xref: /freebsd/sys/dev/sk/if_sk.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_arp.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/if_vlan_var.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/in_systm.h>
113 #include <netinet/ip.h>
114 
115 #include <machine/bus.h>
116 #include <machine/in_cksum.h>
117 #include <machine/resource.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #if 0
128 #define SK_USEIOSPACE
129 #endif
130 
131 #include <dev/sk/if_skreg.h>
132 #include <dev/sk/xmaciireg.h>
133 #include <dev/sk/yukonreg.h>
134 
135 MODULE_DEPEND(sk, pci, 1, 1, 1);
136 MODULE_DEPEND(sk, ether, 1, 1, 1);
137 MODULE_DEPEND(sk, miibus, 1, 1, 1);
138 
139 /* "device miibus" required.  See GENERIC if you get errors here. */
140 #include "miibus_if.h"
141 
142 static const struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T_A1,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{
179 		VENDORID_DLINK,
180 		DEVICEID_DLINK_DGE530T_B1,
181 		"D-Link DGE-530T Gigabit Ethernet"
182 	},
183 	{ 0, 0, NULL }
184 };
185 
186 static int skc_probe(device_t);
187 static int skc_attach(device_t);
188 static void skc_child_deleted(device_t, device_t);
189 static int skc_detach(device_t);
190 static int skc_shutdown(device_t);
191 static int skc_suspend(device_t);
192 static int skc_resume(device_t);
193 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
194 static int sk_detach(device_t);
195 static int sk_probe(device_t);
196 static int sk_attach(device_t);
197 static void sk_tick(void *);
198 static void sk_yukon_tick(void *);
199 static void sk_intr(void *);
200 static void sk_intr_xmac(struct sk_if_softc *);
201 static void sk_intr_bcom(struct sk_if_softc *);
202 static void sk_intr_yukon(struct sk_if_softc *);
203 static __inline void sk_rxcksum(if_t, struct mbuf *, u_int32_t);
204 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
205 static void sk_rxeof(struct sk_if_softc *);
206 static void sk_jumbo_rxeof(struct sk_if_softc *);
207 static void sk_txeof(struct sk_if_softc *);
208 static void sk_txcksum(if_t, struct mbuf *, struct sk_tx_desc *);
209 static int sk_encap(struct sk_if_softc *, struct mbuf **);
210 static void sk_start(if_t);
211 static void sk_start_locked(if_t);
212 static int sk_ioctl(if_t, u_long, caddr_t);
213 static void sk_init(void *);
214 static void sk_init_locked(struct sk_if_softc *);
215 static void sk_init_xmac(struct sk_if_softc *);
216 static void sk_init_yukon(struct sk_if_softc *);
217 static void sk_stop(struct sk_if_softc *);
218 static void sk_watchdog(void *);
219 static int sk_ifmedia_upd(if_t);
220 static void sk_ifmedia_sts(if_t, struct ifmediareq *);
221 static void sk_reset(struct sk_softc *);
222 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
223 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
224 static int sk_newbuf(struct sk_if_softc *, int);
225 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
226 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
227 static int sk_dma_alloc(struct sk_if_softc *);
228 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
229 static void sk_dma_free(struct sk_if_softc *);
230 static void sk_dma_jumbo_free(struct sk_if_softc *);
231 static int sk_init_rx_ring(struct sk_if_softc *);
232 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
233 static void sk_init_tx_ring(struct sk_if_softc *);
234 static u_int32_t sk_win_read_4(struct sk_softc *, int);
235 static u_int16_t sk_win_read_2(struct sk_softc *, int);
236 static u_int8_t sk_win_read_1(struct sk_softc *, int);
237 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
238 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
240 
241 static int sk_miibus_readreg(device_t, int, int);
242 static int sk_miibus_writereg(device_t, int, int, int);
243 static void sk_miibus_statchg(device_t);
244 
245 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
246 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
247 						int);
248 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
249 
250 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
251 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
252 						int);
253 static void sk_marv_miibus_statchg(struct sk_if_softc *);
254 
255 static uint32_t sk_xmchash(const uint8_t *);
256 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
257 static void sk_rxfilter(struct sk_if_softc *);
258 static void sk_rxfilter_genesis(struct sk_if_softc *);
259 static void sk_rxfilter_yukon(struct sk_if_softc *);
260 
261 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
262 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
263 
264 /* Tunables. */
265 static int jumbo_disable = 0;
266 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
267 
268 /*
269  * It seems that SK-NET GENESIS supports very simple checksum offload
270  * capability for Tx and I believe it can generate 0 checksum value for
271  * UDP packets in Tx as the hardware can't differenciate UDP packets from
272  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
273  * means sender didn't perforam checksum computation. For the safety I
274  * disabled UDP checksum offload capability at the moment.
275  */
276 #define SK_CSUM_FEATURES	(CSUM_TCP)
277 
278 /*
279  * Note that we have newbus methods for both the GEnesis controller
280  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
281  * the miibus code is a child of the XMACs. We need to do it this way
282  * so that the miibus drivers can access the PHY registers on the
283  * right PHY. It's not quite what I had in mind, but it's the only
284  * design that achieves the desired effect.
285  */
286 static device_method_t skc_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		skc_probe),
289 	DEVMETHOD(device_attach,	skc_attach),
290 	DEVMETHOD(device_detach,	skc_detach),
291 	DEVMETHOD(device_suspend,	skc_suspend),
292 	DEVMETHOD(device_resume,	skc_resume),
293 	DEVMETHOD(device_shutdown,	skc_shutdown),
294 
295 	DEVMETHOD(bus_child_deleted,	skc_child_deleted),
296 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297 
298 	DEVMETHOD_END
299 };
300 
301 static driver_t skc_driver = {
302 	"skc",
303 	skc_methods,
304 	sizeof(struct sk_softc)
305 };
306 
307 static device_method_t sk_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		sk_probe),
310 	DEVMETHOD(device_attach,	sk_attach),
311 	DEVMETHOD(device_detach,	sk_detach),
312 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
313 
314 	/* MII interface */
315 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
316 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
317 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
318 
319 	DEVMETHOD_END
320 };
321 
322 static driver_t sk_driver = {
323 	"sk",
324 	sk_methods,
325 	sizeof(struct sk_if_softc)
326 };
327 
328 DRIVER_MODULE(skc, pci, skc_driver, NULL, NULL);
329 DRIVER_MODULE(sk, skc, sk_driver, NULL, NULL);
330 DRIVER_MODULE(miibus, sk, miibus_driver, NULL, NULL);
331 
332 static struct resource_spec sk_res_spec_io[] = {
333 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
334 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
335 	{ -1,			0,		0 }
336 };
337 
338 static struct resource_spec sk_res_spec_mem[] = {
339 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 #define SK_SETBIT(sc, reg, x)		\
345 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
346 
347 #define SK_CLRBIT(sc, reg, x)		\
348 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
349 
350 #define SK_WIN_SETBIT_4(sc, reg, x)	\
351 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
352 
353 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
354 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_2(sc, reg, x)	\
357 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
360 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
361 
362 static u_int32_t
363 sk_win_read_4(struct sk_softc *sc, int reg)
364 {
365 #ifdef SK_USEIOSPACE
366 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
367 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
368 #else
369 	return(CSR_READ_4(sc, reg));
370 #endif
371 }
372 
373 static u_int16_t
374 sk_win_read_2(struct sk_softc *sc, int reg)
375 {
376 #ifdef SK_USEIOSPACE
377 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
378 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
379 #else
380 	return(CSR_READ_2(sc, reg));
381 #endif
382 }
383 
384 static u_int8_t
385 sk_win_read_1(struct sk_softc *sc, int reg)
386 {
387 #ifdef SK_USEIOSPACE
388 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
389 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
390 #else
391 	return(CSR_READ_1(sc, reg));
392 #endif
393 }
394 
395 static void
396 sk_win_write_4(struct sk_softc *sc, int reg, u_int32_t val)
397 {
398 #ifdef SK_USEIOSPACE
399 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
400 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
401 #else
402 	CSR_WRITE_4(sc, reg, val);
403 #endif
404 	return;
405 }
406 
407 static void
408 sk_win_write_2(struct sk_softc *sc, int reg, u_int32_t val)
409 {
410 #ifdef SK_USEIOSPACE
411 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
412 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
413 #else
414 	CSR_WRITE_2(sc, reg, val);
415 #endif
416 	return;
417 }
418 
419 static void
420 sk_win_write_1(struct sk_softc *sc, int reg, u_int32_t val)
421 {
422 #ifdef SK_USEIOSPACE
423 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
424 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
425 #else
426 	CSR_WRITE_1(sc, reg, val);
427 #endif
428 	return;
429 }
430 
431 static int
432 sk_miibus_readreg(device_t dev, int phy, int reg)
433 {
434 	struct sk_if_softc	*sc_if;
435 	int			v;
436 
437 	sc_if = device_get_softc(dev);
438 
439 	SK_IF_MII_LOCK(sc_if);
440 	switch(sc_if->sk_softc->sk_type) {
441 	case SK_GENESIS:
442 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
443 		break;
444 	case SK_YUKON:
445 	case SK_YUKON_LITE:
446 	case SK_YUKON_LP:
447 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
448 		break;
449 	default:
450 		v = 0;
451 		break;
452 	}
453 	SK_IF_MII_UNLOCK(sc_if);
454 
455 	return (v);
456 }
457 
458 static int
459 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
460 {
461 	struct sk_if_softc	*sc_if;
462 	int			v;
463 
464 	sc_if = device_get_softc(dev);
465 
466 	SK_IF_MII_LOCK(sc_if);
467 	switch(sc_if->sk_softc->sk_type) {
468 	case SK_GENESIS:
469 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
470 		break;
471 	case SK_YUKON:
472 	case SK_YUKON_LITE:
473 	case SK_YUKON_LP:
474 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
475 		break;
476 	default:
477 		v = 0;
478 		break;
479 	}
480 	SK_IF_MII_UNLOCK(sc_if);
481 
482 	return (v);
483 }
484 
485 static void
486 sk_miibus_statchg(device_t dev)
487 {
488 	struct sk_if_softc	*sc_if;
489 
490 	sc_if = device_get_softc(dev);
491 
492 	SK_IF_MII_LOCK(sc_if);
493 	switch(sc_if->sk_softc->sk_type) {
494 	case SK_GENESIS:
495 		sk_xmac_miibus_statchg(sc_if);
496 		break;
497 	case SK_YUKON:
498 	case SK_YUKON_LITE:
499 	case SK_YUKON_LP:
500 		sk_marv_miibus_statchg(sc_if);
501 		break;
502 	}
503 	SK_IF_MII_UNLOCK(sc_if);
504 
505 	return;
506 }
507 
508 static int
509 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
510 {
511 	int			i;
512 
513 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
514 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
515 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
516 		for (i = 0; i < SK_TIMEOUT; i++) {
517 			DELAY(1);
518 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
519 			    XM_MMUCMD_PHYDATARDY)
520 				break;
521 		}
522 
523 		if (i == SK_TIMEOUT) {
524 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
525 			return(0);
526 		}
527 	}
528 	DELAY(1);
529 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
530 
531 	return(i);
532 }
533 
534 static int
535 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
536 {
537 	int			i;
538 
539 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540 	for (i = 0; i < SK_TIMEOUT; i++) {
541 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
542 			break;
543 	}
544 
545 	if (i == SK_TIMEOUT) {
546 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
547 		return (ETIMEDOUT);
548 	}
549 
550 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
551 	for (i = 0; i < SK_TIMEOUT; i++) {
552 		DELAY(1);
553 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
554 			break;
555 	}
556 	if (i == SK_TIMEOUT)
557 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
558 
559 	return(0);
560 }
561 
562 static void
563 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
564 {
565 	struct mii_data		*mii;
566 
567 	mii = device_get_softc(sc_if->sk_miibus);
568 
569 	/*
570 	 * If this is a GMII PHY, manually set the XMAC's
571 	 * duplex mode accordingly.
572 	 */
573 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
574 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
575 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
576 		} else {
577 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
578 		}
579 	}
580 }
581 
582 static int
583 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
584 {
585 	u_int16_t		val;
586 	int			i;
587 
588 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
589 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
590 		return(0);
591 	}
592 
593         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
594 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
595 
596 	for (i = 0; i < SK_TIMEOUT; i++) {
597 		DELAY(1);
598 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
599 		if (val & YU_SMICR_READ_VALID)
600 			break;
601 	}
602 
603 	if (i == SK_TIMEOUT) {
604 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
605 		return(0);
606 	}
607 
608 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
609 
610 	return(val);
611 }
612 
613 static int
614 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
615 {
616 	int			i;
617 
618 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
619 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
620 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
621 
622 	for (i = 0; i < SK_TIMEOUT; i++) {
623 		DELAY(1);
624 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
625 			break;
626 	}
627 	if (i == SK_TIMEOUT)
628 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
629 
630 	return(0);
631 }
632 
633 static void
634 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
635 {
636 	return;
637 }
638 
639 #define HASH_BITS		6
640 
641 static u_int32_t
642 sk_xmchash(const uint8_t *addr)
643 {
644 	uint32_t crc;
645 
646 	/* Compute CRC for the address value. */
647 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
648 
649 	return (~crc & ((1 << HASH_BITS) - 1));
650 }
651 
652 static void
653 sk_setfilt(struct sk_if_softc *sc_if, u_int16_t *addr, int slot)
654 {
655 	int			base;
656 
657 	base = XM_RXFILT_ENTRY(slot);
658 
659 	SK_XM_WRITE_2(sc_if, base, addr[0]);
660 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
661 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
662 
663 	return;
664 }
665 
666 static void
667 sk_rxfilter(struct sk_if_softc *sc_if)
668 {
669 	struct sk_softc		*sc;
670 
671 	SK_IF_LOCK_ASSERT(sc_if);
672 
673 	sc = sc_if->sk_softc;
674 	if (sc->sk_type == SK_GENESIS)
675 		sk_rxfilter_genesis(sc_if);
676 	else
677 		sk_rxfilter_yukon(sc_if);
678 }
679 
680 struct sk_add_maddr_genesis_ctx {
681 	struct sk_if_softc *sc_if;
682 	uint32_t hashes[2];
683 	uint32_t mode;
684 };
685 
686 static u_int
687 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
688 {
689 	struct sk_add_maddr_genesis_ctx *ctx = arg;
690 	int h;
691 
692 	/*
693 	 * Program the first XM_RXFILT_MAX multicast groups
694 	 * into the perfect filter.
695 	 */
696 	if (cnt + 1 < XM_RXFILT_MAX) {
697 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
698 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
699 		return (1);
700 	}
701 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
702 	if (h < 32)
703 		ctx->hashes[0] |= (1 << h);
704 	else
705 		ctx->hashes[1] |= (1 << (h - 32));
706 	ctx->mode |= XM_MODE_RX_USE_HASH;
707 
708 	return (1);
709 }
710 
711 static void
712 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
713 {
714 	if_t			ifp = sc_if->sk_ifp;
715 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
716 	int			i;
717 	u_int16_t		dummy[] = { 0, 0, 0 };
718 
719 	SK_IF_LOCK_ASSERT(sc_if);
720 
721 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
722 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
723 	    XM_MODE_RX_USE_PERFECT);
724 	/* First, zot all the existing perfect filters. */
725 	for (i = 1; i < XM_RXFILT_MAX; i++)
726 		sk_setfilt(sc_if, dummy, i);
727 
728 	/* Now program new ones. */
729 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
730 		if (if_getflags(ifp) & IFF_ALLMULTI)
731 			ctx.mode |= XM_MODE_RX_USE_HASH;
732 		if (if_getflags(ifp) & IFF_PROMISC)
733 			ctx.mode |= XM_MODE_RX_PROMISC;
734 		ctx.hashes[0] = 0xFFFFFFFF;
735 		ctx.hashes[1] = 0xFFFFFFFF;
736 	} else
737 		/* XXX want to maintain reverse semantics */
738 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
739 
740 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
741 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
742 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
743 }
744 
745 static u_int
746 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
747 {
748 	uint32_t crc, *hashes = arg;
749 
750 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
751 	/* Just want the 6 least significant bits. */
752 	crc &= 0x3f;
753 	/* Set the corresponding bit in the hash table. */
754 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
755 
756 	return (1);
757 }
758 
759 static void
760 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
761 {
762 	if_t			ifp;
763 	uint32_t		hashes[2] = { 0, 0 }, mode;
764 
765 	SK_IF_LOCK_ASSERT(sc_if);
766 
767 	ifp = sc_if->sk_ifp;
768 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
769 	if (if_getflags(ifp) & IFF_PROMISC)
770 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
771 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
772 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
773 		hashes[0] = 0xFFFFFFFF;
774 		hashes[1] = 0xFFFFFFFF;
775 	} else {
776 		mode |= YU_RCR_UFLEN;
777 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
778 		if (hashes[0] != 0 || hashes[1] != 0)
779 			mode |= YU_RCR_MUFLEN;
780 	}
781 
782 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
783 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
784 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
785 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
786 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
787 }
788 
789 static int
790 sk_init_rx_ring(struct sk_if_softc *sc_if)
791 {
792 	struct sk_ring_data	*rd;
793 	bus_addr_t		addr;
794 	u_int32_t		csum_start;
795 	int			i;
796 
797 	sc_if->sk_cdata.sk_rx_cons = 0;
798 
799 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
800 	    ETHER_HDR_LEN;
801 	rd = &sc_if->sk_rdata;
802 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
803 	for (i = 0; i < SK_RX_RING_CNT; i++) {
804 		if (sk_newbuf(sc_if, i) != 0)
805 			return (ENOBUFS);
806 		if (i == (SK_RX_RING_CNT - 1))
807 			addr = SK_RX_RING_ADDR(sc_if, 0);
808 		else
809 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
810 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
811 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
812 	}
813 
814 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
815 	    sc_if->sk_cdata.sk_rx_ring_map,
816 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817 
818 	return(0);
819 }
820 
821 static int
822 sk_init_jumbo_rx_ring(struct sk_if_softc *sc_if)
823 {
824 	struct sk_ring_data	*rd;
825 	bus_addr_t		addr;
826 	u_int32_t		csum_start;
827 	int			i;
828 
829 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
830 
831 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
832 	    ETHER_HDR_LEN;
833 	rd = &sc_if->sk_rdata;
834 	bzero(rd->sk_jumbo_rx_ring,
835 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
836 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
837 		if (sk_jumbo_newbuf(sc_if, i) != 0)
838 			return (ENOBUFS);
839 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
840 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
841 		else
842 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
843 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
844 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
845 	}
846 
847 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
848 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
849 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
850 
851 	return (0);
852 }
853 
854 static void
855 sk_init_tx_ring(struct sk_if_softc *sc_if)
856 {
857 	struct sk_ring_data	*rd;
858 	struct sk_txdesc	*txd;
859 	bus_addr_t		addr;
860 	int			i;
861 
862 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
863 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
864 
865 	sc_if->sk_cdata.sk_tx_prod = 0;
866 	sc_if->sk_cdata.sk_tx_cons = 0;
867 	sc_if->sk_cdata.sk_tx_cnt = 0;
868 
869 	rd = &sc_if->sk_rdata;
870 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
871 	for (i = 0; i < SK_TX_RING_CNT; i++) {
872 		if (i == (SK_TX_RING_CNT - 1))
873 			addr = SK_TX_RING_ADDR(sc_if, 0);
874 		else
875 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
876 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
877 		txd = &sc_if->sk_cdata.sk_txdesc[i];
878 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
879 	}
880 
881 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
882 	    sc_if->sk_cdata.sk_tx_ring_map,
883 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
884 }
885 
886 static __inline void
887 sk_discard_rxbuf(struct sk_if_softc *sc_if, int idx)
888 {
889 	struct sk_rx_desc	*r;
890 	struct sk_rxdesc	*rxd;
891 	struct mbuf		*m;
892 
893 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
894 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
895 	m = rxd->rx_m;
896 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
897 }
898 
899 static __inline void
900 sk_discard_jumbo_rxbuf(struct sk_if_softc *sc_if, int idx)
901 {
902 	struct sk_rx_desc	*r;
903 	struct sk_rxdesc	*rxd;
904 	struct mbuf		*m;
905 
906 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
907 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
908 	m = rxd->rx_m;
909 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
910 }
911 
912 static int
913 sk_newbuf(struct sk_if_softc *sc_if, int idx)
914 {
915 	struct sk_rx_desc	*r;
916 	struct sk_rxdesc	*rxd;
917 	struct mbuf		*m;
918 	bus_dma_segment_t	segs[1];
919 	bus_dmamap_t		map;
920 	int			nsegs;
921 
922 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
923 	if (m == NULL)
924 		return (ENOBUFS);
925 	m->m_len = m->m_pkthdr.len = MCLBYTES;
926 	m_adj(m, ETHER_ALIGN);
927 
928 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
929 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
930 		m_freem(m);
931 		return (ENOBUFS);
932 	}
933 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
934 
935 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936 	if (rxd->rx_m != NULL) {
937 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
938 		    BUS_DMASYNC_POSTREAD);
939 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
940 	}
941 	map = rxd->rx_dmamap;
942 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
943 	sc_if->sk_cdata.sk_rx_sparemap = map;
944 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
945 	    BUS_DMASYNC_PREREAD);
946 	rxd->rx_m = m;
947 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
948 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
949 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
950 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
951 
952 	return (0);
953 }
954 
955 static int
956 sk_jumbo_newbuf(struct sk_if_softc *sc_if, int idx)
957 {
958 	struct sk_rx_desc	*r;
959 	struct sk_rxdesc	*rxd;
960 	struct mbuf		*m;
961 	bus_dma_segment_t	segs[1];
962 	bus_dmamap_t		map;
963 	int			nsegs;
964 
965 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
966 	if (m == NULL)
967 		return (ENOBUFS);
968 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
969 	/*
970 	 * Adjust alignment so packet payload begins on a
971 	 * longword boundary. Mandatory for Alpha, useful on
972 	 * x86 too.
973 	 */
974 	m_adj(m, ETHER_ALIGN);
975 
976 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
977 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
978 		m_freem(m);
979 		return (ENOBUFS);
980 	}
981 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
982 
983 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
984 	if (rxd->rx_m != NULL) {
985 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
986 		    BUS_DMASYNC_POSTREAD);
987 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
988 		    rxd->rx_dmamap);
989 	}
990 	map = rxd->rx_dmamap;
991 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
992 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
993 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
994 	    BUS_DMASYNC_PREREAD);
995 	rxd->rx_m = m;
996 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
997 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
998 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
999 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Set media options.
1006  */
1007 static int
1008 sk_ifmedia_upd(if_t ifp)
1009 {
1010 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1011 	struct mii_data		*mii;
1012 
1013 	mii = device_get_softc(sc_if->sk_miibus);
1014 	sk_init(sc_if);
1015 	mii_mediachg(mii);
1016 
1017 	return(0);
1018 }
1019 
1020 /*
1021  * Report current media status.
1022  */
1023 static void
1024 sk_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1025 {
1026 	struct sk_if_softc	*sc_if;
1027 	struct mii_data		*mii;
1028 
1029 	sc_if = if_getsoftc(ifp);
1030 	mii = device_get_softc(sc_if->sk_miibus);
1031 
1032 	mii_pollstat(mii);
1033 	ifmr->ifm_active = mii->mii_media_active;
1034 	ifmr->ifm_status = mii->mii_media_status;
1035 
1036 	return;
1037 }
1038 
1039 static int
1040 sk_ioctl(if_t ifp, u_long command, caddr_t data)
1041 {
1042 	struct sk_if_softc	*sc_if = if_getsoftc(ifp);
1043 	struct ifreq		*ifr = (struct ifreq *) data;
1044 	int			error, mask;
1045 	struct mii_data		*mii;
1046 
1047 	error = 0;
1048 	switch(command) {
1049 	case SIOCSIFMTU:
1050 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1051 			error = EINVAL;
1052 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1053 			if (sc_if->sk_jumbo_disable != 0 &&
1054 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1055 				error = EINVAL;
1056 			else {
1057 				SK_IF_LOCK(sc_if);
1058 				if_setmtu(ifp, ifr->ifr_mtu);
1059 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1060 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1061 					sk_init_locked(sc_if);
1062 				}
1063 				SK_IF_UNLOCK(sc_if);
1064 			}
1065 		}
1066 		break;
1067 	case SIOCSIFFLAGS:
1068 		SK_IF_LOCK(sc_if);
1069 		if (if_getflags(ifp) & IFF_UP) {
1070 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1071 				if ((if_getflags(ifp) ^ sc_if->sk_if_flags)
1072 				    & (IFF_PROMISC | IFF_ALLMULTI))
1073 					sk_rxfilter(sc_if);
1074 			} else
1075 				sk_init_locked(sc_if);
1076 		} else {
1077 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1078 				sk_stop(sc_if);
1079 		}
1080 		sc_if->sk_if_flags = if_getflags(ifp);
1081 		SK_IF_UNLOCK(sc_if);
1082 		break;
1083 	case SIOCADDMULTI:
1084 	case SIOCDELMULTI:
1085 		SK_IF_LOCK(sc_if);
1086 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1087 			sk_rxfilter(sc_if);
1088 		SK_IF_UNLOCK(sc_if);
1089 		break;
1090 	case SIOCGIFMEDIA:
1091 	case SIOCSIFMEDIA:
1092 		mii = device_get_softc(sc_if->sk_miibus);
1093 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1094 		break;
1095 	case SIOCSIFCAP:
1096 		SK_IF_LOCK(sc_if);
1097 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1098 			SK_IF_UNLOCK(sc_if);
1099 			break;
1100 		}
1101 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1102 		if ((mask & IFCAP_TXCSUM) != 0 &&
1103 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1104 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1105 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1106 				if_sethwassistbits(ifp, SK_CSUM_FEATURES, 0);
1107 			else
1108 				if_sethwassistbits(ifp, 0, SK_CSUM_FEATURES);
1109 		}
1110 		if ((mask & IFCAP_RXCSUM) != 0 &&
1111 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
1112 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1113 		SK_IF_UNLOCK(sc_if);
1114 		break;
1115 	default:
1116 		error = ether_ioctl(ifp, command, data);
1117 		break;
1118 	}
1119 
1120 	return (error);
1121 }
1122 
1123 /*
1124  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1125  * IDs against our list and return a device name if we find a match.
1126  */
1127 static int
1128 skc_probe(device_t dev)
1129 {
1130 	const struct sk_type	*t = sk_devs;
1131 
1132 	while(t->sk_name != NULL) {
1133 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1134 		    (pci_get_device(dev) == t->sk_did)) {
1135 			/*
1136 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1137 			 * Rev. 3 is supported by re(4).
1138 			 */
1139 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1140 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1141 				(pci_get_subdevice(dev) !=
1142 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1143 				t++;
1144 				continue;
1145 			}
1146 			device_set_desc(dev, t->sk_name);
1147 			return (BUS_PROBE_DEFAULT);
1148 		}
1149 		t++;
1150 	}
1151 
1152 	return(ENXIO);
1153 }
1154 
1155 /*
1156  * Force the GEnesis into reset, then bring it out of reset.
1157  */
1158 static void
1159 sk_reset(struct sk_softc *sc)
1160 {
1161 
1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1164 	if (SK_YUKON_FAMILY(sc->sk_type))
1165 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1166 
1167 	DELAY(1000);
1168 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1169 	DELAY(2);
1170 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1171 	if (SK_YUKON_FAMILY(sc->sk_type))
1172 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1173 
1174 	if (sc->sk_type == SK_GENESIS) {
1175 		/* Configure packet arbiter */
1176 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1177 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1179 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1180 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1181 	}
1182 
1183 	/* Enable RAM interface */
1184 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1185 
1186 	/*
1187          * Configure interrupt moderation. The moderation timer
1188 	 * defers interrupts specified in the interrupt moderation
1189 	 * timer mask based on the timeout specified in the interrupt
1190 	 * moderation timer init register. Each bit in the timer
1191 	 * register represents one tick, so to specify a timeout in
1192 	 * microseconds, we have to multiply by the correct number of
1193 	 * ticks-per-microsecond.
1194 	 */
1195 	switch (sc->sk_type) {
1196 	case SK_GENESIS:
1197 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1198 		break;
1199 	default:
1200 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1201 		break;
1202 	}
1203 	if (bootverbose)
1204 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1205 		    sc->sk_int_mod);
1206 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1207 	    sc->sk_int_ticks));
1208 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1209 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1210 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1211 
1212 	return;
1213 }
1214 
1215 static int
1216 sk_probe(device_t dev)
1217 {
1218 	struct sk_softc		*sc;
1219 
1220 	sc = device_get_softc(device_get_parent(dev));
1221 
1222 	/*
1223 	 * Not much to do here. We always know there will be
1224 	 * at least one XMAC present, and if there are two,
1225 	 * skc_attach() will create a second device instance
1226 	 * for us.
1227 	 */
1228 	switch (sc->sk_type) {
1229 	case SK_GENESIS:
1230 		device_set_desc(dev, "XaQti Corp. XMAC II");
1231 		break;
1232 	case SK_YUKON:
1233 	case SK_YUKON_LITE:
1234 	case SK_YUKON_LP:
1235 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1236 		break;
1237 	}
1238 
1239 	return (BUS_PROBE_DEFAULT);
1240 }
1241 
1242 /*
1243  * Each XMAC chip is attached as a separate logical IP interface.
1244  * Single port cards will have only one logical interface of course.
1245  */
1246 static int
1247 sk_attach(device_t dev)
1248 {
1249 	struct sk_softc		*sc;
1250 	struct sk_if_softc	*sc_if;
1251 	if_t			ifp;
1252 	u_int32_t		r;
1253 	int			error, i, phy, port;
1254 	u_char			eaddr[6];
1255 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1256 
1257 	if (dev == NULL)
1258 		return(EINVAL);
1259 
1260 	error = 0;
1261 	sc_if = device_get_softc(dev);
1262 	sc = device_get_softc(device_get_parent(dev));
1263 	port = *(int *)device_get_ivars(dev);
1264 
1265 	sc_if->sk_if_dev = dev;
1266 	sc_if->sk_port = port;
1267 	sc_if->sk_softc = sc;
1268 	sc->sk_if[port] = sc_if;
1269 	if (port == SK_PORT_A)
1270 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1271 	if (port == SK_PORT_B)
1272 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1273 
1274 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1275 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1276 
1277 	if (sk_dma_alloc(sc_if) != 0) {
1278 		error = ENOMEM;
1279 		goto fail;
1280 	}
1281 	sk_dma_jumbo_alloc(sc_if);
1282 
1283 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1284 	if_setsoftc(ifp, sc_if);
1285 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1286 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1287 	/*
1288 	 * SK_GENESIS has a bug in checksum offload - From linux.
1289 	 */
1290 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1291 		if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
1292 		if_sethwassist(ifp, 0);
1293 	} else {
1294 		if_setcapabilities(ifp, 0);
1295 		if_sethwassist(ifp, 0);
1296 	}
1297 	if_setcapenable(ifp, if_getcapabilities(ifp));
1298 	/*
1299 	 * Some revision of Yukon controller generates corrupted
1300 	 * frame when TX checksum offloading is enabled.  The
1301 	 * frame has a valid checksum value so payload might be
1302 	 * modified during TX checksum calculation. Disable TX
1303 	 * checksum offloading but give users chance to enable it
1304 	 * when they know their controller works without problems
1305 	 * with TX checksum offloading.
1306 	 */
1307 	if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
1308 	if_setioctlfn(ifp, sk_ioctl);
1309 	if_setstartfn(ifp, sk_start);
1310 	if_setinitfn(ifp, sk_init);
1311 	if_setsendqlen(ifp, SK_TX_RING_CNT - 1);
1312 	if_setsendqready(ifp);
1313 
1314 	/*
1315 	 * Get station address for this interface. Note that
1316 	 * dual port cards actually come with three station
1317 	 * addresses: one for each port, plus an extra. The
1318 	 * extra one is used by the SysKonnect driver software
1319 	 * as a 'virtual' station address for when both ports
1320 	 * are operating in failover mode. Currently we don't
1321 	 * use this extra address.
1322 	 */
1323 	SK_IF_LOCK(sc_if);
1324 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1325 		eaddr[i] =
1326 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1327 
1328 	/* Verify whether the station address is invalid or not. */
1329 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1330 		device_printf(sc_if->sk_if_dev,
1331 		    "Generating random ethernet address\n");
1332 		r = arc4random();
1333 		/*
1334 		 * Set OUI to convenient locally assigned address.  'b'
1335 		 * is 0x62, which has the locally assigned bit set, and
1336 		 * the broadcast/multicast bit clear.
1337 		 */
1338 		eaddr[0] = 'b';
1339 		eaddr[1] = 's';
1340 		eaddr[2] = 'd';
1341 		eaddr[3] = (r >> 16) & 0xff;
1342 		eaddr[4] = (r >>  8) & 0xff;
1343 		eaddr[5] = (r >>  0) & 0xff;
1344 	}
1345 	/*
1346 	 * Set up RAM buffer addresses. The NIC will have a certain
1347 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1348 	 * need to divide this up a) between the transmitter and
1349  	 * receiver and b) between the two XMACs, if this is a
1350 	 * dual port NIC. Our algotithm is to divide up the memory
1351 	 * evenly so that everyone gets a fair share.
1352 	 *
1353 	 * Just to be contrary, Yukon2 appears to have separate memory
1354 	 * for each MAC.
1355 	 */
1356 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1357 		u_int32_t		chunk, val;
1358 
1359 		chunk = sc->sk_ramsize / 2;
1360 		val = sc->sk_rboff / sizeof(u_int64_t);
1361 		sc_if->sk_rx_ramstart = val;
1362 		val += (chunk / sizeof(u_int64_t));
1363 		sc_if->sk_rx_ramend = val - 1;
1364 		sc_if->sk_tx_ramstart = val;
1365 		val += (chunk / sizeof(u_int64_t));
1366 		sc_if->sk_tx_ramend = val - 1;
1367 	} else {
1368 		u_int32_t		chunk, val;
1369 
1370 		chunk = sc->sk_ramsize / 4;
1371 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1372 		    sizeof(u_int64_t);
1373 		sc_if->sk_rx_ramstart = val;
1374 		val += (chunk / sizeof(u_int64_t));
1375 		sc_if->sk_rx_ramend = val - 1;
1376 		sc_if->sk_tx_ramstart = val;
1377 		val += (chunk / sizeof(u_int64_t));
1378 		sc_if->sk_tx_ramend = val - 1;
1379 	}
1380 
1381 	/* Read and save PHY type and set PHY address */
1382 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1383 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1384 		switch(sc_if->sk_phytype) {
1385 		case SK_PHYTYPE_XMAC:
1386 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1387 			break;
1388 		case SK_PHYTYPE_BCOM:
1389 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1390 			break;
1391 		default:
1392 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1393 			    sc_if->sk_phytype);
1394 			error = ENODEV;
1395 			SK_IF_UNLOCK(sc_if);
1396 			goto fail;
1397 		}
1398 	} else {
1399 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1400 		    sc->sk_pmd != 'S') {
1401 			/* not initialized, punt */
1402 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1403 			sc->sk_coppertype = 1;
1404 		}
1405 
1406 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1407 
1408 		if (!(sc->sk_coppertype))
1409 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1410 	}
1411 
1412 	/*
1413 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1414 	 */
1415 	SK_IF_UNLOCK(sc_if);
1416 	ether_ifattach(ifp, eaddr);
1417 	SK_IF_LOCK(sc_if);
1418 
1419 	/*
1420 	 * The hardware should be ready for VLAN_MTU by default:
1421 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1422 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1423 	 *
1424 	 */
1425         if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1426         if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
1427 	/*
1428 	 * Tell the upper layer(s) we support long frames.
1429 	 * Must appear after the call to ether_ifattach() because
1430 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1431 	 */
1432         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1433 
1434 	/*
1435 	 * Do miibus setup.
1436 	 */
1437 	phy = MII_PHY_ANY;
1438 	switch (sc->sk_type) {
1439 	case SK_GENESIS:
1440 		sk_init_xmac(sc_if);
1441 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1442 			phy = 0;
1443 		break;
1444 	case SK_YUKON:
1445 	case SK_YUKON_LITE:
1446 	case SK_YUKON_LP:
1447 		sk_init_yukon(sc_if);
1448 		phy = 0;
1449 		break;
1450 	}
1451 
1452 	SK_IF_UNLOCK(sc_if);
1453 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1454 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1455 	if (error != 0) {
1456 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1457 		ether_ifdetach(ifp);
1458 		goto fail;
1459 	}
1460 
1461 fail:
1462 	if (error) {
1463 		/* Access should be ok even though lock has been dropped */
1464 		sc->sk_if[port] = NULL;
1465 		sk_detach(dev);
1466 	}
1467 
1468 	return(error);
1469 }
1470 
1471 /*
1472  * Attach the interface. Allocate softc structures, do ifmedia
1473  * setup and ethernet/BPF attach.
1474  */
1475 static int
1476 skc_attach(device_t dev)
1477 {
1478 	struct sk_softc		*sc;
1479 	int			error = 0, *port;
1480 	uint8_t			skrs;
1481 	const char		*pname = NULL;
1482 	char			*revstr;
1483 
1484 	sc = device_get_softc(dev);
1485 	sc->sk_dev = dev;
1486 
1487 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1488 	    MTX_DEF);
1489 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1490 	/*
1491 	 * Map control/status registers.
1492 	 */
1493 	pci_enable_busmaster(dev);
1494 
1495 	/* Allocate resources */
1496 #ifdef SK_USEIOSPACE
1497 	sc->sk_res_spec = sk_res_spec_io;
1498 #else
1499 	sc->sk_res_spec = sk_res_spec_mem;
1500 #endif
1501 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1502 	if (error) {
1503 		if (sc->sk_res_spec == sk_res_spec_mem)
1504 			sc->sk_res_spec = sk_res_spec_io;
1505 		else
1506 			sc->sk_res_spec = sk_res_spec_mem;
1507 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1508 		if (error) {
1509 			device_printf(dev, "couldn't allocate %s resources\n",
1510 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1511 			    "I/O");
1512 			goto fail;
1513 		}
1514 	}
1515 
1516 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1517 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1518 
1519 	/* Bail out if chip is not recognized. */
1520 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1521 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1522 		    sc->sk_type, sc->sk_rev);
1523 		error = ENXIO;
1524 		goto fail;
1525 	}
1526 
1527 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1528 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1529 		OID_AUTO, "int_mod",
1530 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1531 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1532 		"SK interrupt moderation");
1533 
1534 	/* Pull in device tunables. */
1535 	sc->sk_int_mod = SK_IM_DEFAULT;
1536 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1537 		"int_mod", &sc->sk_int_mod);
1538 	if (error == 0) {
1539 		if (sc->sk_int_mod < SK_IM_MIN ||
1540 		    sc->sk_int_mod > SK_IM_MAX) {
1541 			device_printf(dev, "int_mod value out of range; "
1542 			    "using default: %d\n", SK_IM_DEFAULT);
1543 			sc->sk_int_mod = SK_IM_DEFAULT;
1544 		}
1545 	}
1546 
1547 	/* Reset the adapter. */
1548 	sk_reset(sc);
1549 
1550 	skrs = sk_win_read_1(sc, SK_EPROM0);
1551 	if (sc->sk_type == SK_GENESIS) {
1552 		/* Read and save RAM size and RAMbuffer offset */
1553 		switch(skrs) {
1554 		case SK_RAMSIZE_512K_64:
1555 			sc->sk_ramsize = 0x80000;
1556 			sc->sk_rboff = SK_RBOFF_0;
1557 			break;
1558 		case SK_RAMSIZE_1024K_64:
1559 			sc->sk_ramsize = 0x100000;
1560 			sc->sk_rboff = SK_RBOFF_80000;
1561 			break;
1562 		case SK_RAMSIZE_1024K_128:
1563 			sc->sk_ramsize = 0x100000;
1564 			sc->sk_rboff = SK_RBOFF_0;
1565 			break;
1566 		case SK_RAMSIZE_2048K_128:
1567 			sc->sk_ramsize = 0x200000;
1568 			sc->sk_rboff = SK_RBOFF_0;
1569 			break;
1570 		default:
1571 			device_printf(dev, "unknown ram size: %d\n", skrs);
1572 			error = ENXIO;
1573 			goto fail;
1574 		}
1575 	} else { /* SK_YUKON_FAMILY */
1576 		if (skrs == 0x00)
1577 			sc->sk_ramsize = 0x20000;
1578 		else
1579 			sc->sk_ramsize = skrs * (1<<12);
1580 		sc->sk_rboff = SK_RBOFF_0;
1581 	}
1582 
1583 	/* Read and save physical media type */
1584 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1585 
1586 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1587 		 sc->sk_coppertype = 1;
1588 	 else
1589 		 sc->sk_coppertype = 0;
1590 
1591 	/* Determine whether to name it with VPD PN or just make it up.
1592 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1593 	switch (pci_get_device(dev)) {
1594 	case DEVICEID_SK_V1:
1595 	case DEVICEID_BELKIN_5005:
1596 	case DEVICEID_3COM_3C940:
1597 	case DEVICEID_LINKSYS_EG1032:
1598 	case DEVICEID_DLINK_DGE530T_A1:
1599 	case DEVICEID_DLINK_DGE530T_B1:
1600 		/* Stay with VPD PN. */
1601 		(void) pci_get_vpd_ident(dev, &pname);
1602 		break;
1603 	case DEVICEID_SK_V2:
1604 		/* YUKON VPD PN might bear no resemblance to reality. */
1605 		switch (sc->sk_type) {
1606 		case SK_GENESIS:
1607 			/* Stay with VPD PN. */
1608 			(void) pci_get_vpd_ident(dev, &pname);
1609 			break;
1610 		case SK_YUKON:
1611 			pname = "Marvell Yukon Gigabit Ethernet";
1612 			break;
1613 		case SK_YUKON_LITE:
1614 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1615 			break;
1616 		case SK_YUKON_LP:
1617 			pname = "Marvell Yukon LP Gigabit Ethernet";
1618 			break;
1619 		default:
1620 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1621 			break;
1622 		}
1623 
1624 		/* Yukon Lite Rev. A0 needs special test. */
1625 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1626 			u_int32_t far;
1627 			u_int8_t testbyte;
1628 
1629 			/* Save flash address register before testing. */
1630 			far = sk_win_read_4(sc, SK_EP_ADDR);
1631 
1632 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1633 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1634 
1635 			if (testbyte != 0x00) {
1636 				/* Yukon Lite Rev. A0 detected. */
1637 				sc->sk_type = SK_YUKON_LITE;
1638 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1639 				/* Restore flash address register. */
1640 				sk_win_write_4(sc, SK_EP_ADDR, far);
1641 			}
1642 		}
1643 		break;
1644 	default:
1645 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1646 			"chipver=%02x, rev=%x\n",
1647 			pci_get_vendor(dev), pci_get_device(dev),
1648 			sc->sk_type, sc->sk_rev);
1649 		error = ENXIO;
1650 		goto fail;
1651 	}
1652 
1653 	if (sc->sk_type == SK_YUKON_LITE) {
1654 		switch (sc->sk_rev) {
1655 		case SK_YUKON_LITE_REV_A0:
1656 			revstr = "A0";
1657 			break;
1658 		case SK_YUKON_LITE_REV_A1:
1659 			revstr = "A1";
1660 			break;
1661 		case SK_YUKON_LITE_REV_A3:
1662 			revstr = "A3";
1663 			break;
1664 		default:
1665 			revstr = "";
1666 			break;
1667 		}
1668 	} else {
1669 		revstr = "";
1670 	}
1671 
1672 	/* Announce the product name and more VPD data if there. */
1673 	if (pname != NULL)
1674 		device_printf(dev, "%s rev. %s(0x%x)\n",
1675 			pname, revstr, sc->sk_rev);
1676 
1677 	if (bootverbose) {
1678 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1679 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1680 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1681 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1682 	}
1683 
1684 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1685 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1686 		device_printf(dev, "failed to add child for PORT_A\n");
1687 		error = ENXIO;
1688 		goto fail;
1689 	}
1690 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1691 	if (port == NULL) {
1692 		device_printf(dev, "failed to allocate memory for "
1693 		    "ivars of PORT_A\n");
1694 		error = ENXIO;
1695 		goto fail;
1696 	}
1697 	*port = SK_PORT_A;
1698 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1699 
1700 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1701 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", DEVICE_UNIT_ANY);
1702 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1703 			device_printf(dev, "failed to add child for PORT_B\n");
1704 			error = ENXIO;
1705 			goto fail;
1706 		}
1707 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1708 		if (port == NULL) {
1709 			device_printf(dev, "failed to allocate memory for "
1710 			    "ivars of PORT_B\n");
1711 			error = ENXIO;
1712 			goto fail;
1713 		}
1714 		*port = SK_PORT_B;
1715 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1716 	}
1717 
1718 	/* Turn on the 'driver is loaded' LED. */
1719 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1720 
1721 	bus_attach_children(dev);
1722 
1723 	/* Hook interrupt last to avoid having to lock softc */
1724 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1725 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1726 
1727 	if (error) {
1728 		device_printf(dev, "couldn't set up irq\n");
1729 		goto fail;
1730 	}
1731 
1732 fail:
1733 	if (error)
1734 		skc_detach(dev);
1735 
1736 	return(error);
1737 }
1738 
1739 static void
1740 skc_child_deleted(device_t dev, device_t child)
1741 {
1742 	free(device_get_ivars(child), M_DEVBUF);
1743 }
1744 
1745 /*
1746  * Shutdown hardware and free up resources. This can be called any
1747  * time after the mutex has been initialized. It is called in both
1748  * the error case in attach and the normal detach case so it needs
1749  * to be careful about only freeing resources that have actually been
1750  * allocated.
1751  */
1752 static int
1753 sk_detach(device_t dev)
1754 {
1755 	struct sk_if_softc	*sc_if;
1756 	if_t			ifp;
1757 
1758 	sc_if = device_get_softc(dev);
1759 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1760 	    ("sk mutex not initialized in sk_detach"));
1761 	SK_IF_LOCK(sc_if);
1762 
1763 	ifp = sc_if->sk_ifp;
1764 	/* These should only be active if attach_xmac succeeded */
1765 	if (device_is_attached(dev)) {
1766 		sk_stop(sc_if);
1767 		/* Can't hold locks while calling detach */
1768 		SK_IF_UNLOCK(sc_if);
1769 		callout_drain(&sc_if->sk_tick_ch);
1770 		callout_drain(&sc_if->sk_watchdog_ch);
1771 		ether_ifdetach(ifp);
1772 		SK_IF_LOCK(sc_if);
1773 	}
1774 	/*
1775 	 * We're generally called from skc_detach() which is using
1776 	 * device_delete_child() to get to here. It's already trashed
1777 	 * miibus for us, so don't do it here or we'll panic.
1778 	 */
1779 	/*
1780 	if (sc_if->sk_miibus != NULL)
1781 		device_delete_child(dev, sc_if->sk_miibus);
1782 	*/
1783 	bus_generic_detach(dev);
1784 	sk_dma_jumbo_free(sc_if);
1785 	sk_dma_free(sc_if);
1786 	SK_IF_UNLOCK(sc_if);
1787 	if (ifp)
1788 		if_free(ifp);
1789 
1790 	return(0);
1791 }
1792 
1793 static int
1794 skc_detach(device_t dev)
1795 {
1796 	struct sk_softc		*sc;
1797 
1798 	sc = device_get_softc(dev);
1799 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1800 
1801 	if (device_is_alive(dev)) {
1802 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1803 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1804 		}
1805 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1806 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1807 		}
1808 		bus_generic_detach(dev);
1809 	}
1810 
1811 	if (sc->sk_intrhand)
1812 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1813 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1814 
1815 	mtx_destroy(&sc->sk_mii_mtx);
1816 	mtx_destroy(&sc->sk_mtx);
1817 
1818 	return(0);
1819 }
1820 
1821 static bus_dma_tag_t
1822 skc_get_dma_tag(device_t bus, device_t child __unused)
1823 {
1824 
1825 	return (bus_get_dma_tag(bus));
1826 }
1827 
1828 struct sk_dmamap_arg {
1829 	bus_addr_t	sk_busaddr;
1830 };
1831 
1832 static void
1833 sk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1834 {
1835 	struct sk_dmamap_arg	*ctx;
1836 
1837 	if (error != 0)
1838 		return;
1839 
1840 	ctx = arg;
1841 	ctx->sk_busaddr = segs[0].ds_addr;
1842 }
1843 
1844 /*
1845  * Allocate jumbo buffer storage. The SysKonnect adapters support
1846  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1847  * use them in their drivers. In order for us to use them, we need
1848  * large 9K receive buffers, however standard mbuf clusters are only
1849  * 2048 bytes in size. Consequently, we need to allocate and manage
1850  * our own jumbo buffer pool. Fortunately, this does not require an
1851  * excessive amount of additional code.
1852  */
1853 static int
1854 sk_dma_alloc(struct sk_if_softc *sc_if)
1855 {
1856 	struct sk_dmamap_arg	ctx;
1857 	struct sk_txdesc	*txd;
1858 	struct sk_rxdesc	*rxd;
1859 	int			error, i;
1860 
1861 	/* create parent tag */
1862 	/*
1863 	 * XXX
1864 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1865 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1866 	 * However bz@ reported that it does not work on amd64 with > 4GB
1867 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1868 	 * by limiting DMA address to be in 32bit address space.
1869 	 */
1870 	error = bus_dma_tag_create(
1871 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1872 		    1, 0,			/* algnmnt, boundary */
1873 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1874 		    BUS_SPACE_MAXADDR,		/* highaddr */
1875 		    NULL, NULL,			/* filter, filterarg */
1876 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1877 		    0,				/* nsegments */
1878 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1879 		    0,				/* flags */
1880 		    NULL, NULL,			/* lockfunc, lockarg */
1881 		    &sc_if->sk_cdata.sk_parent_tag);
1882 	if (error != 0) {
1883 		device_printf(sc_if->sk_if_dev,
1884 		    "failed to create parent DMA tag\n");
1885 		goto fail;
1886 	}
1887 
1888 	/* create tag for Tx ring */
1889 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1890 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1891 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1892 		    BUS_SPACE_MAXADDR,		/* highaddr */
1893 		    NULL, NULL,			/* filter, filterarg */
1894 		    SK_TX_RING_SZ,		/* maxsize */
1895 		    1,				/* nsegments */
1896 		    SK_TX_RING_SZ,		/* maxsegsize */
1897 		    0,				/* flags */
1898 		    NULL, NULL,			/* lockfunc, lockarg */
1899 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1900 	if (error != 0) {
1901 		device_printf(sc_if->sk_if_dev,
1902 		    "failed to allocate Tx ring DMA tag\n");
1903 		goto fail;
1904 	}
1905 
1906 	/* create tag for Rx ring */
1907 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1908 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1909 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1910 		    BUS_SPACE_MAXADDR,		/* highaddr */
1911 		    NULL, NULL,			/* filter, filterarg */
1912 		    SK_RX_RING_SZ,		/* maxsize */
1913 		    1,				/* nsegments */
1914 		    SK_RX_RING_SZ,		/* maxsegsize */
1915 		    0,				/* flags */
1916 		    NULL, NULL,			/* lockfunc, lockarg */
1917 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1918 	if (error != 0) {
1919 		device_printf(sc_if->sk_if_dev,
1920 		    "failed to allocate Rx ring DMA tag\n");
1921 		goto fail;
1922 	}
1923 
1924 	/* create tag for Tx buffers */
1925 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1926 		    1, 0,			/* algnmnt, boundary */
1927 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1928 		    BUS_SPACE_MAXADDR,		/* highaddr */
1929 		    NULL, NULL,			/* filter, filterarg */
1930 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
1931 		    SK_MAXTXSEGS,		/* nsegments */
1932 		    MCLBYTES,			/* maxsegsize */
1933 		    0,				/* flags */
1934 		    NULL, NULL,			/* lockfunc, lockarg */
1935 		    &sc_if->sk_cdata.sk_tx_tag);
1936 	if (error != 0) {
1937 		device_printf(sc_if->sk_if_dev,
1938 		    "failed to allocate Tx DMA tag\n");
1939 		goto fail;
1940 	}
1941 
1942 	/* create tag for Rx buffers */
1943 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1944 		    1, 0,			/* algnmnt, boundary */
1945 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1946 		    BUS_SPACE_MAXADDR,		/* highaddr */
1947 		    NULL, NULL,			/* filter, filterarg */
1948 		    MCLBYTES,			/* maxsize */
1949 		    1,				/* nsegments */
1950 		    MCLBYTES,			/* maxsegsize */
1951 		    0,				/* flags */
1952 		    NULL, NULL,			/* lockfunc, lockarg */
1953 		    &sc_if->sk_cdata.sk_rx_tag);
1954 	if (error != 0) {
1955 		device_printf(sc_if->sk_if_dev,
1956 		    "failed to allocate Rx DMA tag\n");
1957 		goto fail;
1958 	}
1959 
1960 	/* allocate DMA'able memory and load the DMA map for Tx ring */
1961 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
1962 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
1963 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
1964 	if (error != 0) {
1965 		device_printf(sc_if->sk_if_dev,
1966 		    "failed to allocate DMA'able memory for Tx ring\n");
1967 		goto fail;
1968 	}
1969 
1970 	ctx.sk_busaddr = 0;
1971 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
1972 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
1973 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1974 	if (error != 0) {
1975 		device_printf(sc_if->sk_if_dev,
1976 		    "failed to load DMA'able memory for Tx ring\n");
1977 		goto fail;
1978 	}
1979 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
1980 
1981 	/* allocate DMA'able memory and load the DMA map for Rx ring */
1982 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
1983 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
1984 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
1985 	if (error != 0) {
1986 		device_printf(sc_if->sk_if_dev,
1987 		    "failed to allocate DMA'able memory for Rx ring\n");
1988 		goto fail;
1989 	}
1990 
1991 	ctx.sk_busaddr = 0;
1992 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
1993 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
1994 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1995 	if (error != 0) {
1996 		device_printf(sc_if->sk_if_dev,
1997 		    "failed to load DMA'able memory for Rx ring\n");
1998 		goto fail;
1999 	}
2000 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2001 
2002 	/* create DMA maps for Tx buffers */
2003 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2004 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2005 		txd->tx_m = NULL;
2006 		txd->tx_dmamap = NULL;
2007 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2008 		    &txd->tx_dmamap);
2009 		if (error != 0) {
2010 			device_printf(sc_if->sk_if_dev,
2011 			    "failed to create Tx dmamap\n");
2012 			goto fail;
2013 		}
2014 	}
2015 
2016 	/* create DMA maps for Rx buffers */
2017 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2018 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2019 		device_printf(sc_if->sk_if_dev,
2020 		    "failed to create spare Rx dmamap\n");
2021 		goto fail;
2022 	}
2023 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2024 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2025 		rxd->rx_m = NULL;
2026 		rxd->rx_dmamap = NULL;
2027 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2028 		    &rxd->rx_dmamap);
2029 		if (error != 0) {
2030 			device_printf(sc_if->sk_if_dev,
2031 			    "failed to create Rx dmamap\n");
2032 			goto fail;
2033 		}
2034 	}
2035 
2036 fail:
2037 	return (error);
2038 }
2039 
2040 static int
2041 sk_dma_jumbo_alloc(struct sk_if_softc *sc_if)
2042 {
2043 	struct sk_dmamap_arg	ctx;
2044 	struct sk_rxdesc	*jrxd;
2045 	int			error, i;
2046 
2047 	if (jumbo_disable != 0) {
2048 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2049 		sc_if->sk_jumbo_disable = 1;
2050 		return (0);
2051 	}
2052 	/* create tag for jumbo Rx ring */
2053 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2054 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2055 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2056 		    BUS_SPACE_MAXADDR,		/* highaddr */
2057 		    NULL, NULL,			/* filter, filterarg */
2058 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2059 		    1,				/* nsegments */
2060 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2061 		    0,				/* flags */
2062 		    NULL, NULL,			/* lockfunc, lockarg */
2063 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2064 	if (error != 0) {
2065 		device_printf(sc_if->sk_if_dev,
2066 		    "failed to allocate jumbo Rx ring DMA tag\n");
2067 		goto jumbo_fail;
2068 	}
2069 
2070 	/* create tag for jumbo Rx buffers */
2071 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2072 		    1, 0,			/* algnmnt, boundary */
2073 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2074 		    BUS_SPACE_MAXADDR,		/* highaddr */
2075 		    NULL, NULL,			/* filter, filterarg */
2076 		    MJUM9BYTES,			/* maxsize */
2077 		    1,				/* nsegments */
2078 		    MJUM9BYTES,			/* maxsegsize */
2079 		    0,				/* flags */
2080 		    NULL, NULL,			/* lockfunc, lockarg */
2081 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2082 	if (error != 0) {
2083 		device_printf(sc_if->sk_if_dev,
2084 		    "failed to allocate jumbo Rx DMA tag\n");
2085 		goto jumbo_fail;
2086 	}
2087 
2088 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2089 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2090 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2091 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2092 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2093 	if (error != 0) {
2094 		device_printf(sc_if->sk_if_dev,
2095 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2096 		goto jumbo_fail;
2097 	}
2098 
2099 	ctx.sk_busaddr = 0;
2100 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2101 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2102 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2103 	    &ctx, BUS_DMA_NOWAIT);
2104 	if (error != 0) {
2105 		device_printf(sc_if->sk_if_dev,
2106 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2107 		goto jumbo_fail;
2108 	}
2109 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2110 
2111 	/* create DMA maps for jumbo Rx buffers */
2112 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2113 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2114 		device_printf(sc_if->sk_if_dev,
2115 		    "failed to create spare jumbo Rx dmamap\n");
2116 		goto jumbo_fail;
2117 	}
2118 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2119 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2120 		jrxd->rx_m = NULL;
2121 		jrxd->rx_dmamap = NULL;
2122 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2123 		    &jrxd->rx_dmamap);
2124 		if (error != 0) {
2125 			device_printf(sc_if->sk_if_dev,
2126 			    "failed to create jumbo Rx dmamap\n");
2127 			goto jumbo_fail;
2128 		}
2129 	}
2130 
2131 	return (0);
2132 
2133 jumbo_fail:
2134 	sk_dma_jumbo_free(sc_if);
2135 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2136 	    "resource shortage\n");
2137 	sc_if->sk_jumbo_disable = 1;
2138 	return (0);
2139 }
2140 
2141 static void
2142 sk_dma_free(struct sk_if_softc *sc_if)
2143 {
2144 	struct sk_txdesc	*txd;
2145 	struct sk_rxdesc	*rxd;
2146 	int			i;
2147 
2148 	/* Tx ring */
2149 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2150 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2151 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2152 			    sc_if->sk_cdata.sk_tx_ring_map);
2153 		if (sc_if->sk_rdata.sk_tx_ring)
2154 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2155 			    sc_if->sk_rdata.sk_tx_ring,
2156 			    sc_if->sk_cdata.sk_tx_ring_map);
2157 		sc_if->sk_rdata.sk_tx_ring = NULL;
2158 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2159 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2160 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2161 	}
2162 	/* Rx ring */
2163 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2164 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2165 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2166 			    sc_if->sk_cdata.sk_rx_ring_map);
2167 		if (sc_if->sk_rdata.sk_rx_ring)
2168 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2169 			    sc_if->sk_rdata.sk_rx_ring,
2170 			    sc_if->sk_cdata.sk_rx_ring_map);
2171 		sc_if->sk_rdata.sk_rx_ring = NULL;
2172 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2173 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2174 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2175 	}
2176 	/* Tx buffers */
2177 	if (sc_if->sk_cdata.sk_tx_tag) {
2178 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2179 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2180 			if (txd->tx_dmamap) {
2181 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2182 				    txd->tx_dmamap);
2183 				txd->tx_dmamap = NULL;
2184 			}
2185 		}
2186 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2187 		sc_if->sk_cdata.sk_tx_tag = NULL;
2188 	}
2189 	/* Rx buffers */
2190 	if (sc_if->sk_cdata.sk_rx_tag) {
2191 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2192 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2193 			if (rxd->rx_dmamap) {
2194 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2195 				    rxd->rx_dmamap);
2196 				rxd->rx_dmamap = NULL;
2197 			}
2198 		}
2199 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2200 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2201 			    sc_if->sk_cdata.sk_rx_sparemap);
2202 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2203 		}
2204 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2205 		sc_if->sk_cdata.sk_rx_tag = NULL;
2206 	}
2207 
2208 	if (sc_if->sk_cdata.sk_parent_tag) {
2209 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2210 		sc_if->sk_cdata.sk_parent_tag = NULL;
2211 	}
2212 }
2213 
2214 static void
2215 sk_dma_jumbo_free(struct sk_if_softc *sc_if)
2216 {
2217 	struct sk_rxdesc	*jrxd;
2218 	int			i;
2219 
2220 	/* jumbo Rx ring */
2221 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2222 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2223 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2224 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2225 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2226 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2227 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2228 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2229 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2230 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2231 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2232 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2233 	}
2234 
2235 	/* jumbo Rx buffers */
2236 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2237 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2238 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2239 			if (jrxd->rx_dmamap) {
2240 				bus_dmamap_destroy(
2241 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2242 				    jrxd->rx_dmamap);
2243 				jrxd->rx_dmamap = NULL;
2244 			}
2245 		}
2246 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2247 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2248 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2249 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2250 		}
2251 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2252 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2253 	}
2254 }
2255 
2256 static void
2257 sk_txcksum(if_t ifp, struct mbuf *m, struct sk_tx_desc *f)
2258 {
2259 	struct ip		*ip;
2260 	u_int16_t		offset;
2261 	u_int8_t 		*p;
2262 
2263 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2264 	for(; m && m->m_len == 0; m = m->m_next)
2265 		;
2266 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2267 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2268 		/* checksum may be corrupted */
2269 		goto sendit;
2270 	}
2271 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2272 		if (m->m_len != ETHER_HDR_LEN) {
2273 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2274 			    __func__);
2275 			/* checksum may be corrupted */
2276 			goto sendit;
2277 		}
2278 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2279 			;
2280 		if (m == NULL) {
2281 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2282 			/* checksum may be corrupted */
2283 			goto sendit;
2284 		}
2285 		ip = mtod(m, struct ip *);
2286 	} else {
2287 		p = mtod(m, u_int8_t *);
2288 		p += ETHER_HDR_LEN;
2289 		ip = (struct ip *)p;
2290 	}
2291 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2292 
2293 sendit:
2294 	f->sk_csum_startval = 0;
2295 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2296 	    (offset << 16));
2297 }
2298 
2299 static int
2300 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head)
2301 {
2302 	struct sk_txdesc	*txd;
2303 	struct sk_tx_desc	*f = NULL;
2304 	struct mbuf		*m;
2305 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2306 	u_int32_t		cflags, frag, si, sk_ctl;
2307 	int			error, i, nseg;
2308 
2309 	SK_IF_LOCK_ASSERT(sc_if);
2310 
2311 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2312 		return (ENOBUFS);
2313 
2314 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2315 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2316 	if (error == EFBIG) {
2317 		m = m_defrag(*m_head, M_NOWAIT);
2318 		if (m == NULL) {
2319 			m_freem(*m_head);
2320 			*m_head = NULL;
2321 			return (ENOMEM);
2322 		}
2323 		*m_head = m;
2324 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2325 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2326 		if (error != 0) {
2327 			m_freem(*m_head);
2328 			*m_head = NULL;
2329 			return (error);
2330 		}
2331 	} else if (error != 0)
2332 		return (error);
2333 	if (nseg == 0) {
2334 		m_freem(*m_head);
2335 		*m_head = NULL;
2336 		return (EIO);
2337 	}
2338 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2339 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2340 		return (ENOBUFS);
2341 	}
2342 
2343 	m = *m_head;
2344 	if ((m->m_pkthdr.csum_flags & if_gethwassist(sc_if->sk_ifp)) != 0)
2345 		cflags = SK_OPCODE_CSUM;
2346 	else
2347 		cflags = SK_OPCODE_DEFAULT;
2348 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2349 	for (i = 0; i < nseg; i++) {
2350 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2351 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2352 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2353 		sk_ctl = txsegs[i].ds_len | cflags;
2354 		if (i == 0) {
2355 			if (cflags == SK_OPCODE_CSUM)
2356 				sk_txcksum(sc_if->sk_ifp, m, f);
2357 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2358 		} else
2359 			sk_ctl |= SK_TXCTL_OWN;
2360 		f->sk_ctl = htole32(sk_ctl);
2361 		sc_if->sk_cdata.sk_tx_cnt++;
2362 		SK_INC(frag, SK_TX_RING_CNT);
2363 	}
2364 	sc_if->sk_cdata.sk_tx_prod = frag;
2365 
2366 	/* set EOF on the last descriptor */
2367 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2368 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2369 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2370 
2371 	/* turn the first descriptor ownership to NIC */
2372 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2373 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2374 
2375 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2376 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2377 	txd->tx_m = m;
2378 
2379 	/* sync descriptors */
2380 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2381 	    BUS_DMASYNC_PREWRITE);
2382 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2383 	    sc_if->sk_cdata.sk_tx_ring_map,
2384 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385 
2386 	return (0);
2387 }
2388 
2389 static void
2390 sk_start(if_t ifp)
2391 {
2392 	struct sk_if_softc *sc_if;
2393 
2394 	sc_if = if_getsoftc(ifp);
2395 
2396 	SK_IF_LOCK(sc_if);
2397 	sk_start_locked(ifp);
2398 	SK_IF_UNLOCK(sc_if);
2399 
2400 	return;
2401 }
2402 
2403 static void
2404 sk_start_locked(if_t ifp)
2405 {
2406         struct sk_softc		*sc;
2407         struct sk_if_softc	*sc_if;
2408         struct mbuf		*m_head;
2409 	int			enq;
2410 
2411 	sc_if = if_getsoftc(ifp);
2412 	sc = sc_if->sk_softc;
2413 
2414 	SK_IF_LOCK_ASSERT(sc_if);
2415 
2416 	for (enq = 0; !if_sendq_empty(ifp) &&
2417 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2418 		m_head = if_dequeue(ifp);
2419 		if (m_head == NULL)
2420 			break;
2421 
2422 		/*
2423 		 * Pack the data into the transmit ring. If we
2424 		 * don't have room, set the OACTIVE flag and wait
2425 		 * for the NIC to drain the ring.
2426 		 */
2427 		if (sk_encap(sc_if, &m_head)) {
2428 			if (m_head == NULL)
2429 				break;
2430 			if_sendq_prepend(ifp, m_head);
2431 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2432 			break;
2433 		}
2434 
2435 		enq++;
2436 		/*
2437 		 * If there's a BPF listener, bounce a copy of this frame
2438 		 * to him.
2439 		 */
2440 		BPF_MTAP(ifp, m_head);
2441 	}
2442 
2443 	if (enq > 0) {
2444 		/* Transmit */
2445 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2446 
2447 		/* Set a timeout in case the chip goes out to lunch. */
2448 		sc_if->sk_watchdog_timer = 5;
2449 	}
2450 }
2451 
2452 static void
2453 sk_watchdog(void *arg)
2454 {
2455 	struct sk_if_softc	*sc_if;
2456 	if_t			ifp;
2457 
2458 	ifp = arg;
2459 	sc_if = if_getsoftc(ifp);
2460 
2461 	SK_IF_LOCK_ASSERT(sc_if);
2462 
2463 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2464 		goto done;
2465 
2466 	/*
2467 	 * Reclaim first as there is a possibility of losing Tx completion
2468 	 * interrupts.
2469 	 */
2470 	sk_txeof(sc_if);
2471 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2472 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2473 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2474 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2475 		sk_init_locked(sc_if);
2476 	}
2477 
2478 done:
2479 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2480 
2481 	return;
2482 }
2483 
2484 static int
2485 skc_shutdown(device_t dev)
2486 {
2487 	struct sk_softc		*sc;
2488 
2489 	sc = device_get_softc(dev);
2490 	SK_LOCK(sc);
2491 
2492 	/* Turn off the 'driver is loaded' LED. */
2493 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2494 
2495 	/*
2496 	 * Reset the GEnesis controller. Doing this should also
2497 	 * assert the resets on the attached XMAC(s).
2498 	 */
2499 	sk_reset(sc);
2500 	SK_UNLOCK(sc);
2501 
2502 	return (0);
2503 }
2504 
2505 static int
2506 skc_suspend(device_t dev)
2507 {
2508 	struct sk_softc		*sc;
2509 	struct sk_if_softc	*sc_if0, *sc_if1;
2510 	if_t			ifp0 = NULL, ifp1 = NULL;
2511 
2512 	sc = device_get_softc(dev);
2513 
2514 	SK_LOCK(sc);
2515 
2516 	sc_if0 = sc->sk_if[SK_PORT_A];
2517 	sc_if1 = sc->sk_if[SK_PORT_B];
2518 	if (sc_if0 != NULL)
2519 		ifp0 = sc_if0->sk_ifp;
2520 	if (sc_if1 != NULL)
2521 		ifp1 = sc_if1->sk_ifp;
2522 	if (ifp0 != NULL)
2523 		sk_stop(sc_if0);
2524 	if (ifp1 != NULL)
2525 		sk_stop(sc_if1);
2526 	sc->sk_suspended = 1;
2527 
2528 	SK_UNLOCK(sc);
2529 
2530 	return (0);
2531 }
2532 
2533 static int
2534 skc_resume(device_t dev)
2535 {
2536 	struct sk_softc		*sc;
2537 	struct sk_if_softc	*sc_if0, *sc_if1;
2538 	if_t			ifp0 = NULL, ifp1 = NULL;
2539 
2540 	sc = device_get_softc(dev);
2541 
2542 	SK_LOCK(sc);
2543 
2544 	sc_if0 = sc->sk_if[SK_PORT_A];
2545 	sc_if1 = sc->sk_if[SK_PORT_B];
2546 	if (sc_if0 != NULL)
2547 		ifp0 = sc_if0->sk_ifp;
2548 	if (sc_if1 != NULL)
2549 		ifp1 = sc_if1->sk_ifp;
2550 	if (ifp0 != NULL && if_getflags(ifp0) & IFF_UP)
2551 		sk_init_locked(sc_if0);
2552 	if (ifp1 != NULL && if_getflags(ifp1) & IFF_UP)
2553 		sk_init_locked(sc_if1);
2554 	sc->sk_suspended = 0;
2555 
2556 	SK_UNLOCK(sc);
2557 
2558 	return (0);
2559 }
2560 
2561 /*
2562  * According to the data sheet from SK-NET GENESIS the hardware can compute
2563  * two Rx checksums at the same time(Each checksum start position is
2564  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2565  * does not work at least on my Yukon hardware. I tried every possible ways
2566  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2567  * checksum offload was disabled at the moment and only IP checksum offload
2568  * was enabled.
2569  * As normal IP header size is 20 bytes I can't expect it would give an
2570  * increase in throughput. However it seems it doesn't hurt performance in
2571  * my testing. If there is a more detailed information for checksum secret
2572  * of the hardware in question please contact yongari@FreeBSD.org to add
2573  * TCP/UDP checksum offload support.
2574  */
2575 static __inline void
2576 sk_rxcksum(if_t ifp, struct mbuf *m, u_int32_t csum)
2577 {
2578 	struct ether_header	*eh;
2579 	struct ip		*ip;
2580 	int32_t			hlen, len, pktlen;
2581 	u_int16_t		csum1, csum2, ipcsum;
2582 
2583 	pktlen = m->m_pkthdr.len;
2584 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2585 		return;
2586 	eh = mtod(m, struct ether_header *);
2587 	if (eh->ether_type != htons(ETHERTYPE_IP))
2588 		return;
2589 	ip = (struct ip *)(eh + 1);
2590 	if (ip->ip_v != IPVERSION)
2591 		return;
2592 	hlen = ip->ip_hl << 2;
2593 	pktlen -= sizeof(struct ether_header);
2594 	if (hlen < sizeof(struct ip))
2595 		return;
2596 	if (ntohs(ip->ip_len) < hlen)
2597 		return;
2598 	if (ntohs(ip->ip_len) != pktlen)
2599 		return;
2600 
2601 	csum1 = htons(csum & 0xffff);
2602 	csum2 = htons((csum >> 16) & 0xffff);
2603 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2604 	/* checksum fixup for IP options */
2605 	len = hlen - sizeof(struct ip);
2606 	if (len > 0) {
2607 		/*
2608 		 * If the second checksum value is correct we can compute IP
2609 		 * checksum with simple math. Unfortunately the second checksum
2610 		 * value is wrong so we can't verify the checksum from the
2611 		 * value(It seems there is some magic here to get correct
2612 		 * value). If the second checksum value is correct it also
2613 		 * means we can get TCP/UDP checksum) here. However, it still
2614 		 * needs pseudo header checksum calculation due to hardware
2615 		 * limitations.
2616 		 */
2617 		return;
2618 	}
2619 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2620 	if (ipcsum == 0xffff)
2621 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2622 }
2623 
2624 static __inline int
2625 sk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2626 {
2627 
2628 	if (sc->sk_type == SK_GENESIS) {
2629 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2630 		    XM_RXSTAT_BYTES(stat) != len)
2631 			return (0);
2632 	} else {
2633 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2634 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2635 		    YU_RXSTAT_JABBER)) != 0 ||
2636 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2637 		    YU_RXSTAT_BYTES(stat) != len)
2638 			return (0);
2639 	}
2640 
2641 	return (1);
2642 }
2643 
2644 static void
2645 sk_rxeof(struct sk_if_softc *sc_if)
2646 {
2647 	struct sk_softc		*sc;
2648 	struct mbuf		*m;
2649 	if_t			ifp;
2650 	struct sk_rx_desc	*cur_rx;
2651 	struct sk_rxdesc	*rxd;
2652 	int			cons, prog;
2653 	u_int32_t		csum, rxstat, sk_ctl;
2654 
2655 	sc = sc_if->sk_softc;
2656 	ifp = sc_if->sk_ifp;
2657 
2658 	SK_IF_LOCK_ASSERT(sc_if);
2659 
2660 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2661 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2662 
2663 	prog = 0;
2664 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2665 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2666 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2667 		sk_ctl = le32toh(cur_rx->sk_ctl);
2668 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2669 			break;
2670 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2671 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2672 
2673 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2674 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2675 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2676 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2677 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2678 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2679 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2680 			sk_discard_rxbuf(sc_if, cons);
2681 			continue;
2682 		}
2683 
2684 		m = rxd->rx_m;
2685 		csum = le32toh(cur_rx->sk_csum);
2686 		if (sk_newbuf(sc_if, cons) != 0) {
2687 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2688 			/* reuse old buffer */
2689 			sk_discard_rxbuf(sc_if, cons);
2690 			continue;
2691 		}
2692 		m->m_pkthdr.rcvif = ifp;
2693 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2694 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2695 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2696 			sk_rxcksum(ifp, m, csum);
2697 		SK_IF_UNLOCK(sc_if);
2698 		if_input(ifp, m);
2699 		SK_IF_LOCK(sc_if);
2700 	}
2701 
2702 	if (prog > 0) {
2703 		sc_if->sk_cdata.sk_rx_cons = cons;
2704 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2705 		    sc_if->sk_cdata.sk_rx_ring_map,
2706 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2707 	}
2708 }
2709 
2710 static void
2711 sk_jumbo_rxeof(struct sk_if_softc *sc_if)
2712 {
2713 	struct sk_softc		*sc;
2714 	struct mbuf		*m;
2715 	if_t			ifp;
2716 	struct sk_rx_desc	*cur_rx;
2717 	struct sk_rxdesc	*jrxd;
2718 	int			cons, prog;
2719 	u_int32_t		csum, rxstat, sk_ctl;
2720 
2721 	sc = sc_if->sk_softc;
2722 	ifp = sc_if->sk_ifp;
2723 
2724 	SK_IF_LOCK_ASSERT(sc_if);
2725 
2726 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2727 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2728 
2729 	prog = 0;
2730 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2731 	    prog < SK_JUMBO_RX_RING_CNT;
2732 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2733 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2734 		sk_ctl = le32toh(cur_rx->sk_ctl);
2735 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2736 			break;
2737 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2738 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2739 
2740 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2741 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2742 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2743 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2744 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2745 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2746 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2747 			sk_discard_jumbo_rxbuf(sc_if, cons);
2748 			continue;
2749 		}
2750 
2751 		m = jrxd->rx_m;
2752 		csum = le32toh(cur_rx->sk_csum);
2753 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2754 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2755 			/* reuse old buffer */
2756 			sk_discard_jumbo_rxbuf(sc_if, cons);
2757 			continue;
2758 		}
2759 		m->m_pkthdr.rcvif = ifp;
2760 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2761 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2762 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2763 			sk_rxcksum(ifp, m, csum);
2764 		SK_IF_UNLOCK(sc_if);
2765 		if_input(ifp, m);
2766 		SK_IF_LOCK(sc_if);
2767 	}
2768 
2769 	if (prog > 0) {
2770 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2771 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2772 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2773 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2774 	}
2775 }
2776 
2777 static void
2778 sk_txeof(struct sk_if_softc *sc_if)
2779 {
2780 	struct sk_txdesc	*txd;
2781 	struct sk_tx_desc	*cur_tx;
2782 	if_t			ifp;
2783 	u_int32_t		idx, sk_ctl;
2784 
2785 	ifp = sc_if->sk_ifp;
2786 
2787 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2788 	if (txd == NULL)
2789 		return;
2790 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2791 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2792 	/*
2793 	 * Go through our tx ring and free mbufs for those
2794 	 * frames that have been sent.
2795 	 */
2796 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2797 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2798 			break;
2799 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2800 		sk_ctl = le32toh(cur_tx->sk_ctl);
2801 		if (sk_ctl & SK_TXCTL_OWN)
2802 			break;
2803 		sc_if->sk_cdata.sk_tx_cnt--;
2804 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2805 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2806 			continue;
2807 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2808 		    BUS_DMASYNC_POSTWRITE);
2809 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2810 
2811 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2812 		m_freem(txd->tx_m);
2813 		txd->tx_m = NULL;
2814 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2815 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2816 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2817 	}
2818 	sc_if->sk_cdata.sk_tx_cons = idx;
2819 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2820 
2821 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2822 	    sc_if->sk_cdata.sk_tx_ring_map,
2823 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2824 }
2825 
2826 static void
2827 sk_tick(void *xsc_if)
2828 {
2829 	struct sk_if_softc	*sc_if;
2830 	struct mii_data		*mii;
2831 	if_t			ifp;
2832 	int			i;
2833 
2834 	sc_if = xsc_if;
2835 	ifp = sc_if->sk_ifp;
2836 	mii = device_get_softc(sc_if->sk_miibus);
2837 
2838 	if (!(if_getflags(ifp) & IFF_UP))
2839 		return;
2840 
2841 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2842 		sk_intr_bcom(sc_if);
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * According to SysKonnect, the correct way to verify that
2848 	 * the link has come back up is to poll bit 0 of the GPIO
2849 	 * register three times. This pin has the signal from the
2850 	 * link_sync pin connected to it; if we read the same link
2851 	 * state 3 times in a row, we know the link is up.
2852 	 */
2853 	for (i = 0; i < 3; i++) {
2854 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2855 			break;
2856 	}
2857 
2858 	if (i != 3) {
2859 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2860 		return;
2861 	}
2862 
2863 	/* Turn the GP0 interrupt back on. */
2864 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2865 	SK_XM_READ_2(sc_if, XM_ISR);
2866 	mii_tick(mii);
2867 	callout_stop(&sc_if->sk_tick_ch);
2868 }
2869 
2870 static void
2871 sk_yukon_tick(void *xsc_if)
2872 {
2873 	struct sk_if_softc	*sc_if;
2874 	struct mii_data		*mii;
2875 
2876 	sc_if = xsc_if;
2877 	mii = device_get_softc(sc_if->sk_miibus);
2878 
2879 	mii_tick(mii);
2880 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2881 }
2882 
2883 static void
2884 sk_intr_bcom(struct sk_if_softc *sc_if)
2885 {
2886 	struct mii_data		*mii;
2887 	if_t			ifp;
2888 	int			status;
2889 	mii = device_get_softc(sc_if->sk_miibus);
2890 	ifp = sc_if->sk_ifp;
2891 
2892 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2893 
2894 	/*
2895 	 * Read the PHY interrupt register to make sure
2896 	 * we clear any pending interrupts.
2897 	 */
2898 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2899 
2900 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2901 		sk_init_xmac(sc_if);
2902 		return;
2903 	}
2904 
2905 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2906 		int			lstat;
2907 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2908 		    BRGPHY_MII_AUXSTS);
2909 
2910 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2911 			mii_mediachg(mii);
2912 			/* Turn off the link LED. */
2913 			SK_IF_WRITE_1(sc_if, 0,
2914 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2915 			sc_if->sk_link = 0;
2916 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2917 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2918 	    		    BRGPHY_MII_IMR, 0xFF00);
2919 			mii_tick(mii);
2920 			sc_if->sk_link = 1;
2921 			/* Turn on the link LED. */
2922 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2923 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2924 			    SK_LINKLED_BLINK_OFF);
2925 		} else {
2926 			mii_tick(mii);
2927 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2928 		}
2929 	}
2930 
2931 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2932 
2933 	return;
2934 }
2935 
2936 static void
2937 sk_intr_xmac(struct sk_if_softc *sc_if)
2938 {
2939 	u_int16_t		status;
2940 
2941 	status = SK_XM_READ_2(sc_if, XM_ISR);
2942 
2943 	/*
2944 	 * Link has gone down. Start MII tick timeout to
2945 	 * watch for link resync.
2946 	 */
2947 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2948 		if (status & XM_ISR_GP0_SET) {
2949 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2950 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2951 		}
2952 
2953 		if (status & XM_ISR_AUTONEG_DONE) {
2954 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2955 		}
2956 	}
2957 
2958 	if (status & XM_IMR_TX_UNDERRUN)
2959 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2960 
2961 	if (status & XM_IMR_RX_OVERRUN)
2962 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2963 
2964 	status = SK_XM_READ_2(sc_if, XM_ISR);
2965 
2966 	return;
2967 }
2968 
2969 static void
2970 sk_intr_yukon(struct sk_if_softc *sc_if)
2971 {
2972 	u_int8_t status;
2973 
2974 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2975 	/* RX overrun */
2976 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2977 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2978 		    SK_RFCTL_RX_FIFO_OVER);
2979 	}
2980 	/* TX underrun */
2981 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2982 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2983 		    SK_TFCTL_TX_FIFO_UNDER);
2984 	}
2985 }
2986 
2987 static void
2988 sk_intr(void *xsc)
2989 {
2990 	struct sk_softc		*sc = xsc;
2991 	struct sk_if_softc	*sc_if0, *sc_if1;
2992 	if_t			ifp0 = NULL, ifp1 = NULL;
2993 	u_int32_t		status;
2994 
2995 	SK_LOCK(sc);
2996 
2997 	status = CSR_READ_4(sc, SK_ISSR);
2998 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
2999 		goto done_locked;
3000 
3001 	sc_if0 = sc->sk_if[SK_PORT_A];
3002 	sc_if1 = sc->sk_if[SK_PORT_B];
3003 
3004 	if (sc_if0 != NULL)
3005 		ifp0 = sc_if0->sk_ifp;
3006 	if (sc_if1 != NULL)
3007 		ifp1 = sc_if1->sk_ifp;
3008 
3009 	for (; (status &= sc->sk_intrmask) != 0;) {
3010 		/* Handle receive interrupts first. */
3011 		if (status & SK_ISR_RX1_EOF) {
3012 			if (if_getmtu(ifp0) > SK_MAX_FRAMELEN)
3013 				sk_jumbo_rxeof(sc_if0);
3014 			else
3015 				sk_rxeof(sc_if0);
3016 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3017 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3018 		}
3019 		if (status & SK_ISR_RX2_EOF) {
3020 			if (if_getflags(ifp1) > SK_MAX_FRAMELEN)
3021 				sk_jumbo_rxeof(sc_if1);
3022 			else
3023 				sk_rxeof(sc_if1);
3024 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3025 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3026 		}
3027 
3028 		/* Then transmit interrupts. */
3029 		if (status & SK_ISR_TX1_S_EOF) {
3030 			sk_txeof(sc_if0);
3031 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3032 		}
3033 		if (status & SK_ISR_TX2_S_EOF) {
3034 			sk_txeof(sc_if1);
3035 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3036 		}
3037 
3038 		/* Then MAC interrupts. */
3039 		if (status & SK_ISR_MAC1 &&
3040 		    if_getdrvflags(ifp0) & IFF_DRV_RUNNING) {
3041 			if (sc->sk_type == SK_GENESIS)
3042 				sk_intr_xmac(sc_if0);
3043 			else
3044 				sk_intr_yukon(sc_if0);
3045 		}
3046 
3047 		if (status & SK_ISR_MAC2 &&
3048 		    if_getdrvflags(ifp1) & IFF_DRV_RUNNING) {
3049 			if (sc->sk_type == SK_GENESIS)
3050 				sk_intr_xmac(sc_if1);
3051 			else
3052 				sk_intr_yukon(sc_if1);
3053 		}
3054 
3055 		if (status & SK_ISR_EXTERNAL_REG) {
3056 			if (ifp0 != NULL &&
3057 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3058 				sk_intr_bcom(sc_if0);
3059 			if (ifp1 != NULL &&
3060 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3061 				sk_intr_bcom(sc_if1);
3062 		}
3063 		status = CSR_READ_4(sc, SK_ISSR);
3064 	}
3065 
3066 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3067 
3068 	if (ifp0 != NULL && !if_sendq_empty(ifp0))
3069 		sk_start_locked(ifp0);
3070 	if (ifp1 != NULL && !if_sendq_empty(ifp1))
3071 		sk_start_locked(ifp1);
3072 
3073 done_locked:
3074 	SK_UNLOCK(sc);
3075 }
3076 
3077 static void
3078 sk_init_xmac(struct sk_if_softc *sc_if)
3079 {
3080 	struct sk_softc		*sc;
3081 	if_t			ifp;
3082 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3083 	static const struct sk_bcom_hack bhack[] = {
3084 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3085 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3086 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3087 	{ 0, 0 } };
3088 
3089 	SK_IF_LOCK_ASSERT(sc_if);
3090 
3091 	sc = sc_if->sk_softc;
3092 	ifp = sc_if->sk_ifp;
3093 
3094 	/* Unreset the XMAC. */
3095 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3096 	DELAY(1000);
3097 
3098 	/* Reset the XMAC's internal state. */
3099 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3100 
3101 	/* Save the XMAC II revision */
3102 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3103 
3104 	/*
3105 	 * Perform additional initialization for external PHYs,
3106 	 * namely for the 1000baseTX cards that use the XMAC's
3107 	 * GMII mode.
3108 	 */
3109 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3110 		int			i = 0;
3111 		u_int32_t		val;
3112 
3113 		/* Take PHY out of reset. */
3114 		val = sk_win_read_4(sc, SK_GPIO);
3115 		if (sc_if->sk_port == SK_PORT_A)
3116 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3117 		else
3118 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3119 		sk_win_write_4(sc, SK_GPIO, val);
3120 
3121 		/* Enable GMII mode on the XMAC. */
3122 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3123 
3124 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3125 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3126 		DELAY(10000);
3127 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3128 		    BRGPHY_MII_IMR, 0xFFF0);
3129 
3130 		/*
3131 		 * Early versions of the BCM5400 apparently have
3132 		 * a bug that requires them to have their reserved
3133 		 * registers initialized to some magic values. I don't
3134 		 * know what the numbers do, I'm just the messenger.
3135 		 */
3136 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3137 		    == 0x6041) {
3138 			while(bhack[i].reg) {
3139 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3140 				    bhack[i].reg, bhack[i].val);
3141 				i++;
3142 			}
3143 		}
3144 	}
3145 
3146 	/* Set station address */
3147 	bcopy(if_getlladdr(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3148 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3149 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3150 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3151 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3152 
3153 	if (if_getflags(ifp) & IFF_BROADCAST) {
3154 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3155 	} else {
3156 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3157 	}
3158 
3159 	/* We don't need the FCS appended to the packet. */
3160 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3161 
3162 	/* We want short frames padded to 60 bytes. */
3163 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3164 
3165 	/*
3166 	 * Enable the reception of all error frames. This is is
3167 	 * a necessary evil due to the design of the XMAC. The
3168 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3169 	 * frames can be up to 9000 bytes in length. When bad
3170 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3171 	 * in 'store and forward' mode. For this to work, the
3172 	 * entire frame has to fit into the FIFO, but that means
3173 	 * that jumbo frames larger than 8192 bytes will be
3174 	 * truncated. Disabling all bad frame filtering causes
3175 	 * the RX FIFO to operate in streaming mode, in which
3176 	 * case the XMAC will start transferring frames out of the
3177 	 * RX FIFO as soon as the FIFO threshold is reached.
3178 	 */
3179 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3180 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3181 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3182 		    XM_MODE_RX_INRANGELEN);
3183 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3184 	} else
3185 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3186 
3187 	/*
3188 	 * Bump up the transmit threshold. This helps hold off transmit
3189 	 * underruns when we're blasting traffic from both ports at once.
3190 	 */
3191 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3192 
3193 	/* Set Rx filter */
3194 	sk_rxfilter_genesis(sc_if);
3195 
3196 	/* Clear and enable interrupts */
3197 	SK_XM_READ_2(sc_if, XM_ISR);
3198 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3199 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3200 	else
3201 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3202 
3203 	/* Configure MAC arbiter */
3204 	switch(sc_if->sk_xmac_rev) {
3205 	case XM_XMAC_REV_B2:
3206 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3207 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3208 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3209 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3210 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3211 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3212 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3213 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3214 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3215 		break;
3216 	case XM_XMAC_REV_C1:
3217 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3218 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3219 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3220 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3221 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3222 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3223 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3224 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3225 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3226 		break;
3227 	default:
3228 		break;
3229 	}
3230 	sk_win_write_2(sc, SK_MACARB_CTL,
3231 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3232 
3233 	sc_if->sk_link = 1;
3234 
3235 	return;
3236 }
3237 
3238 static void
3239 sk_init_yukon(struct sk_if_softc *sc_if)
3240 {
3241 	u_int32_t		phy, v;
3242 	u_int16_t		reg;
3243 	struct sk_softc		*sc;
3244 	if_t			ifp;
3245 	u_int8_t		*eaddr;
3246 	int			i;
3247 
3248 	SK_IF_LOCK_ASSERT(sc_if);
3249 
3250 	sc = sc_if->sk_softc;
3251 	ifp = sc_if->sk_ifp;
3252 
3253 	if (sc->sk_type == SK_YUKON_LITE &&
3254 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3255 		/*
3256 		 * Workaround code for COMA mode, set PHY reset.
3257 		 * Otherwise it will not correctly take chip out of
3258 		 * powerdown (coma)
3259 		 */
3260 		v = sk_win_read_4(sc, SK_GPIO);
3261 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3262 		sk_win_write_4(sc, SK_GPIO, v);
3263 	}
3264 
3265 	/* GMAC and GPHY Reset */
3266 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3267 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3268 	DELAY(1000);
3269 
3270 	if (sc->sk_type == SK_YUKON_LITE &&
3271 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3272 		/*
3273 		 * Workaround code for COMA mode, clear PHY reset
3274 		 */
3275 		v = sk_win_read_4(sc, SK_GPIO);
3276 		v |= SK_GPIO_DIR9;
3277 		v &= ~SK_GPIO_DAT9;
3278 		sk_win_write_4(sc, SK_GPIO, v);
3279 	}
3280 
3281 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3282 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3283 
3284 	if (sc->sk_coppertype)
3285 		phy |= SK_GPHY_COPPER;
3286 	else
3287 		phy |= SK_GPHY_FIBER;
3288 
3289 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3290 	DELAY(1000);
3291 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3292 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3293 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3294 
3295 	/* unused read of the interrupt source register */
3296 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3297 
3298 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3299 
3300 	/* MIB Counter Clear Mode set */
3301 	reg |= YU_PAR_MIB_CLR;
3302 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3303 
3304 	/* MIB Counter Clear Mode clear */
3305 	reg &= ~YU_PAR_MIB_CLR;
3306 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3307 
3308 	/* receive control reg */
3309 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3310 
3311 	/* transmit parameter register */
3312 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3313 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3314 
3315 	/* serial mode register */
3316 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3317 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3318 		reg |= YU_SMR_MFL_JUMBO;
3319 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3320 
3321 	/* Setup Yukon's station address */
3322 	eaddr = if_getlladdr(sc_if->sk_ifp);
3323 	for (i = 0; i < 3; i++)
3324 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3325 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3326 	/* Set GMAC source address of flow control. */
3327 	for (i = 0; i < 3; i++)
3328 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3329 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3330 	/* Set GMAC virtual address. */
3331 	for (i = 0; i < 3; i++)
3332 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3333 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3334 
3335 	/* Set Rx filter */
3336 	sk_rxfilter_yukon(sc_if);
3337 
3338 	/* enable interrupt mask for counter overflows */
3339 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3340 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3341 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3342 
3343 	/* Configure RX MAC FIFO Flush Mask */
3344 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3345 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3346 	    YU_RXSTAT_JABBER;
3347 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3348 
3349 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3350 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3351 		v = SK_TFCTL_OPERATION_ON;
3352 	else
3353 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3354 	/* Configure RX MAC FIFO */
3355 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3356 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3357 
3358 	/* Increase flush threshould to 64 bytes */
3359 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3360 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3361 
3362 	/* Configure TX MAC FIFO */
3363 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3364 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3365 }
3366 
3367 /*
3368  * Note that to properly initialize any part of the GEnesis chip,
3369  * you first have to take it out of reset mode.
3370  */
3371 static void
3372 sk_init(void *xsc)
3373 {
3374 	struct sk_if_softc	*sc_if = xsc;
3375 
3376 	SK_IF_LOCK(sc_if);
3377 	sk_init_locked(sc_if);
3378 	SK_IF_UNLOCK(sc_if);
3379 
3380 	return;
3381 }
3382 
3383 static void
3384 sk_init_locked(struct sk_if_softc *sc_if)
3385 {
3386 	struct sk_softc		*sc;
3387 	if_t			ifp;
3388 	struct mii_data		*mii;
3389 	u_int16_t		reg;
3390 	u_int32_t		imr;
3391 	int			error;
3392 
3393 	SK_IF_LOCK_ASSERT(sc_if);
3394 
3395 	ifp = sc_if->sk_ifp;
3396 	sc = sc_if->sk_softc;
3397 	mii = device_get_softc(sc_if->sk_miibus);
3398 
3399 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3400 		return;
3401 
3402 	/* Cancel pending I/O and free all RX/TX buffers. */
3403 	sk_stop(sc_if);
3404 
3405 	if (sc->sk_type == SK_GENESIS) {
3406 		/* Configure LINK_SYNC LED */
3407 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3408 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3409 			SK_LINKLED_LINKSYNC_ON);
3410 
3411 		/* Configure RX LED */
3412 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3413 			SK_RXLEDCTL_COUNTER_START);
3414 
3415 		/* Configure TX LED */
3416 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3417 			SK_TXLEDCTL_COUNTER_START);
3418 	}
3419 
3420 	/*
3421 	 * Configure descriptor poll timer
3422 	 *
3423 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3424 	 * transmit command due to CPU/cache related interim storage problems
3425 	 * under certain conditions. The document recommends a polling
3426 	 * mechanism to send a Start transmit command to initiate transfer
3427 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3428 	 * enables descriptor poll timer to initiate descriptor processing
3429 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3430 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3431 	 * command instead of waiting for next descriptor polling time.
3432 	 * The same rule may apply to Rx side too but it seems that is not
3433 	 * needed at the moment.
3434 	 * Since sk(4) uses descriptor polling as a last resort there is no
3435 	 * need to set smaller polling time than maximum allowable one.
3436 	 */
3437 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3438 
3439 	/* Configure I2C registers */
3440 
3441 	/* Configure XMAC(s) */
3442 	switch (sc->sk_type) {
3443 	case SK_GENESIS:
3444 		sk_init_xmac(sc_if);
3445 		break;
3446 	case SK_YUKON:
3447 	case SK_YUKON_LITE:
3448 	case SK_YUKON_LP:
3449 		sk_init_yukon(sc_if);
3450 		break;
3451 	}
3452 	mii_mediachg(mii);
3453 
3454 	if (sc->sk_type == SK_GENESIS) {
3455 		/* Configure MAC FIFOs */
3456 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3457 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3458 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3459 
3460 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3461 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3462 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3463 	}
3464 
3465 	/* Configure transmit arbiter(s) */
3466 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3467 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3468 
3469 	/* Configure RAMbuffers */
3470 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3471 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3472 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3473 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3474 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3475 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3476 
3477 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3478 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3479 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3480 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3481 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3482 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3483 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3484 
3485 	/* Configure BMUs */
3486 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3487 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN) {
3488 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3489 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3490 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3491 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3492 	} else {
3493 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3494 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3495 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3496 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3497 	}
3498 
3499 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3500 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3501 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3502 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3503 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3504 
3505 	/* Init descriptors */
3506 	if (if_getmtu(ifp) > SK_MAX_FRAMELEN)
3507 		error = sk_init_jumbo_rx_ring(sc_if);
3508 	else
3509 		error = sk_init_rx_ring(sc_if);
3510 	if (error != 0) {
3511 		device_printf(sc_if->sk_if_dev,
3512 		    "initialization failed: no memory for rx buffers\n");
3513 		sk_stop(sc_if);
3514 		return;
3515 	}
3516 	sk_init_tx_ring(sc_if);
3517 
3518 	/* Set interrupt moderation if changed via sysctl. */
3519 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3520 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3521 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3522 		    sc->sk_int_ticks));
3523 		if (bootverbose)
3524 			device_printf(sc_if->sk_if_dev,
3525 			    "interrupt moderation is %d us.\n",
3526 			    sc->sk_int_mod);
3527 	}
3528 
3529 	/* Configure interrupt handling */
3530 	CSR_READ_4(sc, SK_ISSR);
3531 	if (sc_if->sk_port == SK_PORT_A)
3532 		sc->sk_intrmask |= SK_INTRS1;
3533 	else
3534 		sc->sk_intrmask |= SK_INTRS2;
3535 
3536 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3537 
3538 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3539 
3540 	/* Start BMUs. */
3541 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3542 
3543 	switch(sc->sk_type) {
3544 	case SK_GENESIS:
3545 		/* Enable XMACs TX and RX state machines */
3546 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3547 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3548 		break;
3549 	case SK_YUKON:
3550 	case SK_YUKON_LITE:
3551 	case SK_YUKON_LP:
3552 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3553 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3554 #if 0
3555 		/* XXX disable 100Mbps and full duplex mode? */
3556 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3557 #endif
3558 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3559 	}
3560 
3561 	/* Activate descriptor polling timer */
3562 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3563 	/* start transfer of Tx descriptors */
3564 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3565 
3566 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3567 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3568 
3569 	switch (sc->sk_type) {
3570 	case SK_YUKON:
3571 	case SK_YUKON_LITE:
3572 	case SK_YUKON_LP:
3573 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3574 		break;
3575 	}
3576 
3577 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3578 
3579 	return;
3580 }
3581 
3582 static void
3583 sk_stop(struct sk_if_softc *sc_if)
3584 {
3585 	int			i;
3586 	struct sk_softc		*sc;
3587 	struct sk_txdesc	*txd;
3588 	struct sk_rxdesc	*rxd;
3589 	struct sk_rxdesc	*jrxd;
3590 	if_t			ifp;
3591 	u_int32_t		val;
3592 
3593 	SK_IF_LOCK_ASSERT(sc_if);
3594 	sc = sc_if->sk_softc;
3595 	ifp = sc_if->sk_ifp;
3596 
3597 	callout_stop(&sc_if->sk_tick_ch);
3598 	callout_stop(&sc_if->sk_watchdog_ch);
3599 
3600 	/* stop Tx descriptor polling timer */
3601 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3602 	/* stop transfer of Tx descriptors */
3603 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3604 	for (i = 0; i < SK_TIMEOUT; i++) {
3605 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3606 		if ((val & SK_TXBMU_TX_STOP) == 0)
3607 			break;
3608 		DELAY(1);
3609 	}
3610 	if (i == SK_TIMEOUT)
3611 		device_printf(sc_if->sk_if_dev,
3612 		    "can not stop transfer of Tx descriptor\n");
3613 	/* stop transfer of Rx descriptors */
3614 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3615 	for (i = 0; i < SK_TIMEOUT; i++) {
3616 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3617 		if ((val & SK_RXBMU_RX_STOP) == 0)
3618 			break;
3619 		DELAY(1);
3620 	}
3621 	if (i == SK_TIMEOUT)
3622 		device_printf(sc_if->sk_if_dev,
3623 		    "can not stop transfer of Rx descriptor\n");
3624 
3625 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3626 		/* Put PHY back into reset. */
3627 		val = sk_win_read_4(sc, SK_GPIO);
3628 		if (sc_if->sk_port == SK_PORT_A) {
3629 			val |= SK_GPIO_DIR0;
3630 			val &= ~SK_GPIO_DAT0;
3631 		} else {
3632 			val |= SK_GPIO_DIR2;
3633 			val &= ~SK_GPIO_DAT2;
3634 		}
3635 		sk_win_write_4(sc, SK_GPIO, val);
3636 	}
3637 
3638 	/* Turn off various components of this interface. */
3639 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3640 	switch (sc->sk_type) {
3641 	case SK_GENESIS:
3642 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3643 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3644 		break;
3645 	case SK_YUKON:
3646 	case SK_YUKON_LITE:
3647 	case SK_YUKON_LP:
3648 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3649 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3650 		break;
3651 	}
3652 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3653 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3654 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3655 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3656 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3657 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3658 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3659 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3660 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3661 
3662 	/* Disable interrupts */
3663 	if (sc_if->sk_port == SK_PORT_A)
3664 		sc->sk_intrmask &= ~SK_INTRS1;
3665 	else
3666 		sc->sk_intrmask &= ~SK_INTRS2;
3667 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3668 
3669 	SK_XM_READ_2(sc_if, XM_ISR);
3670 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3671 
3672 	/* Free RX and TX mbufs still in the queues. */
3673 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3674 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3675 		if (rxd->rx_m != NULL) {
3676 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3677 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3678 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3679 			    rxd->rx_dmamap);
3680 			m_freem(rxd->rx_m);
3681 			rxd->rx_m = NULL;
3682 		}
3683 	}
3684 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3685 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3686 		if (jrxd->rx_m != NULL) {
3687 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3688 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3689 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3690 			    jrxd->rx_dmamap);
3691 			m_freem(jrxd->rx_m);
3692 			jrxd->rx_m = NULL;
3693 		}
3694 	}
3695 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3696 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3697 		if (txd->tx_m != NULL) {
3698 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3699 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3700 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3701 			    txd->tx_dmamap);
3702 			m_freem(txd->tx_m);
3703 			txd->tx_m = NULL;
3704 		}
3705 	}
3706 
3707 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
3708 
3709 	return;
3710 }
3711 
3712 static int
3713 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3714 {
3715 	int error, value;
3716 
3717 	if (!arg1)
3718 		return (EINVAL);
3719 	value = *(int *)arg1;
3720 	error = sysctl_handle_int(oidp, &value, 0, req);
3721 	if (error || !req->newptr)
3722 		return (error);
3723 	if (value < low || value > high)
3724 		return (EINVAL);
3725 	*(int *)arg1 = value;
3726 	return (0);
3727 }
3728 
3729 static int
3730 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3731 {
3732 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3733 }
3734