xref: /freebsd/sys/dev/sk/if_sk.c (revision c11e094d96120a2e0e726ed9705ae0ec08db49b6)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
37  * the SK-984x series adapters, both single port and dual port.
38  * References:
39  * 	The XaQti XMAC II datasheet,
40  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
41  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
42  *
43  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
44  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
45  * convenience to others until Vitesse corrects this problem:
46  *
47  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
48  *
49  * Written by Bill Paul <wpaul@ee.columbia.edu>
50  * Department of Electrical Engineering
51  * Columbia University, New York City
52  */
53 
54 /*
55  * The SysKonnect gigabit ethernet adapters consist of two main
56  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
57  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
58  * components and a PHY while the GEnesis controller provides a PCI
59  * interface with DMA support. Each card may have between 512K and
60  * 2MB of SRAM on board depending on the configuration.
61  *
62  * The SysKonnect GEnesis controller can have either one or two XMAC
63  * chips connected to it, allowing single or dual port NIC configurations.
64  * SysKonnect has the distinction of being the only vendor on the market
65  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
66  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
67  * XMAC registers. This driver takes advantage of these features to allow
68  * both XMACs to operate as independent interfaces.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/sockio.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/queue.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/bus_pio.h>
91 #include <machine/bus_memio.h>
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 #include <dev/mii/brgphyreg.h>
100 
101 #include <pci/pcireg.h>
102 #include <pci/pcivar.h>
103 
104 #define SK_USEIOSPACE
105 
106 #include <pci/if_skreg.h>
107 #include <pci/xmaciireg.h>
108 
109 MODULE_DEPEND(sk, miibus, 1, 1, 1);
110 
111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113 
114 #ifndef lint
115 static const char rcsid[] =
116   "$FreeBSD$";
117 #endif
118 
119 static struct sk_type sk_devs[] = {
120 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
121 	{ 0, 0, NULL }
122 };
123 
124 static int sk_probe		(device_t);
125 static int sk_attach		(device_t);
126 static int sk_detach		(device_t);
127 static int sk_detach_xmac	(device_t);
128 static int sk_probe_xmac	(device_t);
129 static int sk_attach_xmac	(device_t);
130 static void sk_tick		(void *);
131 static void sk_intr		(void *);
132 static void sk_intr_xmac	(struct sk_if_softc *);
133 static void sk_intr_bcom	(struct sk_if_softc *);
134 static void sk_rxeof		(struct sk_if_softc *);
135 static void sk_txeof		(struct sk_if_softc *);
136 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
137 					u_int32_t *);
138 static void sk_start		(struct ifnet *);
139 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
140 static void sk_init		(void *);
141 static void sk_init_xmac	(struct sk_if_softc *);
142 static void sk_stop		(struct sk_if_softc *);
143 static void sk_watchdog		(struct ifnet *);
144 static void sk_shutdown		(device_t);
145 static int sk_ifmedia_upd	(struct ifnet *);
146 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
147 static void sk_reset		(struct sk_softc *);
148 static int sk_newbuf		(struct sk_if_softc *,
149 					struct sk_chain *, struct mbuf *);
150 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
151 static void *sk_jalloc		(struct sk_if_softc *);
152 static void sk_jfree		(caddr_t, void *);
153 static int sk_init_rx_ring	(struct sk_if_softc *);
154 static void sk_init_tx_ring	(struct sk_if_softc *);
155 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
156 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
157 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
158 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
159 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
160 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
161 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
162 static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
163 static void sk_vpd_read		(struct sk_softc *);
164 
165 static int sk_miibus_readreg	(device_t, int, int);
166 static int sk_miibus_writereg	(device_t, int, int, int);
167 static void sk_miibus_statchg	(device_t);
168 
169 static u_int32_t sk_calchash	(caddr_t);
170 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
171 static void sk_setmulti		(struct sk_if_softc *);
172 
173 #ifdef SK_USEIOSPACE
174 #define SK_RES		SYS_RES_IOPORT
175 #define SK_RID		SK_PCI_LOIO
176 #else
177 #define SK_RES		SYS_RES_MEMORY
178 #define SK_RID		SK_PCI_LOMEM
179 #endif
180 
181 /*
182  * Note that we have newbus methods for both the GEnesis controller
183  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
184  * the miibus code is a child of the XMACs. We need to do it this way
185  * so that the miibus drivers can access the PHY registers on the
186  * right PHY. It's not quite what I had in mind, but it's the only
187  * design that achieves the desired effect.
188  */
189 static device_method_t skc_methods[] = {
190 	/* Device interface */
191 	DEVMETHOD(device_probe,		sk_probe),
192 	DEVMETHOD(device_attach,	sk_attach),
193 	DEVMETHOD(device_detach,	sk_detach),
194 	DEVMETHOD(device_shutdown,	sk_shutdown),
195 
196 	/* bus interface */
197 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
198 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
199 
200 	{ 0, 0 }
201 };
202 
203 static driver_t skc_driver = {
204 	"skc",
205 	skc_methods,
206 	sizeof(struct sk_softc)
207 };
208 
209 static devclass_t skc_devclass;
210 
211 static device_method_t sk_methods[] = {
212 	/* Device interface */
213 	DEVMETHOD(device_probe,		sk_probe_xmac),
214 	DEVMETHOD(device_attach,	sk_attach_xmac),
215 	DEVMETHOD(device_detach,	sk_detach_xmac),
216 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
217 
218 	/* bus interface */
219 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
220 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
221 
222 	/* MII interface */
223 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
224 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
225 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
226 
227 	{ 0, 0 }
228 };
229 
230 static driver_t sk_driver = {
231 	"sk",
232 	sk_methods,
233 	sizeof(struct sk_if_softc)
234 };
235 
236 static devclass_t sk_devclass;
237 
238 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
239 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
240 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
241 
242 #define SK_SETBIT(sc, reg, x)		\
243 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
244 
245 #define SK_CLRBIT(sc, reg, x)		\
246 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
247 
248 #define SK_WIN_SETBIT_4(sc, reg, x)	\
249 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
250 
251 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
252 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
253 
254 #define SK_WIN_SETBIT_2(sc, reg, x)	\
255 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
256 
257 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
258 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
259 
260 static u_int32_t sk_win_read_4(sc, reg)
261 	struct sk_softc		*sc;
262 	int			reg;
263 {
264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
266 }
267 
268 static u_int16_t sk_win_read_2(sc, reg)
269 	struct sk_softc		*sc;
270 	int			reg;
271 {
272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
274 }
275 
276 static u_int8_t sk_win_read_1(sc, reg)
277 	struct sk_softc		*sc;
278 	int			reg;
279 {
280 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
281 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
282 }
283 
284 static void sk_win_write_4(sc, reg, val)
285 	struct sk_softc		*sc;
286 	int			reg;
287 	u_int32_t		val;
288 {
289 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
290 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
291 	return;
292 }
293 
294 static void sk_win_write_2(sc, reg, val)
295 	struct sk_softc		*sc;
296 	int			reg;
297 	u_int32_t		val;
298 {
299 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
300 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
301 	return;
302 }
303 
304 static void sk_win_write_1(sc, reg, val)
305 	struct sk_softc		*sc;
306 	int			reg;
307 	u_int32_t		val;
308 {
309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
311 	return;
312 }
313 
314 /*
315  * The VPD EEPROM contains Vital Product Data, as suggested in
316  * the PCI 2.1 specification. The VPD data is separared into areas
317  * denoted by resource IDs. The SysKonnect VPD contains an ID string
318  * resource (the name of the adapter), a read-only area resource
319  * containing various key/data fields and a read/write area which
320  * can be used to store asset management information or log messages.
321  * We read the ID string and read-only into buffers attached to
322  * the controller softc structure for later use. At the moment,
323  * we only use the ID string during sk_attach().
324  */
325 static u_int8_t sk_vpd_readbyte(sc, addr)
326 	struct sk_softc		*sc;
327 	int			addr;
328 {
329 	int			i;
330 
331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 	for (i = 0; i < SK_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (sk_win_read_2(sc,
335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 			break;
337 	}
338 
339 	if (i == SK_TIMEOUT)
340 		return(0);
341 
342 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
343 }
344 
345 static void sk_vpd_read_res(sc, res, addr)
346 	struct sk_softc		*sc;
347 	struct vpd_res		*res;
348 	int			addr;
349 {
350 	int			i;
351 	u_int8_t		*ptr;
352 
353 	ptr = (u_int8_t *)res;
354 	for (i = 0; i < sizeof(struct vpd_res); i++)
355 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
356 
357 	return;
358 }
359 
360 static void sk_vpd_read(sc)
361 	struct sk_softc		*sc;
362 {
363 	int			pos = 0, i;
364 	struct vpd_res		res;
365 
366 	if (sc->sk_vpd_prodname != NULL)
367 		free(sc->sk_vpd_prodname, M_DEVBUF);
368 	if (sc->sk_vpd_readonly != NULL)
369 		free(sc->sk_vpd_readonly, M_DEVBUF);
370 	sc->sk_vpd_prodname = NULL;
371 	sc->sk_vpd_readonly = NULL;
372 
373 	sk_vpd_read_res(sc, &res, pos);
374 
375 	if (res.vr_id != VPD_RES_ID) {
376 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
377 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
378 		return;
379 	}
380 
381 	pos += sizeof(res);
382 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 	for (i = 0; i < res.vr_len; i++)
384 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 	sc->sk_vpd_prodname[i] = '\0';
386 	pos += i;
387 
388 	sk_vpd_read_res(sc, &res, pos);
389 
390 	if (res.vr_id != VPD_RES_READ) {
391 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
392 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
393 		return;
394 	}
395 
396 	pos += sizeof(res);
397 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 	for (i = 0; i < res.vr_len + 1; i++)
399 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
400 
401 	return;
402 }
403 
404 static int sk_miibus_readreg(dev, phy, reg)
405 	device_t		dev;
406 	int			phy, reg;
407 {
408 	struct sk_if_softc	*sc_if;
409 	int			i;
410 
411 	sc_if = device_get_softc(dev);
412 
413 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 		return(0);
415 
416 	SK_IF_LOCK(sc_if);
417 
418 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
419 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
420 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
421 		for (i = 0; i < SK_TIMEOUT; i++) {
422 			DELAY(1);
423 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
424 			    XM_MMUCMD_PHYDATARDY)
425 				break;
426 		}
427 
428 		if (i == SK_TIMEOUT) {
429 			printf("sk%d: phy failed to come ready\n",
430 			    sc_if->sk_unit);
431 			return(0);
432 		}
433 	}
434 	DELAY(1);
435 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
436 	SK_IF_UNLOCK(sc_if);
437 	return(i);
438 }
439 
440 static int sk_miibus_writereg(dev, phy, reg, val)
441 	device_t		dev;
442 	int			phy, reg, val;
443 {
444 	struct sk_if_softc	*sc_if;
445 	int			i;
446 
447 	sc_if = device_get_softc(dev);
448 	SK_IF_LOCK(sc_if);
449 
450 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
451 	for (i = 0; i < SK_TIMEOUT; i++) {
452 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
453 			break;
454 	}
455 
456 	if (i == SK_TIMEOUT) {
457 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
458 		return(ETIMEDOUT);
459 	}
460 
461 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
462 	for (i = 0; i < SK_TIMEOUT; i++) {
463 		DELAY(1);
464 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
465 			break;
466 	}
467 
468 	SK_IF_UNLOCK(sc_if);
469 
470 	if (i == SK_TIMEOUT)
471 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
472 
473 	return(0);
474 }
475 
476 static void sk_miibus_statchg(dev)
477 	device_t		dev;
478 {
479 	struct sk_if_softc	*sc_if;
480 	struct mii_data		*mii;
481 
482 	sc_if = device_get_softc(dev);
483 	mii = device_get_softc(sc_if->sk_miibus);
484 	SK_IF_LOCK(sc_if);
485 	/*
486 	 * If this is a GMII PHY, manually set the XMAC's
487 	 * duplex mode accordingly.
488 	 */
489 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
490 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
491 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
492 		} else {
493 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
494 		}
495 	}
496 	SK_IF_UNLOCK(sc_if);
497 
498 	return;
499 }
500 
501 #define SK_POLY		0xEDB88320
502 #define SK_BITS		6
503 
504 static u_int32_t sk_calchash(addr)
505 	caddr_t			addr;
506 {
507 	u_int32_t		idx, bit, data, crc;
508 
509 	/* Compute CRC for the address value. */
510 	crc = 0xFFFFFFFF; /* initial value */
511 
512 	for (idx = 0; idx < 6; idx++) {
513 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
514 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
515 	}
516 
517 	return (~crc & ((1 << SK_BITS) - 1));
518 }
519 
520 static void sk_setfilt(sc_if, addr, slot)
521 	struct sk_if_softc	*sc_if;
522 	caddr_t			addr;
523 	int			slot;
524 {
525 	int			base;
526 
527 	base = XM_RXFILT_ENTRY(slot);
528 
529 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
530 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
531 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
532 
533 	return;
534 }
535 
536 static void sk_setmulti(sc_if)
537 	struct sk_if_softc	*sc_if;
538 {
539 	struct ifnet		*ifp;
540 	u_int32_t		hashes[2] = { 0, 0 };
541 	int			h, i;
542 	struct ifmultiaddr	*ifma;
543 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
544 
545 	ifp = &sc_if->arpcom.ac_if;
546 
547 	/* First, zot all the existing filters. */
548 	for (i = 1; i < XM_RXFILT_MAX; i++)
549 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
550 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
551 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
552 
553 	/* Now program new ones. */
554 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
555 		hashes[0] = 0xFFFFFFFF;
556 		hashes[1] = 0xFFFFFFFF;
557 	} else {
558 		i = 1;
559 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
560 			if (ifma->ifma_addr->sa_family != AF_LINK)
561 				continue;
562 			/*
563 			 * Program the first XM_RXFILT_MAX multicast groups
564 			 * into the perfect filter. For all others,
565 			 * use the hash table.
566 			 */
567 			if (i < XM_RXFILT_MAX) {
568 				sk_setfilt(sc_if,
569 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
570 				i++;
571 				continue;
572 			}
573 
574 			h = sk_calchash(
575 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
576 			if (h < 32)
577 				hashes[0] |= (1 << h);
578 			else
579 				hashes[1] |= (1 << (h - 32));
580 		}
581 	}
582 
583 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
584 	    XM_MODE_RX_USE_PERFECT);
585 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
586 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
587 
588 	return;
589 }
590 
591 static int sk_init_rx_ring(sc_if)
592 	struct sk_if_softc	*sc_if;
593 {
594 	struct sk_chain_data	*cd;
595 	struct sk_ring_data	*rd;
596 	int			i;
597 
598 	cd = &sc_if->sk_cdata;
599 	rd = sc_if->sk_rdata;
600 
601 	bzero((char *)rd->sk_rx_ring,
602 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
603 
604 	for (i = 0; i < SK_RX_RING_CNT; i++) {
605 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
606 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
607 			return(ENOBUFS);
608 		if (i == (SK_RX_RING_CNT - 1)) {
609 			cd->sk_rx_chain[i].sk_next =
610 			    &cd->sk_rx_chain[0];
611 			rd->sk_rx_ring[i].sk_next =
612 			    vtophys(&rd->sk_rx_ring[0]);
613 		} else {
614 			cd->sk_rx_chain[i].sk_next =
615 			    &cd->sk_rx_chain[i + 1];
616 			rd->sk_rx_ring[i].sk_next =
617 			    vtophys(&rd->sk_rx_ring[i + 1]);
618 		}
619 	}
620 
621 	sc_if->sk_cdata.sk_rx_prod = 0;
622 	sc_if->sk_cdata.sk_rx_cons = 0;
623 
624 	return(0);
625 }
626 
627 static void sk_init_tx_ring(sc_if)
628 	struct sk_if_softc	*sc_if;
629 {
630 	struct sk_chain_data	*cd;
631 	struct sk_ring_data	*rd;
632 	int			i;
633 
634 	cd = &sc_if->sk_cdata;
635 	rd = sc_if->sk_rdata;
636 
637 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
638 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
639 
640 	for (i = 0; i < SK_TX_RING_CNT; i++) {
641 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
642 		if (i == (SK_TX_RING_CNT - 1)) {
643 			cd->sk_tx_chain[i].sk_next =
644 			    &cd->sk_tx_chain[0];
645 			rd->sk_tx_ring[i].sk_next =
646 			    vtophys(&rd->sk_tx_ring[0]);
647 		} else {
648 			cd->sk_tx_chain[i].sk_next =
649 			    &cd->sk_tx_chain[i + 1];
650 			rd->sk_tx_ring[i].sk_next =
651 			    vtophys(&rd->sk_tx_ring[i + 1]);
652 		}
653 	}
654 
655 	sc_if->sk_cdata.sk_tx_prod = 0;
656 	sc_if->sk_cdata.sk_tx_cons = 0;
657 	sc_if->sk_cdata.sk_tx_cnt = 0;
658 
659 	return;
660 }
661 
662 static int sk_newbuf(sc_if, c, m)
663 	struct sk_if_softc	*sc_if;
664 	struct sk_chain		*c;
665 	struct mbuf		*m;
666 {
667 	struct mbuf		*m_new = NULL;
668 	struct sk_rx_desc	*r;
669 
670 	if (m == NULL) {
671 		caddr_t			*buf = NULL;
672 
673 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
674 		if (m_new == NULL)
675 			return(ENOBUFS);
676 
677 		/* Allocate the jumbo buffer */
678 		buf = sk_jalloc(sc_if);
679 		if (buf == NULL) {
680 			m_freem(m_new);
681 #ifdef SK_VERBOSE
682 			printf("sk%d: jumbo allocation failed "
683 			    "-- packet dropped!\n", sc_if->sk_unit);
684 #endif
685 			return(ENOBUFS);
686 		}
687 
688 		/* Attach the buffer to the mbuf */
689 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
690 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
691 		m_new->m_data = (void *)buf;
692 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
693 	} else {
694 		/*
695 	 	 * We're re-using a previously allocated mbuf;
696 		 * be sure to re-init pointers and lengths to
697 		 * default values.
698 		 */
699 		m_new = m;
700 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
701 		m_new->m_data = m_new->m_ext.ext_buf;
702 	}
703 
704 	/*
705 	 * Adjust alignment so packet payload begins on a
706 	 * longword boundary. Mandatory for Alpha, useful on
707 	 * x86 too.
708 	 */
709 	m_adj(m_new, ETHER_ALIGN);
710 
711 	r = c->sk_desc;
712 	c->sk_mbuf = m_new;
713 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
714 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
715 
716 	return(0);
717 }
718 
719 /*
720  * Allocate jumbo buffer storage. The SysKonnect adapters support
721  * "jumbograms" (9K frames), although SysKonnect doesn't currently
722  * use them in their drivers. In order for us to use them, we need
723  * large 9K receive buffers, however standard mbuf clusters are only
724  * 2048 bytes in size. Consequently, we need to allocate and manage
725  * our own jumbo buffer pool. Fortunately, this does not require an
726  * excessive amount of additional code.
727  */
728 static int sk_alloc_jumbo_mem(sc_if)
729 	struct sk_if_softc	*sc_if;
730 {
731 	caddr_t			ptr;
732 	register int		i;
733 	struct sk_jpool_entry   *entry;
734 
735 	/* Grab a big chunk o' storage. */
736 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
737 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
738 
739 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
740 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
741 		return(ENOBUFS);
742 	}
743 
744 	SLIST_INIT(&sc_if->sk_jfree_listhead);
745 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
746 
747 	/*
748 	 * Now divide it up into 9K pieces and save the addresses
749 	 * in an array.
750 	 */
751 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
752 	for (i = 0; i < SK_JSLOTS; i++) {
753 		sc_if->sk_cdata.sk_jslots[i] = ptr;
754 		ptr += SK_JLEN;
755 		entry = malloc(sizeof(struct sk_jpool_entry),
756 		    M_DEVBUF, M_NOWAIT);
757 		if (entry == NULL) {
758 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
759 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
760 			printf("sk%d: no memory for jumbo "
761 			    "buffer queue!\n", sc_if->sk_unit);
762 			return(ENOBUFS);
763 		}
764 		entry->slot = i;
765 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
766 		    entry, jpool_entries);
767 	}
768 
769 	return(0);
770 }
771 
772 /*
773  * Allocate a jumbo buffer.
774  */
775 static void *sk_jalloc(sc_if)
776 	struct sk_if_softc	*sc_if;
777 {
778 	struct sk_jpool_entry   *entry;
779 
780 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
781 
782 	if (entry == NULL) {
783 #ifdef SK_VERBOSE
784 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
785 #endif
786 		return(NULL);
787 	}
788 
789 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
790 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
791 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
792 }
793 
794 /*
795  * Release a jumbo buffer.
796  */
797 static void sk_jfree(buf, args)
798 	caddr_t			buf;
799 	void			*args;
800 {
801 	struct sk_if_softc	*sc_if;
802 	int		        i;
803 	struct sk_jpool_entry   *entry;
804 
805 	/* Extract the softc struct pointer. */
806 	sc_if = (struct sk_if_softc *)args;
807 
808 	if (sc_if == NULL)
809 		panic("sk_jfree: didn't get softc pointer!");
810 
811 	/* calculate the slot this buffer belongs to */
812 	i = ((vm_offset_t)buf
813 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
814 
815 	if ((i < 0) || (i >= SK_JSLOTS))
816 		panic("sk_jfree: asked to free buffer that we don't manage!");
817 
818 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
819 	if (entry == NULL)
820 		panic("sk_jfree: buffer not in use!");
821 	entry->slot = i;
822 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
823 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
824 
825 	return;
826 }
827 
828 /*
829  * Set media options.
830  */
831 static int sk_ifmedia_upd(ifp)
832 	struct ifnet		*ifp;
833 {
834 	struct sk_if_softc	*sc_if;
835 	struct mii_data		*mii;
836 
837 	sc_if = ifp->if_softc;
838 	mii = device_get_softc(sc_if->sk_miibus);
839 	sk_init(sc_if);
840 	mii_mediachg(mii);
841 
842 	return(0);
843 }
844 
845 /*
846  * Report current media status.
847  */
848 static void sk_ifmedia_sts(ifp, ifmr)
849 	struct ifnet		*ifp;
850 	struct ifmediareq	*ifmr;
851 {
852 	struct sk_if_softc	*sc_if;
853 	struct mii_data		*mii;
854 
855 	sc_if = ifp->if_softc;
856 	mii = device_get_softc(sc_if->sk_miibus);
857 
858 	mii_pollstat(mii);
859 	ifmr->ifm_active = mii->mii_media_active;
860 	ifmr->ifm_status = mii->mii_media_status;
861 
862 	return;
863 }
864 
865 static int sk_ioctl(ifp, command, data)
866 	struct ifnet		*ifp;
867 	u_long			command;
868 	caddr_t			data;
869 {
870 	struct sk_if_softc	*sc_if = ifp->if_softc;
871 	struct ifreq		*ifr = (struct ifreq *) data;
872 	int			error = 0;
873 	struct mii_data		*mii;
874 
875 	SK_IF_LOCK(sc_if);
876 
877 	switch(command) {
878 	case SIOCSIFADDR:
879 	case SIOCGIFADDR:
880 		error = ether_ioctl(ifp, command, data);
881 		break;
882 	case SIOCSIFMTU:
883 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
884 			error = EINVAL;
885 		else {
886 			ifp->if_mtu = ifr->ifr_mtu;
887 			sk_init(sc_if);
888 		}
889 		break;
890 	case SIOCSIFFLAGS:
891 		if (ifp->if_flags & IFF_UP) {
892 			if (ifp->if_flags & IFF_RUNNING &&
893 			    ifp->if_flags & IFF_PROMISC &&
894 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
895 				SK_XM_SETBIT_4(sc_if, XM_MODE,
896 				    XM_MODE_RX_PROMISC);
897 				sk_setmulti(sc_if);
898 			} else if (ifp->if_flags & IFF_RUNNING &&
899 			    !(ifp->if_flags & IFF_PROMISC) &&
900 			    sc_if->sk_if_flags & IFF_PROMISC) {
901 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
902 				    XM_MODE_RX_PROMISC);
903 				sk_setmulti(sc_if);
904 			} else
905 				sk_init(sc_if);
906 		} else {
907 			if (ifp->if_flags & IFF_RUNNING)
908 				sk_stop(sc_if);
909 		}
910 		sc_if->sk_if_flags = ifp->if_flags;
911 		error = 0;
912 		break;
913 	case SIOCADDMULTI:
914 	case SIOCDELMULTI:
915 		sk_setmulti(sc_if);
916 		error = 0;
917 		break;
918 	case SIOCGIFMEDIA:
919 	case SIOCSIFMEDIA:
920 		mii = device_get_softc(sc_if->sk_miibus);
921 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
922 		break;
923 	default:
924 		error = EINVAL;
925 		break;
926 	}
927 
928 	SK_IF_UNLOCK(sc_if);
929 
930 	return(error);
931 }
932 
933 /*
934  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
935  * IDs against our list and return a device name if we find a match.
936  */
937 static int sk_probe(dev)
938 	device_t		dev;
939 {
940 	struct sk_type		*t;
941 
942 	t = sk_devs;
943 
944 	while(t->sk_name != NULL) {
945 		if ((pci_get_vendor(dev) == t->sk_vid) &&
946 		    (pci_get_device(dev) == t->sk_did)) {
947 			device_set_desc(dev, t->sk_name);
948 			return(0);
949 		}
950 		t++;
951 	}
952 
953 	return(ENXIO);
954 }
955 
956 /*
957  * Force the GEnesis into reset, then bring it out of reset.
958  */
959 static void sk_reset(sc)
960 	struct sk_softc		*sc;
961 {
962 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
963 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
964 	DELAY(1000);
965 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
966 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
967 
968 	/* Configure packet arbiter */
969 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
970 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
971 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
972 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
973 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
974 
975 	/* Enable RAM interface */
976 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
977 
978 	/*
979          * Configure interrupt moderation. The moderation timer
980 	 * defers interrupts specified in the interrupt moderation
981 	 * timer mask based on the timeout specified in the interrupt
982 	 * moderation timer init register. Each bit in the timer
983 	 * register represents 18.825ns, so to specify a timeout in
984 	 * microseconds, we have to multiply by 54.
985 	 */
986         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
987         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
988 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
989         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
990 
991 	return;
992 }
993 
994 static int sk_probe_xmac(dev)
995 	device_t		dev;
996 {
997 	/*
998 	 * Not much to do here. We always know there will be
999 	 * at least one XMAC present, and if there are two,
1000 	 * sk_attach() will create a second device instance
1001 	 * for us.
1002 	 */
1003 	device_set_desc(dev, "XaQti Corp. XMAC II");
1004 
1005 	return(0);
1006 }
1007 
1008 /*
1009  * Each XMAC chip is attached as a separate logical IP interface.
1010  * Single port cards will have only one logical interface of course.
1011  */
1012 static int sk_attach_xmac(dev)
1013 	device_t		dev;
1014 {
1015 	struct sk_softc		*sc;
1016 	struct sk_if_softc	*sc_if;
1017 	struct ifnet		*ifp;
1018 	int			i, port;
1019 
1020 	if (dev == NULL)
1021 		return(EINVAL);
1022 
1023 	sc_if = device_get_softc(dev);
1024 	sc = device_get_softc(device_get_parent(dev));
1025 	SK_LOCK(sc);
1026 	port = *(int *)device_get_ivars(dev);
1027 	free(device_get_ivars(dev), M_DEVBUF);
1028 	device_set_ivars(dev, NULL);
1029 	sc_if->sk_dev = dev;
1030 
1031 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1032 
1033 	sc_if->sk_dev = dev;
1034 	sc_if->sk_unit = device_get_unit(dev);
1035 	sc_if->sk_port = port;
1036 	sc_if->sk_softc = sc;
1037 	sc->sk_if[port] = sc_if;
1038 	if (port == SK_PORT_A)
1039 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1040 	if (port == SK_PORT_B)
1041 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1042 
1043 	/*
1044 	 * Get station address for this interface. Note that
1045 	 * dual port cards actually come with three station
1046 	 * addresses: one for each port, plus an extra. The
1047 	 * extra one is used by the SysKonnect driver software
1048 	 * as a 'virtual' station address for when both ports
1049 	 * are operating in failover mode. Currently we don't
1050 	 * use this extra address.
1051 	 */
1052 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1053 		sc_if->arpcom.ac_enaddr[i] =
1054 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1055 
1056 	printf("sk%d: Ethernet address: %6D\n",
1057 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1058 
1059 	/*
1060 	 * Set up RAM buffer addresses. The NIC will have a certain
1061 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1062 	 * need to divide this up a) between the transmitter and
1063  	 * receiver and b) between the two XMACs, if this is a
1064 	 * dual port NIC. Our algotithm is to divide up the memory
1065 	 * evenly so that everyone gets a fair share.
1066 	 */
1067 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1068 		u_int32_t		chunk, val;
1069 
1070 		chunk = sc->sk_ramsize / 2;
1071 		val = sc->sk_rboff / sizeof(u_int64_t);
1072 		sc_if->sk_rx_ramstart = val;
1073 		val += (chunk / sizeof(u_int64_t));
1074 		sc_if->sk_rx_ramend = val - 1;
1075 		sc_if->sk_tx_ramstart = val;
1076 		val += (chunk / sizeof(u_int64_t));
1077 		sc_if->sk_tx_ramend = val - 1;
1078 	} else {
1079 		u_int32_t		chunk, val;
1080 
1081 		chunk = sc->sk_ramsize / 4;
1082 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1083 		    sizeof(u_int64_t);
1084 		sc_if->sk_rx_ramstart = val;
1085 		val += (chunk / sizeof(u_int64_t));
1086 		sc_if->sk_rx_ramend = val - 1;
1087 		sc_if->sk_tx_ramstart = val;
1088 		val += (chunk / sizeof(u_int64_t));
1089 		sc_if->sk_tx_ramend = val - 1;
1090 	}
1091 
1092 	/* Read and save PHY type and set PHY address */
1093 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1094 	switch(sc_if->sk_phytype) {
1095 	case SK_PHYTYPE_XMAC:
1096 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1097 		break;
1098 	case SK_PHYTYPE_BCOM:
1099 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1100 		break;
1101 	default:
1102 		printf("skc%d: unsupported PHY type: %d\n",
1103 		    sc->sk_unit, sc_if->sk_phytype);
1104 		SK_UNLOCK(sc);
1105 		return(ENODEV);
1106 	}
1107 
1108 	/* Allocate the descriptor queues. */
1109 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1110 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1111 
1112 	if (sc_if->sk_rdata == NULL) {
1113 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1114 		sc->sk_if[port] = NULL;
1115 		SK_UNLOCK(sc);
1116 		return(ENOMEM);
1117 	}
1118 
1119 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1120 
1121 	/* Try to allocate memory for jumbo buffers. */
1122 	if (sk_alloc_jumbo_mem(sc_if)) {
1123 		printf("sk%d: jumbo buffer allocation failed\n",
1124 		    sc_if->sk_unit);
1125 		contigfree(sc_if->sk_rdata,
1126 		    sizeof(struct sk_ring_data), M_DEVBUF);
1127 		sc->sk_if[port] = NULL;
1128 		SK_UNLOCK(sc);
1129 		return(ENOMEM);
1130 	}
1131 
1132 	ifp = &sc_if->arpcom.ac_if;
1133 	ifp->if_softc = sc_if;
1134 	ifp->if_unit = sc_if->sk_unit;
1135 	ifp->if_name = "sk";
1136 	ifp->if_mtu = ETHERMTU;
1137 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1138 	ifp->if_ioctl = sk_ioctl;
1139 	ifp->if_output = ether_output;
1140 	ifp->if_start = sk_start;
1141 	ifp->if_watchdog = sk_watchdog;
1142 	ifp->if_init = sk_init;
1143 	ifp->if_baudrate = 1000000000;
1144 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1145 
1146 	/*
1147 	 * Call MI attach routine.
1148 	 */
1149 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1150 	callout_handle_init(&sc_if->sk_tick_ch);
1151 
1152 	/*
1153 	 * Do miibus setup.
1154 	 */
1155 	sk_init_xmac(sc_if);
1156 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1157 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1158 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1159 		contigfree(sc_if->sk_rdata,
1160 		    sizeof(struct sk_ring_data), M_DEVBUF);
1161 		ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1162 		SK_UNLOCK(sc);
1163 		return(ENXIO);
1164 	}
1165 
1166 	SK_UNLOCK(sc);
1167 
1168 	return(0);
1169 }
1170 
1171 /*
1172  * Attach the interface. Allocate softc structures, do ifmedia
1173  * setup and ethernet/BPF attach.
1174  */
1175 static int sk_attach(dev)
1176 	device_t		dev;
1177 {
1178 	u_int32_t		command;
1179 	struct sk_softc		*sc;
1180 	int			unit, error = 0, rid, *port;
1181 
1182 	sc = device_get_softc(dev);
1183 	unit = device_get_unit(dev);
1184 	bzero(sc, sizeof(struct sk_softc));
1185 
1186 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1187 	    MTX_DEF | MTX_RECURSE);
1188 	SK_LOCK(sc);
1189 
1190 	/*
1191 	 * Handle power management nonsense.
1192 	 */
1193 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1194 		u_int32_t		iobase, membase, irq;
1195 
1196 		/* Save important PCI config data. */
1197 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1198 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1199 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1200 
1201 		/* Reset the power state. */
1202 		printf("skc%d: chip is in D%d power mode "
1203 		    "-- setting to D0\n", unit,
1204 		    pci_get_powerstate(dev));
1205 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1206 
1207 		/* Restore PCI config data. */
1208 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1209 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1210 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1211 	}
1212 
1213 	/*
1214 	 * Map control/status registers.
1215 	 */
1216 	pci_enable_busmaster(dev);
1217 	pci_enable_io(dev, SYS_RES_IOPORT);
1218 	pci_enable_io(dev, SYS_RES_MEMORY);
1219 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1220 
1221 #ifdef SK_USEIOSPACE
1222 	if (!(command & PCIM_CMD_PORTEN)) {
1223 		printf("skc%d: failed to enable I/O ports!\n", unit);
1224 		error = ENXIO;
1225 		goto fail;
1226 	}
1227 #else
1228 	if (!(command & PCIM_CMD_MEMEN)) {
1229 		printf("skc%d: failed to enable memory mapping!\n", unit);
1230 		error = ENXIO;
1231 		goto fail;
1232 	}
1233 #endif
1234 
1235 	rid = SK_RID;
1236 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1237 	    0, ~0, 1, RF_ACTIVE);
1238 
1239 	if (sc->sk_res == NULL) {
1240 		printf("sk%d: couldn't map ports/memory\n", unit);
1241 		error = ENXIO;
1242 		goto fail;
1243 	}
1244 
1245 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1246 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1247 
1248 	/* Allocate interrupt */
1249 	rid = 0;
1250 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1251 	    RF_SHAREABLE | RF_ACTIVE);
1252 
1253 	if (sc->sk_irq == NULL) {
1254 		printf("skc%d: couldn't map interrupt\n", unit);
1255 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1256 		error = ENXIO;
1257 		goto fail;
1258 	}
1259 
1260 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1261 	    sk_intr, sc, &sc->sk_intrhand);
1262 
1263 	if (error) {
1264 		printf("skc%d: couldn't set up irq\n", unit);
1265 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1266 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1267 		goto fail;
1268 	}
1269 
1270 	/* Reset the adapter. */
1271 	sk_reset(sc);
1272 
1273 	sc->sk_unit = unit;
1274 
1275 	/* Read and save vital product data from EEPROM. */
1276 	sk_vpd_read(sc);
1277 
1278 	/* Read and save RAM size and RAMbuffer offset */
1279 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1280 	case SK_RAMSIZE_512K_64:
1281 		sc->sk_ramsize = 0x80000;
1282 		sc->sk_rboff = SK_RBOFF_0;
1283 		break;
1284 	case SK_RAMSIZE_1024K_64:
1285 		sc->sk_ramsize = 0x100000;
1286 		sc->sk_rboff = SK_RBOFF_80000;
1287 		break;
1288 	case SK_RAMSIZE_1024K_128:
1289 		sc->sk_ramsize = 0x100000;
1290 		sc->sk_rboff = SK_RBOFF_0;
1291 		break;
1292 	case SK_RAMSIZE_2048K_128:
1293 		sc->sk_ramsize = 0x200000;
1294 		sc->sk_rboff = SK_RBOFF_0;
1295 		break;
1296 	default:
1297 		printf("skc%d: unknown ram size: %d\n",
1298 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1299 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1300 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1301 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1302 		error = ENXIO;
1303 		goto fail;
1304 		break;
1305 	}
1306 
1307 	/* Read and save physical media type */
1308 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1309 	case SK_PMD_1000BASESX:
1310 		sc->sk_pmd = IFM_1000_SX;
1311 		break;
1312 	case SK_PMD_1000BASELX:
1313 		sc->sk_pmd = IFM_1000_LX;
1314 		break;
1315 	case SK_PMD_1000BASECX:
1316 		sc->sk_pmd = IFM_1000_CX;
1317 		break;
1318 	case SK_PMD_1000BASETX:
1319 		sc->sk_pmd = IFM_1000_T;
1320 		break;
1321 	default:
1322 		printf("skc%d: unknown media type: 0x%x\n",
1323 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1324 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1325 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1326 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1327 		error = ENXIO;
1328 		goto fail;
1329 	}
1330 
1331 	/* Announce the product name. */
1332 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1333 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1334 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1335 	*port = SK_PORT_A;
1336 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1337 
1338 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1339 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1340 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1341 		*port = SK_PORT_B;
1342 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1343 	}
1344 
1345 	/* Turn on the 'driver is loaded' LED. */
1346 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1347 
1348 	bus_generic_attach(dev);
1349 	SK_UNLOCK(sc);
1350 	return(0);
1351 
1352 fail:
1353 	SK_UNLOCK(sc);
1354 	mtx_destroy(&sc->sk_mtx);
1355 	return(error);
1356 }
1357 
1358 static int sk_detach_xmac(dev)
1359 	device_t		dev;
1360 {
1361 	struct sk_softc		*sc;
1362 	struct sk_if_softc	*sc_if;
1363 	struct ifnet		*ifp;
1364 
1365 	sc = device_get_softc(device_get_parent(dev));
1366 	sc_if = device_get_softc(dev);
1367 	SK_IF_LOCK(sc_if);
1368 
1369 	ifp = &sc_if->arpcom.ac_if;
1370 	sk_stop(sc_if);
1371 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1372 	bus_generic_detach(dev);
1373 	if (sc_if->sk_miibus != NULL)
1374 		device_delete_child(dev, sc_if->sk_miibus);
1375 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1376 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1377 	SK_IF_UNLOCK(sc_if);
1378 
1379 	return(0);
1380 }
1381 
1382 static int sk_detach(dev)
1383 	device_t		dev;
1384 {
1385 	struct sk_softc		*sc;
1386 
1387 	sc = device_get_softc(dev);
1388 	SK_LOCK(sc);
1389 
1390 	bus_generic_detach(dev);
1391 	if (sc->sk_devs[SK_PORT_A] != NULL)
1392 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1393 	if (sc->sk_devs[SK_PORT_B] != NULL)
1394 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1395 
1396 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1397 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1398 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1399 
1400 	SK_UNLOCK(sc);
1401 	mtx_destroy(&sc->sk_mtx);
1402 
1403 	return(0);
1404 }
1405 
1406 static int sk_encap(sc_if, m_head, txidx)
1407         struct sk_if_softc	*sc_if;
1408         struct mbuf		*m_head;
1409         u_int32_t		*txidx;
1410 {
1411 	struct sk_tx_desc	*f = NULL;
1412 	struct mbuf		*m;
1413 	u_int32_t		frag, cur, cnt = 0;
1414 
1415 	m = m_head;
1416 	cur = frag = *txidx;
1417 
1418 	/*
1419 	 * Start packing the mbufs in this chain into
1420 	 * the fragment pointers. Stop when we run out
1421 	 * of fragments or hit the end of the mbuf chain.
1422 	 */
1423 	for (m = m_head; m != NULL; m = m->m_next) {
1424 		if (m->m_len != 0) {
1425 			if ((SK_TX_RING_CNT -
1426 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1427 				return(ENOBUFS);
1428 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1429 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1430 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1431 			if (cnt == 0)
1432 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1433 			else
1434 				f->sk_ctl |= SK_TXCTL_OWN;
1435 			cur = frag;
1436 			SK_INC(frag, SK_TX_RING_CNT);
1437 			cnt++;
1438 		}
1439 	}
1440 
1441 	if (m != NULL)
1442 		return(ENOBUFS);
1443 
1444 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1445 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1446 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1447 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1448 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1449 
1450 	*txidx = frag;
1451 
1452 	return(0);
1453 }
1454 
1455 static void sk_start(ifp)
1456 	struct ifnet		*ifp;
1457 {
1458         struct sk_softc		*sc;
1459         struct sk_if_softc	*sc_if;
1460         struct mbuf		*m_head = NULL;
1461         u_int32_t		idx;
1462 
1463 	sc_if = ifp->if_softc;
1464 	sc = sc_if->sk_softc;
1465 
1466 	SK_IF_LOCK(sc_if);
1467 
1468 	idx = sc_if->sk_cdata.sk_tx_prod;
1469 
1470 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1471 		IF_DEQUEUE(&ifp->if_snd, m_head);
1472 		if (m_head == NULL)
1473 			break;
1474 
1475 		/*
1476 		 * Pack the data into the transmit ring. If we
1477 		 * don't have room, set the OACTIVE flag and wait
1478 		 * for the NIC to drain the ring.
1479 		 */
1480 		if (sk_encap(sc_if, m_head, &idx)) {
1481 			IF_PREPEND(&ifp->if_snd, m_head);
1482 			ifp->if_flags |= IFF_OACTIVE;
1483 			break;
1484 		}
1485 
1486 		/*
1487 		 * If there's a BPF listener, bounce a copy of this frame
1488 		 * to him.
1489 		 */
1490 		if (ifp->if_bpf)
1491 			bpf_mtap(ifp, m_head);
1492 	}
1493 
1494 	/* Transmit */
1495 	sc_if->sk_cdata.sk_tx_prod = idx;
1496 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1497 
1498 	/* Set a timeout in case the chip goes out to lunch. */
1499 	ifp->if_timer = 5;
1500 	SK_IF_UNLOCK(sc_if);
1501 
1502 	return;
1503 }
1504 
1505 
1506 static void sk_watchdog(ifp)
1507 	struct ifnet		*ifp;
1508 {
1509 	struct sk_if_softc	*sc_if;
1510 
1511 	sc_if = ifp->if_softc;
1512 
1513 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1514 	sk_init(sc_if);
1515 
1516 	return;
1517 }
1518 
1519 static void sk_shutdown(dev)
1520 	device_t		dev;
1521 {
1522 	struct sk_softc		*sc;
1523 
1524 	sc = device_get_softc(dev);
1525 	SK_LOCK(sc);
1526 
1527 	/* Turn off the 'driver is loaded' LED. */
1528 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1529 
1530 	/*
1531 	 * Reset the GEnesis controller. Doing this should also
1532 	 * assert the resets on the attached XMAC(s).
1533 	 */
1534 	sk_reset(sc);
1535 	SK_UNLOCK(sc);
1536 
1537 	return;
1538 }
1539 
1540 static void sk_rxeof(sc_if)
1541 	struct sk_if_softc	*sc_if;
1542 {
1543 	struct ether_header	*eh;
1544 	struct mbuf		*m;
1545 	struct ifnet		*ifp;
1546 	struct sk_chain		*cur_rx;
1547 	int			total_len = 0;
1548 	int			i;
1549 	u_int32_t		rxstat;
1550 
1551 	ifp = &sc_if->arpcom.ac_if;
1552 	i = sc_if->sk_cdata.sk_rx_prod;
1553 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1554 
1555 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1556 
1557 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1558 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1559 		m = cur_rx->sk_mbuf;
1560 		cur_rx->sk_mbuf = NULL;
1561 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1562 		SK_INC(i, SK_RX_RING_CNT);
1563 
1564 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1565 			ifp->if_ierrors++;
1566 			sk_newbuf(sc_if, cur_rx, m);
1567 			continue;
1568 		}
1569 
1570 		/*
1571 		 * Try to allocate a new jumbo buffer. If that
1572 		 * fails, copy the packet to mbufs and put the
1573 		 * jumbo buffer back in the ring so it can be
1574 		 * re-used. If allocating mbufs fails, then we
1575 		 * have to drop the packet.
1576 		 */
1577 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1578 			struct mbuf		*m0;
1579 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1580 			    ifp, NULL);
1581 			sk_newbuf(sc_if, cur_rx, m);
1582 			if (m0 == NULL) {
1583 				printf("sk%d: no receive buffers "
1584 				    "available -- packet dropped!\n",
1585 				    sc_if->sk_unit);
1586 				ifp->if_ierrors++;
1587 				continue;
1588 			}
1589 			m = m0;
1590 		} else {
1591 			m->m_pkthdr.rcvif = ifp;
1592 			m->m_pkthdr.len = m->m_len = total_len;
1593 		}
1594 
1595 		ifp->if_ipackets++;
1596 		eh = mtod(m, struct ether_header *);
1597 
1598 		/* Remove header from mbuf and pass it on. */
1599 		m_adj(m, sizeof(struct ether_header));
1600 		ether_input(ifp, eh, m);
1601 	}
1602 
1603 	sc_if->sk_cdata.sk_rx_prod = i;
1604 
1605 	return;
1606 }
1607 
1608 static void sk_txeof(sc_if)
1609 	struct sk_if_softc	*sc_if;
1610 {
1611 	struct sk_tx_desc	*cur_tx = NULL;
1612 	struct ifnet		*ifp;
1613 	u_int32_t		idx;
1614 
1615 	ifp = &sc_if->arpcom.ac_if;
1616 
1617 	/*
1618 	 * Go through our tx ring and free mbufs for those
1619 	 * frames that have been sent.
1620 	 */
1621 	idx = sc_if->sk_cdata.sk_tx_cons;
1622 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1623 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1624 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1625 			break;
1626 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1627 			ifp->if_opackets++;
1628 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1629 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1630 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1631 		}
1632 		sc_if->sk_cdata.sk_tx_cnt--;
1633 		SK_INC(idx, SK_TX_RING_CNT);
1634 		ifp->if_timer = 0;
1635 	}
1636 
1637 	sc_if->sk_cdata.sk_tx_cons = idx;
1638 
1639 	if (cur_tx != NULL)
1640 		ifp->if_flags &= ~IFF_OACTIVE;
1641 
1642 	return;
1643 }
1644 
1645 static void sk_tick(xsc_if)
1646 	void			*xsc_if;
1647 {
1648 	struct sk_if_softc	*sc_if;
1649 	struct mii_data		*mii;
1650 	struct ifnet		*ifp;
1651 	int			i;
1652 
1653 	sc_if = xsc_if;
1654 	SK_IF_LOCK(sc_if);
1655 	ifp = &sc_if->arpcom.ac_if;
1656 	mii = device_get_softc(sc_if->sk_miibus);
1657 
1658 	if (!(ifp->if_flags & IFF_UP)) {
1659 		SK_IF_UNLOCK(sc_if);
1660 		return;
1661 	}
1662 
1663 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1664 		sk_intr_bcom(sc_if);
1665 		SK_IF_UNLOCK(sc_if);
1666 		return;
1667 	}
1668 
1669 	/*
1670 	 * According to SysKonnect, the correct way to verify that
1671 	 * the link has come back up is to poll bit 0 of the GPIO
1672 	 * register three times. This pin has the signal from the
1673 	 * link_sync pin connected to it; if we read the same link
1674 	 * state 3 times in a row, we know the link is up.
1675 	 */
1676 	for (i = 0; i < 3; i++) {
1677 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1678 			break;
1679 	}
1680 
1681 	if (i != 3) {
1682 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1683 		SK_IF_UNLOCK(sc_if);
1684 		return;
1685 	}
1686 
1687 	/* Turn the GP0 interrupt back on. */
1688 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1689 	SK_XM_READ_2(sc_if, XM_ISR);
1690 	mii_tick(mii);
1691 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1692 
1693 	SK_IF_UNLOCK(sc_if);
1694 	return;
1695 }
1696 
1697 static void sk_intr_bcom(sc_if)
1698 	struct sk_if_softc	*sc_if;
1699 {
1700 	struct sk_softc		*sc;
1701 	struct mii_data		*mii;
1702 	struct ifnet		*ifp;
1703 	int			status;
1704 
1705 	sc = sc_if->sk_softc;
1706 	mii = device_get_softc(sc_if->sk_miibus);
1707 	ifp = &sc_if->arpcom.ac_if;
1708 
1709 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1710 
1711 	/*
1712 	 * Read the PHY interrupt register to make sure
1713 	 * we clear any pending interrupts.
1714 	 */
1715 	status = sk_miibus_readreg(sc_if->sk_dev,
1716 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1717 
1718 	if (!(ifp->if_flags & IFF_RUNNING)) {
1719 		sk_init_xmac(sc_if);
1720 		return;
1721 	}
1722 
1723 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1724 		int			lstat;
1725 		lstat = sk_miibus_readreg(sc_if->sk_dev,
1726 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1727 
1728 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1729 			mii_mediachg(mii);
1730 			/* Turn off the link LED. */
1731 			SK_IF_WRITE_1(sc_if, 0,
1732 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1733 			sc_if->sk_link = 0;
1734 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1735 			sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1736 	    		    BRGPHY_MII_IMR, 0xFF00);
1737 			mii_tick(mii);
1738 			sc_if->sk_link = 1;
1739 			/* Turn on the link LED. */
1740 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1741 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1742 			    SK_LINKLED_BLINK_OFF);
1743 		} else {
1744 			mii_tick(mii);
1745 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1746 		}
1747 	}
1748 
1749 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1750 
1751 	return;
1752 }
1753 
1754 static void sk_intr_xmac(sc_if)
1755 	struct sk_if_softc	*sc_if;
1756 {
1757 	struct sk_softc		*sc;
1758 	u_int16_t		status;
1759 	struct mii_data		*mii;
1760 
1761 	sc = sc_if->sk_softc;
1762 	mii = device_get_softc(sc_if->sk_miibus);
1763 	status = SK_XM_READ_2(sc_if, XM_ISR);
1764 
1765 	/*
1766 	 * Link has gone down. Start MII tick timeout to
1767 	 * watch for link resync.
1768 	 */
1769 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1770 		if (status & XM_ISR_GP0_SET) {
1771 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1772 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1773 		}
1774 
1775 		if (status & XM_ISR_AUTONEG_DONE) {
1776 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1777 		}
1778 	}
1779 
1780 	if (status & XM_IMR_TX_UNDERRUN)
1781 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1782 
1783 	if (status & XM_IMR_RX_OVERRUN)
1784 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1785 
1786 	status = SK_XM_READ_2(sc_if, XM_ISR);
1787 
1788 	return;
1789 }
1790 
1791 static void sk_intr(xsc)
1792 	void			*xsc;
1793 {
1794 	struct sk_softc		*sc = xsc;
1795 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1796 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1797 	u_int32_t		status;
1798 
1799 	SK_LOCK(sc);
1800 
1801 	sc_if0 = sc->sk_if[SK_PORT_A];
1802 	sc_if1 = sc->sk_if[SK_PORT_B];
1803 
1804 	if (sc_if0 != NULL)
1805 		ifp0 = &sc_if0->arpcom.ac_if;
1806 	if (sc_if1 != NULL)
1807 		ifp1 = &sc_if1->arpcom.ac_if;
1808 
1809 	for (;;) {
1810 		status = CSR_READ_4(sc, SK_ISSR);
1811 		if (!(status & sc->sk_intrmask))
1812 			break;
1813 
1814 		/* Handle receive interrupts first. */
1815 		if (status & SK_ISR_RX1_EOF) {
1816 			sk_rxeof(sc_if0);
1817 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1818 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1819 		}
1820 		if (status & SK_ISR_RX2_EOF) {
1821 			sk_rxeof(sc_if1);
1822 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1823 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1824 		}
1825 
1826 		/* Then transmit interrupts. */
1827 		if (status & SK_ISR_TX1_S_EOF) {
1828 			sk_txeof(sc_if0);
1829 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1830 			    SK_TXBMU_CLR_IRQ_EOF);
1831 		}
1832 		if (status & SK_ISR_TX2_S_EOF) {
1833 			sk_txeof(sc_if1);
1834 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1835 			    SK_TXBMU_CLR_IRQ_EOF);
1836 		}
1837 
1838 		/* Then MAC interrupts. */
1839 		if (status & SK_ISR_MAC1 &&
1840 		    ifp0->if_flags & IFF_RUNNING)
1841 			sk_intr_xmac(sc_if0);
1842 
1843 		if (status & SK_ISR_MAC2 &&
1844 		    ifp1->if_flags & IFF_RUNNING)
1845 			sk_intr_xmac(sc_if1);
1846 
1847 		if (status & SK_ISR_EXTERNAL_REG) {
1848 			if (ifp0 != NULL)
1849 				sk_intr_bcom(sc_if0);
1850 			if (ifp1 != NULL)
1851 				sk_intr_bcom(sc_if1);
1852 		}
1853 	}
1854 
1855 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1856 
1857 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1858 		sk_start(ifp0);
1859 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1860 		sk_start(ifp1);
1861 
1862 	SK_UNLOCK(sc);
1863 
1864 	return;
1865 }
1866 
1867 static void sk_init_xmac(sc_if)
1868 	struct sk_if_softc	*sc_if;
1869 {
1870 	struct sk_softc		*sc;
1871 	struct ifnet		*ifp;
1872 	struct sk_bcom_hack	bhack[] = {
1873 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1874 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1875 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1876 	{ 0, 0 } };
1877 
1878 	sc = sc_if->sk_softc;
1879 	ifp = &sc_if->arpcom.ac_if;
1880 
1881 	/* Unreset the XMAC. */
1882 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1883 	DELAY(1000);
1884 
1885 	/* Reset the XMAC's internal state. */
1886 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1887 
1888 	/* Save the XMAC II revision */
1889 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1890 
1891 	/*
1892 	 * Perform additional initialization for external PHYs,
1893 	 * namely for the 1000baseTX cards that use the XMAC's
1894 	 * GMII mode.
1895 	 */
1896 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1897 		int			i = 0;
1898 		u_int32_t		val;
1899 
1900 		/* Take PHY out of reset. */
1901 		val = sk_win_read_4(sc, SK_GPIO);
1902 		if (sc_if->sk_port == SK_PORT_A)
1903 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1904 		else
1905 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1906 		sk_win_write_4(sc, SK_GPIO, val);
1907 
1908 		/* Enable GMII mode on the XMAC. */
1909 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1910 
1911 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1912 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1913 		DELAY(10000);
1914 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1915 		    BRGPHY_MII_IMR, 0xFFF0);
1916 
1917 		/*
1918 		 * Early versions of the BCM5400 apparently have
1919 		 * a bug that requires them to have their reserved
1920 		 * registers initialized to some magic values. I don't
1921 		 * know what the numbers do, I'm just the messenger.
1922 		 */
1923 		if (sk_miibus_readreg(sc_if->sk_dev,
1924 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1925 			while(bhack[i].reg) {
1926 				sk_miibus_writereg(sc_if->sk_dev,
1927 				    SK_PHYADDR_BCOM, bhack[i].reg,
1928 				    bhack[i].val);
1929 				i++;
1930 			}
1931 		}
1932 	}
1933 
1934 	/* Set station address */
1935 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1936 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1937 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1938 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1939 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1940 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1941 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1942 
1943 	if (ifp->if_flags & IFF_PROMISC) {
1944 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1945 	} else {
1946 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1947 	}
1948 
1949 	if (ifp->if_flags & IFF_BROADCAST) {
1950 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1951 	} else {
1952 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1953 	}
1954 
1955 	/* We don't need the FCS appended to the packet. */
1956 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
1957 
1958 	/* We want short frames padded to 60 bytes. */
1959 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
1960 
1961 	/*
1962 	 * Enable the reception of all error frames. This is is
1963 	 * a necessary evil due to the design of the XMAC. The
1964 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1965 	 * frames can be up to 9000 bytes in length. When bad
1966 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1967 	 * in 'store and forward' mode. For this to work, the
1968 	 * entire frame has to fit into the FIFO, but that means
1969 	 * that jumbo frames larger than 8192 bytes will be
1970 	 * truncated. Disabling all bad frame filtering causes
1971 	 * the RX FIFO to operate in streaming mode, in which
1972 	 * case the XMAC will start transfering frames out of the
1973 	 * RX FIFO as soon as the FIFO threshold is reached.
1974 	 */
1975 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
1976 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
1977 	    XM_MODE_RX_INRANGELEN);
1978 
1979 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1980 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1981 	else
1982 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1983 
1984 	/*
1985 	 * Bump up the transmit threshold. This helps hold off transmit
1986 	 * underruns when we're blasting traffic from both ports at once.
1987 	 */
1988 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
1989 
1990 	/* Set multicast filter */
1991 	sk_setmulti(sc_if);
1992 
1993 	/* Clear and enable interrupts */
1994 	SK_XM_READ_2(sc_if, XM_ISR);
1995 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1996 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
1997 	else
1998 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
1999 
2000 	/* Configure MAC arbiter */
2001 	switch(sc_if->sk_xmac_rev) {
2002 	case XM_XMAC_REV_B2:
2003 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2004 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2005 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2006 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2007 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2008 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2009 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2010 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2011 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2012 		break;
2013 	case XM_XMAC_REV_C1:
2014 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2015 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2016 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2017 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2018 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2019 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2020 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2021 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2022 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2023 		break;
2024 	default:
2025 		break;
2026 	}
2027 	sk_win_write_2(sc, SK_MACARB_CTL,
2028 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2029 
2030 	sc_if->sk_link = 1;
2031 
2032 	return;
2033 }
2034 
2035 /*
2036  * Note that to properly initialize any part of the GEnesis chip,
2037  * you first have to take it out of reset mode.
2038  */
2039 static void sk_init(xsc)
2040 	void			*xsc;
2041 {
2042 	struct sk_if_softc	*sc_if = xsc;
2043 	struct sk_softc		*sc;
2044 	struct ifnet		*ifp;
2045 	struct mii_data		*mii;
2046 
2047 	SK_IF_LOCK(sc_if);
2048 
2049 	ifp = &sc_if->arpcom.ac_if;
2050 	sc = sc_if->sk_softc;
2051 	mii = device_get_softc(sc_if->sk_miibus);
2052 
2053 	/* Cancel pending I/O and free all RX/TX buffers. */
2054 	sk_stop(sc_if);
2055 
2056 	/* Configure LINK_SYNC LED */
2057 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2058 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
2059 
2060 	/* Configure RX LED */
2061 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
2062 
2063 	/* Configure TX LED */
2064 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
2065 
2066 	/* Configure I2C registers */
2067 
2068 	/* Configure XMAC(s) */
2069 	sk_init_xmac(sc_if);
2070 	mii_mediachg(mii);
2071 
2072 	/* Configure MAC FIFOs */
2073 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2074 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2075 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2076 
2077 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2078 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2079 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2080 
2081 	/* Configure transmit arbiter(s) */
2082 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2083 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2084 
2085 	/* Configure RAMbuffers */
2086 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2087 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2088 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2089 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2090 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2091 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2092 
2093 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2094 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2095 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2096 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2097 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2098 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2099 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2100 
2101 	/* Configure BMUs */
2102 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2103 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2104 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2105 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2106 
2107 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2108 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2109 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2110 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2111 
2112 	/* Init descriptors */
2113 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2114 		printf("sk%d: initialization failed: no "
2115 		    "memory for rx buffers\n", sc_if->sk_unit);
2116 		sk_stop(sc_if);
2117 		SK_IF_UNLOCK(sc_if);
2118 		return;
2119 	}
2120 	sk_init_tx_ring(sc_if);
2121 
2122 	/* Configure interrupt handling */
2123 	CSR_READ_4(sc, SK_ISSR);
2124 	if (sc_if->sk_port == SK_PORT_A)
2125 		sc->sk_intrmask |= SK_INTRS1;
2126 	else
2127 		sc->sk_intrmask |= SK_INTRS2;
2128 
2129 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2130 
2131 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2132 
2133 	/* Start BMUs. */
2134 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2135 
2136 	/* Enable XMACs TX and RX state machines */
2137 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2138 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2139 
2140 	ifp->if_flags |= IFF_RUNNING;
2141 	ifp->if_flags &= ~IFF_OACTIVE;
2142 
2143 	SK_IF_UNLOCK(sc_if);
2144 
2145 	return;
2146 }
2147 
2148 static void sk_stop(sc_if)
2149 	struct sk_if_softc	*sc_if;
2150 {
2151 	int			i;
2152 	struct sk_softc		*sc;
2153 	struct ifnet		*ifp;
2154 
2155 	SK_IF_LOCK(sc_if);
2156 	sc = sc_if->sk_softc;
2157 	ifp = &sc_if->arpcom.ac_if;
2158 
2159 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2160 
2161 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2162 		u_int32_t		val;
2163 
2164 		/* Put PHY back into reset. */
2165 		val = sk_win_read_4(sc, SK_GPIO);
2166 		if (sc_if->sk_port == SK_PORT_A) {
2167 			val |= SK_GPIO_DIR0;
2168 			val &= ~SK_GPIO_DAT0;
2169 		} else {
2170 			val |= SK_GPIO_DIR2;
2171 			val &= ~SK_GPIO_DAT2;
2172 		}
2173 		sk_win_write_4(sc, SK_GPIO, val);
2174 	}
2175 
2176 	/* Turn off various components of this interface. */
2177 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2178 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2179 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2180 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2181 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2182 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2183 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2184 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2185 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2186 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2187 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2188 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2189 
2190 	/* Disable interrupts */
2191 	if (sc_if->sk_port == SK_PORT_A)
2192 		sc->sk_intrmask &= ~SK_INTRS1;
2193 	else
2194 		sc->sk_intrmask &= ~SK_INTRS2;
2195 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2196 
2197 	SK_XM_READ_2(sc_if, XM_ISR);
2198 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2199 
2200 	/* Free RX and TX mbufs still in the queues. */
2201 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2202 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2203 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2204 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2205 		}
2206 	}
2207 
2208 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2209 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2210 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2211 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2212 		}
2213 	}
2214 
2215 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2216 	SK_IF_UNLOCK(sc_if);
2217 	return;
2218 }
2219