1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /*- 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/bus.h> 91 #include <sys/endian.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/module.h> 96 #include <sys/socket.h> 97 #include <sys/sockio.h> 98 #include <sys/queue.h> 99 #include <sys/sysctl.h> 100 101 #include <net/bpf.h> 102 #include <net/ethernet.h> 103 #include <net/if.h> 104 #include <net/if_arp.h> 105 #include <net/if_dl.h> 106 #include <net/if_media.h> 107 #include <net/if_types.h> 108 #include <net/if_vlan_var.h> 109 110 #include <netinet/in.h> 111 #include <netinet/in_systm.h> 112 #include <netinet/ip.h> 113 114 #include <machine/bus.h> 115 #include <machine/in_cksum.h> 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/brgphyreg.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 126 #if 0 127 #define SK_USEIOSPACE 128 #endif 129 130 #include <dev/sk/if_skreg.h> 131 #include <dev/sk/xmaciireg.h> 132 #include <dev/sk/yukonreg.h> 133 134 MODULE_DEPEND(sk, pci, 1, 1, 1); 135 MODULE_DEPEND(sk, ether, 1, 1, 1); 136 MODULE_DEPEND(sk, miibus, 1, 1, 1); 137 138 /* "device miibus" required. See GENERIC if you get errors here. */ 139 #include "miibus_if.h" 140 141 #ifndef lint 142 static const char rcsid[] = 143 "$FreeBSD$"; 144 #endif 145 146 static struct sk_type sk_devs[] = { 147 { 148 VENDORID_SK, 149 DEVICEID_SK_V1, 150 "SysKonnect Gigabit Ethernet (V1.0)" 151 }, 152 { 153 VENDORID_SK, 154 DEVICEID_SK_V2, 155 "SysKonnect Gigabit Ethernet (V2.0)" 156 }, 157 { 158 VENDORID_MARVELL, 159 DEVICEID_SK_V2, 160 "Marvell Gigabit Ethernet" 161 }, 162 { 163 VENDORID_MARVELL, 164 DEVICEID_BELKIN_5005, 165 "Belkin F5D5005 Gigabit Ethernet" 166 }, 167 { 168 VENDORID_3COM, 169 DEVICEID_3COM_3C940, 170 "3Com 3C940 Gigabit Ethernet" 171 }, 172 { 173 VENDORID_LINKSYS, 174 DEVICEID_LINKSYS_EG1032, 175 "Linksys EG1032 Gigabit Ethernet" 176 }, 177 { 178 VENDORID_DLINK, 179 DEVICEID_DLINK_DGE530T_A1, 180 "D-Link DGE-530T Gigabit Ethernet" 181 }, 182 { 183 VENDORID_DLINK, 184 DEVICEID_DLINK_DGE530T_B1, 185 "D-Link DGE-530T Gigabit Ethernet" 186 }, 187 { 0, 0, NULL } 188 }; 189 190 static int skc_probe(device_t); 191 static int skc_attach(device_t); 192 static int skc_detach(device_t); 193 static int skc_shutdown(device_t); 194 static int skc_suspend(device_t); 195 static int skc_resume(device_t); 196 static int sk_detach(device_t); 197 static int sk_probe(device_t); 198 static int sk_attach(device_t); 199 static void sk_tick(void *); 200 static void sk_yukon_tick(void *); 201 static void sk_intr(void *); 202 static void sk_intr_xmac(struct sk_if_softc *); 203 static void sk_intr_bcom(struct sk_if_softc *); 204 static void sk_intr_yukon(struct sk_if_softc *); 205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); 206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); 207 static void sk_rxeof(struct sk_if_softc *); 208 static void sk_jumbo_rxeof(struct sk_if_softc *); 209 static void sk_txeof(struct sk_if_softc *); 210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); 211 static int sk_encap(struct sk_if_softc *, struct mbuf **); 212 static void sk_start(struct ifnet *); 213 static void sk_start_locked(struct ifnet *); 214 static int sk_ioctl(struct ifnet *, u_long, caddr_t); 215 static void sk_init(void *); 216 static void sk_init_locked(struct sk_if_softc *); 217 static void sk_init_xmac(struct sk_if_softc *); 218 static void sk_init_yukon(struct sk_if_softc *); 219 static void sk_stop(struct sk_if_softc *); 220 static void sk_watchdog(void *); 221 static int sk_ifmedia_upd(struct ifnet *); 222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); 223 static void sk_reset(struct sk_softc *); 224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); 225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); 226 static int sk_newbuf(struct sk_if_softc *, int); 227 static int sk_jumbo_newbuf(struct sk_if_softc *, int); 228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 229 static int sk_dma_alloc(struct sk_if_softc *); 230 static int sk_dma_jumbo_alloc(struct sk_if_softc *); 231 static void sk_dma_free(struct sk_if_softc *); 232 static void sk_dma_jumbo_free(struct sk_if_softc *); 233 static int sk_init_rx_ring(struct sk_if_softc *); 234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *); 235 static void sk_init_tx_ring(struct sk_if_softc *); 236 static u_int32_t sk_win_read_4(struct sk_softc *, int); 237 static u_int16_t sk_win_read_2(struct sk_softc *, int); 238 static u_int8_t sk_win_read_1(struct sk_softc *, int); 239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t); 240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t); 241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t); 242 243 static int sk_miibus_readreg(device_t, int, int); 244 static int sk_miibus_writereg(device_t, int, int, int); 245 static void sk_miibus_statchg(device_t); 246 247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); 248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, 249 int); 250 static void sk_xmac_miibus_statchg(struct sk_if_softc *); 251 252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); 253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, 254 int); 255 static void sk_marv_miibus_statchg(struct sk_if_softc *); 256 257 static uint32_t sk_xmchash(const uint8_t *); 258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); 259 static void sk_rxfilter(struct sk_if_softc *); 260 static void sk_rxfilter_genesis(struct sk_if_softc *); 261 static void sk_rxfilter_yukon(struct sk_if_softc *); 262 263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); 264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); 265 266 /* Tunables. */ 267 static int jumbo_disable = 0; 268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); 269 270 /* 271 * It seems that SK-NET GENESIS supports very simple checksum offload 272 * capability for Tx and I believe it can generate 0 checksum value for 273 * UDP packets in Tx as the hardware can't differenciate UDP packets from 274 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it 275 * means sender didn't perforam checksum computation. For the safety I 276 * disabled UDP checksum offload capability at the moment. Alternatively 277 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum 278 * offload routine. 279 */ 280 #define SK_CSUM_FEATURES (CSUM_TCP) 281 282 /* 283 * Note that we have newbus methods for both the GEnesis controller 284 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 285 * the miibus code is a child of the XMACs. We need to do it this way 286 * so that the miibus drivers can access the PHY registers on the 287 * right PHY. It's not quite what I had in mind, but it's the only 288 * design that achieves the desired effect. 289 */ 290 static device_method_t skc_methods[] = { 291 /* Device interface */ 292 DEVMETHOD(device_probe, skc_probe), 293 DEVMETHOD(device_attach, skc_attach), 294 DEVMETHOD(device_detach, skc_detach), 295 DEVMETHOD(device_suspend, skc_suspend), 296 DEVMETHOD(device_resume, skc_resume), 297 DEVMETHOD(device_shutdown, skc_shutdown), 298 299 /* bus interface */ 300 DEVMETHOD(bus_print_child, bus_generic_print_child), 301 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 302 303 { 0, 0 } 304 }; 305 306 static driver_t skc_driver = { 307 "skc", 308 skc_methods, 309 sizeof(struct sk_softc) 310 }; 311 312 static devclass_t skc_devclass; 313 314 static device_method_t sk_methods[] = { 315 /* Device interface */ 316 DEVMETHOD(device_probe, sk_probe), 317 DEVMETHOD(device_attach, sk_attach), 318 DEVMETHOD(device_detach, sk_detach), 319 DEVMETHOD(device_shutdown, bus_generic_shutdown), 320 321 /* bus interface */ 322 DEVMETHOD(bus_print_child, bus_generic_print_child), 323 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 324 325 /* MII interface */ 326 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 327 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 328 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 329 330 { 0, 0 } 331 }; 332 333 static driver_t sk_driver = { 334 "sk", 335 sk_methods, 336 sizeof(struct sk_if_softc) 337 }; 338 339 static devclass_t sk_devclass; 340 341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0); 342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 344 345 static struct resource_spec sk_res_spec_io[] = { 346 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 347 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 348 { -1, 0, 0 } 349 }; 350 351 static struct resource_spec sk_res_spec_mem[] = { 352 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 353 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 354 { -1, 0, 0 } 355 }; 356 357 #define SK_SETBIT(sc, reg, x) \ 358 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 359 360 #define SK_CLRBIT(sc, reg, x) \ 361 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 362 363 #define SK_WIN_SETBIT_4(sc, reg, x) \ 364 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 365 366 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 367 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 368 369 #define SK_WIN_SETBIT_2(sc, reg, x) \ 370 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 371 372 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 373 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 374 375 static u_int32_t 376 sk_win_read_4(sc, reg) 377 struct sk_softc *sc; 378 int reg; 379 { 380 #ifdef SK_USEIOSPACE 381 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 382 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 383 #else 384 return(CSR_READ_4(sc, reg)); 385 #endif 386 } 387 388 static u_int16_t 389 sk_win_read_2(sc, reg) 390 struct sk_softc *sc; 391 int reg; 392 { 393 #ifdef SK_USEIOSPACE 394 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 395 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 396 #else 397 return(CSR_READ_2(sc, reg)); 398 #endif 399 } 400 401 static u_int8_t 402 sk_win_read_1(sc, reg) 403 struct sk_softc *sc; 404 int reg; 405 { 406 #ifdef SK_USEIOSPACE 407 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 408 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 409 #else 410 return(CSR_READ_1(sc, reg)); 411 #endif 412 } 413 414 static void 415 sk_win_write_4(sc, reg, val) 416 struct sk_softc *sc; 417 int reg; 418 u_int32_t val; 419 { 420 #ifdef SK_USEIOSPACE 421 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 422 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 423 #else 424 CSR_WRITE_4(sc, reg, val); 425 #endif 426 return; 427 } 428 429 static void 430 sk_win_write_2(sc, reg, val) 431 struct sk_softc *sc; 432 int reg; 433 u_int32_t val; 434 { 435 #ifdef SK_USEIOSPACE 436 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 437 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 438 #else 439 CSR_WRITE_2(sc, reg, val); 440 #endif 441 return; 442 } 443 444 static void 445 sk_win_write_1(sc, reg, val) 446 struct sk_softc *sc; 447 int reg; 448 u_int32_t val; 449 { 450 #ifdef SK_USEIOSPACE 451 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 452 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 453 #else 454 CSR_WRITE_1(sc, reg, val); 455 #endif 456 return; 457 } 458 459 static int 460 sk_miibus_readreg(dev, phy, reg) 461 device_t dev; 462 int phy, reg; 463 { 464 struct sk_if_softc *sc_if; 465 int v; 466 467 sc_if = device_get_softc(dev); 468 469 SK_IF_MII_LOCK(sc_if); 470 switch(sc_if->sk_softc->sk_type) { 471 case SK_GENESIS: 472 v = sk_xmac_miibus_readreg(sc_if, phy, reg); 473 break; 474 case SK_YUKON: 475 case SK_YUKON_LITE: 476 case SK_YUKON_LP: 477 v = sk_marv_miibus_readreg(sc_if, phy, reg); 478 break; 479 default: 480 v = 0; 481 break; 482 } 483 SK_IF_MII_UNLOCK(sc_if); 484 485 return (v); 486 } 487 488 static int 489 sk_miibus_writereg(dev, phy, reg, val) 490 device_t dev; 491 int phy, reg, val; 492 { 493 struct sk_if_softc *sc_if; 494 int v; 495 496 sc_if = device_get_softc(dev); 497 498 SK_IF_MII_LOCK(sc_if); 499 switch(sc_if->sk_softc->sk_type) { 500 case SK_GENESIS: 501 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); 502 break; 503 case SK_YUKON: 504 case SK_YUKON_LITE: 505 case SK_YUKON_LP: 506 v = sk_marv_miibus_writereg(sc_if, phy, reg, val); 507 break; 508 default: 509 v = 0; 510 break; 511 } 512 SK_IF_MII_UNLOCK(sc_if); 513 514 return (v); 515 } 516 517 static void 518 sk_miibus_statchg(dev) 519 device_t dev; 520 { 521 struct sk_if_softc *sc_if; 522 523 sc_if = device_get_softc(dev); 524 525 SK_IF_MII_LOCK(sc_if); 526 switch(sc_if->sk_softc->sk_type) { 527 case SK_GENESIS: 528 sk_xmac_miibus_statchg(sc_if); 529 break; 530 case SK_YUKON: 531 case SK_YUKON_LITE: 532 case SK_YUKON_LP: 533 sk_marv_miibus_statchg(sc_if); 534 break; 535 } 536 SK_IF_MII_UNLOCK(sc_if); 537 538 return; 539 } 540 541 static int 542 sk_xmac_miibus_readreg(sc_if, phy, reg) 543 struct sk_if_softc *sc_if; 544 int phy, reg; 545 { 546 int i; 547 548 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 549 return(0); 550 551 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 552 SK_XM_READ_2(sc_if, XM_PHY_DATA); 553 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 554 for (i = 0; i < SK_TIMEOUT; i++) { 555 DELAY(1); 556 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 557 XM_MMUCMD_PHYDATARDY) 558 break; 559 } 560 561 if (i == SK_TIMEOUT) { 562 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 563 return(0); 564 } 565 } 566 DELAY(1); 567 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 568 569 return(i); 570 } 571 572 static int 573 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 574 struct sk_if_softc *sc_if; 575 int phy, reg, val; 576 { 577 int i; 578 579 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 580 for (i = 0; i < SK_TIMEOUT; i++) { 581 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 582 break; 583 } 584 585 if (i == SK_TIMEOUT) { 586 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 587 return (ETIMEDOUT); 588 } 589 590 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 591 for (i = 0; i < SK_TIMEOUT; i++) { 592 DELAY(1); 593 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 594 break; 595 } 596 if (i == SK_TIMEOUT) 597 if_printf(sc_if->sk_ifp, "phy write timed out\n"); 598 599 return(0); 600 } 601 602 static void 603 sk_xmac_miibus_statchg(sc_if) 604 struct sk_if_softc *sc_if; 605 { 606 struct mii_data *mii; 607 608 mii = device_get_softc(sc_if->sk_miibus); 609 610 /* 611 * If this is a GMII PHY, manually set the XMAC's 612 * duplex mode accordingly. 613 */ 614 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 615 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 616 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 617 } else { 618 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 619 } 620 } 621 } 622 623 static int 624 sk_marv_miibus_readreg(sc_if, phy, reg) 625 struct sk_if_softc *sc_if; 626 int phy, reg; 627 { 628 u_int16_t val; 629 int i; 630 631 if (phy != 0 || 632 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 633 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 634 return(0); 635 } 636 637 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 638 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 639 640 for (i = 0; i < SK_TIMEOUT; i++) { 641 DELAY(1); 642 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 643 if (val & YU_SMICR_READ_VALID) 644 break; 645 } 646 647 if (i == SK_TIMEOUT) { 648 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 649 return(0); 650 } 651 652 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 653 654 return(val); 655 } 656 657 static int 658 sk_marv_miibus_writereg(sc_if, phy, reg, val) 659 struct sk_if_softc *sc_if; 660 int phy, reg, val; 661 { 662 int i; 663 664 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 665 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 666 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 667 668 for (i = 0; i < SK_TIMEOUT; i++) { 669 DELAY(1); 670 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) 671 break; 672 } 673 if (i == SK_TIMEOUT) 674 if_printf(sc_if->sk_ifp, "phy write timeout\n"); 675 676 return(0); 677 } 678 679 static void 680 sk_marv_miibus_statchg(sc_if) 681 struct sk_if_softc *sc_if; 682 { 683 return; 684 } 685 686 #define HASH_BITS 6 687 688 static u_int32_t 689 sk_xmchash(addr) 690 const uint8_t *addr; 691 { 692 uint32_t crc; 693 694 /* Compute CRC for the address value. */ 695 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 696 697 return (~crc & ((1 << HASH_BITS) - 1)); 698 } 699 700 static void 701 sk_setfilt(sc_if, addr, slot) 702 struct sk_if_softc *sc_if; 703 u_int16_t *addr; 704 int slot; 705 { 706 int base; 707 708 base = XM_RXFILT_ENTRY(slot); 709 710 SK_XM_WRITE_2(sc_if, base, addr[0]); 711 SK_XM_WRITE_2(sc_if, base + 2, addr[1]); 712 SK_XM_WRITE_2(sc_if, base + 4, addr[2]); 713 714 return; 715 } 716 717 static void 718 sk_rxfilter(sc_if) 719 struct sk_if_softc *sc_if; 720 { 721 struct sk_softc *sc; 722 723 SK_IF_LOCK_ASSERT(sc_if); 724 725 sc = sc_if->sk_softc; 726 if (sc->sk_type == SK_GENESIS) 727 sk_rxfilter_genesis(sc_if); 728 else 729 sk_rxfilter_yukon(sc_if); 730 } 731 732 static void 733 sk_rxfilter_genesis(sc_if) 734 struct sk_if_softc *sc_if; 735 { 736 struct ifnet *ifp = sc_if->sk_ifp; 737 u_int32_t hashes[2] = { 0, 0 }, mode; 738 int h = 0, i; 739 struct ifmultiaddr *ifma; 740 u_int16_t dummy[] = { 0, 0, 0 }; 741 u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; 742 743 SK_IF_LOCK_ASSERT(sc_if); 744 745 mode = SK_XM_READ_4(sc_if, XM_MODE); 746 mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH | 747 XM_MODE_RX_USE_PERFECT); 748 /* First, zot all the existing perfect filters. */ 749 for (i = 1; i < XM_RXFILT_MAX; i++) 750 sk_setfilt(sc_if, dummy, i); 751 752 /* Now program new ones. */ 753 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 754 if (ifp->if_flags & IFF_ALLMULTI) 755 mode |= XM_MODE_RX_USE_HASH; 756 if (ifp->if_flags & IFF_PROMISC) 757 mode |= XM_MODE_RX_PROMISC; 758 hashes[0] = 0xFFFFFFFF; 759 hashes[1] = 0xFFFFFFFF; 760 } else { 761 i = 1; 762 if_maddr_rlock(ifp); 763 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, 764 ifma_link) { 765 if (ifma->ifma_addr->sa_family != AF_LINK) 766 continue; 767 /* 768 * Program the first XM_RXFILT_MAX multicast groups 769 * into the perfect filter. 770 */ 771 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 772 maddr, ETHER_ADDR_LEN); 773 if (i < XM_RXFILT_MAX) { 774 sk_setfilt(sc_if, maddr, i); 775 mode |= XM_MODE_RX_USE_PERFECT; 776 i++; 777 continue; 778 } 779 h = sk_xmchash((const uint8_t *)maddr); 780 if (h < 32) 781 hashes[0] |= (1 << h); 782 else 783 hashes[1] |= (1 << (h - 32)); 784 mode |= XM_MODE_RX_USE_HASH; 785 } 786 if_maddr_runlock(ifp); 787 } 788 789 SK_XM_WRITE_4(sc_if, XM_MODE, mode); 790 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 791 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 792 } 793 794 static void 795 sk_rxfilter_yukon(sc_if) 796 struct sk_if_softc *sc_if; 797 { 798 struct ifnet *ifp; 799 u_int32_t crc, hashes[2] = { 0, 0 }, mode; 800 struct ifmultiaddr *ifma; 801 802 SK_IF_LOCK_ASSERT(sc_if); 803 804 ifp = sc_if->sk_ifp; 805 mode = SK_YU_READ_2(sc_if, YUKON_RCR); 806 if (ifp->if_flags & IFF_PROMISC) 807 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 808 else if (ifp->if_flags & IFF_ALLMULTI) { 809 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 810 hashes[0] = 0xFFFFFFFF; 811 hashes[1] = 0xFFFFFFFF; 812 } else { 813 mode |= YU_RCR_UFLEN; 814 if_maddr_rlock(ifp); 815 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 816 if (ifma->ifma_addr->sa_family != AF_LINK) 817 continue; 818 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 819 ifma->ifma_addr), ETHER_ADDR_LEN); 820 /* Just want the 6 least significant bits. */ 821 crc &= 0x3f; 822 /* Set the corresponding bit in the hash table. */ 823 hashes[crc >> 5] |= 1 << (crc & 0x1f); 824 } 825 if_maddr_runlock(ifp); 826 if (hashes[0] != 0 || hashes[1] != 0) 827 mode |= YU_RCR_MUFLEN; 828 } 829 830 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 831 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 832 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 833 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 834 SK_YU_WRITE_2(sc_if, YUKON_RCR, mode); 835 } 836 837 static int 838 sk_init_rx_ring(sc_if) 839 struct sk_if_softc *sc_if; 840 { 841 struct sk_ring_data *rd; 842 bus_addr_t addr; 843 u_int32_t csum_start; 844 int i; 845 846 sc_if->sk_cdata.sk_rx_cons = 0; 847 848 csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | 849 ETHER_HDR_LEN; 850 rd = &sc_if->sk_rdata; 851 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 852 for (i = 0; i < SK_RX_RING_CNT; i++) { 853 if (sk_newbuf(sc_if, i) != 0) 854 return (ENOBUFS); 855 if (i == (SK_RX_RING_CNT - 1)) 856 addr = SK_RX_RING_ADDR(sc_if, 0); 857 else 858 addr = SK_RX_RING_ADDR(sc_if, i + 1); 859 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 860 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); 861 } 862 863 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 864 sc_if->sk_cdata.sk_rx_ring_map, 865 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 866 867 return(0); 868 } 869 870 static int 871 sk_init_jumbo_rx_ring(sc_if) 872 struct sk_if_softc *sc_if; 873 { 874 struct sk_ring_data *rd; 875 bus_addr_t addr; 876 u_int32_t csum_start; 877 int i; 878 879 sc_if->sk_cdata.sk_jumbo_rx_cons = 0; 880 881 csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | 882 ETHER_HDR_LEN; 883 rd = &sc_if->sk_rdata; 884 bzero(rd->sk_jumbo_rx_ring, 885 sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); 886 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 887 if (sk_jumbo_newbuf(sc_if, i) != 0) 888 return (ENOBUFS); 889 if (i == (SK_JUMBO_RX_RING_CNT - 1)) 890 addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); 891 else 892 addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); 893 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 894 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); 895 } 896 897 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 898 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 899 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 900 901 return (0); 902 } 903 904 static void 905 sk_init_tx_ring(sc_if) 906 struct sk_if_softc *sc_if; 907 { 908 struct sk_ring_data *rd; 909 struct sk_txdesc *txd; 910 bus_addr_t addr; 911 int i; 912 913 STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); 914 STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); 915 916 sc_if->sk_cdata.sk_tx_prod = 0; 917 sc_if->sk_cdata.sk_tx_cons = 0; 918 sc_if->sk_cdata.sk_tx_cnt = 0; 919 920 rd = &sc_if->sk_rdata; 921 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 922 for (i = 0; i < SK_TX_RING_CNT; i++) { 923 if (i == (SK_TX_RING_CNT - 1)) 924 addr = SK_TX_RING_ADDR(sc_if, 0); 925 else 926 addr = SK_TX_RING_ADDR(sc_if, i + 1); 927 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 928 txd = &sc_if->sk_cdata.sk_txdesc[i]; 929 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 930 } 931 932 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 933 sc_if->sk_cdata.sk_tx_ring_map, 934 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 935 } 936 937 static __inline void 938 sk_discard_rxbuf(sc_if, idx) 939 struct sk_if_softc *sc_if; 940 int idx; 941 { 942 struct sk_rx_desc *r; 943 struct sk_rxdesc *rxd; 944 struct mbuf *m; 945 946 947 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 948 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 949 m = rxd->rx_m; 950 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 951 } 952 953 static __inline void 954 sk_discard_jumbo_rxbuf(sc_if, idx) 955 struct sk_if_softc *sc_if; 956 int idx; 957 { 958 struct sk_rx_desc *r; 959 struct sk_rxdesc *rxd; 960 struct mbuf *m; 961 962 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 963 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 964 m = rxd->rx_m; 965 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 966 } 967 968 static int 969 sk_newbuf(sc_if, idx) 970 struct sk_if_softc *sc_if; 971 int idx; 972 { 973 struct sk_rx_desc *r; 974 struct sk_rxdesc *rxd; 975 struct mbuf *m; 976 bus_dma_segment_t segs[1]; 977 bus_dmamap_t map; 978 int nsegs; 979 980 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 981 if (m == NULL) 982 return (ENOBUFS); 983 m->m_len = m->m_pkthdr.len = MCLBYTES; 984 m_adj(m, ETHER_ALIGN); 985 986 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, 987 sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { 988 m_freem(m); 989 return (ENOBUFS); 990 } 991 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 992 993 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 994 if (rxd->rx_m != NULL) { 995 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 996 BUS_DMASYNC_POSTREAD); 997 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); 998 } 999 map = rxd->rx_dmamap; 1000 rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; 1001 sc_if->sk_cdata.sk_rx_sparemap = map; 1002 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 1003 BUS_DMASYNC_PREREAD); 1004 rxd->rx_m = m; 1005 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 1006 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1007 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1008 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1009 1010 return (0); 1011 } 1012 1013 static int 1014 sk_jumbo_newbuf(sc_if, idx) 1015 struct sk_if_softc *sc_if; 1016 int idx; 1017 { 1018 struct sk_rx_desc *r; 1019 struct sk_rxdesc *rxd; 1020 struct mbuf *m; 1021 bus_dma_segment_t segs[1]; 1022 bus_dmamap_t map; 1023 int nsegs; 1024 1025 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1026 if (m == NULL) 1027 return (ENOBUFS); 1028 if ((m->m_flags & M_EXT) == 0) { 1029 m_freem(m); 1030 return (ENOBUFS); 1031 } 1032 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1033 /* 1034 * Adjust alignment so packet payload begins on a 1035 * longword boundary. Mandatory for Alpha, useful on 1036 * x86 too. 1037 */ 1038 m_adj(m, ETHER_ALIGN); 1039 1040 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, 1041 sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1042 m_freem(m); 1043 return (ENOBUFS); 1044 } 1045 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1046 1047 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 1048 if (rxd->rx_m != NULL) { 1049 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1050 BUS_DMASYNC_POSTREAD); 1051 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 1052 rxd->rx_dmamap); 1053 } 1054 map = rxd->rx_dmamap; 1055 rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; 1056 sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; 1057 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1058 BUS_DMASYNC_PREREAD); 1059 rxd->rx_m = m; 1060 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 1061 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1062 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1063 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1064 1065 return (0); 1066 } 1067 1068 /* 1069 * Set media options. 1070 */ 1071 static int 1072 sk_ifmedia_upd(ifp) 1073 struct ifnet *ifp; 1074 { 1075 struct sk_if_softc *sc_if = ifp->if_softc; 1076 struct mii_data *mii; 1077 1078 mii = device_get_softc(sc_if->sk_miibus); 1079 sk_init(sc_if); 1080 mii_mediachg(mii); 1081 1082 return(0); 1083 } 1084 1085 /* 1086 * Report current media status. 1087 */ 1088 static void 1089 sk_ifmedia_sts(ifp, ifmr) 1090 struct ifnet *ifp; 1091 struct ifmediareq *ifmr; 1092 { 1093 struct sk_if_softc *sc_if; 1094 struct mii_data *mii; 1095 1096 sc_if = ifp->if_softc; 1097 mii = device_get_softc(sc_if->sk_miibus); 1098 1099 mii_pollstat(mii); 1100 ifmr->ifm_active = mii->mii_media_active; 1101 ifmr->ifm_status = mii->mii_media_status; 1102 1103 return; 1104 } 1105 1106 static int 1107 sk_ioctl(ifp, command, data) 1108 struct ifnet *ifp; 1109 u_long command; 1110 caddr_t data; 1111 { 1112 struct sk_if_softc *sc_if = ifp->if_softc; 1113 struct ifreq *ifr = (struct ifreq *) data; 1114 int error, mask; 1115 struct mii_data *mii; 1116 1117 error = 0; 1118 switch(command) { 1119 case SIOCSIFMTU: 1120 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) 1121 error = EINVAL; 1122 else if (ifp->if_mtu != ifr->ifr_mtu) { 1123 if (sc_if->sk_jumbo_disable != 0 && 1124 ifr->ifr_mtu > SK_MAX_FRAMELEN) 1125 error = EINVAL; 1126 else { 1127 SK_IF_LOCK(sc_if); 1128 ifp->if_mtu = ifr->ifr_mtu; 1129 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1130 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1131 sk_init_locked(sc_if); 1132 } 1133 SK_IF_UNLOCK(sc_if); 1134 } 1135 } 1136 break; 1137 case SIOCSIFFLAGS: 1138 SK_IF_LOCK(sc_if); 1139 if (ifp->if_flags & IFF_UP) { 1140 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1141 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1142 & (IFF_PROMISC | IFF_ALLMULTI)) 1143 sk_rxfilter(sc_if); 1144 } else 1145 sk_init_locked(sc_if); 1146 } else { 1147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1148 sk_stop(sc_if); 1149 } 1150 sc_if->sk_if_flags = ifp->if_flags; 1151 SK_IF_UNLOCK(sc_if); 1152 break; 1153 case SIOCADDMULTI: 1154 case SIOCDELMULTI: 1155 SK_IF_LOCK(sc_if); 1156 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1157 sk_rxfilter(sc_if); 1158 SK_IF_UNLOCK(sc_if); 1159 break; 1160 case SIOCGIFMEDIA: 1161 case SIOCSIFMEDIA: 1162 mii = device_get_softc(sc_if->sk_miibus); 1163 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1164 break; 1165 case SIOCSIFCAP: 1166 SK_IF_LOCK(sc_if); 1167 if (sc_if->sk_softc->sk_type == SK_GENESIS) { 1168 SK_IF_UNLOCK(sc_if); 1169 break; 1170 } 1171 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1172 if ((mask & IFCAP_TXCSUM) != 0 && 1173 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1174 ifp->if_capenable ^= IFCAP_TXCSUM; 1175 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1176 ifp->if_hwassist |= SK_CSUM_FEATURES; 1177 else 1178 ifp->if_hwassist &= ~SK_CSUM_FEATURES; 1179 } 1180 if ((mask & IFCAP_RXCSUM) != 0 && 1181 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 1182 ifp->if_capenable ^= IFCAP_RXCSUM; 1183 SK_IF_UNLOCK(sc_if); 1184 break; 1185 default: 1186 error = ether_ioctl(ifp, command, data); 1187 break; 1188 } 1189 1190 return (error); 1191 } 1192 1193 /* 1194 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1195 * IDs against our list and return a device name if we find a match. 1196 */ 1197 static int 1198 skc_probe(dev) 1199 device_t dev; 1200 { 1201 struct sk_type *t = sk_devs; 1202 1203 while(t->sk_name != NULL) { 1204 if ((pci_get_vendor(dev) == t->sk_vid) && 1205 (pci_get_device(dev) == t->sk_did)) { 1206 /* 1207 * Only attach to rev. 2 of the Linksys EG1032 adapter. 1208 * Rev. 3 is supported by re(4). 1209 */ 1210 if ((t->sk_vid == VENDORID_LINKSYS) && 1211 (t->sk_did == DEVICEID_LINKSYS_EG1032) && 1212 (pci_get_subdevice(dev) != 1213 SUBDEVICEID_LINKSYS_EG1032_REV2)) { 1214 t++; 1215 continue; 1216 } 1217 device_set_desc(dev, t->sk_name); 1218 return (BUS_PROBE_DEFAULT); 1219 } 1220 t++; 1221 } 1222 1223 return(ENXIO); 1224 } 1225 1226 /* 1227 * Force the GEnesis into reset, then bring it out of reset. 1228 */ 1229 static void 1230 sk_reset(sc) 1231 struct sk_softc *sc; 1232 { 1233 1234 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1235 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1236 if (SK_YUKON_FAMILY(sc->sk_type)) 1237 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1238 1239 DELAY(1000); 1240 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1241 DELAY(2); 1242 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1243 if (SK_YUKON_FAMILY(sc->sk_type)) 1244 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1245 1246 if (sc->sk_type == SK_GENESIS) { 1247 /* Configure packet arbiter */ 1248 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1249 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1250 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1251 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1252 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1253 } 1254 1255 /* Enable RAM interface */ 1256 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1257 1258 /* 1259 * Configure interrupt moderation. The moderation timer 1260 * defers interrupts specified in the interrupt moderation 1261 * timer mask based on the timeout specified in the interrupt 1262 * moderation timer init register. Each bit in the timer 1263 * register represents one tick, so to specify a timeout in 1264 * microseconds, we have to multiply by the correct number of 1265 * ticks-per-microsecond. 1266 */ 1267 switch (sc->sk_type) { 1268 case SK_GENESIS: 1269 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; 1270 break; 1271 default: 1272 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; 1273 break; 1274 } 1275 if (bootverbose) 1276 device_printf(sc->sk_dev, "interrupt moderation is %d us\n", 1277 sc->sk_int_mod); 1278 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 1279 sc->sk_int_ticks)); 1280 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1281 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1282 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1283 1284 return; 1285 } 1286 1287 static int 1288 sk_probe(dev) 1289 device_t dev; 1290 { 1291 struct sk_softc *sc; 1292 1293 sc = device_get_softc(device_get_parent(dev)); 1294 1295 /* 1296 * Not much to do here. We always know there will be 1297 * at least one XMAC present, and if there are two, 1298 * skc_attach() will create a second device instance 1299 * for us. 1300 */ 1301 switch (sc->sk_type) { 1302 case SK_GENESIS: 1303 device_set_desc(dev, "XaQti Corp. XMAC II"); 1304 break; 1305 case SK_YUKON: 1306 case SK_YUKON_LITE: 1307 case SK_YUKON_LP: 1308 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1309 break; 1310 } 1311 1312 return (BUS_PROBE_DEFAULT); 1313 } 1314 1315 /* 1316 * Each XMAC chip is attached as a separate logical IP interface. 1317 * Single port cards will have only one logical interface of course. 1318 */ 1319 static int 1320 sk_attach(dev) 1321 device_t dev; 1322 { 1323 struct sk_softc *sc; 1324 struct sk_if_softc *sc_if; 1325 struct ifnet *ifp; 1326 int i, port, error; 1327 u_char eaddr[6]; 1328 1329 if (dev == NULL) 1330 return(EINVAL); 1331 1332 error = 0; 1333 sc_if = device_get_softc(dev); 1334 sc = device_get_softc(device_get_parent(dev)); 1335 port = *(int *)device_get_ivars(dev); 1336 1337 sc_if->sk_if_dev = dev; 1338 sc_if->sk_port = port; 1339 sc_if->sk_softc = sc; 1340 sc->sk_if[port] = sc_if; 1341 if (port == SK_PORT_A) 1342 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1343 if (port == SK_PORT_B) 1344 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1345 1346 callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); 1347 callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); 1348 1349 if (sk_dma_alloc(sc_if) != 0) { 1350 error = ENOMEM; 1351 goto fail; 1352 } 1353 sk_dma_jumbo_alloc(sc_if); 1354 1355 ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); 1356 if (ifp == NULL) { 1357 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); 1358 error = ENOSPC; 1359 goto fail; 1360 } 1361 ifp->if_softc = sc_if; 1362 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1363 ifp->if_mtu = ETHERMTU; 1364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1365 /* 1366 * SK_GENESIS has a bug in checksum offload - From linux. 1367 */ 1368 if (sc_if->sk_softc->sk_type != SK_GENESIS) { 1369 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM; 1370 ifp->if_hwassist = 0; 1371 } else { 1372 ifp->if_capabilities = 0; 1373 ifp->if_hwassist = 0; 1374 } 1375 ifp->if_capenable = ifp->if_capabilities; 1376 /* 1377 * Some revision of Yukon controller generates corrupted 1378 * frame when TX checksum offloading is enabled. The 1379 * frame has a valid checksum value so payload might be 1380 * modified during TX checksum calculation. Disable TX 1381 * checksum offloading but give users chance to enable it 1382 * when they know their controller works without problems 1383 * with TX checksum offloading. 1384 */ 1385 ifp->if_capenable &= ~IFCAP_TXCSUM; 1386 ifp->if_ioctl = sk_ioctl; 1387 ifp->if_start = sk_start; 1388 ifp->if_init = sk_init; 1389 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1390 ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; 1391 IFQ_SET_READY(&ifp->if_snd); 1392 1393 /* 1394 * Get station address for this interface. Note that 1395 * dual port cards actually come with three station 1396 * addresses: one for each port, plus an extra. The 1397 * extra one is used by the SysKonnect driver software 1398 * as a 'virtual' station address for when both ports 1399 * are operating in failover mode. Currently we don't 1400 * use this extra address. 1401 */ 1402 SK_IF_LOCK(sc_if); 1403 for (i = 0; i < ETHER_ADDR_LEN; i++) 1404 eaddr[i] = 1405 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1406 1407 /* 1408 * Set up RAM buffer addresses. The NIC will have a certain 1409 * amount of SRAM on it, somewhere between 512K and 2MB. We 1410 * need to divide this up a) between the transmitter and 1411 * receiver and b) between the two XMACs, if this is a 1412 * dual port NIC. Our algotithm is to divide up the memory 1413 * evenly so that everyone gets a fair share. 1414 * 1415 * Just to be contrary, Yukon2 appears to have separate memory 1416 * for each MAC. 1417 */ 1418 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1419 u_int32_t chunk, val; 1420 1421 chunk = sc->sk_ramsize / 2; 1422 val = sc->sk_rboff / sizeof(u_int64_t); 1423 sc_if->sk_rx_ramstart = val; 1424 val += (chunk / sizeof(u_int64_t)); 1425 sc_if->sk_rx_ramend = val - 1; 1426 sc_if->sk_tx_ramstart = val; 1427 val += (chunk / sizeof(u_int64_t)); 1428 sc_if->sk_tx_ramend = val - 1; 1429 } else { 1430 u_int32_t chunk, val; 1431 1432 chunk = sc->sk_ramsize / 4; 1433 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1434 sizeof(u_int64_t); 1435 sc_if->sk_rx_ramstart = val; 1436 val += (chunk / sizeof(u_int64_t)); 1437 sc_if->sk_rx_ramend = val - 1; 1438 sc_if->sk_tx_ramstart = val; 1439 val += (chunk / sizeof(u_int64_t)); 1440 sc_if->sk_tx_ramend = val - 1; 1441 } 1442 1443 /* Read and save PHY type and set PHY address */ 1444 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1445 if (!SK_YUKON_FAMILY(sc->sk_type)) { 1446 switch(sc_if->sk_phytype) { 1447 case SK_PHYTYPE_XMAC: 1448 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1449 break; 1450 case SK_PHYTYPE_BCOM: 1451 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1452 break; 1453 default: 1454 device_printf(sc->sk_dev, "unsupported PHY type: %d\n", 1455 sc_if->sk_phytype); 1456 error = ENODEV; 1457 SK_IF_UNLOCK(sc_if); 1458 goto fail; 1459 } 1460 } else { 1461 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && 1462 sc->sk_pmd != 'S') { 1463 /* not initialized, punt */ 1464 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; 1465 sc->sk_coppertype = 1; 1466 } 1467 1468 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1469 1470 if (!(sc->sk_coppertype)) 1471 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; 1472 } 1473 1474 /* 1475 * Call MI attach routine. Can't hold locks when calling into ether_*. 1476 */ 1477 SK_IF_UNLOCK(sc_if); 1478 ether_ifattach(ifp, eaddr); 1479 SK_IF_LOCK(sc_if); 1480 1481 /* 1482 * The hardware should be ready for VLAN_MTU by default: 1483 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; 1484 * YU_SMR_MFL_VLAN is set by this driver in Yukon. 1485 * 1486 */ 1487 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1488 ifp->if_capenable |= IFCAP_VLAN_MTU; 1489 /* 1490 * Tell the upper layer(s) we support long frames. 1491 * Must appear after the call to ether_ifattach() because 1492 * ether_ifattach() sets ifi_hdrlen to the default value. 1493 */ 1494 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1495 1496 /* 1497 * Do miibus setup. 1498 */ 1499 switch (sc->sk_type) { 1500 case SK_GENESIS: 1501 sk_init_xmac(sc_if); 1502 break; 1503 case SK_YUKON: 1504 case SK_YUKON_LITE: 1505 case SK_YUKON_LP: 1506 sk_init_yukon(sc_if); 1507 break; 1508 } 1509 1510 SK_IF_UNLOCK(sc_if); 1511 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1512 sk_ifmedia_upd, sk_ifmedia_sts)) { 1513 device_printf(sc_if->sk_if_dev, "no PHY found!\n"); 1514 ether_ifdetach(ifp); 1515 error = ENXIO; 1516 goto fail; 1517 } 1518 1519 fail: 1520 if (error) { 1521 /* Access should be ok even though lock has been dropped */ 1522 sc->sk_if[port] = NULL; 1523 sk_detach(dev); 1524 } 1525 1526 return(error); 1527 } 1528 1529 /* 1530 * Attach the interface. Allocate softc structures, do ifmedia 1531 * setup and ethernet/BPF attach. 1532 */ 1533 static int 1534 skc_attach(dev) 1535 device_t dev; 1536 { 1537 struct sk_softc *sc; 1538 int error = 0, *port; 1539 uint8_t skrs; 1540 const char *pname = NULL; 1541 char *revstr; 1542 1543 sc = device_get_softc(dev); 1544 sc->sk_dev = dev; 1545 1546 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1547 MTX_DEF); 1548 mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); 1549 /* 1550 * Map control/status registers. 1551 */ 1552 pci_enable_busmaster(dev); 1553 1554 /* Allocate resources */ 1555 #ifdef SK_USEIOSPACE 1556 sc->sk_res_spec = sk_res_spec_io; 1557 #else 1558 sc->sk_res_spec = sk_res_spec_mem; 1559 #endif 1560 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1561 if (error) { 1562 if (sc->sk_res_spec == sk_res_spec_mem) 1563 sc->sk_res_spec = sk_res_spec_io; 1564 else 1565 sc->sk_res_spec = sk_res_spec_mem; 1566 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1567 if (error) { 1568 device_printf(dev, "couldn't allocate %s resources\n", 1569 sc->sk_res_spec == sk_res_spec_mem ? "memory" : 1570 "I/O"); 1571 goto fail; 1572 } 1573 } 1574 1575 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1576 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; 1577 1578 /* Bail out if chip is not recognized. */ 1579 if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { 1580 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", 1581 sc->sk_type, sc->sk_rev); 1582 error = ENXIO; 1583 goto fail; 1584 } 1585 1586 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1587 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1588 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, 1589 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", 1590 "SK interrupt moderation"); 1591 1592 /* Pull in device tunables. */ 1593 sc->sk_int_mod = SK_IM_DEFAULT; 1594 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1595 "int_mod", &sc->sk_int_mod); 1596 if (error == 0) { 1597 if (sc->sk_int_mod < SK_IM_MIN || 1598 sc->sk_int_mod > SK_IM_MAX) { 1599 device_printf(dev, "int_mod value out of range; " 1600 "using default: %d\n", SK_IM_DEFAULT); 1601 sc->sk_int_mod = SK_IM_DEFAULT; 1602 } 1603 } 1604 1605 /* Reset the adapter. */ 1606 sk_reset(sc); 1607 1608 skrs = sk_win_read_1(sc, SK_EPROM0); 1609 if (sc->sk_type == SK_GENESIS) { 1610 /* Read and save RAM size and RAMbuffer offset */ 1611 switch(skrs) { 1612 case SK_RAMSIZE_512K_64: 1613 sc->sk_ramsize = 0x80000; 1614 sc->sk_rboff = SK_RBOFF_0; 1615 break; 1616 case SK_RAMSIZE_1024K_64: 1617 sc->sk_ramsize = 0x100000; 1618 sc->sk_rboff = SK_RBOFF_80000; 1619 break; 1620 case SK_RAMSIZE_1024K_128: 1621 sc->sk_ramsize = 0x100000; 1622 sc->sk_rboff = SK_RBOFF_0; 1623 break; 1624 case SK_RAMSIZE_2048K_128: 1625 sc->sk_ramsize = 0x200000; 1626 sc->sk_rboff = SK_RBOFF_0; 1627 break; 1628 default: 1629 device_printf(dev, "unknown ram size: %d\n", skrs); 1630 error = ENXIO; 1631 goto fail; 1632 } 1633 } else { /* SK_YUKON_FAMILY */ 1634 if (skrs == 0x00) 1635 sc->sk_ramsize = 0x20000; 1636 else 1637 sc->sk_ramsize = skrs * (1<<12); 1638 sc->sk_rboff = SK_RBOFF_0; 1639 } 1640 1641 /* Read and save physical media type */ 1642 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); 1643 1644 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') 1645 sc->sk_coppertype = 1; 1646 else 1647 sc->sk_coppertype = 0; 1648 1649 /* Determine whether to name it with VPD PN or just make it up. 1650 * Marvell Yukon VPD PN seems to freqently be bogus. */ 1651 switch (pci_get_device(dev)) { 1652 case DEVICEID_SK_V1: 1653 case DEVICEID_BELKIN_5005: 1654 case DEVICEID_3COM_3C940: 1655 case DEVICEID_LINKSYS_EG1032: 1656 case DEVICEID_DLINK_DGE530T_A1: 1657 case DEVICEID_DLINK_DGE530T_B1: 1658 /* Stay with VPD PN. */ 1659 (void) pci_get_vpd_ident(dev, &pname); 1660 break; 1661 case DEVICEID_SK_V2: 1662 /* YUKON VPD PN might bear no resemblance to reality. */ 1663 switch (sc->sk_type) { 1664 case SK_GENESIS: 1665 /* Stay with VPD PN. */ 1666 (void) pci_get_vpd_ident(dev, &pname); 1667 break; 1668 case SK_YUKON: 1669 pname = "Marvell Yukon Gigabit Ethernet"; 1670 break; 1671 case SK_YUKON_LITE: 1672 pname = "Marvell Yukon Lite Gigabit Ethernet"; 1673 break; 1674 case SK_YUKON_LP: 1675 pname = "Marvell Yukon LP Gigabit Ethernet"; 1676 break; 1677 default: 1678 pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1679 break; 1680 } 1681 1682 /* Yukon Lite Rev. A0 needs special test. */ 1683 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { 1684 u_int32_t far; 1685 u_int8_t testbyte; 1686 1687 /* Save flash address register before testing. */ 1688 far = sk_win_read_4(sc, SK_EP_ADDR); 1689 1690 sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); 1691 testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); 1692 1693 if (testbyte != 0x00) { 1694 /* Yukon Lite Rev. A0 detected. */ 1695 sc->sk_type = SK_YUKON_LITE; 1696 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1697 /* Restore flash address register. */ 1698 sk_win_write_4(sc, SK_EP_ADDR, far); 1699 } 1700 } 1701 break; 1702 default: 1703 device_printf(dev, "unknown device: vendor=%04x, device=%04x, " 1704 "chipver=%02x, rev=%x\n", 1705 pci_get_vendor(dev), pci_get_device(dev), 1706 sc->sk_type, sc->sk_rev); 1707 error = ENXIO; 1708 goto fail; 1709 } 1710 1711 if (sc->sk_type == SK_YUKON_LITE) { 1712 switch (sc->sk_rev) { 1713 case SK_YUKON_LITE_REV_A0: 1714 revstr = "A0"; 1715 break; 1716 case SK_YUKON_LITE_REV_A1: 1717 revstr = "A1"; 1718 break; 1719 case SK_YUKON_LITE_REV_A3: 1720 revstr = "A3"; 1721 break; 1722 default: 1723 revstr = ""; 1724 break; 1725 } 1726 } else { 1727 revstr = ""; 1728 } 1729 1730 /* Announce the product name and more VPD data if there. */ 1731 if (pname != NULL) 1732 device_printf(dev, "%s rev. %s(0x%x)\n", 1733 pname, revstr, sc->sk_rev); 1734 1735 if (bootverbose) { 1736 device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); 1737 device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); 1738 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); 1739 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); 1740 } 1741 1742 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1743 if (sc->sk_devs[SK_PORT_A] == NULL) { 1744 device_printf(dev, "failed to add child for PORT_A\n"); 1745 error = ENXIO; 1746 goto fail; 1747 } 1748 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1749 if (port == NULL) { 1750 device_printf(dev, "failed to allocate memory for " 1751 "ivars of PORT_A\n"); 1752 error = ENXIO; 1753 goto fail; 1754 } 1755 *port = SK_PORT_A; 1756 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1757 1758 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1759 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1760 if (sc->sk_devs[SK_PORT_B] == NULL) { 1761 device_printf(dev, "failed to add child for PORT_B\n"); 1762 error = ENXIO; 1763 goto fail; 1764 } 1765 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1766 if (port == NULL) { 1767 device_printf(dev, "failed to allocate memory for " 1768 "ivars of PORT_B\n"); 1769 error = ENXIO; 1770 goto fail; 1771 } 1772 *port = SK_PORT_B; 1773 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1774 } 1775 1776 /* Turn on the 'driver is loaded' LED. */ 1777 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1778 1779 error = bus_generic_attach(dev); 1780 if (error) { 1781 device_printf(dev, "failed to attach port(s)\n"); 1782 goto fail; 1783 } 1784 1785 /* Hook interrupt last to avoid having to lock softc */ 1786 error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, 1787 NULL, sk_intr, sc, &sc->sk_intrhand); 1788 1789 if (error) { 1790 device_printf(dev, "couldn't set up irq\n"); 1791 goto fail; 1792 } 1793 1794 fail: 1795 if (error) 1796 skc_detach(dev); 1797 1798 return(error); 1799 } 1800 1801 /* 1802 * Shutdown hardware and free up resources. This can be called any 1803 * time after the mutex has been initialized. It is called in both 1804 * the error case in attach and the normal detach case so it needs 1805 * to be careful about only freeing resources that have actually been 1806 * allocated. 1807 */ 1808 static int 1809 sk_detach(dev) 1810 device_t dev; 1811 { 1812 struct sk_if_softc *sc_if; 1813 struct ifnet *ifp; 1814 1815 sc_if = device_get_softc(dev); 1816 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1817 ("sk mutex not initialized in sk_detach")); 1818 SK_IF_LOCK(sc_if); 1819 1820 ifp = sc_if->sk_ifp; 1821 /* These should only be active if attach_xmac succeeded */ 1822 if (device_is_attached(dev)) { 1823 sk_stop(sc_if); 1824 /* Can't hold locks while calling detach */ 1825 SK_IF_UNLOCK(sc_if); 1826 callout_drain(&sc_if->sk_tick_ch); 1827 callout_drain(&sc_if->sk_watchdog_ch); 1828 ether_ifdetach(ifp); 1829 SK_IF_LOCK(sc_if); 1830 } 1831 if (ifp) 1832 if_free(ifp); 1833 /* 1834 * We're generally called from skc_detach() which is using 1835 * device_delete_child() to get to here. It's already trashed 1836 * miibus for us, so don't do it here or we'll panic. 1837 */ 1838 /* 1839 if (sc_if->sk_miibus != NULL) 1840 device_delete_child(dev, sc_if->sk_miibus); 1841 */ 1842 bus_generic_detach(dev); 1843 sk_dma_jumbo_free(sc_if); 1844 sk_dma_free(sc_if); 1845 SK_IF_UNLOCK(sc_if); 1846 1847 return(0); 1848 } 1849 1850 static int 1851 skc_detach(dev) 1852 device_t dev; 1853 { 1854 struct sk_softc *sc; 1855 1856 sc = device_get_softc(dev); 1857 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1858 1859 if (device_is_alive(dev)) { 1860 if (sc->sk_devs[SK_PORT_A] != NULL) { 1861 free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); 1862 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1863 } 1864 if (sc->sk_devs[SK_PORT_B] != NULL) { 1865 free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); 1866 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1867 } 1868 bus_generic_detach(dev); 1869 } 1870 1871 if (sc->sk_intrhand) 1872 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); 1873 bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); 1874 1875 mtx_destroy(&sc->sk_mii_mtx); 1876 mtx_destroy(&sc->sk_mtx); 1877 1878 return(0); 1879 } 1880 1881 struct sk_dmamap_arg { 1882 bus_addr_t sk_busaddr; 1883 }; 1884 1885 static void 1886 sk_dmamap_cb(arg, segs, nseg, error) 1887 void *arg; 1888 bus_dma_segment_t *segs; 1889 int nseg; 1890 int error; 1891 { 1892 struct sk_dmamap_arg *ctx; 1893 1894 if (error != 0) 1895 return; 1896 1897 ctx = arg; 1898 ctx->sk_busaddr = segs[0].ds_addr; 1899 } 1900 1901 /* 1902 * Allocate jumbo buffer storage. The SysKonnect adapters support 1903 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1904 * use them in their drivers. In order for us to use them, we need 1905 * large 9K receive buffers, however standard mbuf clusters are only 1906 * 2048 bytes in size. Consequently, we need to allocate and manage 1907 * our own jumbo buffer pool. Fortunately, this does not require an 1908 * excessive amount of additional code. 1909 */ 1910 static int 1911 sk_dma_alloc(sc_if) 1912 struct sk_if_softc *sc_if; 1913 { 1914 struct sk_dmamap_arg ctx; 1915 struct sk_txdesc *txd; 1916 struct sk_rxdesc *rxd; 1917 int error, i; 1918 1919 /* create parent tag */ 1920 /* 1921 * XXX 1922 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument 1923 * in bus_dma_tag_create(9) as the NIC would support DAC mode. 1924 * However bz@ reported that it does not work on amd64 with > 4GB 1925 * RAM. Until we have more clues of the breakage, disable DAC mode 1926 * by limiting DMA address to be in 32bit address space. 1927 */ 1928 error = bus_dma_tag_create( 1929 bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1930 1, 0, /* algnmnt, boundary */ 1931 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1932 BUS_SPACE_MAXADDR, /* highaddr */ 1933 NULL, NULL, /* filter, filterarg */ 1934 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1935 0, /* nsegments */ 1936 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1937 0, /* flags */ 1938 NULL, NULL, /* lockfunc, lockarg */ 1939 &sc_if->sk_cdata.sk_parent_tag); 1940 if (error != 0) { 1941 device_printf(sc_if->sk_if_dev, 1942 "failed to create parent DMA tag\n"); 1943 goto fail; 1944 } 1945 1946 /* create tag for Tx ring */ 1947 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1948 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1949 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1950 BUS_SPACE_MAXADDR, /* highaddr */ 1951 NULL, NULL, /* filter, filterarg */ 1952 SK_TX_RING_SZ, /* maxsize */ 1953 1, /* nsegments */ 1954 SK_TX_RING_SZ, /* maxsegsize */ 1955 0, /* flags */ 1956 NULL, NULL, /* lockfunc, lockarg */ 1957 &sc_if->sk_cdata.sk_tx_ring_tag); 1958 if (error != 0) { 1959 device_printf(sc_if->sk_if_dev, 1960 "failed to allocate Tx ring DMA tag\n"); 1961 goto fail; 1962 } 1963 1964 /* create tag for Rx ring */ 1965 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1966 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1967 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1968 BUS_SPACE_MAXADDR, /* highaddr */ 1969 NULL, NULL, /* filter, filterarg */ 1970 SK_RX_RING_SZ, /* maxsize */ 1971 1, /* nsegments */ 1972 SK_RX_RING_SZ, /* maxsegsize */ 1973 0, /* flags */ 1974 NULL, NULL, /* lockfunc, lockarg */ 1975 &sc_if->sk_cdata.sk_rx_ring_tag); 1976 if (error != 0) { 1977 device_printf(sc_if->sk_if_dev, 1978 "failed to allocate Rx ring DMA tag\n"); 1979 goto fail; 1980 } 1981 1982 /* create tag for Tx buffers */ 1983 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1984 1, 0, /* algnmnt, boundary */ 1985 BUS_SPACE_MAXADDR, /* lowaddr */ 1986 BUS_SPACE_MAXADDR, /* highaddr */ 1987 NULL, NULL, /* filter, filterarg */ 1988 MCLBYTES * SK_MAXTXSEGS, /* maxsize */ 1989 SK_MAXTXSEGS, /* nsegments */ 1990 MCLBYTES, /* maxsegsize */ 1991 0, /* flags */ 1992 NULL, NULL, /* lockfunc, lockarg */ 1993 &sc_if->sk_cdata.sk_tx_tag); 1994 if (error != 0) { 1995 device_printf(sc_if->sk_if_dev, 1996 "failed to allocate Tx DMA tag\n"); 1997 goto fail; 1998 } 1999 2000 /* create tag for Rx buffers */ 2001 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2002 1, 0, /* algnmnt, boundary */ 2003 BUS_SPACE_MAXADDR, /* lowaddr */ 2004 BUS_SPACE_MAXADDR, /* highaddr */ 2005 NULL, NULL, /* filter, filterarg */ 2006 MCLBYTES, /* maxsize */ 2007 1, /* nsegments */ 2008 MCLBYTES, /* maxsegsize */ 2009 0, /* flags */ 2010 NULL, NULL, /* lockfunc, lockarg */ 2011 &sc_if->sk_cdata.sk_rx_tag); 2012 if (error != 0) { 2013 device_printf(sc_if->sk_if_dev, 2014 "failed to allocate Rx DMA tag\n"); 2015 goto fail; 2016 } 2017 2018 /* allocate DMA'able memory and load the DMA map for Tx ring */ 2019 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, 2020 (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 2021 &sc_if->sk_cdata.sk_tx_ring_map); 2022 if (error != 0) { 2023 device_printf(sc_if->sk_if_dev, 2024 "failed to allocate DMA'able memory for Tx ring\n"); 2025 goto fail; 2026 } 2027 2028 ctx.sk_busaddr = 0; 2029 error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, 2030 sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, 2031 SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2032 if (error != 0) { 2033 device_printf(sc_if->sk_if_dev, 2034 "failed to load DMA'able memory for Tx ring\n"); 2035 goto fail; 2036 } 2037 sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; 2038 2039 /* allocate DMA'able memory and load the DMA map for Rx ring */ 2040 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, 2041 (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 2042 &sc_if->sk_cdata.sk_rx_ring_map); 2043 if (error != 0) { 2044 device_printf(sc_if->sk_if_dev, 2045 "failed to allocate DMA'able memory for Rx ring\n"); 2046 goto fail; 2047 } 2048 2049 ctx.sk_busaddr = 0; 2050 error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, 2051 sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, 2052 SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2053 if (error != 0) { 2054 device_printf(sc_if->sk_if_dev, 2055 "failed to load DMA'able memory for Rx ring\n"); 2056 goto fail; 2057 } 2058 sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; 2059 2060 /* create DMA maps for Tx buffers */ 2061 for (i = 0; i < SK_TX_RING_CNT; i++) { 2062 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2063 txd->tx_m = NULL; 2064 txd->tx_dmamap = NULL; 2065 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, 2066 &txd->tx_dmamap); 2067 if (error != 0) { 2068 device_printf(sc_if->sk_if_dev, 2069 "failed to create Tx dmamap\n"); 2070 goto fail; 2071 } 2072 } 2073 2074 /* create DMA maps for Rx buffers */ 2075 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2076 &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { 2077 device_printf(sc_if->sk_if_dev, 2078 "failed to create spare Rx dmamap\n"); 2079 goto fail; 2080 } 2081 for (i = 0; i < SK_RX_RING_CNT; i++) { 2082 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2083 rxd->rx_m = NULL; 2084 rxd->rx_dmamap = NULL; 2085 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2086 &rxd->rx_dmamap); 2087 if (error != 0) { 2088 device_printf(sc_if->sk_if_dev, 2089 "failed to create Rx dmamap\n"); 2090 goto fail; 2091 } 2092 } 2093 2094 fail: 2095 return (error); 2096 } 2097 2098 static int 2099 sk_dma_jumbo_alloc(sc_if) 2100 struct sk_if_softc *sc_if; 2101 { 2102 struct sk_dmamap_arg ctx; 2103 struct sk_rxdesc *jrxd; 2104 int error, i; 2105 2106 if (jumbo_disable != 0) { 2107 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); 2108 sc_if->sk_jumbo_disable = 1; 2109 return (0); 2110 } 2111 /* create tag for jumbo Rx ring */ 2112 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2113 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 2114 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2115 BUS_SPACE_MAXADDR, /* highaddr */ 2116 NULL, NULL, /* filter, filterarg */ 2117 SK_JUMBO_RX_RING_SZ, /* maxsize */ 2118 1, /* nsegments */ 2119 SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2120 0, /* flags */ 2121 NULL, NULL, /* lockfunc, lockarg */ 2122 &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2123 if (error != 0) { 2124 device_printf(sc_if->sk_if_dev, 2125 "failed to allocate jumbo Rx ring DMA tag\n"); 2126 goto jumbo_fail; 2127 } 2128 2129 /* create tag for jumbo Rx buffers */ 2130 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2131 1, 0, /* algnmnt, boundary */ 2132 BUS_SPACE_MAXADDR, /* lowaddr */ 2133 BUS_SPACE_MAXADDR, /* highaddr */ 2134 NULL, NULL, /* filter, filterarg */ 2135 MJUM9BYTES, /* maxsize */ 2136 1, /* nsegments */ 2137 MJUM9BYTES, /* maxsegsize */ 2138 0, /* flags */ 2139 NULL, NULL, /* lockfunc, lockarg */ 2140 &sc_if->sk_cdata.sk_jumbo_rx_tag); 2141 if (error != 0) { 2142 device_printf(sc_if->sk_if_dev, 2143 "failed to allocate jumbo Rx DMA tag\n"); 2144 goto jumbo_fail; 2145 } 2146 2147 /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ 2148 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2149 (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, 2150 BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2151 if (error != 0) { 2152 device_printf(sc_if->sk_if_dev, 2153 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2154 goto jumbo_fail; 2155 } 2156 2157 ctx.sk_busaddr = 0; 2158 error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2159 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2160 sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, 2161 &ctx, BUS_DMA_NOWAIT); 2162 if (error != 0) { 2163 device_printf(sc_if->sk_if_dev, 2164 "failed to load DMA'able memory for jumbo Rx ring\n"); 2165 goto jumbo_fail; 2166 } 2167 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; 2168 2169 /* create DMA maps for jumbo Rx buffers */ 2170 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2171 &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { 2172 device_printf(sc_if->sk_if_dev, 2173 "failed to create spare jumbo Rx dmamap\n"); 2174 goto jumbo_fail; 2175 } 2176 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2177 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2178 jrxd->rx_m = NULL; 2179 jrxd->rx_dmamap = NULL; 2180 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2181 &jrxd->rx_dmamap); 2182 if (error != 0) { 2183 device_printf(sc_if->sk_if_dev, 2184 "failed to create jumbo Rx dmamap\n"); 2185 goto jumbo_fail; 2186 } 2187 } 2188 2189 return (0); 2190 2191 jumbo_fail: 2192 sk_dma_jumbo_free(sc_if); 2193 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " 2194 "resource shortage\n"); 2195 sc_if->sk_jumbo_disable = 1; 2196 return (0); 2197 } 2198 2199 static void 2200 sk_dma_free(sc_if) 2201 struct sk_if_softc *sc_if; 2202 { 2203 struct sk_txdesc *txd; 2204 struct sk_rxdesc *rxd; 2205 int i; 2206 2207 /* Tx ring */ 2208 if (sc_if->sk_cdata.sk_tx_ring_tag) { 2209 if (sc_if->sk_cdata.sk_tx_ring_map) 2210 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, 2211 sc_if->sk_cdata.sk_tx_ring_map); 2212 if (sc_if->sk_cdata.sk_tx_ring_map && 2213 sc_if->sk_rdata.sk_tx_ring) 2214 bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, 2215 sc_if->sk_rdata.sk_tx_ring, 2216 sc_if->sk_cdata.sk_tx_ring_map); 2217 sc_if->sk_rdata.sk_tx_ring = NULL; 2218 sc_if->sk_cdata.sk_tx_ring_map = NULL; 2219 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); 2220 sc_if->sk_cdata.sk_tx_ring_tag = NULL; 2221 } 2222 /* Rx ring */ 2223 if (sc_if->sk_cdata.sk_rx_ring_tag) { 2224 if (sc_if->sk_cdata.sk_rx_ring_map) 2225 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, 2226 sc_if->sk_cdata.sk_rx_ring_map); 2227 if (sc_if->sk_cdata.sk_rx_ring_map && 2228 sc_if->sk_rdata.sk_rx_ring) 2229 bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, 2230 sc_if->sk_rdata.sk_rx_ring, 2231 sc_if->sk_cdata.sk_rx_ring_map); 2232 sc_if->sk_rdata.sk_rx_ring = NULL; 2233 sc_if->sk_cdata.sk_rx_ring_map = NULL; 2234 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); 2235 sc_if->sk_cdata.sk_rx_ring_tag = NULL; 2236 } 2237 /* Tx buffers */ 2238 if (sc_if->sk_cdata.sk_tx_tag) { 2239 for (i = 0; i < SK_TX_RING_CNT; i++) { 2240 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2241 if (txd->tx_dmamap) { 2242 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, 2243 txd->tx_dmamap); 2244 txd->tx_dmamap = NULL; 2245 } 2246 } 2247 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); 2248 sc_if->sk_cdata.sk_tx_tag = NULL; 2249 } 2250 /* Rx buffers */ 2251 if (sc_if->sk_cdata.sk_rx_tag) { 2252 for (i = 0; i < SK_RX_RING_CNT; i++) { 2253 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2254 if (rxd->rx_dmamap) { 2255 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2256 rxd->rx_dmamap); 2257 rxd->rx_dmamap = NULL; 2258 } 2259 } 2260 if (sc_if->sk_cdata.sk_rx_sparemap) { 2261 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2262 sc_if->sk_cdata.sk_rx_sparemap); 2263 sc_if->sk_cdata.sk_rx_sparemap = NULL; 2264 } 2265 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); 2266 sc_if->sk_cdata.sk_rx_tag = NULL; 2267 } 2268 2269 if (sc_if->sk_cdata.sk_parent_tag) { 2270 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); 2271 sc_if->sk_cdata.sk_parent_tag = NULL; 2272 } 2273 } 2274 2275 static void 2276 sk_dma_jumbo_free(sc_if) 2277 struct sk_if_softc *sc_if; 2278 { 2279 struct sk_rxdesc *jrxd; 2280 int i; 2281 2282 /* jumbo Rx ring */ 2283 if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { 2284 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map) 2285 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2286 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2287 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map && 2288 sc_if->sk_rdata.sk_jumbo_rx_ring) 2289 bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2290 sc_if->sk_rdata.sk_jumbo_rx_ring, 2291 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2292 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; 2293 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL; 2294 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2295 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; 2296 } 2297 2298 /* jumbo Rx buffers */ 2299 if (sc_if->sk_cdata.sk_jumbo_rx_tag) { 2300 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2301 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2302 if (jrxd->rx_dmamap) { 2303 bus_dmamap_destroy( 2304 sc_if->sk_cdata.sk_jumbo_rx_tag, 2305 jrxd->rx_dmamap); 2306 jrxd->rx_dmamap = NULL; 2307 } 2308 } 2309 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { 2310 bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, 2311 sc_if->sk_cdata.sk_jumbo_rx_sparemap); 2312 sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; 2313 } 2314 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); 2315 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; 2316 } 2317 } 2318 2319 static void 2320 sk_txcksum(ifp, m, f) 2321 struct ifnet *ifp; 2322 struct mbuf *m; 2323 struct sk_tx_desc *f; 2324 { 2325 struct ip *ip; 2326 u_int16_t offset; 2327 u_int8_t *p; 2328 2329 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2330 for(; m && m->m_len == 0; m = m->m_next) 2331 ; 2332 if (m == NULL || m->m_len < ETHER_HDR_LEN) { 2333 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); 2334 /* checksum may be corrupted */ 2335 goto sendit; 2336 } 2337 if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { 2338 if (m->m_len != ETHER_HDR_LEN) { 2339 if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", 2340 __func__); 2341 /* checksum may be corrupted */ 2342 goto sendit; 2343 } 2344 for(m = m->m_next; m && m->m_len == 0; m = m->m_next) 2345 ; 2346 if (m == NULL) { 2347 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2348 /* checksum may be corrupted */ 2349 goto sendit; 2350 } 2351 ip = mtod(m, struct ip *); 2352 } else { 2353 p = mtod(m, u_int8_t *); 2354 p += ETHER_HDR_LEN; 2355 ip = (struct ip *)p; 2356 } 2357 offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; 2358 2359 sendit: 2360 f->sk_csum_startval = 0; 2361 f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | 2362 (offset << 16)); 2363 } 2364 2365 static int 2366 sk_encap(sc_if, m_head) 2367 struct sk_if_softc *sc_if; 2368 struct mbuf **m_head; 2369 { 2370 struct sk_txdesc *txd; 2371 struct sk_tx_desc *f = NULL; 2372 struct mbuf *m; 2373 bus_dma_segment_t txsegs[SK_MAXTXSEGS]; 2374 u_int32_t cflags, frag, si, sk_ctl; 2375 int error, i, nseg; 2376 2377 SK_IF_LOCK_ASSERT(sc_if); 2378 2379 if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) 2380 return (ENOBUFS); 2381 2382 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2383 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2384 if (error == EFBIG) { 2385 m = m_defrag(*m_head, M_DONTWAIT); 2386 if (m == NULL) { 2387 m_freem(*m_head); 2388 *m_head = NULL; 2389 return (ENOMEM); 2390 } 2391 *m_head = m; 2392 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2393 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2394 if (error != 0) { 2395 m_freem(*m_head); 2396 *m_head = NULL; 2397 return (error); 2398 } 2399 } else if (error != 0) 2400 return (error); 2401 if (nseg == 0) { 2402 m_freem(*m_head); 2403 *m_head = NULL; 2404 return (EIO); 2405 } 2406 if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { 2407 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2408 return (ENOBUFS); 2409 } 2410 2411 m = *m_head; 2412 if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) 2413 cflags = SK_OPCODE_CSUM; 2414 else 2415 cflags = SK_OPCODE_DEFAULT; 2416 si = frag = sc_if->sk_cdata.sk_tx_prod; 2417 for (i = 0; i < nseg; i++) { 2418 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2419 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); 2420 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); 2421 sk_ctl = txsegs[i].ds_len | cflags; 2422 if (i == 0) { 2423 if (cflags == SK_OPCODE_CSUM) 2424 sk_txcksum(sc_if->sk_ifp, m, f); 2425 sk_ctl |= SK_TXCTL_FIRSTFRAG; 2426 } else 2427 sk_ctl |= SK_TXCTL_OWN; 2428 f->sk_ctl = htole32(sk_ctl); 2429 sc_if->sk_cdata.sk_tx_cnt++; 2430 SK_INC(frag, SK_TX_RING_CNT); 2431 } 2432 sc_if->sk_cdata.sk_tx_prod = frag; 2433 2434 /* set EOF on the last desciptor */ 2435 frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; 2436 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2437 f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 2438 2439 /* turn the first descriptor ownership to NIC */ 2440 f = &sc_if->sk_rdata.sk_tx_ring[si]; 2441 f->sk_ctl |= htole32(SK_TXCTL_OWN); 2442 2443 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); 2444 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); 2445 txd->tx_m = m; 2446 2447 /* sync descriptors */ 2448 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2449 BUS_DMASYNC_PREWRITE); 2450 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2451 sc_if->sk_cdata.sk_tx_ring_map, 2452 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2453 2454 return (0); 2455 } 2456 2457 static void 2458 sk_start(ifp) 2459 struct ifnet *ifp; 2460 { 2461 struct sk_if_softc *sc_if; 2462 2463 sc_if = ifp->if_softc; 2464 2465 SK_IF_LOCK(sc_if); 2466 sk_start_locked(ifp); 2467 SK_IF_UNLOCK(sc_if); 2468 2469 return; 2470 } 2471 2472 static void 2473 sk_start_locked(ifp) 2474 struct ifnet *ifp; 2475 { 2476 struct sk_softc *sc; 2477 struct sk_if_softc *sc_if; 2478 struct mbuf *m_head; 2479 int enq; 2480 2481 sc_if = ifp->if_softc; 2482 sc = sc_if->sk_softc; 2483 2484 SK_IF_LOCK_ASSERT(sc_if); 2485 2486 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2487 sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { 2488 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2489 if (m_head == NULL) 2490 break; 2491 2492 /* 2493 * Pack the data into the transmit ring. If we 2494 * don't have room, set the OACTIVE flag and wait 2495 * for the NIC to drain the ring. 2496 */ 2497 if (sk_encap(sc_if, &m_head)) { 2498 if (m_head == NULL) 2499 break; 2500 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2501 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2502 break; 2503 } 2504 2505 enq++; 2506 /* 2507 * If there's a BPF listener, bounce a copy of this frame 2508 * to him. 2509 */ 2510 BPF_MTAP(ifp, m_head); 2511 } 2512 2513 if (enq > 0) { 2514 /* Transmit */ 2515 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2516 2517 /* Set a timeout in case the chip goes out to lunch. */ 2518 sc_if->sk_watchdog_timer = 5; 2519 } 2520 } 2521 2522 2523 static void 2524 sk_watchdog(arg) 2525 void *arg; 2526 { 2527 struct sk_if_softc *sc_if; 2528 struct ifnet *ifp; 2529 2530 ifp = arg; 2531 sc_if = ifp->if_softc; 2532 2533 SK_IF_LOCK_ASSERT(sc_if); 2534 2535 if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) 2536 goto done; 2537 2538 /* 2539 * Reclaim first as there is a possibility of losing Tx completion 2540 * interrupts. 2541 */ 2542 sk_txeof(sc_if); 2543 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2544 if_printf(sc_if->sk_ifp, "watchdog timeout\n"); 2545 ifp->if_oerrors++; 2546 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2547 sk_init_locked(sc_if); 2548 } 2549 2550 done: 2551 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 2552 2553 return; 2554 } 2555 2556 static int 2557 skc_shutdown(dev) 2558 device_t dev; 2559 { 2560 struct sk_softc *sc; 2561 2562 sc = device_get_softc(dev); 2563 SK_LOCK(sc); 2564 2565 /* Turn off the 'driver is loaded' LED. */ 2566 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2567 2568 /* 2569 * Reset the GEnesis controller. Doing this should also 2570 * assert the resets on the attached XMAC(s). 2571 */ 2572 sk_reset(sc); 2573 SK_UNLOCK(sc); 2574 2575 return (0); 2576 } 2577 2578 static int 2579 skc_suspend(dev) 2580 device_t dev; 2581 { 2582 struct sk_softc *sc; 2583 struct sk_if_softc *sc_if0, *sc_if1; 2584 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2585 2586 sc = device_get_softc(dev); 2587 2588 SK_LOCK(sc); 2589 2590 sc_if0 = sc->sk_if[SK_PORT_A]; 2591 sc_if1 = sc->sk_if[SK_PORT_B]; 2592 if (sc_if0 != NULL) 2593 ifp0 = sc_if0->sk_ifp; 2594 if (sc_if1 != NULL) 2595 ifp1 = sc_if1->sk_ifp; 2596 if (ifp0 != NULL) 2597 sk_stop(sc_if0); 2598 if (ifp1 != NULL) 2599 sk_stop(sc_if1); 2600 sc->sk_suspended = 1; 2601 2602 SK_UNLOCK(sc); 2603 2604 return (0); 2605 } 2606 2607 static int 2608 skc_resume(dev) 2609 device_t dev; 2610 { 2611 struct sk_softc *sc; 2612 struct sk_if_softc *sc_if0, *sc_if1; 2613 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2614 2615 sc = device_get_softc(dev); 2616 2617 SK_LOCK(sc); 2618 2619 sc_if0 = sc->sk_if[SK_PORT_A]; 2620 sc_if1 = sc->sk_if[SK_PORT_B]; 2621 if (sc_if0 != NULL) 2622 ifp0 = sc_if0->sk_ifp; 2623 if (sc_if1 != NULL) 2624 ifp1 = sc_if1->sk_ifp; 2625 if (ifp0 != NULL && ifp0->if_flags & IFF_UP) 2626 sk_init_locked(sc_if0); 2627 if (ifp1 != NULL && ifp1->if_flags & IFF_UP) 2628 sk_init_locked(sc_if1); 2629 sc->sk_suspended = 0; 2630 2631 SK_UNLOCK(sc); 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * According to the data sheet from SK-NET GENESIS the hardware can compute 2638 * two Rx checksums at the same time(Each checksum start position is 2639 * programmed in Rx descriptors). However it seems that TCP/UDP checksum 2640 * does not work at least on my Yukon hardware. I tried every possible ways 2641 * to get correct checksum value but couldn't get correct one. So TCP/UDP 2642 * checksum offload was disabled at the moment and only IP checksum offload 2643 * was enabled. 2644 * As nomral IP header size is 20 bytes I can't expect it would give an 2645 * increase in throughput. However it seems it doesn't hurt performance in 2646 * my testing. If there is a more detailed information for checksum secret 2647 * of the hardware in question please contact yongari@FreeBSD.org to add 2648 * TCP/UDP checksum offload support. 2649 */ 2650 static __inline void 2651 sk_rxcksum(ifp, m, csum) 2652 struct ifnet *ifp; 2653 struct mbuf *m; 2654 u_int32_t csum; 2655 { 2656 struct ether_header *eh; 2657 struct ip *ip; 2658 int32_t hlen, len, pktlen; 2659 u_int16_t csum1, csum2, ipcsum; 2660 2661 pktlen = m->m_pkthdr.len; 2662 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 2663 return; 2664 eh = mtod(m, struct ether_header *); 2665 if (eh->ether_type != htons(ETHERTYPE_IP)) 2666 return; 2667 ip = (struct ip *)(eh + 1); 2668 if (ip->ip_v != IPVERSION) 2669 return; 2670 hlen = ip->ip_hl << 2; 2671 pktlen -= sizeof(struct ether_header); 2672 if (hlen < sizeof(struct ip)) 2673 return; 2674 if (ntohs(ip->ip_len) < hlen) 2675 return; 2676 if (ntohs(ip->ip_len) != pktlen) 2677 return; 2678 2679 csum1 = htons(csum & 0xffff); 2680 csum2 = htons((csum >> 16) & 0xffff); 2681 ipcsum = in_addword(csum1, ~csum2 & 0xffff); 2682 /* checksum fixup for IP options */ 2683 len = hlen - sizeof(struct ip); 2684 if (len > 0) { 2685 /* 2686 * If the second checksum value is correct we can compute IP 2687 * checksum with simple math. Unfortunately the second checksum 2688 * value is wrong so we can't verify the checksum from the 2689 * value(It seems there is some magic here to get correct 2690 * value). If the second checksum value is correct it also 2691 * means we can get TCP/UDP checksum) here. However, it still 2692 * needs pseudo header checksum calculation due to hardware 2693 * limitations. 2694 */ 2695 return; 2696 } 2697 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 2698 if (ipcsum == 0xffff) 2699 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2700 } 2701 2702 static __inline int 2703 sk_rxvalid(sc, stat, len) 2704 struct sk_softc *sc; 2705 u_int32_t stat, len; 2706 { 2707 2708 if (sc->sk_type == SK_GENESIS) { 2709 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || 2710 XM_RXSTAT_BYTES(stat) != len) 2711 return (0); 2712 } else { 2713 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2714 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2715 YU_RXSTAT_JABBER)) != 0 || 2716 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2717 YU_RXSTAT_BYTES(stat) != len) 2718 return (0); 2719 } 2720 2721 return (1); 2722 } 2723 2724 static void 2725 sk_rxeof(sc_if) 2726 struct sk_if_softc *sc_if; 2727 { 2728 struct sk_softc *sc; 2729 struct mbuf *m; 2730 struct ifnet *ifp; 2731 struct sk_rx_desc *cur_rx; 2732 struct sk_rxdesc *rxd; 2733 int cons, prog; 2734 u_int32_t csum, rxstat, sk_ctl; 2735 2736 sc = sc_if->sk_softc; 2737 ifp = sc_if->sk_ifp; 2738 2739 SK_IF_LOCK_ASSERT(sc_if); 2740 2741 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2742 sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); 2743 2744 prog = 0; 2745 for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; 2746 prog++, SK_INC(cons, SK_RX_RING_CNT)) { 2747 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; 2748 sk_ctl = le32toh(cur_rx->sk_ctl); 2749 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2750 break; 2751 rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; 2752 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2753 2754 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2755 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2756 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2757 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2758 SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || 2759 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2760 ifp->if_ierrors++; 2761 sk_discard_rxbuf(sc_if, cons); 2762 continue; 2763 } 2764 2765 m = rxd->rx_m; 2766 csum = le32toh(cur_rx->sk_csum); 2767 if (sk_newbuf(sc_if, cons) != 0) { 2768 ifp->if_iqdrops++; 2769 /* reuse old buffer */ 2770 sk_discard_rxbuf(sc_if, cons); 2771 continue; 2772 } 2773 m->m_pkthdr.rcvif = ifp; 2774 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2775 ifp->if_ipackets++; 2776 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2777 sk_rxcksum(ifp, m, csum); 2778 SK_IF_UNLOCK(sc_if); 2779 (*ifp->if_input)(ifp, m); 2780 SK_IF_LOCK(sc_if); 2781 } 2782 2783 if (prog > 0) { 2784 sc_if->sk_cdata.sk_rx_cons = cons; 2785 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2786 sc_if->sk_cdata.sk_rx_ring_map, 2787 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2788 } 2789 } 2790 2791 static void 2792 sk_jumbo_rxeof(sc_if) 2793 struct sk_if_softc *sc_if; 2794 { 2795 struct sk_softc *sc; 2796 struct mbuf *m; 2797 struct ifnet *ifp; 2798 struct sk_rx_desc *cur_rx; 2799 struct sk_rxdesc *jrxd; 2800 int cons, prog; 2801 u_int32_t csum, rxstat, sk_ctl; 2802 2803 sc = sc_if->sk_softc; 2804 ifp = sc_if->sk_ifp; 2805 2806 SK_IF_LOCK_ASSERT(sc_if); 2807 2808 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2809 sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); 2810 2811 prog = 0; 2812 for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; 2813 prog < SK_JUMBO_RX_RING_CNT; 2814 prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { 2815 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; 2816 sk_ctl = le32toh(cur_rx->sk_ctl); 2817 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2818 break; 2819 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; 2820 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2821 2822 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2823 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2824 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2825 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2826 SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || 2827 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2828 ifp->if_ierrors++; 2829 sk_discard_jumbo_rxbuf(sc_if, cons); 2830 continue; 2831 } 2832 2833 m = jrxd->rx_m; 2834 csum = le32toh(cur_rx->sk_csum); 2835 if (sk_jumbo_newbuf(sc_if, cons) != 0) { 2836 ifp->if_iqdrops++; 2837 /* reuse old buffer */ 2838 sk_discard_jumbo_rxbuf(sc_if, cons); 2839 continue; 2840 } 2841 m->m_pkthdr.rcvif = ifp; 2842 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2843 ifp->if_ipackets++; 2844 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2845 sk_rxcksum(ifp, m, csum); 2846 SK_IF_UNLOCK(sc_if); 2847 (*ifp->if_input)(ifp, m); 2848 SK_IF_LOCK(sc_if); 2849 } 2850 2851 if (prog > 0) { 2852 sc_if->sk_cdata.sk_jumbo_rx_cons = cons; 2853 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2854 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2855 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2856 } 2857 } 2858 2859 static void 2860 sk_txeof(sc_if) 2861 struct sk_if_softc *sc_if; 2862 { 2863 struct sk_softc *sc; 2864 struct sk_txdesc *txd; 2865 struct sk_tx_desc *cur_tx; 2866 struct ifnet *ifp; 2867 u_int32_t idx, sk_ctl; 2868 2869 sc = sc_if->sk_softc; 2870 ifp = sc_if->sk_ifp; 2871 2872 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2873 if (txd == NULL) 2874 return; 2875 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2876 sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); 2877 /* 2878 * Go through our tx ring and free mbufs for those 2879 * frames that have been sent. 2880 */ 2881 for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { 2882 if (sc_if->sk_cdata.sk_tx_cnt <= 0) 2883 break; 2884 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; 2885 sk_ctl = le32toh(cur_tx->sk_ctl); 2886 if (sk_ctl & SK_TXCTL_OWN) 2887 break; 2888 sc_if->sk_cdata.sk_tx_cnt--; 2889 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2890 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) 2891 continue; 2892 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2893 BUS_DMASYNC_POSTWRITE); 2894 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2895 2896 ifp->if_opackets++; 2897 m_freem(txd->tx_m); 2898 txd->tx_m = NULL; 2899 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); 2900 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 2901 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2902 } 2903 sc_if->sk_cdata.sk_tx_cons = idx; 2904 sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2905 2906 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2907 sc_if->sk_cdata.sk_tx_ring_map, 2908 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2909 } 2910 2911 static void 2912 sk_tick(xsc_if) 2913 void *xsc_if; 2914 { 2915 struct sk_if_softc *sc_if; 2916 struct mii_data *mii; 2917 struct ifnet *ifp; 2918 int i; 2919 2920 sc_if = xsc_if; 2921 ifp = sc_if->sk_ifp; 2922 mii = device_get_softc(sc_if->sk_miibus); 2923 2924 if (!(ifp->if_flags & IFF_UP)) 2925 return; 2926 2927 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2928 sk_intr_bcom(sc_if); 2929 return; 2930 } 2931 2932 /* 2933 * According to SysKonnect, the correct way to verify that 2934 * the link has come back up is to poll bit 0 of the GPIO 2935 * register three times. This pin has the signal from the 2936 * link_sync pin connected to it; if we read the same link 2937 * state 3 times in a row, we know the link is up. 2938 */ 2939 for (i = 0; i < 3; i++) { 2940 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2941 break; 2942 } 2943 2944 if (i != 3) { 2945 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2946 return; 2947 } 2948 2949 /* Turn the GP0 interrupt back on. */ 2950 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2951 SK_XM_READ_2(sc_if, XM_ISR); 2952 mii_tick(mii); 2953 callout_stop(&sc_if->sk_tick_ch); 2954 } 2955 2956 static void 2957 sk_yukon_tick(xsc_if) 2958 void *xsc_if; 2959 { 2960 struct sk_if_softc *sc_if; 2961 struct mii_data *mii; 2962 2963 sc_if = xsc_if; 2964 mii = device_get_softc(sc_if->sk_miibus); 2965 2966 mii_tick(mii); 2967 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 2968 } 2969 2970 static void 2971 sk_intr_bcom(sc_if) 2972 struct sk_if_softc *sc_if; 2973 { 2974 struct mii_data *mii; 2975 struct ifnet *ifp; 2976 int status; 2977 mii = device_get_softc(sc_if->sk_miibus); 2978 ifp = sc_if->sk_ifp; 2979 2980 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2981 2982 /* 2983 * Read the PHY interrupt register to make sure 2984 * we clear any pending interrupts. 2985 */ 2986 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2987 2988 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2989 sk_init_xmac(sc_if); 2990 return; 2991 } 2992 2993 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 2994 int lstat; 2995 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 2996 BRGPHY_MII_AUXSTS); 2997 2998 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 2999 mii_mediachg(mii); 3000 /* Turn off the link LED. */ 3001 SK_IF_WRITE_1(sc_if, 0, 3002 SK_LINKLED1_CTL, SK_LINKLED_OFF); 3003 sc_if->sk_link = 0; 3004 } else if (status & BRGPHY_ISR_LNK_CHG) { 3005 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3006 BRGPHY_MII_IMR, 0xFF00); 3007 mii_tick(mii); 3008 sc_if->sk_link = 1; 3009 /* Turn on the link LED. */ 3010 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3011 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 3012 SK_LINKLED_BLINK_OFF); 3013 } else { 3014 mii_tick(mii); 3015 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3016 } 3017 } 3018 3019 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3020 3021 return; 3022 } 3023 3024 static void 3025 sk_intr_xmac(sc_if) 3026 struct sk_if_softc *sc_if; 3027 { 3028 struct sk_softc *sc; 3029 u_int16_t status; 3030 3031 sc = sc_if->sk_softc; 3032 status = SK_XM_READ_2(sc_if, XM_ISR); 3033 3034 /* 3035 * Link has gone down. Start MII tick timeout to 3036 * watch for link resync. 3037 */ 3038 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 3039 if (status & XM_ISR_GP0_SET) { 3040 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 3041 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3042 } 3043 3044 if (status & XM_ISR_AUTONEG_DONE) { 3045 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3046 } 3047 } 3048 3049 if (status & XM_IMR_TX_UNDERRUN) 3050 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 3051 3052 if (status & XM_IMR_RX_OVERRUN) 3053 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 3054 3055 status = SK_XM_READ_2(sc_if, XM_ISR); 3056 3057 return; 3058 } 3059 3060 static void 3061 sk_intr_yukon(sc_if) 3062 struct sk_if_softc *sc_if; 3063 { 3064 u_int8_t status; 3065 3066 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 3067 /* RX overrun */ 3068 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 3069 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3070 SK_RFCTL_RX_FIFO_OVER); 3071 } 3072 /* TX underrun */ 3073 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 3074 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3075 SK_TFCTL_TX_FIFO_UNDER); 3076 } 3077 } 3078 3079 static void 3080 sk_intr(xsc) 3081 void *xsc; 3082 { 3083 struct sk_softc *sc = xsc; 3084 struct sk_if_softc *sc_if0, *sc_if1; 3085 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 3086 u_int32_t status; 3087 3088 SK_LOCK(sc); 3089 3090 status = CSR_READ_4(sc, SK_ISSR); 3091 if (status == 0 || status == 0xffffffff || sc->sk_suspended) 3092 goto done_locked; 3093 3094 sc_if0 = sc->sk_if[SK_PORT_A]; 3095 sc_if1 = sc->sk_if[SK_PORT_B]; 3096 3097 if (sc_if0 != NULL) 3098 ifp0 = sc_if0->sk_ifp; 3099 if (sc_if1 != NULL) 3100 ifp1 = sc_if1->sk_ifp; 3101 3102 for (; (status &= sc->sk_intrmask) != 0;) { 3103 /* Handle receive interrupts first. */ 3104 if (status & SK_ISR_RX1_EOF) { 3105 if (ifp0->if_mtu > SK_MAX_FRAMELEN) 3106 sk_jumbo_rxeof(sc_if0); 3107 else 3108 sk_rxeof(sc_if0); 3109 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 3110 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3111 } 3112 if (status & SK_ISR_RX2_EOF) { 3113 if (ifp1->if_mtu > SK_MAX_FRAMELEN) 3114 sk_jumbo_rxeof(sc_if1); 3115 else 3116 sk_rxeof(sc_if1); 3117 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 3118 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3119 } 3120 3121 /* Then transmit interrupts. */ 3122 if (status & SK_ISR_TX1_S_EOF) { 3123 sk_txeof(sc_if0); 3124 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); 3125 } 3126 if (status & SK_ISR_TX2_S_EOF) { 3127 sk_txeof(sc_if1); 3128 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); 3129 } 3130 3131 /* Then MAC interrupts. */ 3132 if (status & SK_ISR_MAC1 && 3133 ifp0->if_drv_flags & IFF_DRV_RUNNING) { 3134 if (sc->sk_type == SK_GENESIS) 3135 sk_intr_xmac(sc_if0); 3136 else 3137 sk_intr_yukon(sc_if0); 3138 } 3139 3140 if (status & SK_ISR_MAC2 && 3141 ifp1->if_drv_flags & IFF_DRV_RUNNING) { 3142 if (sc->sk_type == SK_GENESIS) 3143 sk_intr_xmac(sc_if1); 3144 else 3145 sk_intr_yukon(sc_if1); 3146 } 3147 3148 if (status & SK_ISR_EXTERNAL_REG) { 3149 if (ifp0 != NULL && 3150 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 3151 sk_intr_bcom(sc_if0); 3152 if (ifp1 != NULL && 3153 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 3154 sk_intr_bcom(sc_if1); 3155 } 3156 status = CSR_READ_4(sc, SK_ISSR); 3157 } 3158 3159 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3160 3161 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3162 sk_start_locked(ifp0); 3163 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3164 sk_start_locked(ifp1); 3165 3166 done_locked: 3167 SK_UNLOCK(sc); 3168 } 3169 3170 static void 3171 sk_init_xmac(sc_if) 3172 struct sk_if_softc *sc_if; 3173 { 3174 struct sk_softc *sc; 3175 struct ifnet *ifp; 3176 u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 3177 struct sk_bcom_hack bhack[] = { 3178 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 3179 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 3180 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 3181 { 0, 0 } }; 3182 3183 SK_IF_LOCK_ASSERT(sc_if); 3184 3185 sc = sc_if->sk_softc; 3186 ifp = sc_if->sk_ifp; 3187 3188 /* Unreset the XMAC. */ 3189 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 3190 DELAY(1000); 3191 3192 /* Reset the XMAC's internal state. */ 3193 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3194 3195 /* Save the XMAC II revision */ 3196 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 3197 3198 /* 3199 * Perform additional initialization for external PHYs, 3200 * namely for the 1000baseTX cards that use the XMAC's 3201 * GMII mode. 3202 */ 3203 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3204 int i = 0; 3205 u_int32_t val; 3206 3207 /* Take PHY out of reset. */ 3208 val = sk_win_read_4(sc, SK_GPIO); 3209 if (sc_if->sk_port == SK_PORT_A) 3210 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 3211 else 3212 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 3213 sk_win_write_4(sc, SK_GPIO, val); 3214 3215 /* Enable GMII mode on the XMAC. */ 3216 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 3217 3218 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3219 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 3220 DELAY(10000); 3221 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3222 BRGPHY_MII_IMR, 0xFFF0); 3223 3224 /* 3225 * Early versions of the BCM5400 apparently have 3226 * a bug that requires them to have their reserved 3227 * registers initialized to some magic values. I don't 3228 * know what the numbers do, I'm just the messenger. 3229 */ 3230 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 3231 == 0x6041) { 3232 while(bhack[i].reg) { 3233 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3234 bhack[i].reg, bhack[i].val); 3235 i++; 3236 } 3237 } 3238 } 3239 3240 /* Set station address */ 3241 bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); 3242 SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); 3243 SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); 3244 SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); 3245 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 3246 3247 if (ifp->if_flags & IFF_BROADCAST) { 3248 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3249 } else { 3250 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3251 } 3252 3253 /* We don't need the FCS appended to the packet. */ 3254 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 3255 3256 /* We want short frames padded to 60 bytes. */ 3257 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 3258 3259 /* 3260 * Enable the reception of all error frames. This is is 3261 * a necessary evil due to the design of the XMAC. The 3262 * XMAC's receive FIFO is only 8K in size, however jumbo 3263 * frames can be up to 9000 bytes in length. When bad 3264 * frame filtering is enabled, the XMAC's RX FIFO operates 3265 * in 'store and forward' mode. For this to work, the 3266 * entire frame has to fit into the FIFO, but that means 3267 * that jumbo frames larger than 8192 bytes will be 3268 * truncated. Disabling all bad frame filtering causes 3269 * the RX FIFO to operate in streaming mode, in which 3270 * case the XMAC will start transfering frames out of the 3271 * RX FIFO as soon as the FIFO threshold is reached. 3272 */ 3273 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3274 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 3275 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 3276 XM_MODE_RX_INRANGELEN); 3277 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3278 } else 3279 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3280 3281 /* 3282 * Bump up the transmit threshold. This helps hold off transmit 3283 * underruns when we're blasting traffic from both ports at once. 3284 */ 3285 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 3286 3287 /* Set Rx filter */ 3288 sk_rxfilter_genesis(sc_if); 3289 3290 /* Clear and enable interrupts */ 3291 SK_XM_READ_2(sc_if, XM_ISR); 3292 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 3293 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 3294 else 3295 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3296 3297 /* Configure MAC arbiter */ 3298 switch(sc_if->sk_xmac_rev) { 3299 case XM_XMAC_REV_B2: 3300 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 3301 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 3302 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 3303 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 3304 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 3305 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 3306 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 3307 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 3308 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3309 break; 3310 case XM_XMAC_REV_C1: 3311 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 3312 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 3313 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 3314 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 3315 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 3316 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 3317 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 3318 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 3319 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3320 break; 3321 default: 3322 break; 3323 } 3324 sk_win_write_2(sc, SK_MACARB_CTL, 3325 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 3326 3327 sc_if->sk_link = 1; 3328 3329 return; 3330 } 3331 3332 static void 3333 sk_init_yukon(sc_if) 3334 struct sk_if_softc *sc_if; 3335 { 3336 u_int32_t phy, v; 3337 u_int16_t reg; 3338 struct sk_softc *sc; 3339 struct ifnet *ifp; 3340 int i; 3341 3342 SK_IF_LOCK_ASSERT(sc_if); 3343 3344 sc = sc_if->sk_softc; 3345 ifp = sc_if->sk_ifp; 3346 3347 if (sc->sk_type == SK_YUKON_LITE && 3348 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3349 /* 3350 * Workaround code for COMA mode, set PHY reset. 3351 * Otherwise it will not correctly take chip out of 3352 * powerdown (coma) 3353 */ 3354 v = sk_win_read_4(sc, SK_GPIO); 3355 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; 3356 sk_win_write_4(sc, SK_GPIO, v); 3357 } 3358 3359 /* GMAC and GPHY Reset */ 3360 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 3361 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 3362 DELAY(1000); 3363 3364 if (sc->sk_type == SK_YUKON_LITE && 3365 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3366 /* 3367 * Workaround code for COMA mode, clear PHY reset 3368 */ 3369 v = sk_win_read_4(sc, SK_GPIO); 3370 v |= SK_GPIO_DIR9; 3371 v &= ~SK_GPIO_DAT9; 3372 sk_win_write_4(sc, SK_GPIO, v); 3373 } 3374 3375 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 3376 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 3377 3378 if (sc->sk_coppertype) 3379 phy |= SK_GPHY_COPPER; 3380 else 3381 phy |= SK_GPHY_FIBER; 3382 3383 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 3384 DELAY(1000); 3385 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 3386 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 3387 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 3388 3389 /* unused read of the interrupt source register */ 3390 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 3391 3392 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 3393 3394 /* MIB Counter Clear Mode set */ 3395 reg |= YU_PAR_MIB_CLR; 3396 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3397 3398 /* MIB Counter Clear Mode clear */ 3399 reg &= ~YU_PAR_MIB_CLR; 3400 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3401 3402 /* receive control reg */ 3403 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 3404 3405 /* transmit parameter register */ 3406 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 3407 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 3408 3409 /* serial mode register */ 3410 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); 3411 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3412 reg |= YU_SMR_MFL_JUMBO; 3413 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 3414 3415 /* Setup Yukon's address */ 3416 for (i = 0; i < 3; i++) { 3417 /* Write Source Address 1 (unicast filter) */ 3418 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 3419 IF_LLADDR(sc_if->sk_ifp)[i * 2] | 3420 IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8); 3421 } 3422 3423 for (i = 0; i < 3; i++) { 3424 reg = sk_win_read_2(sc_if->sk_softc, 3425 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 3426 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 3427 } 3428 3429 /* Set Rx filter */ 3430 sk_rxfilter_yukon(sc_if); 3431 3432 /* enable interrupt mask for counter overflows */ 3433 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 3434 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 3435 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 3436 3437 /* Configure RX MAC FIFO Flush Mask */ 3438 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 3439 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 3440 YU_RXSTAT_JABBER; 3441 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 3442 3443 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ 3444 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) 3445 v = SK_TFCTL_OPERATION_ON; 3446 else 3447 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 3448 /* Configure RX MAC FIFO */ 3449 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 3450 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 3451 3452 /* Increase flush threshould to 64 bytes */ 3453 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, 3454 SK_RFCTL_FIFO_THRESHOLD + 1); 3455 3456 /* Configure TX MAC FIFO */ 3457 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 3458 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 3459 } 3460 3461 /* 3462 * Note that to properly initialize any part of the GEnesis chip, 3463 * you first have to take it out of reset mode. 3464 */ 3465 static void 3466 sk_init(xsc) 3467 void *xsc; 3468 { 3469 struct sk_if_softc *sc_if = xsc; 3470 3471 SK_IF_LOCK(sc_if); 3472 sk_init_locked(sc_if); 3473 SK_IF_UNLOCK(sc_if); 3474 3475 return; 3476 } 3477 3478 static void 3479 sk_init_locked(sc_if) 3480 struct sk_if_softc *sc_if; 3481 { 3482 struct sk_softc *sc; 3483 struct ifnet *ifp; 3484 struct mii_data *mii; 3485 u_int16_t reg; 3486 u_int32_t imr; 3487 int error; 3488 3489 SK_IF_LOCK_ASSERT(sc_if); 3490 3491 ifp = sc_if->sk_ifp; 3492 sc = sc_if->sk_softc; 3493 mii = device_get_softc(sc_if->sk_miibus); 3494 3495 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3496 return; 3497 3498 /* Cancel pending I/O and free all RX/TX buffers. */ 3499 sk_stop(sc_if); 3500 3501 if (sc->sk_type == SK_GENESIS) { 3502 /* Configure LINK_SYNC LED */ 3503 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 3504 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3505 SK_LINKLED_LINKSYNC_ON); 3506 3507 /* Configure RX LED */ 3508 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 3509 SK_RXLEDCTL_COUNTER_START); 3510 3511 /* Configure TX LED */ 3512 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 3513 SK_TXLEDCTL_COUNTER_START); 3514 } 3515 3516 /* 3517 * Configure descriptor poll timer 3518 * 3519 * SK-NET GENESIS data sheet says that possibility of losing Start 3520 * transmit command due to CPU/cache related interim storage problems 3521 * under certain conditions. The document recommends a polling 3522 * mechanism to send a Start transmit command to initiate transfer 3523 * of ready descriptors regulary. To cope with this issue sk(4) now 3524 * enables descriptor poll timer to initiate descriptor processing 3525 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still 3526 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx 3527 * command instead of waiting for next descriptor polling time. 3528 * The same rule may apply to Rx side too but it seems that is not 3529 * needed at the moment. 3530 * Since sk(4) uses descriptor polling as a last resort there is no 3531 * need to set smaller polling time than maximum allowable one. 3532 */ 3533 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); 3534 3535 /* Configure I2C registers */ 3536 3537 /* Configure XMAC(s) */ 3538 switch (sc->sk_type) { 3539 case SK_GENESIS: 3540 sk_init_xmac(sc_if); 3541 break; 3542 case SK_YUKON: 3543 case SK_YUKON_LITE: 3544 case SK_YUKON_LP: 3545 sk_init_yukon(sc_if); 3546 break; 3547 } 3548 mii_mediachg(mii); 3549 3550 if (sc->sk_type == SK_GENESIS) { 3551 /* Configure MAC FIFOs */ 3552 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 3553 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 3554 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 3555 3556 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 3557 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 3558 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 3559 } 3560 3561 /* Configure transmit arbiter(s) */ 3562 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 3563 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 3564 3565 /* Configure RAMbuffers */ 3566 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 3567 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 3568 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 3569 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 3570 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 3571 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 3572 3573 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 3574 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 3575 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 3576 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 3577 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 3578 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 3579 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 3580 3581 /* Configure BMUs */ 3582 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 3583 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3584 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3585 SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3586 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3587 SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3588 } else { 3589 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3590 SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); 3591 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3592 SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); 3593 } 3594 3595 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 3596 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 3597 SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); 3598 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 3599 SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); 3600 3601 /* Init descriptors */ 3602 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3603 error = sk_init_jumbo_rx_ring(sc_if); 3604 else 3605 error = sk_init_rx_ring(sc_if); 3606 if (error != 0) { 3607 device_printf(sc_if->sk_if_dev, 3608 "initialization failed: no memory for rx buffers\n"); 3609 sk_stop(sc_if); 3610 return; 3611 } 3612 sk_init_tx_ring(sc_if); 3613 3614 /* Set interrupt moderation if changed via sysctl. */ 3615 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 3616 if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { 3617 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 3618 sc->sk_int_ticks)); 3619 if (bootverbose) 3620 device_printf(sc_if->sk_if_dev, 3621 "interrupt moderation is %d us.\n", 3622 sc->sk_int_mod); 3623 } 3624 3625 /* Configure interrupt handling */ 3626 CSR_READ_4(sc, SK_ISSR); 3627 if (sc_if->sk_port == SK_PORT_A) 3628 sc->sk_intrmask |= SK_INTRS1; 3629 else 3630 sc->sk_intrmask |= SK_INTRS2; 3631 3632 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 3633 3634 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3635 3636 /* Start BMUs. */ 3637 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 3638 3639 switch(sc->sk_type) { 3640 case SK_GENESIS: 3641 /* Enable XMACs TX and RX state machines */ 3642 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 3643 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3644 break; 3645 case SK_YUKON: 3646 case SK_YUKON_LITE: 3647 case SK_YUKON_LP: 3648 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 3649 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 3650 #if 0 3651 /* XXX disable 100Mbps and full duplex mode? */ 3652 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); 3653 #endif 3654 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 3655 } 3656 3657 /* Activate descriptor polling timer */ 3658 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); 3659 /* start transfer of Tx descriptors */ 3660 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 3661 3662 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3663 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3664 3665 switch (sc->sk_type) { 3666 case SK_YUKON: 3667 case SK_YUKON_LITE: 3668 case SK_YUKON_LP: 3669 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 3670 break; 3671 } 3672 3673 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 3674 3675 return; 3676 } 3677 3678 static void 3679 sk_stop(sc_if) 3680 struct sk_if_softc *sc_if; 3681 { 3682 int i; 3683 struct sk_softc *sc; 3684 struct sk_txdesc *txd; 3685 struct sk_rxdesc *rxd; 3686 struct sk_rxdesc *jrxd; 3687 struct ifnet *ifp; 3688 u_int32_t val; 3689 3690 SK_IF_LOCK_ASSERT(sc_if); 3691 sc = sc_if->sk_softc; 3692 ifp = sc_if->sk_ifp; 3693 3694 callout_stop(&sc_if->sk_tick_ch); 3695 callout_stop(&sc_if->sk_watchdog_ch); 3696 3697 /* stop Tx descriptor polling timer */ 3698 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 3699 /* stop transfer of Tx descriptors */ 3700 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); 3701 for (i = 0; i < SK_TIMEOUT; i++) { 3702 val = CSR_READ_4(sc, sc_if->sk_tx_bmu); 3703 if ((val & SK_TXBMU_TX_STOP) == 0) 3704 break; 3705 DELAY(1); 3706 } 3707 if (i == SK_TIMEOUT) 3708 device_printf(sc_if->sk_if_dev, 3709 "can not stop transfer of Tx descriptor\n"); 3710 /* stop transfer of Rx descriptors */ 3711 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); 3712 for (i = 0; i < SK_TIMEOUT; i++) { 3713 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); 3714 if ((val & SK_RXBMU_RX_STOP) == 0) 3715 break; 3716 DELAY(1); 3717 } 3718 if (i == SK_TIMEOUT) 3719 device_printf(sc_if->sk_if_dev, 3720 "can not stop transfer of Rx descriptor\n"); 3721 3722 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3723 /* Put PHY back into reset. */ 3724 val = sk_win_read_4(sc, SK_GPIO); 3725 if (sc_if->sk_port == SK_PORT_A) { 3726 val |= SK_GPIO_DIR0; 3727 val &= ~SK_GPIO_DAT0; 3728 } else { 3729 val |= SK_GPIO_DIR2; 3730 val &= ~SK_GPIO_DAT2; 3731 } 3732 sk_win_write_4(sc, SK_GPIO, val); 3733 } 3734 3735 /* Turn off various components of this interface. */ 3736 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3737 switch (sc->sk_type) { 3738 case SK_GENESIS: 3739 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 3740 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 3741 break; 3742 case SK_YUKON: 3743 case SK_YUKON_LITE: 3744 case SK_YUKON_LP: 3745 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 3746 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 3747 break; 3748 } 3749 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 3750 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3751 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 3752 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3753 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 3754 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3755 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3756 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 3757 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 3758 3759 /* Disable interrupts */ 3760 if (sc_if->sk_port == SK_PORT_A) 3761 sc->sk_intrmask &= ~SK_INTRS1; 3762 else 3763 sc->sk_intrmask &= ~SK_INTRS2; 3764 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3765 3766 SK_XM_READ_2(sc_if, XM_ISR); 3767 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3768 3769 /* Free RX and TX mbufs still in the queues. */ 3770 for (i = 0; i < SK_RX_RING_CNT; i++) { 3771 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 3772 if (rxd->rx_m != NULL) { 3773 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, 3774 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3775 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, 3776 rxd->rx_dmamap); 3777 m_freem(rxd->rx_m); 3778 rxd->rx_m = NULL; 3779 } 3780 } 3781 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 3782 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 3783 if (jrxd->rx_m != NULL) { 3784 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, 3785 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3786 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 3787 jrxd->rx_dmamap); 3788 m_freem(jrxd->rx_m); 3789 jrxd->rx_m = NULL; 3790 } 3791 } 3792 for (i = 0; i < SK_TX_RING_CNT; i++) { 3793 txd = &sc_if->sk_cdata.sk_txdesc[i]; 3794 if (txd->tx_m != NULL) { 3795 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, 3796 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3797 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, 3798 txd->tx_dmamap); 3799 m_freem(txd->tx_m); 3800 txd->tx_m = NULL; 3801 } 3802 } 3803 3804 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); 3805 3806 return; 3807 } 3808 3809 static int 3810 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3811 { 3812 int error, value; 3813 3814 if (!arg1) 3815 return (EINVAL); 3816 value = *(int *)arg1; 3817 error = sysctl_handle_int(oidp, &value, 0, req); 3818 if (error || !req->newptr) 3819 return (error); 3820 if (value < low || value > high) 3821 return (EINVAL); 3822 *(int *)arg1 = value; 3823 return (0); 3824 } 3825 3826 static int 3827 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) 3828 { 3829 return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); 3830 } 3831