xref: /freebsd/sys/dev/sk/if_sk.c (revision c3aac50f284c6cca5b4f2eb46aaa13812cb8b630)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
37  * the SK-984x series adapters, both single port and dual port.
38  * References:
39  * 	The XaQti XMAC II datasheet, http://www.xaqti.com
40  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
41  *
42  * Written by Bill Paul <wpaul@ee.columbia.edu>
43  * Department of Electrical Engineering
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The SysKonnect gigabit ethernet adapters consist of two main
49  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
50  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
51  * components and a PHY while the GEnesis controller provides a PCI
52  * interface with DMA support. Each card may have between 512K and
53  * 2MB of SRAM on board depending on the configuration.
54  *
55  * The SysKonnect GEnesis controller can have either one or two XMAC
56  * chips connected to it, allowing single or dual port NIC configurations.
57  * SysKonnect has the distinction of being the only vendor on the market
58  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
59  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
60  * XMAC registers. This driver takes advantage of these features to allow
61  * both XMACs to operate as independent interfaces.
62  */
63 
64 #include "bpf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/sockio.h>
69 #include <sys/mbuf.h>
70 #include <sys/malloc.h>
71 #include <sys/kernel.h>
72 #include <sys/socket.h>
73 #include <sys/queue.h>
74 
75 #include <net/if.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 
81 #if NBPF > 0
82 #include <net/bpf.h>
83 #endif
84 
85 #include <vm/vm.h>              /* for vtophys */
86 #include <vm/pmap.h>            /* for vtophys */
87 #include <machine/clock.h>      /* for DELAY */
88 #include <machine/bus_pio.h>
89 #include <machine/bus_memio.h>
90 #include <machine/bus.h>
91 #include <machine/resource.h>
92 #include <sys/bus.h>
93 #include <sys/rman.h>
94 
95 #include <pci/pcireg.h>
96 #include <pci/pcivar.h>
97 
98 #define SK_USEIOSPACE
99 
100 #include <pci/if_skreg.h>
101 #include <pci/xmaciireg.h>
102 
103 #ifndef lint
104 static const char rcsid[] =
105   "$FreeBSD$";
106 #endif
107 
108 static struct sk_type sk_devs[] = {
109 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
110 	{ 0, 0, NULL }
111 };
112 
113 static unsigned long sk_count = 0;
114 static int sk_probe		__P((device_t));
115 static int sk_attach		__P((device_t));
116 static int sk_detach		__P((device_t));
117 static int sk_attach_xmac	__P((struct sk_softc *, int));
118 static void sk_intr		__P((void *));
119 static void sk_intr_xmac	__P((struct sk_if_softc *));
120 static void sk_rxeof		__P((struct sk_if_softc *));
121 static void sk_txeof		__P((struct sk_if_softc *));
122 static int sk_encap		__P((struct sk_if_softc *, struct mbuf *,
123 					u_int32_t *));
124 static void sk_start		__P((struct ifnet *));
125 static int sk_ioctl		__P((struct ifnet *, u_long, caddr_t));
126 static void sk_init		__P((void *));
127 static void sk_init_xmac	__P((struct sk_if_softc *));
128 static void sk_stop		__P((struct sk_if_softc *));
129 static void sk_watchdog		__P((struct ifnet *));
130 static void sk_shutdown		__P((device_t));
131 static int sk_ifmedia_upd	__P((struct ifnet *));
132 static void sk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
133 static void sk_reset		__P((struct sk_softc *));
134 static int sk_newbuf		__P((struct sk_if_softc *,
135 					struct sk_chain *, struct mbuf *));
136 static int sk_alloc_jumbo_mem	__P((struct sk_if_softc *));
137 static void *sk_jalloc		__P((struct sk_if_softc *));
138 static void sk_jfree		__P((caddr_t, u_int));
139 static void sk_jref		__P((caddr_t, u_int));
140 static int sk_init_rx_ring	__P((struct sk_if_softc *));
141 static void sk_init_tx_ring	__P((struct sk_if_softc *));
142 #ifdef notdef
143 static u_int32_t sk_win_read_4	__P((struct sk_softc *, int));
144 #endif
145 static u_int16_t sk_win_read_2	__P((struct sk_softc *, int));
146 static u_int8_t sk_win_read_1	__P((struct sk_softc *, int));
147 static void sk_win_write_4	__P((struct sk_softc *, int, u_int32_t));
148 static void sk_win_write_2	__P((struct sk_softc *, int, u_int32_t));
149 static void sk_win_write_1	__P((struct sk_softc *, int, u_int32_t));
150 static u_int8_t sk_vpd_readbyte	__P((struct sk_softc *, int));
151 static void sk_vpd_read_res	__P((struct sk_softc *,
152 					struct vpd_res *, int));
153 static void sk_vpd_read		__P((struct sk_softc *));
154 static u_int16_t sk_phy_readreg	__P((struct sk_if_softc *, int));
155 static void sk_phy_writereg	__P((struct sk_if_softc *, int, u_int32_t));
156 static u_int32_t sk_calchash	__P((caddr_t));
157 static void sk_setfilt		__P((struct sk_if_softc *, caddr_t, int));
158 static void sk_setmulti		__P((struct sk_if_softc *));
159 
160 #ifdef SK_USEIOSPACE
161 #define SK_RES		SYS_RES_IOPORT
162 #define SK_RID		SK_PCI_LOIO
163 #else
164 #define SK_RES		SYS_RES_MEMORY
165 #define SK_RID		SK_PCI_LOMEM
166 #endif
167 
168 static device_method_t sk_methods[] = {
169 	/* Device interface */
170 	DEVMETHOD(device_probe,		sk_probe),
171 	DEVMETHOD(device_attach,	sk_attach),
172 	DEVMETHOD(device_detach,	sk_detach),
173 	DEVMETHOD(device_shutdown,	sk_shutdown),
174 	{ 0, 0 }
175 };
176 
177 static driver_t sk_driver = {
178 	"skc",
179 	sk_methods,
180 	sizeof(struct sk_softc)
181 };
182 
183 static devclass_t sk_devclass;
184 
185 DRIVER_MODULE(sk, pci, sk_driver, sk_devclass, 0, 0);
186 
187 #define SK_SETBIT(sc, reg, x)		\
188 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
189 
190 #define SK_CLRBIT(sc, reg, x)		\
191 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
192 
193 #define SK_WIN_SETBIT_4(sc, reg, x)	\
194 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
195 
196 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
197 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
198 
199 #define SK_WIN_SETBIT_2(sc, reg, x)	\
200 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
201 
202 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
203 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
204 
205 #ifdef notdef
206 static u_int32_t sk_win_read_4(sc, reg)
207 	struct sk_softc		*sc;
208 	int			reg;
209 {
210 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
211 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
212 }
213 #endif
214 
215 static u_int16_t sk_win_read_2(sc, reg)
216 	struct sk_softc		*sc;
217 	int			reg;
218 {
219 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
220 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
221 }
222 
223 static u_int8_t sk_win_read_1(sc, reg)
224 	struct sk_softc		*sc;
225 	int			reg;
226 {
227 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
228 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
229 }
230 
231 static void sk_win_write_4(sc, reg, val)
232 	struct sk_softc		*sc;
233 	int			reg;
234 	u_int32_t		val;
235 {
236 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
237 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
238 	return;
239 }
240 
241 static void sk_win_write_2(sc, reg, val)
242 	struct sk_softc		*sc;
243 	int			reg;
244 	u_int32_t		val;
245 {
246 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
247 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
248 	return;
249 }
250 
251 static void sk_win_write_1(sc, reg, val)
252 	struct sk_softc		*sc;
253 	int			reg;
254 	u_int32_t		val;
255 {
256 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
257 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
258 	return;
259 }
260 
261 /*
262  * The VPD EEPROM contains Vital Product Data, as suggested in
263  * the PCI 2.1 specification. The VPD data is separared into areas
264  * denoted by resource IDs. The SysKonnect VPD contains an ID string
265  * resource (the name of the adapter), a read-only area resource
266  * containing various key/data fields and a read/write area which
267  * can be used to store asset management information or log messages.
268  * We read the ID string and read-only into buffers attached to
269  * the controller softc structure for later use. At the moment,
270  * we only use the ID string during sk_attach().
271  */
272 static u_int8_t sk_vpd_readbyte(sc, addr)
273 	struct sk_softc		*sc;
274 	int			addr;
275 {
276 	int			i;
277 
278 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
279 	for (i = 0; i < SK_TIMEOUT; i++) {
280 		DELAY(1);
281 		if (sk_win_read_2(sc,
282 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
283 			break;
284 	}
285 
286 	if (i == SK_TIMEOUT)
287 		return(0);
288 
289 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
290 }
291 
292 static void sk_vpd_read_res(sc, res, addr)
293 	struct sk_softc		*sc;
294 	struct vpd_res		*res;
295 	int			addr;
296 {
297 	int			i;
298 	u_int8_t		*ptr;
299 
300 	ptr = (u_int8_t *)res;
301 	for (i = 0; i < sizeof(struct vpd_res); i++)
302 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
303 
304 	return;
305 }
306 
307 static void sk_vpd_read(sc)
308 	struct sk_softc		*sc;
309 {
310 	int			pos = 0, i;
311 	struct vpd_res		res;
312 
313 	if (sc->sk_vpd_prodname != NULL)
314 		free(sc->sk_vpd_prodname, M_DEVBUF);
315 	if (sc->sk_vpd_readonly != NULL)
316 		free(sc->sk_vpd_readonly, M_DEVBUF);
317 	sc->sk_vpd_prodname = NULL;
318 	sc->sk_vpd_readonly = NULL;
319 
320 	sk_vpd_read_res(sc, &res, pos);
321 
322 	if (res.vr_id != VPD_RES_ID) {
323 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
324 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
325 		return;
326 	}
327 
328 	pos += sizeof(res);
329 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
330 	for (i = 0; i < res.vr_len; i++)
331 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
332 	sc->sk_vpd_prodname[i] = '\0';
333 	pos += i;
334 
335 	sk_vpd_read_res(sc, &res, pos);
336 
337 	if (res.vr_id != VPD_RES_READ) {
338 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
339 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
340 		return;
341 	}
342 
343 	pos += sizeof(res);
344 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
345 	for (i = 0; i < res.vr_len + 1; i++)
346 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
347 
348 	return;
349 }
350 
351 static u_int16_t sk_phy_readreg(sc_if, reg)
352 	struct sk_if_softc	*sc_if;
353 	int			reg;
354 {
355 	int			i;
356 
357 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg);
358 	for (i = 0; i < SK_TIMEOUT; i++) {
359 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
360 			break;
361 	}
362 
363 	if (i == SK_TIMEOUT) {
364 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
365 		return(0);
366 	}
367 
368 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
369 }
370 
371 static void sk_phy_writereg(sc_if, reg, val)
372 	struct sk_if_softc	*sc_if;
373 	int			reg;
374 	u_int32_t		val;
375 {
376 	int			i;
377 
378 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg);
379 	for (i = 0; i < SK_TIMEOUT; i++) {
380 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
381 			break;
382 	}
383 
384 	if (i == SK_TIMEOUT) {
385 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
386 		return;
387 	}
388 
389 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
390 	for (i = 0; i < SK_TIMEOUT; i++) {
391 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
392 			break;
393 	}
394 
395 	if (i == SK_TIMEOUT)
396 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
397 
398 	return;
399 }
400 
401 #define SK_POLY		0xEDB88320
402 #define SK_BITS		6
403 
404 static u_int32_t sk_calchash(addr)
405 	caddr_t			addr;
406 {
407 	u_int32_t		idx, bit, data, crc;
408 
409 	/* Compute CRC for the address value. */
410 	crc = 0xFFFFFFFF; /* initial value */
411 
412 	for (idx = 0; idx < 6; idx++) {
413 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
414 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
415 	}
416 
417 	return (~crc & ((1 << SK_BITS) - 1));
418 }
419 
420 static void sk_setfilt(sc_if, addr, slot)
421 	struct sk_if_softc	*sc_if;
422 	caddr_t			addr;
423 	int			slot;
424 {
425 	int			base;
426 
427 	base = XM_RXFILT_ENTRY(slot);
428 
429 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
430 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
431 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
432 
433 	return;
434 }
435 
436 static void sk_setmulti(sc_if)
437 	struct sk_if_softc	*sc_if;
438 {
439 	struct ifnet		*ifp;
440 	u_int32_t		hashes[2] = { 0, 0 };
441 	int			h, i;
442 	struct ifmultiaddr	*ifma;
443 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
444 
445 	ifp = &sc_if->arpcom.ac_if;
446 
447 	/* First, zot all the existing filters. */
448 	for (i = 1; i < XM_RXFILT_MAX; i++)
449 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
450 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
451 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
452 
453 	/* Now program new ones. */
454 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
455 		hashes[0] = 0xFFFFFFFF;
456 		hashes[1] = 0xFFFFFFFF;
457 	} else {
458 		i = 1;
459 		/* First find the tail of the list. */
460 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
461 					ifma = ifma->ifma_link.le_next) {
462 			if (ifma->ifma_link.le_next == NULL)
463 				break;
464 		}
465 		/* Now traverse the list backwards. */
466 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
467 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
468 			if (ifma->ifma_addr->sa_family != AF_LINK)
469 				continue;
470 			/*
471 			 * Program the first XM_RXFILT_MAX multicast groups
472 			 * into the perfect filter. For all others,
473 			 * use the hash table.
474 			 */
475 			if (i < XM_RXFILT_MAX) {
476 				sk_setfilt(sc_if,
477 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
478 				i++;
479 				continue;
480 			}
481 
482 			h = sk_calchash(
483 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
484 			if (h < 32)
485 				hashes[0] |= (1 << h);
486 			else
487 				hashes[1] |= (1 << (h - 32));
488 		}
489 	}
490 
491 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
492 	    XM_MODE_RX_USE_PERFECT);
493 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
494 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
495 
496 	return;
497 }
498 
499 static int sk_init_rx_ring(sc_if)
500 	struct sk_if_softc	*sc_if;
501 {
502 	struct sk_chain_data	*cd;
503 	struct sk_ring_data	*rd;
504 	int			i;
505 
506 	cd = &sc_if->sk_cdata;
507 	rd = sc_if->sk_rdata;
508 
509 	bzero((char *)rd->sk_rx_ring,
510 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
511 
512 	for (i = 0; i < SK_RX_RING_CNT; i++) {
513 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
514 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
515 			return(ENOBUFS);
516 		if (i == (SK_RX_RING_CNT - 1)) {
517 			cd->sk_rx_chain[i].sk_next =
518 			    &cd->sk_rx_chain[0];
519 			rd->sk_rx_ring[i].sk_next =
520 			    vtophys(&rd->sk_rx_ring[0]);
521 		} else {
522 			cd->sk_rx_chain[i].sk_next =
523 			    &cd->sk_rx_chain[i + 1];
524 			rd->sk_rx_ring[i].sk_next =
525 			    vtophys(&rd->sk_rx_ring[i + 1]);
526 		}
527 	}
528 
529 	sc_if->sk_cdata.sk_rx_prod = 0;
530 	sc_if->sk_cdata.sk_rx_cons = 0;
531 
532 	return(0);
533 }
534 
535 static void sk_init_tx_ring(sc_if)
536 	struct sk_if_softc	*sc_if;
537 {
538 	struct sk_chain_data	*cd;
539 	struct sk_ring_data	*rd;
540 	int			i;
541 
542 	cd = &sc_if->sk_cdata;
543 	rd = sc_if->sk_rdata;
544 
545 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
546 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
547 
548 	for (i = 0; i < SK_TX_RING_CNT; i++) {
549 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
550 		if (i == (SK_TX_RING_CNT - 1)) {
551 			cd->sk_tx_chain[i].sk_next =
552 			    &cd->sk_tx_chain[0];
553 			rd->sk_tx_ring[i].sk_next =
554 			    vtophys(&rd->sk_tx_ring[0]);
555 		} else {
556 			cd->sk_tx_chain[i].sk_next =
557 			    &cd->sk_tx_chain[i + 1];
558 			rd->sk_tx_ring[i].sk_next =
559 			    vtophys(&rd->sk_tx_ring[i + 1]);
560 		}
561 	}
562 
563 	sc_if->sk_cdata.sk_tx_prod = 0;
564 	sc_if->sk_cdata.sk_tx_cons = 0;
565 	sc_if->sk_cdata.sk_tx_cnt = 0;
566 
567 	return;
568 }
569 
570 static int sk_newbuf(sc_if, c, m)
571 	struct sk_if_softc	*sc_if;
572 	struct sk_chain		*c;
573 	struct mbuf		*m;
574 {
575 	struct mbuf		*m_new = NULL;
576 	struct sk_rx_desc	*r;
577 
578 	if (m == NULL) {
579 		caddr_t			*buf = NULL;
580 
581 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
582 		if (m_new == NULL) {
583 			printf("sk%d: no memory for rx list -- "
584 			    "packet dropped!\n", sc_if->sk_unit);
585 			return(ENOBUFS);
586 		}
587 
588 		/* Allocate the jumbo buffer */
589 		buf = sk_jalloc(sc_if);
590 		if (buf == NULL) {
591 			m_freem(m_new);
592 #ifdef SK_VERBOSE
593 			printf("sk%d: jumbo allocation failed "
594 			    "-- packet dropped!\n", sc_if->sk_unit);
595 #endif
596 			return(ENOBUFS);
597 		}
598 
599 		/* Attach the buffer to the mbuf */
600 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
601 		m_new->m_flags |= M_EXT;
602 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
603 		    m_new->m_len = SK_MCLBYTES;
604 		m_new->m_ext.ext_free = sk_jfree;
605 		m_new->m_ext.ext_ref = sk_jref;
606 	} else {
607 		/*
608 	 	 * We're re-using a previously allocated mbuf;
609 		 * be sure to re-init pointers and lengths to
610 		 * default values.
611 		 */
612 		m_new = m;
613 		m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
614 		m_new->m_data = m_new->m_ext.ext_buf;
615 	}
616 
617 	/*
618 	 * Adjust alignment so packet payload begins on a
619 	 * longword boundary. Mandatory for Alpha, useful on
620 	 * x86 too.
621 	 */
622 	m_adj(m_new, ETHER_ALIGN);
623 
624 	r = c->sk_desc;
625 	c->sk_mbuf = m_new;
626 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
627 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
628 
629 	return(0);
630 }
631 
632 /*
633  * Allocate jumbo buffer storage. The SysKonnect adapters support
634  * "jumbograms" (9K frames), although SysKonnect doesn't currently
635  * use them in their drivers. In order for us to use them, we need
636  * large 9K receive buffers, however standard mbuf clusters are only
637  * 2048 bytes in size. Consequently, we need to allocate and manage
638  * our own jumbo buffer pool. Fortunately, this does not require an
639  * excessive amount of additional code.
640  */
641 static int sk_alloc_jumbo_mem(sc_if)
642 	struct sk_if_softc	*sc_if;
643 {
644 	caddr_t			ptr;
645 	register int		i;
646 	struct sk_jpool_entry   *entry;
647 
648 	/* Grab a big chunk o' storage. */
649 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
650 	    M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
651 
652 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
653 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
654 		return(ENOBUFS);
655 	}
656 
657 	SLIST_INIT(&sc_if->sk_jfree_listhead);
658 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
659 
660 	/*
661 	 * Now divide it up into 9K pieces and save the addresses
662 	 * in an array. Note that we play an evil trick here by using
663 	 * the first few bytes in the buffer to hold the the address
664 	 * of the softc structure for this interface. This is because
665 	 * sk_jfree() needs it, but it is called by the mbuf management
666 	 * code which will not pass it to us explicitly.
667 	 */
668 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
669 	for (i = 0; i < SK_JSLOTS; i++) {
670 		u_int64_t		**aptr;
671 		aptr = (u_int64_t **)ptr;
672 		aptr[0] = (u_int64_t *)sc_if;
673 		ptr += sizeof(u_int64_t);
674 		sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
675 		sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
676 		ptr += SK_MCLBYTES;
677 		entry = malloc(sizeof(struct sk_jpool_entry),
678 		    M_DEVBUF, M_NOWAIT);
679 		if (entry == NULL) {
680 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
681 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
682 			printf("sk%d: no memory for jumbo "
683 			    "buffer queue!\n", sc_if->sk_unit);
684 			return(ENOBUFS);
685 		}
686 		entry->slot = i;
687 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
688 		    entry, jpool_entries);
689 	}
690 
691 	return(0);
692 }
693 
694 /*
695  * Allocate a jumbo buffer.
696  */
697 static void *sk_jalloc(sc_if)
698 	struct sk_if_softc	*sc_if;
699 {
700 	struct sk_jpool_entry   *entry;
701 
702 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
703 
704 	if (entry == NULL) {
705 #ifdef SK_VERBOSE
706 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
707 #endif
708 		return(NULL);
709 	}
710 
711 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
712 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
713 	sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
714 	return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
715 }
716 
717 /*
718  * Adjust usage count on a jumbo buffer. In general this doesn't
719  * get used much because our jumbo buffers don't get passed around
720  * a lot, but it's implemented for correctness.
721  */
722 static void sk_jref(buf, size)
723 	caddr_t			buf;
724 	u_int			size;
725 {
726 	struct sk_if_softc	*sc_if;
727 	u_int64_t		**aptr;
728 	register int		i;
729 
730 	/* Extract the softc struct pointer. */
731 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
732 	sc_if = (struct sk_if_softc *)(aptr[0]);
733 
734 	if (sc_if == NULL)
735 		panic("sk_jref: can't find softc pointer!");
736 
737 	if (size != SK_MCLBYTES)
738 		panic("sk_jref: adjusting refcount of buf of wrong size!");
739 
740 	/* calculate the slot this buffer belongs to */
741 
742 	i = ((vm_offset_t)aptr
743 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
744 
745 	if ((i < 0) || (i >= SK_JSLOTS))
746 		panic("sk_jref: asked to reference buffer "
747 		    "that we don't manage!");
748 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
749 		panic("sk_jref: buffer already free!");
750 	else
751 		sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
752 
753 	return;
754 }
755 
756 /*
757  * Release a jumbo buffer.
758  */
759 static void sk_jfree(buf, size)
760 	caddr_t			buf;
761 	u_int			size;
762 {
763 	struct sk_if_softc	*sc_if;
764 	u_int64_t		**aptr;
765 	int		        i;
766 	struct sk_jpool_entry   *entry;
767 
768 	/* Extract the softc struct pointer. */
769 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
770 	sc_if = (struct sk_if_softc *)(aptr[0]);
771 
772 	if (sc_if == NULL)
773 		panic("sk_jfree: can't find softc pointer!");
774 
775 	if (size != SK_MCLBYTES)
776 		panic("sk_jfree: freeing buffer of wrong size!");
777 
778 	/* calculate the slot this buffer belongs to */
779 
780 	i = ((vm_offset_t)aptr
781 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
782 
783 	if ((i < 0) || (i >= SK_JSLOTS))
784 		panic("sk_jfree: asked to free buffer that we don't manage!");
785 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
786 		panic("sk_jfree: buffer already free!");
787 	else {
788 		sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
789 		if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
790 			entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
791 			if (entry == NULL)
792 				panic("sk_jfree: buffer not in use!");
793 			entry->slot = i;
794 			SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
795 					  jpool_entries);
796 			SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
797 					  entry, jpool_entries);
798 		}
799 	}
800 
801 	return;
802 }
803 
804 /*
805  * Set media options.
806  */
807 static int sk_ifmedia_upd(ifp)
808 	struct ifnet		*ifp;
809 {
810 	struct sk_if_softc	*sc_if;
811 	struct ifmedia		*ifm;
812 
813 	sc_if = ifp->if_softc;
814 	ifm = &sc_if->ifmedia;
815 
816 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
817 		return(EINVAL);
818 
819 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
820 	case IFM_AUTO:
821 		sk_phy_writereg(sc_if, XM_PHY_BMCR,
822 		    XM_BMCR_RENEGOTIATE|XM_BMCR_AUTONEGENBL);
823 		break;
824 	case IFM_1000_LX:
825 	case IFM_1000_SX:
826 	case IFM_1000_CX:
827 	case IFM_1000_TX:
828 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
829 			sk_phy_writereg(sc_if, XM_PHY_BMCR, XM_BMCR_DUPLEX);
830 		else
831 			sk_phy_writereg(sc_if, XM_PHY_BMCR, 0);
832 		break;
833 	default:
834 		printf("sk%d: invalid media selected\n", sc_if->sk_unit);
835 		return(EINVAL);
836 		break;
837 	}
838 
839 	return(0);
840 }
841 
842 /*
843  * Report current media status.
844  */
845 static void sk_ifmedia_sts(ifp, ifmr)
846 	struct ifnet		*ifp;
847 	struct ifmediareq	*ifmr;
848 {
849 	struct sk_softc		*sc;
850 	struct sk_if_softc	*sc_if;
851 	u_int16_t		bmsr, extsts;
852 
853 	sc_if = ifp->if_softc;
854 	sc = sc_if->sk_softc;
855 
856 	ifmr->ifm_status = IFM_AVALID;
857 	ifmr->ifm_active = IFM_ETHER;
858 
859 	bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR);
860 	extsts = sk_phy_readreg(sc_if, XM_PHY_EXTSTS);
861 
862 	if (!(bmsr & XM_BMSR_LINKSTAT))
863 		return;
864 
865 	ifmr->ifm_status |= IFM_ACTIVE;
866 	ifmr->ifm_active |= sc->sk_pmd;;
867 	if (extsts & XM_EXTSTS_FULLDUPLEX)
868 		ifmr->ifm_active |= IFM_FDX;
869 	else
870 		ifmr->ifm_active |= IFM_HDX;
871 
872 	return;
873 }
874 
875 static int sk_ioctl(ifp, command, data)
876 	struct ifnet		*ifp;
877 	u_long			command;
878 	caddr_t			data;
879 {
880 	struct sk_if_softc	*sc_if = ifp->if_softc;
881 	struct ifreq		*ifr = (struct ifreq *) data;
882 	int			s, error = 0;
883 
884 	s = splimp();
885 
886 	switch(command) {
887 	case SIOCSIFADDR:
888 	case SIOCGIFADDR:
889 		error = ether_ioctl(ifp, command, data);
890 		break;
891 	case SIOCSIFMTU:
892 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
893 			error = EINVAL;
894 		else {
895 			ifp->if_mtu = ifr->ifr_mtu;
896 			sk_init(sc_if);
897 		}
898 		break;
899 	case SIOCSIFFLAGS:
900 		if (ifp->if_flags & IFF_UP) {
901 			if (ifp->if_flags & IFF_RUNNING &&
902 			    ifp->if_flags & IFF_PROMISC &&
903 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
904 				SK_XM_SETBIT_4(sc_if, XM_MODE,
905 				    XM_MODE_RX_PROMISC);
906 				sk_setmulti(sc_if);
907 			} else if (ifp->if_flags & IFF_RUNNING &&
908 			    !(ifp->if_flags & IFF_PROMISC) &&
909 			    sc_if->sk_if_flags & IFF_PROMISC) {
910 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
911 				    XM_MODE_RX_PROMISC);
912 				sk_setmulti(sc_if);
913 			} else
914 				sk_init(sc_if);
915 		} else {
916 			if (ifp->if_flags & IFF_RUNNING)
917 				sk_stop(sc_if);
918 		}
919 		sc_if->sk_if_flags = ifp->if_flags;
920 		error = 0;
921 		break;
922 	case SIOCADDMULTI:
923 	case SIOCDELMULTI:
924 		sk_setmulti(sc_if);
925 		error = 0;
926 		break;
927 	case SIOCGIFMEDIA:
928 	case SIOCSIFMEDIA:
929 		error = ifmedia_ioctl(ifp, ifr, &sc_if->ifmedia, command);
930 		break;
931 	default:
932 		error = EINVAL;
933 		break;
934 	}
935 
936 	(void)splx(s);
937 
938 	return(error);
939 }
940 
941 /*
942  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
943  * IDs against our list and return a device name if we find a match.
944  */
945 static int sk_probe(dev)
946 	device_t		dev;
947 {
948 	struct sk_type		*t;
949 
950 	t = sk_devs;
951 
952 	while(t->sk_name != NULL) {
953 		if ((pci_get_vendor(dev) == t->sk_vid) &&
954 		    (pci_get_device(dev) == t->sk_did)) {
955 			device_set_desc(dev, t->sk_name);
956 			return(0);
957 		}
958 		t++;
959 	}
960 
961 	return(ENXIO);
962 }
963 
964 /*
965  * Force the GEnesis into reset, then bring it out of reset.
966  */
967 static void sk_reset(sc)
968 	struct sk_softc		*sc;
969 {
970 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
971 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
972 	DELAY(1000);
973 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
974 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
975 
976 	/* Configure packet arbiter */
977 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
978 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
979 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
980 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
981 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
982 
983 	/* Enable RAM interface */
984 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
985 
986 	/*
987          * Configure interrupt moderation. The moderation timer
988 	 * defers interrupts specified in the interrupt moderation
989 	 * timer mask based on the timeout specified in the interrupt
990 	 * moderation timer init register. Each bit in the timer
991 	 * register represents 18.825ns, so to specify a timeout in
992 	 * microseconds, we have to multiply by 54.
993 	 */
994         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
995         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
996 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
997         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
998 
999 	return;
1000 }
1001 
1002 /*
1003  * Each XMAC chip is attached as a separate logical IP interface.
1004  * Single port cards will have only one logical interface of course.
1005  */
1006 static int sk_attach_xmac(sc, port)
1007 	struct sk_softc		*sc;
1008 	int			port;
1009 {
1010 	struct sk_if_softc	*sc_if;
1011 	struct ifnet		*ifp;
1012 	int			i;
1013 
1014 	if (sc == NULL)
1015 		return(EINVAL);
1016 
1017 	if (port != SK_PORT_A && port != SK_PORT_B)
1018 		return(EINVAL);
1019 
1020 	sc_if = malloc(sizeof(struct sk_if_softc), M_DEVBUF, M_NOWAIT);
1021 	if (sc_if == NULL) {
1022 		printf("sk%d: no memory for interface softc!\n", sc->sk_unit);
1023 		return(ENOMEM);
1024 	}
1025 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1026 
1027 	sc_if->sk_unit = sk_count;
1028 	sc_if->sk_port = port;
1029 	sk_count++;
1030 	sc_if->sk_softc = sc;
1031 	sc->sk_if[port] = sc_if;
1032 	if (port == SK_PORT_A)
1033 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1034 	if (port == SK_PORT_B)
1035 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1036 
1037 	/*
1038 	 * Get station address for this interface. Note that
1039 	 * dual port cards actually come with three station
1040 	 * addresses: one for each port, plus an extra. The
1041 	 * extra one is used by the SysKonnect driver software
1042 	 * as a 'virtual' station address for when both ports
1043 	 * are operating in failover mode. Currently we don't
1044 	 * use this extra address.
1045 	 */
1046 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1047 		sc_if->arpcom.ac_enaddr[i] =
1048 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1049 
1050 	printf("sk%d: <XaQti Corp. XMAC II> at skc%d port %d\n",
1051 	    sc_if->sk_unit, sc->sk_unit, port);
1052 
1053 	printf("sk%d: Ethernet address: %6D\n",
1054 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1055 
1056 	/*
1057 	 * Set up RAM buffer addresses. The NIC will have a certain
1058 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1059 	 * need to divide this up a) between the transmitter and
1060  	 * receiver and b) between the two XMACs, if this is a
1061 	 * dual port NIC. Our algotithm is to divide up the memory
1062 	 * evenly so that everyone gets a fair share.
1063 	 */
1064 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1065 		u_int32_t		chunk, val;
1066 
1067 		chunk = sc->sk_ramsize / 2;
1068 		val = sc->sk_rboff / sizeof(u_int64_t);
1069 		sc_if->sk_rx_ramstart = val;
1070 		val += (chunk / sizeof(u_int64_t));
1071 		sc_if->sk_rx_ramend = val - 1;
1072 		sc_if->sk_tx_ramstart = val;
1073 		val += (chunk / sizeof(u_int64_t));
1074 		sc_if->sk_tx_ramend = val - 1;
1075 	} else {
1076 		u_int32_t		chunk, val;
1077 
1078 		chunk = sc->sk_ramsize / 4;
1079 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1080 		    sizeof(u_int64_t);
1081 		sc_if->sk_rx_ramstart = val;
1082 		val += (chunk / sizeof(u_int64_t));
1083 		sc_if->sk_rx_ramend = val - 1;
1084 		sc_if->sk_tx_ramstart = val;
1085 		val += (chunk / sizeof(u_int64_t));
1086 		sc_if->sk_tx_ramend = val - 1;
1087 	}
1088 
1089 	/* Allocate the descriptor queues. */
1090 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1091 	    M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
1092 
1093 	if (sc_if->sk_rdata == NULL) {
1094 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1095 		free(sc_if, M_DEVBUF);
1096 		sc->sk_if[port] = NULL;
1097 		return(ENOMEM);
1098 	}
1099 
1100 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1101 
1102 	/* Try to allocate memory for jumbo buffers. */
1103 	if (sk_alloc_jumbo_mem(sc_if)) {
1104 		printf("sk%d: jumbo buffer allocation failed\n",
1105 		    sc_if->sk_unit);
1106 		free(sc_if->sk_rdata, M_DEVBUF);
1107 		free(sc_if, M_DEVBUF);
1108 		sc->sk_if[port] = NULL;
1109 		return(ENOMEM);
1110 	}
1111 
1112 	ifp = &sc_if->arpcom.ac_if;
1113 	ifp->if_softc = sc_if;
1114 	ifp->if_unit = sc_if->sk_unit;
1115 	ifp->if_name = "sk";
1116 	ifp->if_mtu = ETHERMTU;
1117 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1118 	ifp->if_ioctl = sk_ioctl;
1119 	ifp->if_output = ether_output;
1120 	ifp->if_start = sk_start;
1121 	ifp->if_watchdog = sk_watchdog;
1122 	ifp->if_init = sk_init;
1123 	ifp->if_baudrate = 1000000000;
1124 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1125 
1126 	/*
1127 	 * Do ifmedia setup.
1128 	 */
1129 	ifmedia_init(&sc_if->ifmedia, 0, sk_ifmedia_upd, sk_ifmedia_sts);
1130 	ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd, 0, NULL);
1131 	ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_FDX, 0, NULL);
1132 	ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_HDX, 0, NULL);
1133 	ifmedia_add(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1134 	ifmedia_set(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO);
1135 
1136 	/*
1137 	 * Call MI attach routines.
1138 	 */
1139 	if_attach(ifp);
1140 	ether_ifattach(ifp);
1141 
1142 #if NBPF > 0
1143 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1144 #endif
1145 
1146 	return(0);
1147 }
1148 
1149 /*
1150  * Attach the interface. Allocate softc structures, do ifmedia
1151  * setup and ethernet/BPF attach.
1152  */
1153 static int sk_attach(dev)
1154 	device_t		dev;
1155 {
1156 	int			s;
1157 	u_int32_t		command;
1158 	struct sk_softc		*sc;
1159 	int			unit, error = 0, rid;
1160 
1161 	s = splimp();
1162 
1163 	sc = device_get_softc(dev);
1164 	unit = device_get_unit(dev);
1165 	bzero(sc, sizeof(struct sk_softc));
1166 
1167 	/*
1168 	 * Handle power management nonsense.
1169 	 */
1170 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1171 	if (command == 0x01) {
1172 
1173 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1174 		if (command & SK_PSTATE_MASK) {
1175 			u_int32_t		iobase, membase, irq;
1176 
1177 			/* Save important PCI config data. */
1178 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1179 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1180 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1181 
1182 			/* Reset the power state. */
1183 			printf("skc%d: chip is in D%d power mode "
1184 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1185 			command &= 0xFFFFFFFC;
1186 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1187 
1188 			/* Restore PCI config data. */
1189 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1190 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1191 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1192 		}
1193 	}
1194 
1195 	/*
1196 	 * Map control/status registers.
1197 	 */
1198 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1199 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1200 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1201 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1202 
1203 #ifdef SK_USEIOSPACE
1204 	if (!(command & PCIM_CMD_PORTEN)) {
1205 		printf("skc%d: failed to enable I/O ports!\n", unit);
1206 		error = ENXIO;
1207 		goto fail;
1208 	}
1209 #else
1210 	if (!(command & PCIM_CMD_MEMEN)) {
1211 		printf("skc%d: failed to enable memory mapping!\n", unit);
1212 		error = ENXIO;
1213 		goto fail;
1214 	}
1215 #endif
1216 
1217 	rid = SK_RID;
1218 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1219 	    0, ~0, 1, RF_ACTIVE);
1220 
1221 	if (sc->sk_res == NULL) {
1222 		printf("sk%d: couldn't map ports/memory\n", unit);
1223 		error = ENXIO;
1224 		goto fail;
1225 	}
1226 
1227 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1228 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1229 
1230 	/* Allocate interrupt */
1231 	rid = 0;
1232 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1233 	    RF_SHAREABLE | RF_ACTIVE);
1234 
1235 	if (sc->sk_irq == NULL) {
1236 		printf("skc%d: couldn't map interrupt\n", unit);
1237 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1238 		error = ENXIO;
1239 		goto fail;
1240 	}
1241 
1242 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1243 	    sk_intr, sc, &sc->sk_intrhand);
1244 
1245 	if (error) {
1246 		printf("skc%d: couldn't set up irq\n", unit);
1247 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1248 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_res);
1249 		goto fail;
1250 	}
1251 
1252 	/* Reset the adapter. */
1253 	sk_reset(sc);
1254 
1255 	sc->sk_unit = unit;
1256 
1257 	/* Read and save vital product data from EEPROM. */
1258 	sk_vpd_read(sc);
1259 
1260 	/* Read and save RAM size and RAMbuffer offset */
1261 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1262 	case SK_RAMSIZE_512K_64:
1263 		sc->sk_ramsize = 0x80000;
1264 		sc->sk_rboff = SK_RBOFF_0;
1265 		break;
1266 	case SK_RAMSIZE_1024K_64:
1267 		sc->sk_ramsize = 0x100000;
1268 		sc->sk_rboff = SK_RBOFF_80000;
1269 		break;
1270 	case SK_RAMSIZE_1024K_128:
1271 		sc->sk_ramsize = 0x100000;
1272 		sc->sk_rboff = SK_RBOFF_0;
1273 		break;
1274 	case SK_RAMSIZE_2048K_128:
1275 		sc->sk_ramsize = 0x200000;
1276 		sc->sk_rboff = SK_RBOFF_0;
1277 		break;
1278 	default:
1279 		printf("skc%d: unknown ram size: %d\n",
1280 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1281 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1282 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1283 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1284 		error = ENXIO;
1285 		goto fail;
1286 		break;
1287 	}
1288 
1289 	/* Read and save physical media type */
1290 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1291 	case SK_PMD_1000BASESX:
1292 		sc->sk_pmd = IFM_1000_SX;
1293 		break;
1294 	case SK_PMD_1000BASELX:
1295 		sc->sk_pmd = IFM_1000_LX;
1296 		break;
1297 	case SK_PMD_1000BASECX:
1298 		sc->sk_pmd = IFM_1000_CX;
1299 		break;
1300 	case SK_PMD_1000BASETX:
1301 		sc->sk_pmd = IFM_1000_TX;
1302 		break;
1303 	default:
1304 		printf("skc%d: unknown media type: 0x%x\n",
1305 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1306 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1307 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1308 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1309 		error = ENXIO;
1310 		goto fail;
1311 	}
1312 
1313 	/* Announce the product name. */
1314 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1315 
1316 	sk_attach_xmac(sc, SK_PORT_A);
1317 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC))
1318 		sk_attach_xmac(sc, SK_PORT_B);
1319 
1320 	/* Turn on the 'driver is loaded' LED. */
1321 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1322 
1323 fail:
1324 	splx(s);
1325 	return(error);
1326 }
1327 
1328 static int sk_detach(dev)
1329 	device_t		dev;
1330 {
1331 	struct sk_softc		*sc;
1332 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1333 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1334 	int			s;
1335 
1336 	s = splimp();
1337 
1338 	sc = device_get_softc(dev);
1339 	sc_if0 = sc->sk_if[SK_PORT_A];
1340 	ifp0 = &sc_if0->arpcom.ac_if;
1341 	sk_stop(sc_if0);
1342 	if_detach(ifp0);
1343 	free(sc_if0->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1344 	ifmedia_removeall(&sc_if0->ifmedia);
1345 	if (sc->sk_if[SK_PORT_B] != NULL) {
1346 		sc_if1 = sc->sk_if[SK_PORT_B];
1347 		ifp1 = &sc_if1->arpcom.ac_if;
1348 		sk_stop(sc_if1);
1349 		if_detach(ifp1);
1350 		free(sc_if1->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1351 		ifmedia_removeall(&sc_if1->ifmedia);
1352 	}
1353 
1354 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1355 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1356 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1357 
1358 	splx(s);
1359 
1360 	return(0);
1361 }
1362 
1363 static int sk_encap(sc_if, m_head, txidx)
1364         struct sk_if_softc	*sc_if;
1365         struct mbuf		*m_head;
1366         u_int32_t		*txidx;
1367 {
1368 	struct sk_tx_desc	*f = NULL;
1369 	struct mbuf		*m;
1370 	u_int32_t		frag, cur, cnt = 0;
1371 
1372 	m = m_head;
1373 	cur = frag = *txidx;
1374 
1375 	/*
1376 	 * Start packing the mbufs in this chain into
1377 	 * the fragment pointers. Stop when we run out
1378 	 * of fragments or hit the end of the mbuf chain.
1379 	 */
1380 	for (m = m_head; m != NULL; m = m->m_next) {
1381 		if (m->m_len != 0) {
1382 			if ((SK_TX_RING_CNT -
1383 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1384 				return(ENOBUFS);
1385 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1386 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1387 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1388 			if (cnt == 0)
1389 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1390 			else
1391 				f->sk_ctl |= SK_TXCTL_OWN;
1392 			cur = frag;
1393 			SK_INC(frag, SK_TX_RING_CNT);
1394 			cnt++;
1395 		}
1396 	}
1397 
1398 	if (m != NULL)
1399 		return(ENOBUFS);
1400 
1401 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1402 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1403 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1404 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1405 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1406 
1407 	*txidx = frag;
1408 
1409 	return(0);
1410 }
1411 
1412 static void sk_start(ifp)
1413 	struct ifnet		*ifp;
1414 {
1415         struct sk_softc		*sc;
1416         struct sk_if_softc	*sc_if;
1417         struct mbuf		*m_head = NULL;
1418         u_int32_t		idx;
1419 
1420 	sc_if = ifp->if_softc;
1421 	sc = sc_if->sk_softc;
1422 
1423 	idx = sc_if->sk_cdata.sk_tx_prod;
1424 
1425 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1426 		IF_DEQUEUE(&ifp->if_snd, m_head);
1427 		if (m_head == NULL)
1428 			break;
1429 
1430 		/*
1431 		 * Pack the data into the transmit ring. If we
1432 		 * don't have room, set the OACTIVE flag and wait
1433 		 * for the NIC to drain the ring.
1434 		 */
1435 		if (sk_encap(sc_if, m_head, &idx)) {
1436 			IF_PREPEND(&ifp->if_snd, m_head);
1437 			ifp->if_flags |= IFF_OACTIVE;
1438 			break;
1439 		}
1440 
1441 		/*
1442 		 * If there's a BPF listener, bounce a copy of this frame
1443 		 * to him.
1444 		 */
1445 #if NBPF > 0
1446 		if (ifp->if_bpf)
1447 			bpf_mtap(ifp, m_head);
1448 #endif
1449 	}
1450 
1451 	/* Transmit */
1452 	sc_if->sk_cdata.sk_tx_prod = idx;
1453 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1454 
1455 	/* Set a timeout in case the chip goes out to lunch. */
1456 	ifp->if_timer = 5;
1457 
1458 	return;
1459 }
1460 
1461 
1462 static void sk_watchdog(ifp)
1463 	struct ifnet		*ifp;
1464 {
1465 	struct sk_if_softc	*sc_if;
1466 
1467 	sc_if = ifp->if_softc;
1468 
1469 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1470 	sk_init(sc_if);
1471 
1472 	return;
1473 }
1474 
1475 static void sk_shutdown(dev)
1476 	device_t		dev;
1477 {
1478 	struct sk_softc		*sc;
1479 
1480 	sc = device_get_softc(dev);
1481 
1482 	/* Turn off the 'driver is loaded' LED. */
1483 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1484 
1485 	/*
1486 	 * Reset the GEnesis controller. Doing this should also
1487 	 * assert the resets on the attached XMAC(s).
1488 	 */
1489 	sk_reset(sc);
1490 
1491 	return;
1492 }
1493 
1494 static void sk_rxeof(sc_if)
1495 	struct sk_if_softc	*sc_if;
1496 {
1497 	struct ether_header	*eh;
1498 	struct mbuf		*m;
1499 	struct ifnet		*ifp;
1500 	struct sk_chain		*cur_rx;
1501 	int			total_len = 0;
1502 	int			i;
1503 	u_int32_t		rxstat;
1504 
1505 	ifp = &sc_if->arpcom.ac_if;
1506 	i = sc_if->sk_cdata.sk_rx_prod;
1507 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1508 
1509 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1510 
1511 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1512 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1513 		m = cur_rx->sk_mbuf;
1514 		cur_rx->sk_mbuf = NULL;
1515 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1516 		SK_INC(i, SK_RX_RING_CNT);
1517 
1518 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1519 			ifp->if_ierrors++;
1520 			sk_newbuf(sc_if, cur_rx, m);
1521 			continue;
1522 		}
1523 
1524 		/*
1525 		 * Try to allocate a new jumbo buffer. If that
1526 		 * fails, copy the packet to mbufs and put the
1527 		 * jumbo buffer back in the ring so it can be
1528 		 * re-used. If allocating mbufs fails, then we
1529 		 * have to drop the packet.
1530 		 */
1531 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1532 			struct mbuf		*m0;
1533 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1534 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1535 			sk_newbuf(sc_if, cur_rx, m);
1536 			if (m0 == NULL) {
1537 				printf("sk%d: no receive buffers "
1538 				    "available -- packet dropped!\n",
1539 				    sc_if->sk_unit);
1540 				ifp->if_ierrors++;
1541 				continue;
1542 			}
1543 			m_adj(m0, ETHER_ALIGN);
1544 			m = m0;
1545 		} else {
1546 			m->m_pkthdr.rcvif = ifp;
1547 			m->m_pkthdr.len = m->m_len = total_len;
1548 		}
1549 
1550 		ifp->if_ipackets++;
1551 		eh = mtod(m, struct ether_header *);
1552 
1553 #if NBPF > 0
1554 		if (ifp->if_bpf) {
1555 			bpf_mtap(ifp, m);
1556 			if (ifp->if_flags & IFF_PROMISC &&
1557 			    (bcmp(eh->ether_dhost, sc_if->arpcom.ac_enaddr,
1558 			    ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) {
1559 				m_freem(m);
1560 				continue;
1561 			}
1562 		}
1563 #endif
1564 		/* Remove header from mbuf and pass it on. */
1565 		m_adj(m, sizeof(struct ether_header));
1566 		ether_input(ifp, eh, m);
1567 	}
1568 
1569 	sc_if->sk_cdata.sk_rx_prod = i;
1570 
1571 	return;
1572 }
1573 
1574 static void sk_txeof(sc_if)
1575 	struct sk_if_softc	*sc_if;
1576 {
1577 	struct sk_tx_desc	*cur_tx = NULL;
1578 	struct ifnet		*ifp;
1579 	u_int32_t		idx;
1580 
1581 	ifp = &sc_if->arpcom.ac_if;
1582 
1583 	/*
1584 	 * Go through our tx ring and free mbufs for those
1585 	 * frames that have been sent.
1586 	 */
1587 	idx = sc_if->sk_cdata.sk_tx_cons;
1588 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1589 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1590 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1591 			break;
1592 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1593 			ifp->if_opackets++;
1594 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1595 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1596 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1597 		}
1598 		sc_if->sk_cdata.sk_tx_cnt--;
1599 		SK_INC(idx, SK_TX_RING_CNT);
1600 		ifp->if_timer = 0;
1601 	}
1602 
1603 	sc_if->sk_cdata.sk_tx_cons = idx;
1604 
1605 	if (cur_tx != NULL)
1606 		ifp->if_flags &= ~IFF_OACTIVE;
1607 
1608 	return;
1609 }
1610 
1611 static void sk_intr_xmac(sc_if)
1612 	struct sk_if_softc	*sc_if;
1613 {
1614 	struct sk_softc		*sc;
1615 	u_int16_t		status;
1616 	u_int16_t		bmsr;
1617 
1618 	sc = sc_if->sk_softc;
1619 	status = SK_XM_READ_2(sc_if, XM_ISR);
1620 
1621 	if (status & XM_ISR_LINKEVENT) {
1622 		SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT);
1623 		if (sc_if->sk_link == 1) {
1624 			printf("sk%d: gigabit link down\n", sc_if->sk_unit);
1625 			sc_if->sk_link = 0;
1626 		}
1627 	}
1628 
1629 	if (status & XM_ISR_AUTONEG_DONE) {
1630 		bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR);
1631 		if (bmsr & XM_BMSR_LINKSTAT) {
1632 			sc_if->sk_link = 1;
1633 			SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT);
1634 			printf("sk%d: gigabit link up\n", sc_if->sk_unit);
1635 		}
1636 	}
1637 
1638 	if (status & XM_IMR_TX_UNDERRUN)
1639 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1640 
1641 	if (status & XM_IMR_RX_OVERRUN)
1642 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1643 
1644 	return;
1645 }
1646 
1647 static void sk_intr(xsc)
1648 	void			*xsc;
1649 {
1650 	struct sk_softc		*sc = xsc;
1651 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1652 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1653 	u_int32_t		status;
1654 
1655 	sc_if0 = sc->sk_if[SK_PORT_A];
1656 	sc_if1 = sc->sk_if[SK_PORT_B];
1657 
1658 	if (sc_if0 != NULL)
1659 		ifp0 = &sc_if0->arpcom.ac_if;
1660 	if (sc_if1 != NULL)
1661 		ifp1 = &sc_if0->arpcom.ac_if;
1662 
1663 	for (;;) {
1664 		status = CSR_READ_4(sc, SK_ISSR);
1665 		if (!(status & sc->sk_intrmask))
1666 			break;
1667 
1668 		/* Handle receive interrupts first. */
1669 		if (status & SK_ISR_RX1_EOF) {
1670 			sk_rxeof(sc_if0);
1671 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1672 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1673 		}
1674 		if (status & SK_ISR_RX2_EOF) {
1675 			sk_rxeof(sc_if1);
1676 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1677 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1678 		}
1679 
1680 		/* Then transmit interrupts. */
1681 		if (status & SK_ISR_TX1_S_EOF) {
1682 			sk_txeof(sc_if0);
1683 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1684 			    SK_TXBMU_CLR_IRQ_EOF);
1685 		}
1686 		if (status & SK_ISR_TX2_S_EOF) {
1687 			sk_txeof(sc_if1);
1688 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1689 			    SK_TXBMU_CLR_IRQ_EOF);
1690 		}
1691 
1692 		/* Then MAC interrupts. */
1693 		if (status & SK_ISR_MAC1)
1694 			sk_intr_xmac(sc_if0);
1695 
1696 		if (status & SK_ISR_MAC2)
1697 			sk_intr_xmac(sc_if1);
1698 	}
1699 
1700 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1701 
1702 	return;
1703 }
1704 
1705 static void sk_init_xmac(sc_if)
1706 	struct sk_if_softc	*sc_if;
1707 {
1708 	struct sk_softc		*sc;
1709 	struct ifnet		*ifp;
1710 
1711 	sc = sc_if->sk_softc;
1712 	ifp = &sc_if->arpcom.ac_if;
1713 
1714 	/* Unreset the XMAC. */
1715 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1716 	DELAY(1000);
1717 
1718 	/* Save the XMAC II revision */
1719 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1720 
1721 	/* Set station address */
1722 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1723 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1724 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1725 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1726 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1727 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1728 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1729 
1730 	if (ifp->if_flags & IFF_PROMISC) {
1731 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1732 	} else {
1733 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1734 	}
1735 
1736 	if (ifp->if_flags & IFF_BROADCAST) {
1737 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1738 	} else {
1739 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1740 	}
1741 
1742 	/* We don't need the FCS appended to the packet. */
1743 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
1744 
1745 	/* We want short frames padded to 60 bytes. */
1746 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
1747 
1748 	/*
1749 	 * Enable the reception of all error frames. This is is
1750 	 * a necessary evil due to the design of the XMAC. The
1751 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1752 	 * frames can be up to 9000 bytes in length. When bad
1753 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1754 	 * in 'store and forward' mode. For this to work, the
1755 	 * entire frame has to fit into the FIFO, but that means
1756 	 * that jumbo frames larger than 8192 bytes will be
1757 	 * truncated. Disabling all bad frame filtering causes
1758 	 * the RX FIFO to operate in streaming mode, in which
1759 	 * case the XMAC will start transfering frames out of the
1760 	 * RX FIFO as soon as the FIFO threshold is reached.
1761 	 */
1762 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
1763 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
1764 	    XM_MODE_RX_INRANGELEN);
1765 
1766 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1767 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1768 	else
1769 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1770 
1771 	/*
1772 	 * Bump up the transmit threshold. This helps hold off transmit
1773 	 * underruns when we're blasting traffic from both ports at once.
1774 	 */
1775 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
1776 
1777 	/* Set multicast filter */
1778 	sk_setmulti(sc_if);
1779 
1780 	/* Clear and enable interrupts */
1781 	SK_XM_READ_2(sc_if, XM_ISR);
1782 	SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
1783 
1784 	sc_if->sk_link = 0;
1785 
1786 	/* Configure MAC arbiter */
1787 	switch(sc_if->sk_xmac_rev) {
1788 	case XM_XMAC_REV_B2:
1789 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
1790 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
1791 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
1792 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
1793 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
1794 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
1795 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
1796 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
1797 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
1798 		break;
1799 	case XM_XMAC_REV_C1:
1800 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
1801 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
1802 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
1803 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
1804 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
1805 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
1806 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
1807 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
1808 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
1809 		break;
1810 	default:
1811 		break;
1812 	}
1813 	sk_win_write_2(sc, SK_MACARB_CTL,
1814 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
1815 
1816 	return;
1817 }
1818 
1819 /*
1820  * Note that to properly initialize any part of the GEnesis chip,
1821  * you first have to take it out of reset mode.
1822  */
1823 static void sk_init(xsc)
1824 	void			*xsc;
1825 {
1826 	struct sk_if_softc	*sc_if = xsc;
1827 	struct sk_softc		*sc;
1828 	struct ifnet		*ifp;
1829 	int			s;
1830 
1831 	s = splimp();
1832 
1833 	ifp = &sc_if->arpcom.ac_if;
1834 	sc = sc_if->sk_softc;
1835 
1836 	/* Cancel pending I/O and free all RX/TX buffers. */
1837 	sk_stop(sc_if);
1838 
1839 	/* Configure LINK_SYNC LED */
1840 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
1841 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
1842 
1843 	/* Configure RX LED */
1844 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
1845 
1846 	/* Configure TX LED */
1847 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
1848 
1849 	/* Configure I2C registers */
1850 
1851 	/* Configure XMAC(s) */
1852 	sk_init_xmac(sc_if);
1853 
1854 	/* Configure MAC FIFOs */
1855 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
1856 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
1857 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
1858 
1859 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
1860 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
1861 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
1862 
1863 	/* Configure transmit arbiter(s) */
1864 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
1865 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1866 
1867 	/* Configure RAMbuffers */
1868 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1869 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1870 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1871 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1872 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1873 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1874 
1875 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
1876 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
1877 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
1878 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
1879 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
1880 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
1881 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
1882 
1883 	/* Configure BMUs */
1884 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
1885 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
1886 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
1887 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
1888 
1889 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
1890 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
1891 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
1892 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
1893 
1894 	/* Init descriptors */
1895 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
1896 		printf("sk%d: initialization failed: no "
1897 		    "memory for rx buffers\n", sc_if->sk_unit);
1898 		sk_stop(sc_if);
1899 		(void)splx(s);
1900 		return;
1901 	}
1902 	sk_init_tx_ring(sc_if);
1903 
1904 	/* Configure interrupt handling */
1905 	CSR_READ_4(sc, SK_ISSR);
1906 	if (sc_if->sk_port == SK_PORT_A)
1907 		sc->sk_intrmask |= SK_INTRS1;
1908 	else
1909 		sc->sk_intrmask |= SK_INTRS2;
1910 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1911 
1912 	/* Start BMUs. */
1913 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
1914 
1915 	/* Enable XMACs TX and RX state machines */
1916 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1917 
1918 	ifp->if_flags |= IFF_RUNNING;
1919 	ifp->if_flags &= ~IFF_OACTIVE;
1920 
1921 	splx(s);
1922 
1923 	return;
1924 }
1925 
1926 static void sk_stop(sc_if)
1927 	struct sk_if_softc	*sc_if;
1928 {
1929 	int			i;
1930 	struct sk_softc		*sc;
1931 	struct ifnet		*ifp;
1932 
1933 	sc = sc_if->sk_softc;
1934 	ifp = &sc_if->arpcom.ac_if;
1935 
1936 	/* Turn off various components of this interface. */
1937 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
1938 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
1939 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
1940 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
1941 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
1942 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
1943 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
1944 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
1945 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
1946 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
1947 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
1948 
1949 	/* Disable interrupts */
1950 	if (sc_if->sk_port == SK_PORT_A)
1951 		sc->sk_intrmask &= ~SK_INTRS1;
1952 	else
1953 		sc->sk_intrmask &= ~SK_INTRS2;
1954 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1955 
1956 	/* Free RX and TX mbufs still in the queues. */
1957 	for (i = 0; i < SK_RX_RING_CNT; i++) {
1958 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
1959 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
1960 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1961 		}
1962 	}
1963 
1964 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1965 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
1966 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
1967 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1968 		}
1969 	}
1970 
1971 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1972 
1973 	return;
1974 }
1975