			break;
1662 		case SK_RAMSIZE_1024K_128:
1663 			sc->sk_ramsize = 0x100000;
1664 			sc->sk_rboff = SK_RBOFF_0;
1665 			break;
1666 		case SK_RAMSIZE_2048K_128:
1667 			sc->sk_ramsize = 0x200000;
1668 			sc->sk_rboff = SK_RBOFF_0;
1669 			break;
1670 		default:
1671 			printf("skc%d: unknown ram size: %d\n",
1672 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1673 			error = ENXIO;
1674 			goto fail;
1675 		}
1676 	} else { /* SK_YUKON_FAMILY */
1677 		if (skrs == 0x00)
1678 			sc->sk_ramsize = 0x20000;
1679 		else
1680 			sc->sk_ramsize = skrs * (1<<12);
1681 		sc->sk_rboff = SK_RBOFF_0;
1682 	}
1683 
1684 	/* Read and save physical media type */
1685 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1686 	case SK_PMD_1000BASESX:
1687 		sc->sk_pmd = IFM_1000_SX;
1688 		break;
1689 	case SK_PMD_1000BASELX:
1690 		sc->sk_pmd = IFM_1000_LX;
1691 		break;
1692 	case SK_PMD_1000BASECX:
1693 		sc->sk_pmd = IFM_1000_CX;
1694 		break;
1695 	case SK_PMD_1000BASETX:
1696 		sc->sk_pmd = IFM_1000_T;
1697 		break;
1698 	default:
1699 		printf("skc%d: unknown media type: 0x%x\n",
1700 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1701 		error = ENXIO;
1702 		goto fail;
1703 	}
1704 
1705 	/* Determine whether to name it with VPD PN or just make it up.
1706 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1707 	switch (pci_get_device(dev)) {
1708 	case DEVICEID_SK_V1:
1709 	case DEVICEID_BELKIN_5005:
1710 	case DEVICEID_3COM_3C940:
1711 	case DEVICEID_LINKSYS_EG1032:
1712 	case DEVICEID_DLINK_DGE530T:
1713 		/* Stay with VPD PN. */
1714 		pname = sc->sk_vpd_prodname;
1715 		break;
1716 	case DEVICEID_SK_V2:
1717 		/* YUKON VPD PN might bear no resemblance to reality. */
1718 		switch (sc->sk_type) {
1719 		case SK_GENESIS:
1720 			/* Stay with VPD PN. */
1721 			pname = sc->sk_vpd_prodname;
1722 			break;
1723 		case SK_YUKON:
1724 			pname = "Marvell Yukon Gigabit Ethernet";
1725 			break;
1726 		case SK_YUKON_LITE:
1727 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1728 			break;
1729 		case SK_YUKON_LP:
1730 			pname = "Marvell Yukon LP Gigabit Ethernet";
1731 			break;
1732 		default:
1733 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1734 			break;
1735 		}
1736 
1737 		/* Yukon Lite Rev. A0 needs special test. */
1738 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1739 			u_int32_t far;
1740 			u_int8_t testbyte;
1741 
1742 			/* Save flash address register before testing. */
1743 			far = sk_win_read_4(sc, SK_EP_ADDR);
1744 
1745 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1746 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1747 
1748 			if (testbyte != 0x00) {
1749 				/* Yukon Lite Rev. A0 detected. */
1750 				sc->sk_type = SK_YUKON_LITE;
1751 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1752 				/* Restore flash address register. */
1753 				sk_win_write_4(sc, SK_EP_ADDR, far);
1754 			}
1755 		}
1756 		break;
1757 	default:
1758 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1759 			"chipver=%02x, rev=%x\n",
1760 			pci_get_vendor(dev), pci_get_device(dev),
1761 			sc->sk_type, sc->sk_rev);
1762 		error = ENXIO;
1763 		goto fail;
1764 	}
1765 
1766 	if (sc->sk_type == SK_YUKON_LITE) {
1767 		switch (sc->sk_rev) {
1768 		case SK_YUKON_LITE_REV_A0:
1769 			revstr = "A0";
1770 			break;
1771 		case SK_YUKON_LITE_REV_A1:
1772 			revstr = "A1";
1773 			break;
1774 		case SK_YUKON_LITE_REV_A3:
1775 			revstr = "A3";
1776 			break;
1777 		default:
1778 			revstr = "";
1779 			break;
1780 		}
1781 	} else {
1782 		revstr = "";
1783 	}
1784 
1785 	/* Announce the product name and more VPD data if there. */
1786 	device_printf(dev, "%s rev. %s(0x%x)\n",
1787 		pname != NULL ? pname : "<unknown>", revstr, sc->sk_rev);
1788 
1789 	if (bootverbose) {
1790 		if (sc->sk_vpd_readonly != NULL &&
1791 		    sc->sk_vpd_readonly_len != 0) {
1792 			char buf[256];
1793 			char *dp = sc->sk_vpd_readonly;
1794 			uint16_t l, len = sc->sk_vpd_readonly_len;
1795 
1796 			while (len >= 3) {
1797 				if ((*dp == 'P' && *(dp+1) == 'N') ||
1798 				    (*dp == 'E' && *(dp+1) == 'C') ||
1799 				    (*dp == 'M' && *(dp+1) == 'N') ||
1800 				    (*dp == 'S' && *(dp+1) == 'N')) {
1801 					l = 0;
1802 					while (l < *(dp+2)) {
1803 						buf[l] = *(dp+3+l);
1804 						++l;
1805 					}
1806 					buf[l] = '\0';
1807 					device_printf(dev, "%c%c: %s\n",
1808 					    *dp, *(dp+1), buf);
1809 					len -= (3 + l);
1810 					dp += (3 + l);
1811 				} else {
1812 					len -= (3 + *(dp+2));
1813 					dp += (3 + *(dp+2));
1814 				}
1815 			}
1816 		}
1817 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1818 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1819 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1820 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1821 	}
1822 
1823 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1824 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1825 	*port = SK_PORT_A;
1826 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1827 
1828 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1829 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1830 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1831 		*port = SK_PORT_B;
1832 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1833 	}
1834 
1835 	/* Turn on the 'driver is loaded' LED. */
1836 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1837 
1838 	bus_generic_attach(dev);
1839 
1840 	/* Hook interrupt last to avoid having to lock softc */
1841 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1842 	    sk_intr, sc, &sc->sk_intrhand);
1843 
1844 	if (error) {
1845 		printf("skc%d: couldn't set up irq\n", unit);
1846 		goto fail;
1847 	}
1848 
1849 fail:
1850 	if (error)
1851 		skc_detach(dev);
1852 
1853 	return(error);
1854 }
1855 
1856 /*
1857  * Shutdown hardware and free up resources. This can be called any
1858  * time after the mutex has been initialized. It is called in both
1859  * the error case in attach and the normal detach case so it needs
1860  * to be careful about only freeing resources that have actually been
1861  * allocated.
1862  */
1863 static int
1864 sk_detach(dev)
1865 	device_t		dev;
1866 {
1867 	struct sk_if_softc	*sc_if;
1868 	struct ifnet		*ifp;
1869 
1870 	sc_if = device_get_softc(dev);
1871 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1872 	    ("sk mutex not initialized in sk_detach"));
1873 	SK_IF_LOCK(sc_if);
1874 
1875 	ifp = &sc_if->arpcom.ac_if;
1876 	/* These should only be active if attach_xmac succeeded */
1877 	if (device_is_attached(dev)) {
1878 		sk_stop(sc_if);
1879 		/* Can't hold locks while calling detach */
1880 		SK_IF_UNLOCK(sc_if);
1881 		ether_ifdetach(ifp);
1882 		SK_IF_LOCK(sc_if);
1883 	}
1884 	/*
1885 	 * We're generally called from skc_detach() which is using
1886 	 * device_delete_child() to get to here. It's already trashed
1887 	 * miibus for us, so don't do it here or we'll panic.
1888 	 */
1889 	/*
1890 	if (sc_if->sk_miibus != NULL)
1891 		device_delete_child(dev, sc_if->sk_miibus);
1892 	*/
1893 	bus_generic_detach(dev);
1894 	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1895 		sk_free_jumbo_mem(sc_if);
1896 	if (sc_if->sk_rdata != NULL) {
1897 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1898 		    M_DEVBUF);
1899 	}
1900 	SK_IF_UNLOCK(sc_if);
1901 
1902 	return(0);
1903 }
1904 
1905 static int
1906 skc_detach(dev)
1907 	device_t		dev;
1908 {
1909 	struct sk_softc		*sc;
1910 
1911 	sc = device_get_softc(dev);
1912 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1913 
1914 	if (device_is_alive(dev)) {
1915 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1916 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1917 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1918 		}
1919 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1920 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1921 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1922 		}
1923 		bus_generic_detach(dev);
1924 	}
1925 
1926 	if (sc->sk_vpd_prodname != NULL)
1927 		free(sc->sk_vpd_prodname, M_DEVBUF);
1928 	if (sc->sk_vpd_readonly != NULL)
1929 		free(sc->sk_vpd_readonly, M_DEVBUF);
1930 
1931 	if (sc->sk_intrhand)
1932 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1933 	if (sc->sk_irq)
1934 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1935 	if (sc->sk_res)
1936 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1937 
1938 	mtx_destroy(&sc->sk_mtx);
1939 
1940 	return(0);
1941 }
1942 
1943 static int
1944 sk_encap(sc_if, m_head, txidx)
1945         struct sk_if_softc	*sc_if;
1946         struct mbuf		*m_head;
1947         u_int32_t		*txidx;
1948 {
1949 	struct sk_tx_desc	*f = NULL;
1950 	struct mbuf		*m;
1951 	u_int32_t		frag, cur, cnt = 0;
1952 
1953 	SK_IF_LOCK_ASSERT(sc_if);
1954 
1955 	m = m_head;
1956 	cur = frag = *txidx;
1957 
1958 	/*
1959 	 * Start packing the mbufs in this chain into
1960 	 * the fragment pointers. Stop when we run out
1961 	 * of fragments or hit the end of the mbuf chain.
1962 	 */
1963 	for (m = m_head; m != NULL; m = m->m_next) {
1964 		if (m->m_len != 0) {
1965 			if ((SK_TX_RING_CNT -
1966 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1967 				return(ENOBUFS);
1968 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1969 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1970 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1971 			if (cnt == 0)
1972 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1973 			else
1974 				f->sk_ctl |= SK_TXCTL_OWN;
1975 			cur = frag;
1976 			SK_INC(frag, SK_TX_RING_CNT);
1977 			cnt++;
1978 		}
1979 	}
1980 
1981 	if (m != NULL)
1982 		return(ENOBUFS);
1983 
1984 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1985 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1986 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1987 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1988 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1989 
1990 	*txidx = frag;
1991 
1992 	return(0);
1993 }
1994 
1995 static void
1996 sk_start(ifp)
1997 	struct ifnet		*ifp;
1998 {
1999         struct sk_softc		*sc;
2000         struct sk_if_softc	*sc_if;
2001         struct mbuf		*m_head = NULL;
2002         u_int32_t		idx;
2003 
2004 	sc_if = ifp->if_softc;
2005 	sc = sc_if->sk_softc;
2006 
2007 	SK_IF_LOCK(sc_if);
2008 
2009 	idx = sc_if->sk_cdata.sk_tx_prod;
2010 
2011 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2012 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2013 		if (m_head == NULL)
2014 			break;
2015 
2016 		/*
2017 		 * Pack the data into the transmit ring. If we
2018 		 * don't have room, set the OACTIVE flag and wait
2019 		 * for the NIC to drain the ring.
2020 		 */
2021 		if (sk_encap(sc_if, m_head, &idx)) {
2022 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2023 			ifp->if_flags |= IFF_OACTIVE;
2024 			break;
2025 		}
2026 
2027 		/*
2028 		 * If there's a BPF listener, bounce a copy of this frame
2029 		 * to him.
2030 		 */
2031 		BPF_MTAP(ifp, m_head);
2032 	}
2033 
2034 	/* Transmit */
2035 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2036 		sc_if->sk_cdata.sk_tx_prod = idx;
2037 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2038 
2039 		/* Set a timeout in case the chip goes out to lunch. */
2040 		ifp->if_timer = 5;
2041 	}
2042 	SK_IF_UNLOCK(sc_if);
2043 
2044 	return;
2045 }
2046 
2047 
2048 static void
2049 sk_watchdog(ifp)
2050 	struct ifnet		*ifp;
2051 {
2052 	struct sk_if_softc	*sc_if;
2053 
2054 	sc_if = ifp->if_softc;
2055 
2056 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
2057 	ifp->if_flags &= ~IFF_RUNNING;
2058 	sk_init(sc_if);
2059 
2060 	return;
2061 }
2062 
2063 static void
2064 skc_shutdown(dev)
2065 	device_t		dev;
2066 {
2067 	struct sk_softc		*sc;
2068 
2069 	sc = device_get_softc(dev);
2070 	SK_LOCK(sc);
2071 
2072 	/* Turn off the 'driver is loaded' LED. */
2073 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2074 
2075 	/*
2076 	 * Reset the GEnesis controller. Doing this should also
2077 	 * assert the resets on the attached XMAC(s).
2078 	 */
2079 	sk_reset(sc);
2080 	SK_UNLOCK(sc);
2081 
2082 	return;
2083 }
2084 
2085 static void
2086 sk_rxeof(sc_if)
2087 	struct sk_if_softc	*sc_if;
2088 {
2089 	struct sk_softc		*sc;
2090 	struct mbuf		*m;
2091 	struct ifnet		*ifp;
2092 	struct sk_chain		*cur_rx;
2093 	int			total_len = 0;
2094 	int			i;
2095 	u_int32_t		rxstat;
2096 
2097 	sc = sc_if->sk_softc;
2098 	ifp = &sc_if->arpcom.ac_if;
2099 	i = sc_if->sk_cdata.sk_rx_prod;
2100 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2101 
2102 	SK_LOCK_ASSERT(sc);
2103 
2104 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
2105 
2106 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2107 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
2108 		m = cur_rx->sk_mbuf;
2109 		cur_rx->sk_mbuf = NULL;
2110 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
2111 		SK_INC(i, SK_RX_RING_CNT);
2112 
2113 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2114 			ifp->if_ierrors++;
2115 			sk_newbuf(sc_if, cur_rx, m);
2116 			continue;
2117 		}
2118 
2119 		/*
2120 		 * Try to allocate a new jumbo buffer. If that
2121 		 * fails, copy the packet to mbufs and put the
2122 		 * jumbo buffer back in the ring so it can be
2123 		 * re-used. If allocating mbufs fails, then we
2124 		 * have to drop the packet.
2125 		 */
2126 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
2127 			struct mbuf		*m0;
2128 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
2129 			    ifp, NULL);
2130 			sk_newbuf(sc_if, cur_rx, m);
2131 			if (m0 == NULL) {
2132 				printf("sk%d: no receive buffers "
2133 				    "available -- packet dropped!\n",
2134 				    sc_if->sk_unit);
2135 				ifp->if_ierrors++;
2136 				continue;
2137 			}
2138 			m = m0;
2139 		} else {
2140 			m->m_pkthdr.rcvif = ifp;
2141 			m->m_pkthdr.len = m->m_len = total_len;
2142 		}
2143 
2144 		ifp->if_ipackets++;
2145 		SK_UNLOCK(sc);
2146 		(*ifp->if_input)(ifp, m);
2147 		SK_LOCK(sc);
2148 	}
2149 
2150 	sc_if->sk_cdata.sk_rx_prod = i;
2151 
2152 	return;
2153 }
2154 
2155 static void
2156 sk_txeof(sc_if)
2157 	struct sk_if_softc	*sc_if;
2158 {
2159 	struct sk_softc		*sc;
2160 	struct sk_tx_desc	*cur_tx;
2161 	struct ifnet		*ifp;
2162 	u_int32_t		idx;
2163 
2164 	sc = sc_if->sk_softc;
2165 	ifp = &sc_if->arpcom.ac_if;
2166 
2167 	/*
2168 	 * Go through our tx ring and free mbufs for those
2169 	 * frames that have been sent.
2170 	 */
2171 	idx = sc_if->sk_cdata.sk_tx_cons;
2172 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2173 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2174 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2175 			break;
2176 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2177 			ifp->if_opackets++;
2178 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2179 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2180 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2181 		}
2182 		sc_if->sk_cdata.sk_tx_cnt--;
2183 		SK_INC(idx, SK_TX_RING_CNT);
2184 	}
2185 
2186 	if (sc_if->sk_cdata.sk_tx_cnt == 0) {
2187 		ifp->if_timer = 0;
2188 	} else /* nudge chip to keep tx ring moving */
2189 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2190 
2191 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2192 		ifp->if_flags &= ~IFF_OACTIVE;
2193 
2194 	sc_if->sk_cdata.sk_tx_cons = idx;
2195 }
2196 
2197 static void
2198 sk_tick(xsc_if)
2199 	void			*xsc_if;
2200 {
2201 	struct sk_if_softc	*sc_if;
2202 	struct mii_data		*mii;
2203 	struct ifnet		*ifp;
2204 	int			i;
2205 
2206 	sc_if = xsc_if;
2207 	SK_IF_LOCK(sc_if);
2208 	ifp = &sc_if->arpcom.ac_if;
2209 	mii = device_get_softc(sc_if->sk_miibus);
2210 
2211 	if (!(ifp->if_flags & IFF_UP)) {
2212 		SK_IF_UNLOCK(sc_if);
2213 		return;
2214 	}
2215 
2216 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2217 		sk_intr_bcom(sc_if);
2218 		SK_IF_UNLOCK(sc_if);
2219 		return;
2220 	}
2221 
2222 	/*
2223 	 * According to SysKonnect, the correct way to verify that
2224 	 * the link has come back up is to poll bit 0 of the GPIO
2225 	 * register three times. This pin has the signal from the
2226 	 * link_sync pin connected to it; if we read the same link
2227 	 * state 3 times in a row, we know the link is up.
2228 	 */
2229 	for (i = 0; i < 3; i++) {
2230 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2231 			break;
2232 	}
2233 
2234 	if (i != 3) {
2235 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2236 		SK_IF_UNLOCK(sc_if);
2237 		return;
2238 	}
2239 
2240 	/* Turn the GP0 interrupt back on. */
2241 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2242 	SK_XM_READ_2(sc_if, XM_ISR);
2243 	mii_tick(mii);
2244 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2245 
2246 	SK_IF_UNLOCK(sc_if);
2247 	return;
2248 }
2249 
2250 static void
2251 sk_intr_bcom(sc_if)
2252 	struct sk_if_softc	*sc_if;
2253 {
2254 	struct mii_data		*mii;
2255 	struct ifnet		*ifp;
2256 	int			status;
2257 	mii = device_get_softc(sc_if->sk_miibus);
2258 	ifp = &sc_if->arpcom.ac_if;
2259 
2260 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2261 
2262 	/*
2263 	 * Read the PHY interrupt register to make sure
2264 	 * we clear any pending interrupts.
2265 	 */
2266 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2267 
2268 	if (!(ifp->if_flags & IFF_RUNNING)) {
2269 		sk_init_xmac(sc_if);
2270 		return;
2271 	}
2272 
2273 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2274 		int			lstat;
2275 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2276 		    BRGPHY_MII_AUXSTS);
2277 
2278 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2279 			mii_mediachg(mii);
2280 			/* Turn off the link LED. */
2281 			SK_IF_WRITE_1(sc_if, 0,
2282 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2283 			sc_if->sk_link = 0;
2284 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2285 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2286 	    		    BRGPHY_MII_IMR, 0xFF00);
2287 			mii_tick(mii);
2288 			sc_if->sk_link = 1;
2289 			/* Turn on the link LED. */
2290 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2291 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2292 			    SK_LINKLED_BLINK_OFF);
2293 		} else {
2294 			mii_tick(mii);
2295 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2296 		}
2297 	}
2298 
2299 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2300 
2301 	return;
2302 }
2303 
2304 static void
2305 sk_intr_xmac(sc_if)
2306 	struct sk_if_softc	*sc_if;
2307 {
2308 	struct sk_softc		*sc;
2309 	u_int16_t		status;
2310 
2311 	sc = sc_if->sk_softc;
2312 	status = SK_XM_READ_2(sc_if, XM_ISR);
2313 
2314 	/*
2315 	 * Link has gone down. Start MII tick timeout to
2316 	 * watch for link resync.
2317 	 */
2318 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2319 		if (status & XM_ISR_GP0_SET) {
2320 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2321 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2322 		}
2323 
2324 		if (status & XM_ISR_AUTONEG_DONE) {
2325 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2326 		}
2327 	}
2328 
2329 	if (status & XM_IMR_TX_UNDERRUN)
2330 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2331 
2332 	if (status & XM_IMR_RX_OVERRUN)
2333 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2334 
2335 	status = SK_XM_READ_2(sc_if, XM_ISR);
2336 
2337 	return;
2338 }
2339 
2340 static void
2341 sk_intr_yukon(sc_if)
2342 	struct sk_if_softc	*sc_if;
2343 {
2344 	int status;
2345 
2346 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2347 
2348 	return;
2349 }
2350 
2351 static void
2352 sk_intr(xsc)
2353 	void			*xsc;
2354 {
2355 	struct sk_softc		*sc = xsc;
2356 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2357 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2358 	u_int32_t		status;
2359 
2360 	SK_LOCK(sc);
2361 
2362 	sc_if0 = sc->sk_if[SK_PORT_A];
2363 	sc_if1 = sc->sk_if[SK_PORT_B];
2364 
2365 	if (sc_if0 != NULL)
2366 		ifp0 = &sc_if0->arpcom.ac_if;
2367 	if (sc_if1 != NULL)
2368 		ifp1 = &sc_if1->arpcom.ac_if;
2369 
2370 	for (;;) {
2371 		status = CSR_READ_4(sc, SK_ISSR);
2372 		if (!(status & sc->sk_intrmask))
2373 			break;
2374 
2375 		/* Handle receive interrupts first. */
2376 		if (status & SK_ISR_RX1_EOF) {
2377 			sk_rxeof(sc_if0);
2378 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2379 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2380 		}
2381 		if (status & SK_ISR_RX2_EOF) {
2382 			sk_rxeof(sc_if1);
2383 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2384 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2385 		}
2386 
2387 		/* Then transmit interrupts. */
2388 		if (status & SK_ISR_TX1_S_EOF) {
2389 			sk_txeof(sc_if0);
2390 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2391 			    SK_TXBMU_CLR_IRQ_EOF);
2392 		}
2393 		if (status & SK_ISR_TX2_S_EOF) {
2394 			sk_txeof(sc_if1);
2395 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2396 			    SK_TXBMU_CLR_IRQ_EOF);
2397 		}
2398 
2399 		/* Then MAC interrupts. */
2400 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2401 			if (sc->sk_type == SK_GENESIS)
2402 				sk_intr_xmac(sc_if0);
2403 			else
2404 				sk_intr_yukon(sc_if0);
2405 		}
2406 
2407 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2408 			if (sc->sk_type == SK_GENESIS)
2409 				sk_intr_xmac(sc_if1);
2410 			else
2411 				sk_intr_yukon(sc_if1);
2412 		}
2413 
2414 		if (status & SK_ISR_EXTERNAL_REG) {
2415 			if (ifp0 != NULL &&
2416 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2417 				sk_intr_bcom(sc_if0);
2418 			if (ifp1 != NULL &&
2419 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2420 				sk_intr_bcom(sc_if1);
2421 		}
2422 	}
2423 
2424 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2425 
2426 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
2427 		sk_start(ifp0);
2428 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
2429 		sk_start(ifp1);
2430 
2431 	SK_UNLOCK(sc);
2432 
2433 	return;
2434 }
2435 
2436 static void
2437 sk_init_xmac(sc_if)
2438 	struct sk_if_softc	*sc_if;
2439 {
2440 	struct sk_softc		*sc;
2441 	struct ifnet		*ifp;
2442 	struct sk_bcom_hack	bhack[] = {
2443 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2444 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2445 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2446 	{ 0, 0 } };
2447 
2448 	sc = sc_if->sk_softc;
2449 	ifp = &sc_if->arpcom.ac_if;
2450 
2451 	/* Unreset the XMAC. */
2452 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2453 	DELAY(1000);
2454 
2455 	/* Reset the XMAC's internal state. */
2456 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2457 
2458 	/* Save the XMAC II revision */
2459 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2460 
2461 	/*
2462 	 * Perform additional initialization for external PHYs,
2463 	 * namely for the 1000baseTX cards that use the XMAC's
2464 	 * GMII mode.
2465 	 */
2466 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2467 		int			i = 0;
2468 		u_int32_t		val;
2469 
2470 		/* Take PHY out of reset. */
2471 		val = sk_win_read_4(sc, SK_GPIO);
2472 		if (sc_if->sk_port == SK_PORT_A)
2473 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2474 		else
2475 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2476 		sk_win_write_4(sc, SK_GPIO, val);
2477 
2478 		/* Enable GMII mode on the XMAC. */
2479 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2480 
2481 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2482 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2483 		DELAY(10000);
2484 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2485 		    BRGPHY_MII_IMR, 0xFFF0);
2486 
2487 		/*
2488 		 * Early versions of the BCM5400 apparently have
2489 		 * a bug that requires them to have their reserved
2490 		 * registers initialized to some magic values. I don't
2491 		 * know what the numbers do, I'm just the messenger.
2492 		 */
2493 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2494 		    == 0x6041) {
2495 			while(bhack[i].reg) {
2496 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2497 				    bhack[i].reg, bhack[i].val);
2498 				i++;
2499 			}
2500 		}
2501 	}
2502 
2503 	/* Set station address */
2504 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2505 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2506 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2507 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2508 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2509 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2510 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2511 
2512 	if (ifp->if_flags & IFF_BROADCAST) {
2513 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2514 	} else {
2515 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2516 	}
2517 
2518 	/* We don't need the FCS appended to the packet. */
2519 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2520 
2521 	/* We want short frames padded to 60 bytes. */
2522 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2523 
2524 	/*
2525 	 * Enable the reception of all error frames. This is is
2526 	 * a necessary evil due to the design of the XMAC. The
2527 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2528 	 * frames can be up to 9000 bytes in length. When bad
2529 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2530 	 * in 'store and forward' mode. For this to work, the
2531 	 * entire frame has to fit into the FIFO, but that means
2532 	 * that jumbo frames larger than 8192 bytes will be
2533 	 * truncated. Disabling all bad frame filtering causes
2534 	 * the RX FIFO to operate in streaming mode, in which
2535 	 * case the XMAC will start transfering frames out of the
2536 	 * RX FIFO as soon as the FIFO threshold is reached.
2537 	 */
2538 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2539 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2540 	    XM_MODE_RX_INRANGELEN);
2541 
2542 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2543 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2544 	else
2545 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2546 
2547 	/*
2548 	 * Bump up the transmit threshold. This helps hold off transmit
2549 	 * underruns when we're blasting traffic from both ports at once.
2550 	 */
2551 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2552 
2553 	/* Set promiscuous mode */
2554 	sk_setpromisc(sc_if);
2555 
2556 	/* Set multicast filter */
2557 	sk_setmulti(sc_if);
2558 
2559 	/* Clear and enable interrupts */
2560 	SK_XM_READ_2(sc_if, XM_ISR);
2561 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2562 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2563 	else
2564 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2565 
2566 	/* Configure MAC arbiter */
2567 	switch(sc_if->sk_xmac_rev) {
2568 	case XM_XMAC_REV_B2:
2569 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2570 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2571 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2572 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2573 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2574 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2575 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2576 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2577 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2578 		break;
2579 	case XM_XMAC_REV_C1:
2580 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2581 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2582 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2583 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2584 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2585 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2586 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2587 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2588 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2589 		break;
2590 	default:
2591 		break;
2592 	}
2593 	sk_win_write_2(sc, SK_MACARB_CTL,
2594 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2595 
2596 	sc_if->sk_link = 1;
2597 
2598 	return;
2599 }
2600 
2601 static void
2602 sk_init_yukon(sc_if)
2603 	struct sk_if_softc	*sc_if;
2604 {
2605 	u_int32_t		phy;
2606 	u_int16_t		reg;
2607 	struct sk_softc		*sc;
2608 	struct ifnet		*ifp;
2609 	int			i;
2610 
2611 	sc = sc_if->sk_softc;
2612 	ifp = &sc_if->arpcom.ac_if;
2613 
2614 	if (sc->sk_type == SK_YUKON_LITE &&
2615 	    sc->sk_rev == SK_YUKON_LITE_REV_A3) {
2616 		/* Take PHY out of reset. */
2617 		sk_win_write_4(sc, SK_GPIO,
2618 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2619 	}
2620 
2621 	/* GMAC and GPHY Reset */
2622 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2624 	DELAY(1000);
2625 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2626 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2627 	DELAY(1000);
2628 
2629 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2630 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2631 
2632 	switch(sc_if->sk_softc->sk_pmd) {
2633 	case IFM_1000_SX:
2634 	case IFM_1000_LX:
2635 		phy |= SK_GPHY_FIBER;
2636 		break;
2637 
2638 	case IFM_1000_CX:
2639 	case IFM_1000_T:
2640 		phy |= SK_GPHY_COPPER;
2641 		break;
2642 	}
2643 
2644 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2645 	DELAY(1000);
2646 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2647 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2648 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2649 
2650 	/* unused read of the interrupt source register */
2651 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2652 
2653 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2654 
2655 	/* MIB Counter Clear Mode set */
2656 	reg |= YU_PAR_MIB_CLR;
2657 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2658 
2659 	/* MIB Counter Clear Mode clear */
2660 	reg &= ~YU_PAR_MIB_CLR;
2661 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2662 
2663 	/* receive control reg */
2664 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2665 
2666 	/* transmit parameter register */
2667 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2668 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2669 
2670 	/* serial mode register */
2671 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2672 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2673 		reg |= YU_SMR_MFL_JUMBO;
2674 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2675 
2676 	/* Setup Yukon's address */
2677 	for (i = 0; i < 3; i++) {
2678 		/* Write Source Address 1 (unicast filter) */
2679 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2680 			      sc_if->arpcom.ac_enaddr[i * 2] |
2681 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2682 	}
2683 
2684 	for (i = 0; i < 3; i++) {
2685 		reg = sk_win_read_2(sc_if->sk_softc,
2686 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2687 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2688 	}
2689 
2690 	/* Set promiscuous mode */
2691 	sk_setpromisc(sc_if);
2692 
2693 	/* Set multicast filter */
2694 	sk_setmulti(sc_if);
2695 
2696 	/* enable interrupt mask for counter overflows */
2697 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2698 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2699 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2700 
2701 	/* Configure RX MAC FIFO */
2702 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2703 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2704 
2705 	/* Configure TX MAC FIFO */
2706 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2707 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2708 }
2709 
2710 /*
2711  * Note that to properly initialize any part of the GEnesis chip,
2712  * you first have to take it out of reset mode.
2713  */
2714 static void
2715 sk_init(xsc)
2716 	void			*xsc;
2717 {
2718 	struct sk_if_softc	*sc_if = xsc;
2719 	struct sk_softc		*sc;
2720 	struct ifnet		*ifp;
2721 	struct mii_data		*mii;
2722 	u_int16_t		reg;
2723 	u_int32_t		imr;
2724 
2725 	SK_IF_LOCK(sc_if);
2726 
2727 	ifp = &sc_if->arpcom.ac_if;
2728 	sc = sc_if->sk_softc;
2729 	mii = device_get_softc(sc_if->sk_miibus);
2730 
2731 	if (ifp->if_flags & IFF_RUNNING) {
2732 		SK_IF_UNLOCK(sc_if);
2733 		return;
2734 	}
2735 
2736 	/* Cancel pending I/O and free all RX/TX buffers. */
2737 	sk_stop(sc_if);
2738 
2739 	if (sc->sk_type == SK_GENESIS) {
2740 		/* Configure LINK_SYNC LED */
2741 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2742 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2743 			SK_LINKLED_LINKSYNC_ON);
2744 
2745 		/* Configure RX LED */
2746 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2747 			SK_RXLEDCTL_COUNTER_START);
2748 
2749 		/* Configure TX LED */
2750 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2751 			SK_TXLEDCTL_COUNTER_START);
2752 	}
2753 
2754 	/* Configure I2C registers */
2755 
2756 	/* Configure XMAC(s) */
2757 	switch (sc->sk_type) {
2758 	case SK_GENESIS:
2759 		sk_init_xmac(sc_if);
2760 		break;
2761 	case SK_YUKON:
2762 	case SK_YUKON_LITE:
2763 	case SK_YUKON_LP:
2764 		sk_init_yukon(sc_if);
2765 		break;
2766 	}
2767 	mii_mediachg(mii);
2768 
2769 	if (sc->sk_type == SK_GENESIS) {
2770 		/* Configure MAC FIFOs */
2771 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2772 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2773 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2774 
2775 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2776 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2777 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2778 	}
2779 
2780 	/* Configure transmit arbiter(s) */
2781 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2782 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2783 
2784 	/* Configure RAMbuffers */
2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2791 
2792 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2796 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2799 
2800 	/* Configure BMUs */
2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2803 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2805 
2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2808 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2810 
2811 	/* Init descriptors */
2812 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2813 		printf("sk%d: initialization failed: no "
2814 		    "memory for rx buffers\n", sc_if->sk_unit);
2815 		sk_stop(sc_if);
2816 		SK_IF_UNLOCK(sc_if);
2817 		return;
2818 	}
2819 	sk_init_tx_ring(sc_if);
2820 
2821 	/* Set interrupt moderation if changed via sysctl. */
2822 	/* SK_LOCK(sc); */
2823 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2824 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2825 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
2826 		printf("skc%d: interrupt moderation is %d us\n",
2827 		    sc->sk_unit, sc->sk_int_mod);
2828 	}
2829 	/* SK_UNLOCK(sc); */
2830 
2831 	/* Configure interrupt handling */
2832 	CSR_READ_4(sc, SK_ISSR);
2833 	if (sc_if->sk_port == SK_PORT_A)
2834 		sc->sk_intrmask |= SK_INTRS1;
2835 	else
2836 		sc->sk_intrmask |= SK_INTRS2;
2837 
2838 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2839 
2840 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2841 
2842 	/* Start BMUs. */
2843 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2844 
2845 	switch(sc->sk_type) {
2846 	case SK_GENESIS:
2847 		/* Enable XMACs TX and RX state machines */
2848 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2849 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2850 		break;
2851 	case SK_YUKON:
2852 	case SK_YUKON_LITE:
2853 	case SK_YUKON_LP:
2854 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2855 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2856 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2857 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2858 	}
2859 
2860 	ifp->if_flags |= IFF_RUNNING;
2861 	ifp->if_flags &= ~IFF_OACTIVE;
2862 
2863 	SK_IF_UNLOCK(sc_if);
2864 
2865 	return;
2866 }
2867 
2868 static void
2869 sk_stop(sc_if)
2870 	struct sk_if_softc	*sc_if;
2871 {
2872 	int			i;
2873 	struct sk_softc		*sc;
2874 	struct ifnet		*ifp;
2875 
2876 	SK_IF_LOCK(sc_if);
2877 	sc = sc_if->sk_softc;
2878 	ifp = &sc_if->arpcom.ac_if;
2879 
2880 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2881 
2882 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2883 		u_int32_t		val;
2884 
2885 		/* Put PHY back into reset. */
2886 		val = sk_win_read_4(sc, SK_GPIO);
2887 		if (sc_if->sk_port == SK_PORT_A) {
2888 			val |= SK_GPIO_DIR0;
2889 			val &= ~SK_GPIO_DAT0;
2890 		} else {
2891 			val |= SK_GPIO_DIR2;
2892 			val &= ~SK_GPIO_DAT2;
2893 		}
2894 		sk_win_write_4(sc, SK_GPIO, val);
2895 	}
2896 
2897 	/* Turn off various components of this interface. */
2898 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2899 	switch (sc->sk_type) {
2900 	case SK_GENESIS:
2901 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2902 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2903 		break;
2904 	case SK_YUKON:
2905 	case SK_YUKON_LITE:
2906 	case SK_YUKON_LP:
2907 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2908 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2909 		break;
2910 	}
2911 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2912 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2913 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2914 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2915 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2916 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2917 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2918 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2919 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2920 
2921 	/* Disable interrupts */
2922 	if (sc_if->sk_port == SK_PORT_A)
2923 		sc->sk_intrmask &= ~SK_INTRS1;
2924 	else
2925 		sc->sk_intrmask &= ~SK_INTRS2;
2926 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2927 
2928 	SK_XM_READ_2(sc_if, XM_ISR);
2929 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2930 
2931 	/* Free RX and TX mbufs still in the queues. */
2932 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2933 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2934 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2935 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2936 		}
2937 	}
2938 
2939 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2940 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2941 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2942 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2943 		}
2944 	}
2945 
2946 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2947 	SK_IF_UNLOCK(sc_if);
2948 	return;
2949 }
2950 
2951 static int
2952 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2953 {
2954 	int error, value;
2955 
2956 	if (!arg1)
2957 		return (EINVAL);
2958 	value = *(int *)arg1;
2959 	error = sysctl_handle_int(oidp, &value, 0, req);
2960 	if (error || !req->newptr)
2961 		return (error);
2962 	if (value < low || value > high)
2963 		return (EINVAL);
2964 	*(int *)arg1 = value;
2965 	return (0);
2966 }
2967 
2968 static int
2969 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
2970 {
2971 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
2972 }
2973