xref: /freebsd/sys/dev/sk/if_sk.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113 
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133 
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145 
146 static struct sk_type sk_devs[] = {
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V1,
150 		"SysKonnect Gigabit Ethernet (V1.0)"
151 	},
152 	{
153 		VENDORID_SK,
154 		DEVICEID_SK_V2,
155 		"SysKonnect Gigabit Ethernet (V2.0)"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_SK_V2,
160 		"Marvell Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_MARVELL,
164 		DEVICEID_BELKIN_5005,
165 		"Belkin F5D5005 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_3COM,
169 		DEVICEID_3COM_3C940,
170 		"3Com 3C940 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_LINKSYS,
174 		DEVICEID_LINKSYS_EG1032,
175 		"Linksys EG1032 Gigabit Ethernet"
176 	},
177 	{
178 		VENDORID_DLINK,
179 		DEVICEID_DLINK_DGE530T_A1,
180 		"D-Link DGE-530T Gigabit Ethernet"
181 	},
182 	{
183 		VENDORID_DLINK,
184 		DEVICEID_DLINK_DGE530T_B1,
185 		"D-Link DGE-530T Gigabit Ethernet"
186 	},
187 	{ 0, 0, NULL }
188 };
189 
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242 
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246 
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249 						int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251 
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254 						int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256 
257 static uint32_t sk_xmchash(const uint8_t *);
258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
259 static void sk_rxfilter(struct sk_if_softc *);
260 static void sk_rxfilter_genesis(struct sk_if_softc *);
261 static void sk_rxfilter_yukon(struct sk_if_softc *);
262 
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265 
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269 
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES	(CSUM_TCP)
281 
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291 	/* Device interface */
292 	DEVMETHOD(device_probe,		skc_probe),
293 	DEVMETHOD(device_attach,	skc_attach),
294 	DEVMETHOD(device_detach,	skc_detach),
295 	DEVMETHOD(device_suspend,	skc_suspend),
296 	DEVMETHOD(device_resume,	skc_resume),
297 	DEVMETHOD(device_shutdown,	skc_shutdown),
298 
299 	/* bus interface */
300 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
301 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t skc_driver = {
307 	"skc",
308 	skc_methods,
309 	sizeof(struct sk_softc)
310 };
311 
312 static devclass_t skc_devclass;
313 
314 static device_method_t sk_methods[] = {
315 	/* Device interface */
316 	DEVMETHOD(device_probe,		sk_probe),
317 	DEVMETHOD(device_attach,	sk_attach),
318 	DEVMETHOD(device_detach,	sk_detach),
319 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
320 
321 	/* bus interface */
322 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
323 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
324 
325 	/* MII interface */
326 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
327 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
328 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
329 
330 	{ 0, 0 }
331 };
332 
333 static driver_t sk_driver = {
334 	"sk",
335 	sk_methods,
336 	sizeof(struct sk_if_softc)
337 };
338 
339 static devclass_t sk_devclass;
340 
341 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
342 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
343 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
344 
345 static struct resource_spec sk_res_spec_io[] = {
346 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
347 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
348 	{ -1,			0,		0 }
349 };
350 
351 static struct resource_spec sk_res_spec_mem[] = {
352 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
353 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
354 	{ -1,			0,		0 }
355 };
356 
357 #define SK_SETBIT(sc, reg, x)		\
358 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
359 
360 #define SK_CLRBIT(sc, reg, x)		\
361 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
362 
363 #define SK_WIN_SETBIT_4(sc, reg, x)	\
364 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
365 
366 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
367 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
368 
369 #define SK_WIN_SETBIT_2(sc, reg, x)	\
370 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
371 
372 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
373 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
374 
375 static u_int32_t
376 sk_win_read_4(sc, reg)
377 	struct sk_softc		*sc;
378 	int			reg;
379 {
380 #ifdef SK_USEIOSPACE
381 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384 	return(CSR_READ_4(sc, reg));
385 #endif
386 }
387 
388 static u_int16_t
389 sk_win_read_2(sc, reg)
390 	struct sk_softc		*sc;
391 	int			reg;
392 {
393 #ifdef SK_USEIOSPACE
394 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397 	return(CSR_READ_2(sc, reg));
398 #endif
399 }
400 
401 static u_int8_t
402 sk_win_read_1(sc, reg)
403 	struct sk_softc		*sc;
404 	int			reg;
405 {
406 #ifdef SK_USEIOSPACE
407 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
409 #else
410 	return(CSR_READ_1(sc, reg));
411 #endif
412 }
413 
414 static void
415 sk_win_write_4(sc, reg, val)
416 	struct sk_softc		*sc;
417 	int			reg;
418 	u_int32_t		val;
419 {
420 #ifdef SK_USEIOSPACE
421 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
422 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
423 #else
424 	CSR_WRITE_4(sc, reg, val);
425 #endif
426 	return;
427 }
428 
429 static void
430 sk_win_write_2(sc, reg, val)
431 	struct sk_softc		*sc;
432 	int			reg;
433 	u_int32_t		val;
434 {
435 #ifdef SK_USEIOSPACE
436 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
437 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
438 #else
439 	CSR_WRITE_2(sc, reg, val);
440 #endif
441 	return;
442 }
443 
444 static void
445 sk_win_write_1(sc, reg, val)
446 	struct sk_softc		*sc;
447 	int			reg;
448 	u_int32_t		val;
449 {
450 #ifdef SK_USEIOSPACE
451 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
452 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
453 #else
454 	CSR_WRITE_1(sc, reg, val);
455 #endif
456 	return;
457 }
458 
459 static int
460 sk_miibus_readreg(dev, phy, reg)
461 	device_t		dev;
462 	int			phy, reg;
463 {
464 	struct sk_if_softc	*sc_if;
465 	int			v;
466 
467 	sc_if = device_get_softc(dev);
468 
469 	SK_IF_MII_LOCK(sc_if);
470 	switch(sc_if->sk_softc->sk_type) {
471 	case SK_GENESIS:
472 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
473 		break;
474 	case SK_YUKON:
475 	case SK_YUKON_LITE:
476 	case SK_YUKON_LP:
477 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
478 		break;
479 	default:
480 		v = 0;
481 		break;
482 	}
483 	SK_IF_MII_UNLOCK(sc_if);
484 
485 	return (v);
486 }
487 
488 static int
489 sk_miibus_writereg(dev, phy, reg, val)
490 	device_t		dev;
491 	int			phy, reg, val;
492 {
493 	struct sk_if_softc	*sc_if;
494 	int			v;
495 
496 	sc_if = device_get_softc(dev);
497 
498 	SK_IF_MII_LOCK(sc_if);
499 	switch(sc_if->sk_softc->sk_type) {
500 	case SK_GENESIS:
501 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
502 		break;
503 	case SK_YUKON:
504 	case SK_YUKON_LITE:
505 	case SK_YUKON_LP:
506 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
507 		break;
508 	default:
509 		v = 0;
510 		break;
511 	}
512 	SK_IF_MII_UNLOCK(sc_if);
513 
514 	return (v);
515 }
516 
517 static void
518 sk_miibus_statchg(dev)
519 	device_t		dev;
520 {
521 	struct sk_if_softc	*sc_if;
522 
523 	sc_if = device_get_softc(dev);
524 
525 	SK_IF_MII_LOCK(sc_if);
526 	switch(sc_if->sk_softc->sk_type) {
527 	case SK_GENESIS:
528 		sk_xmac_miibus_statchg(sc_if);
529 		break;
530 	case SK_YUKON:
531 	case SK_YUKON_LITE:
532 	case SK_YUKON_LP:
533 		sk_marv_miibus_statchg(sc_if);
534 		break;
535 	}
536 	SK_IF_MII_UNLOCK(sc_if);
537 
538 	return;
539 }
540 
541 static int
542 sk_xmac_miibus_readreg(sc_if, phy, reg)
543 	struct sk_if_softc	*sc_if;
544 	int			phy, reg;
545 {
546 	int			i;
547 
548 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
549 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
550 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
551 		for (i = 0; i < SK_TIMEOUT; i++) {
552 			DELAY(1);
553 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
554 			    XM_MMUCMD_PHYDATARDY)
555 				break;
556 		}
557 
558 		if (i == SK_TIMEOUT) {
559 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
560 			return(0);
561 		}
562 	}
563 	DELAY(1);
564 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
565 
566 	return(i);
567 }
568 
569 static int
570 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
571 	struct sk_if_softc	*sc_if;
572 	int			phy, reg, val;
573 {
574 	int			i;
575 
576 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
577 	for (i = 0; i < SK_TIMEOUT; i++) {
578 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
579 			break;
580 	}
581 
582 	if (i == SK_TIMEOUT) {
583 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
584 		return (ETIMEDOUT);
585 	}
586 
587 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
588 	for (i = 0; i < SK_TIMEOUT; i++) {
589 		DELAY(1);
590 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
591 			break;
592 	}
593 	if (i == SK_TIMEOUT)
594 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
595 
596 	return(0);
597 }
598 
599 static void
600 sk_xmac_miibus_statchg(sc_if)
601 	struct sk_if_softc	*sc_if;
602 {
603 	struct mii_data		*mii;
604 
605 	mii = device_get_softc(sc_if->sk_miibus);
606 
607 	/*
608 	 * If this is a GMII PHY, manually set the XMAC's
609 	 * duplex mode accordingly.
610 	 */
611 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
612 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
613 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
614 		} else {
615 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
616 		}
617 	}
618 }
619 
620 static int
621 sk_marv_miibus_readreg(sc_if, phy, reg)
622 	struct sk_if_softc	*sc_if;
623 	int			phy, reg;
624 {
625 	u_int16_t		val;
626 	int			i;
627 
628 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
629 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
630 		return(0);
631 	}
632 
633         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
634 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
635 
636 	for (i = 0; i < SK_TIMEOUT; i++) {
637 		DELAY(1);
638 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
639 		if (val & YU_SMICR_READ_VALID)
640 			break;
641 	}
642 
643 	if (i == SK_TIMEOUT) {
644 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
645 		return(0);
646 	}
647 
648 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
649 
650 	return(val);
651 }
652 
653 static int
654 sk_marv_miibus_writereg(sc_if, phy, reg, val)
655 	struct sk_if_softc	*sc_if;
656 	int			phy, reg, val;
657 {
658 	int			i;
659 
660 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
661 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
662 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
663 
664 	for (i = 0; i < SK_TIMEOUT; i++) {
665 		DELAY(1);
666 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
667 			break;
668 	}
669 	if (i == SK_TIMEOUT)
670 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
671 
672 	return(0);
673 }
674 
675 static void
676 sk_marv_miibus_statchg(sc_if)
677 	struct sk_if_softc	*sc_if;
678 {
679 	return;
680 }
681 
682 #define HASH_BITS		6
683 
684 static u_int32_t
685 sk_xmchash(addr)
686 	const uint8_t *addr;
687 {
688 	uint32_t crc;
689 
690 	/* Compute CRC for the address value. */
691 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
692 
693 	return (~crc & ((1 << HASH_BITS) - 1));
694 }
695 
696 static void
697 sk_setfilt(sc_if, addr, slot)
698 	struct sk_if_softc	*sc_if;
699 	u_int16_t		*addr;
700 	int			slot;
701 {
702 	int			base;
703 
704 	base = XM_RXFILT_ENTRY(slot);
705 
706 	SK_XM_WRITE_2(sc_if, base, addr[0]);
707 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
708 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
709 
710 	return;
711 }
712 
713 static void
714 sk_rxfilter(sc_if)
715 	struct sk_if_softc	*sc_if;
716 {
717 	struct sk_softc		*sc;
718 
719 	SK_IF_LOCK_ASSERT(sc_if);
720 
721 	sc = sc_if->sk_softc;
722 	if (sc->sk_type == SK_GENESIS)
723 		sk_rxfilter_genesis(sc_if);
724 	else
725 		sk_rxfilter_yukon(sc_if);
726 }
727 
728 static void
729 sk_rxfilter_genesis(sc_if)
730 	struct sk_if_softc	*sc_if;
731 {
732 	struct ifnet		*ifp = sc_if->sk_ifp;
733 	u_int32_t		hashes[2] = { 0, 0 }, mode;
734 	int			h = 0, i;
735 	struct ifmultiaddr	*ifma;
736 	u_int16_t		dummy[] = { 0, 0, 0 };
737 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
738 
739 	SK_IF_LOCK_ASSERT(sc_if);
740 
741 	mode = SK_XM_READ_4(sc_if, XM_MODE);
742 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
743 	    XM_MODE_RX_USE_PERFECT);
744 	/* First, zot all the existing perfect filters. */
745 	for (i = 1; i < XM_RXFILT_MAX; i++)
746 		sk_setfilt(sc_if, dummy, i);
747 
748 	/* Now program new ones. */
749 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
750 		if (ifp->if_flags & IFF_ALLMULTI)
751 			mode |= XM_MODE_RX_USE_HASH;
752 		if (ifp->if_flags & IFF_PROMISC)
753 			mode |= XM_MODE_RX_PROMISC;
754 		hashes[0] = 0xFFFFFFFF;
755 		hashes[1] = 0xFFFFFFFF;
756 	} else {
757 		i = 1;
758 		if_maddr_rlock(ifp);
759 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
760 		    ifma_link) {
761 			if (ifma->ifma_addr->sa_family != AF_LINK)
762 				continue;
763 			/*
764 			 * Program the first XM_RXFILT_MAX multicast groups
765 			 * into the perfect filter.
766 			 */
767 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
768 			    maddr, ETHER_ADDR_LEN);
769 			if (i < XM_RXFILT_MAX) {
770 				sk_setfilt(sc_if, maddr, i);
771 				mode |= XM_MODE_RX_USE_PERFECT;
772 				i++;
773 				continue;
774 			}
775 			h = sk_xmchash((const uint8_t *)maddr);
776 			if (h < 32)
777 				hashes[0] |= (1 << h);
778 			else
779 				hashes[1] |= (1 << (h - 32));
780 			mode |= XM_MODE_RX_USE_HASH;
781 		}
782 		if_maddr_runlock(ifp);
783 	}
784 
785 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
786 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
787 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
788 }
789 
790 static void
791 sk_rxfilter_yukon(sc_if)
792 	struct sk_if_softc	*sc_if;
793 {
794 	struct ifnet		*ifp;
795 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
796 	struct ifmultiaddr	*ifma;
797 
798 	SK_IF_LOCK_ASSERT(sc_if);
799 
800 	ifp = sc_if->sk_ifp;
801 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
802 	if (ifp->if_flags & IFF_PROMISC)
803 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
804 	else if (ifp->if_flags & IFF_ALLMULTI) {
805 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
806 		hashes[0] = 0xFFFFFFFF;
807 		hashes[1] = 0xFFFFFFFF;
808 	} else {
809 		mode |= YU_RCR_UFLEN;
810 		if_maddr_rlock(ifp);
811 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
812 			if (ifma->ifma_addr->sa_family != AF_LINK)
813 				continue;
814 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
815 			    ifma->ifma_addr), ETHER_ADDR_LEN);
816 			/* Just want the 6 least significant bits. */
817 			crc &= 0x3f;
818 			/* Set the corresponding bit in the hash table. */
819 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
820 		}
821 		if_maddr_runlock(ifp);
822 		if (hashes[0] != 0 || hashes[1] != 0)
823 			mode |= YU_RCR_MUFLEN;
824 	}
825 
826 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
827 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
828 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
829 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
830 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
831 }
832 
833 static int
834 sk_init_rx_ring(sc_if)
835 	struct sk_if_softc	*sc_if;
836 {
837 	struct sk_ring_data	*rd;
838 	bus_addr_t		addr;
839 	u_int32_t		csum_start;
840 	int			i;
841 
842 	sc_if->sk_cdata.sk_rx_cons = 0;
843 
844 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
845 	    ETHER_HDR_LEN;
846 	rd = &sc_if->sk_rdata;
847 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
848 	for (i = 0; i < SK_RX_RING_CNT; i++) {
849 		if (sk_newbuf(sc_if, i) != 0)
850 			return (ENOBUFS);
851 		if (i == (SK_RX_RING_CNT - 1))
852 			addr = SK_RX_RING_ADDR(sc_if, 0);
853 		else
854 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
855 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
856 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
857 	}
858 
859 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
860 	    sc_if->sk_cdata.sk_rx_ring_map,
861 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
862 
863 	return(0);
864 }
865 
866 static int
867 sk_init_jumbo_rx_ring(sc_if)
868 	struct sk_if_softc	*sc_if;
869 {
870 	struct sk_ring_data	*rd;
871 	bus_addr_t		addr;
872 	u_int32_t		csum_start;
873 	int			i;
874 
875 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
876 
877 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
878 	    ETHER_HDR_LEN;
879 	rd = &sc_if->sk_rdata;
880 	bzero(rd->sk_jumbo_rx_ring,
881 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
882 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
883 		if (sk_jumbo_newbuf(sc_if, i) != 0)
884 			return (ENOBUFS);
885 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
886 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
887 		else
888 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
889 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
890 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
891 	}
892 
893 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
894 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
895 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
896 
897 	return (0);
898 }
899 
900 static void
901 sk_init_tx_ring(sc_if)
902 	struct sk_if_softc	*sc_if;
903 {
904 	struct sk_ring_data	*rd;
905 	struct sk_txdesc	*txd;
906 	bus_addr_t		addr;
907 	int			i;
908 
909 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
910 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
911 
912 	sc_if->sk_cdata.sk_tx_prod = 0;
913 	sc_if->sk_cdata.sk_tx_cons = 0;
914 	sc_if->sk_cdata.sk_tx_cnt = 0;
915 
916 	rd = &sc_if->sk_rdata;
917 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
918 	for (i = 0; i < SK_TX_RING_CNT; i++) {
919 		if (i == (SK_TX_RING_CNT - 1))
920 			addr = SK_TX_RING_ADDR(sc_if, 0);
921 		else
922 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
923 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
924 		txd = &sc_if->sk_cdata.sk_txdesc[i];
925 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
926 	}
927 
928 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
929 	    sc_if->sk_cdata.sk_tx_ring_map,
930 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
931 }
932 
933 static __inline void
934 sk_discard_rxbuf(sc_if, idx)
935 	struct sk_if_softc	*sc_if;
936 	int			idx;
937 {
938 	struct sk_rx_desc	*r;
939 	struct sk_rxdesc	*rxd;
940 	struct mbuf		*m;
941 
942 
943 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
944 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
945 	m = rxd->rx_m;
946 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
947 }
948 
949 static __inline void
950 sk_discard_jumbo_rxbuf(sc_if, idx)
951 	struct sk_if_softc	*sc_if;
952 	int			idx;
953 {
954 	struct sk_rx_desc	*r;
955 	struct sk_rxdesc	*rxd;
956 	struct mbuf		*m;
957 
958 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
959 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
960 	m = rxd->rx_m;
961 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
962 }
963 
964 static int
965 sk_newbuf(sc_if, idx)
966 	struct sk_if_softc	*sc_if;
967 	int 			idx;
968 {
969 	struct sk_rx_desc	*r;
970 	struct sk_rxdesc	*rxd;
971 	struct mbuf		*m;
972 	bus_dma_segment_t	segs[1];
973 	bus_dmamap_t		map;
974 	int			nsegs;
975 
976 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
977 	if (m == NULL)
978 		return (ENOBUFS);
979 	m->m_len = m->m_pkthdr.len = MCLBYTES;
980 	m_adj(m, ETHER_ALIGN);
981 
982 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
983 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
988 
989 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
990 	if (rxd->rx_m != NULL) {
991 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
992 		    BUS_DMASYNC_POSTREAD);
993 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
994 	}
995 	map = rxd->rx_dmamap;
996 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
997 	sc_if->sk_cdata.sk_rx_sparemap = map;
998 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
999 	    BUS_DMASYNC_PREREAD);
1000 	rxd->rx_m = m;
1001 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
1002 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1003 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1004 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1005 
1006 	return (0);
1007 }
1008 
1009 static int
1010 sk_jumbo_newbuf(sc_if, idx)
1011 	struct sk_if_softc	*sc_if;
1012 	int			idx;
1013 {
1014 	struct sk_rx_desc	*r;
1015 	struct sk_rxdesc	*rxd;
1016 	struct mbuf		*m;
1017 	bus_dma_segment_t	segs[1];
1018 	bus_dmamap_t		map;
1019 	int			nsegs;
1020 
1021 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1022 	if (m == NULL)
1023 		return (ENOBUFS);
1024 	if ((m->m_flags & M_EXT) == 0) {
1025 		m_freem(m);
1026 		return (ENOBUFS);
1027 	}
1028 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1029 	/*
1030 	 * Adjust alignment so packet payload begins on a
1031 	 * longword boundary. Mandatory for Alpha, useful on
1032 	 * x86 too.
1033 	 */
1034 	m_adj(m, ETHER_ALIGN);
1035 
1036 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1037 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1038 		m_freem(m);
1039 		return (ENOBUFS);
1040 	}
1041 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1042 
1043 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1044 	if (rxd->rx_m != NULL) {
1045 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1046 		    BUS_DMASYNC_POSTREAD);
1047 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1048 		    rxd->rx_dmamap);
1049 	}
1050 	map = rxd->rx_dmamap;
1051 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1052 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1053 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1054 	    BUS_DMASYNC_PREREAD);
1055 	rxd->rx_m = m;
1056 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1057 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1058 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1059 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1060 
1061 	return (0);
1062 }
1063 
1064 /*
1065  * Set media options.
1066  */
1067 static int
1068 sk_ifmedia_upd(ifp)
1069 	struct ifnet		*ifp;
1070 {
1071 	struct sk_if_softc	*sc_if = ifp->if_softc;
1072 	struct mii_data		*mii;
1073 
1074 	mii = device_get_softc(sc_if->sk_miibus);
1075 	sk_init(sc_if);
1076 	mii_mediachg(mii);
1077 
1078 	return(0);
1079 }
1080 
1081 /*
1082  * Report current media status.
1083  */
1084 static void
1085 sk_ifmedia_sts(ifp, ifmr)
1086 	struct ifnet		*ifp;
1087 	struct ifmediareq	*ifmr;
1088 {
1089 	struct sk_if_softc	*sc_if;
1090 	struct mii_data		*mii;
1091 
1092 	sc_if = ifp->if_softc;
1093 	mii = device_get_softc(sc_if->sk_miibus);
1094 
1095 	mii_pollstat(mii);
1096 	ifmr->ifm_active = mii->mii_media_active;
1097 	ifmr->ifm_status = mii->mii_media_status;
1098 
1099 	return;
1100 }
1101 
1102 static int
1103 sk_ioctl(ifp, command, data)
1104 	struct ifnet		*ifp;
1105 	u_long			command;
1106 	caddr_t			data;
1107 {
1108 	struct sk_if_softc	*sc_if = ifp->if_softc;
1109 	struct ifreq		*ifr = (struct ifreq *) data;
1110 	int			error, mask;
1111 	struct mii_data		*mii;
1112 
1113 	error = 0;
1114 	switch(command) {
1115 	case SIOCSIFMTU:
1116 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1117 			error = EINVAL;
1118 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1119 			if (sc_if->sk_jumbo_disable != 0 &&
1120 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1121 				error = EINVAL;
1122 			else {
1123 				SK_IF_LOCK(sc_if);
1124 				ifp->if_mtu = ifr->ifr_mtu;
1125 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1126 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1127 					sk_init_locked(sc_if);
1128 				}
1129 				SK_IF_UNLOCK(sc_if);
1130 			}
1131 		}
1132 		break;
1133 	case SIOCSIFFLAGS:
1134 		SK_IF_LOCK(sc_if);
1135 		if (ifp->if_flags & IFF_UP) {
1136 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1137 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1138 				    & (IFF_PROMISC | IFF_ALLMULTI))
1139 					sk_rxfilter(sc_if);
1140 			} else
1141 				sk_init_locked(sc_if);
1142 		} else {
1143 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1144 				sk_stop(sc_if);
1145 		}
1146 		sc_if->sk_if_flags = ifp->if_flags;
1147 		SK_IF_UNLOCK(sc_if);
1148 		break;
1149 	case SIOCADDMULTI:
1150 	case SIOCDELMULTI:
1151 		SK_IF_LOCK(sc_if);
1152 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1153 			sk_rxfilter(sc_if);
1154 		SK_IF_UNLOCK(sc_if);
1155 		break;
1156 	case SIOCGIFMEDIA:
1157 	case SIOCSIFMEDIA:
1158 		mii = device_get_softc(sc_if->sk_miibus);
1159 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1160 		break;
1161 	case SIOCSIFCAP:
1162 		SK_IF_LOCK(sc_if);
1163 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1164 			SK_IF_UNLOCK(sc_if);
1165 			break;
1166 		}
1167 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1168 		if ((mask & IFCAP_TXCSUM) != 0 &&
1169 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1170 			ifp->if_capenable ^= IFCAP_TXCSUM;
1171 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1172 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1173 			else
1174 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1175 		}
1176 		if ((mask & IFCAP_RXCSUM) != 0 &&
1177 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1178 			ifp->if_capenable ^= IFCAP_RXCSUM;
1179 		SK_IF_UNLOCK(sc_if);
1180 		break;
1181 	default:
1182 		error = ether_ioctl(ifp, command, data);
1183 		break;
1184 	}
1185 
1186 	return (error);
1187 }
1188 
1189 /*
1190  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1191  * IDs against our list and return a device name if we find a match.
1192  */
1193 static int
1194 skc_probe(dev)
1195 	device_t		dev;
1196 {
1197 	struct sk_type		*t = sk_devs;
1198 
1199 	while(t->sk_name != NULL) {
1200 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1201 		    (pci_get_device(dev) == t->sk_did)) {
1202 			/*
1203 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1204 			 * Rev. 3 is supported by re(4).
1205 			 */
1206 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1207 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1208 				(pci_get_subdevice(dev) !=
1209 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1210 				t++;
1211 				continue;
1212 			}
1213 			device_set_desc(dev, t->sk_name);
1214 			return (BUS_PROBE_DEFAULT);
1215 		}
1216 		t++;
1217 	}
1218 
1219 	return(ENXIO);
1220 }
1221 
1222 /*
1223  * Force the GEnesis into reset, then bring it out of reset.
1224  */
1225 static void
1226 sk_reset(sc)
1227 	struct sk_softc		*sc;
1228 {
1229 
1230 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1231 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1232 	if (SK_YUKON_FAMILY(sc->sk_type))
1233 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1234 
1235 	DELAY(1000);
1236 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1237 	DELAY(2);
1238 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1239 	if (SK_YUKON_FAMILY(sc->sk_type))
1240 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1241 
1242 	if (sc->sk_type == SK_GENESIS) {
1243 		/* Configure packet arbiter */
1244 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1245 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1246 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1247 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1248 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1249 	}
1250 
1251 	/* Enable RAM interface */
1252 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1253 
1254 	/*
1255          * Configure interrupt moderation. The moderation timer
1256 	 * defers interrupts specified in the interrupt moderation
1257 	 * timer mask based on the timeout specified in the interrupt
1258 	 * moderation timer init register. Each bit in the timer
1259 	 * register represents one tick, so to specify a timeout in
1260 	 * microseconds, we have to multiply by the correct number of
1261 	 * ticks-per-microsecond.
1262 	 */
1263 	switch (sc->sk_type) {
1264 	case SK_GENESIS:
1265 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1266 		break;
1267 	default:
1268 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1269 		break;
1270 	}
1271 	if (bootverbose)
1272 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1273 		    sc->sk_int_mod);
1274 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1275 	    sc->sk_int_ticks));
1276 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1277 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1278 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1279 
1280 	return;
1281 }
1282 
1283 static int
1284 sk_probe(dev)
1285 	device_t		dev;
1286 {
1287 	struct sk_softc		*sc;
1288 
1289 	sc = device_get_softc(device_get_parent(dev));
1290 
1291 	/*
1292 	 * Not much to do here. We always know there will be
1293 	 * at least one XMAC present, and if there are two,
1294 	 * skc_attach() will create a second device instance
1295 	 * for us.
1296 	 */
1297 	switch (sc->sk_type) {
1298 	case SK_GENESIS:
1299 		device_set_desc(dev, "XaQti Corp. XMAC II");
1300 		break;
1301 	case SK_YUKON:
1302 	case SK_YUKON_LITE:
1303 	case SK_YUKON_LP:
1304 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1305 		break;
1306 	}
1307 
1308 	return (BUS_PROBE_DEFAULT);
1309 }
1310 
1311 /*
1312  * Each XMAC chip is attached as a separate logical IP interface.
1313  * Single port cards will have only one logical interface of course.
1314  */
1315 static int
1316 sk_attach(dev)
1317 	device_t		dev;
1318 {
1319 	struct sk_softc		*sc;
1320 	struct sk_if_softc	*sc_if;
1321 	struct ifnet		*ifp;
1322 	u_int32_t		r;
1323 	int			error, i, phy, port;
1324 	u_char			eaddr[6];
1325 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1326 
1327 	if (dev == NULL)
1328 		return(EINVAL);
1329 
1330 	error = 0;
1331 	sc_if = device_get_softc(dev);
1332 	sc = device_get_softc(device_get_parent(dev));
1333 	port = *(int *)device_get_ivars(dev);
1334 
1335 	sc_if->sk_if_dev = dev;
1336 	sc_if->sk_port = port;
1337 	sc_if->sk_softc = sc;
1338 	sc->sk_if[port] = sc_if;
1339 	if (port == SK_PORT_A)
1340 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1341 	if (port == SK_PORT_B)
1342 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1343 
1344 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1345 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1346 
1347 	if (sk_dma_alloc(sc_if) != 0) {
1348 		error = ENOMEM;
1349 		goto fail;
1350 	}
1351 	sk_dma_jumbo_alloc(sc_if);
1352 
1353 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1354 	if (ifp == NULL) {
1355 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1356 		error = ENOSPC;
1357 		goto fail;
1358 	}
1359 	ifp->if_softc = sc_if;
1360 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1361 	ifp->if_mtu = ETHERMTU;
1362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1363 	/*
1364 	 * SK_GENESIS has a bug in checksum offload - From linux.
1365 	 */
1366 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1367 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1368 		ifp->if_hwassist = 0;
1369 	} else {
1370 		ifp->if_capabilities = 0;
1371 		ifp->if_hwassist = 0;
1372 	}
1373 	ifp->if_capenable = ifp->if_capabilities;
1374 	/*
1375 	 * Some revision of Yukon controller generates corrupted
1376 	 * frame when TX checksum offloading is enabled.  The
1377 	 * frame has a valid checksum value so payload might be
1378 	 * modified during TX checksum calculation. Disable TX
1379 	 * checksum offloading but give users chance to enable it
1380 	 * when they know their controller works without problems
1381 	 * with TX checksum offloading.
1382 	 */
1383 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1384 	ifp->if_ioctl = sk_ioctl;
1385 	ifp->if_start = sk_start;
1386 	ifp->if_init = sk_init;
1387 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1388 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1389 	IFQ_SET_READY(&ifp->if_snd);
1390 
1391 	/*
1392 	 * Get station address for this interface. Note that
1393 	 * dual port cards actually come with three station
1394 	 * addresses: one for each port, plus an extra. The
1395 	 * extra one is used by the SysKonnect driver software
1396 	 * as a 'virtual' station address for when both ports
1397 	 * are operating in failover mode. Currently we don't
1398 	 * use this extra address.
1399 	 */
1400 	SK_IF_LOCK(sc_if);
1401 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1402 		eaddr[i] =
1403 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1404 
1405 	/* Verify whether the station address is invalid or not. */
1406 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1407 		device_printf(sc_if->sk_if_dev,
1408 		    "Generating random ethernet address\n");
1409 		r = arc4random();
1410 		/*
1411 		 * Set OUI to convenient locally assigned address.  'b'
1412 		 * is 0x62, which has the locally assigned bit set, and
1413 		 * the broadcast/multicast bit clear.
1414 		 */
1415 		eaddr[0] = 'b';
1416 		eaddr[1] = 's';
1417 		eaddr[2] = 'd';
1418 		eaddr[3] = (r >> 16) & 0xff;
1419 		eaddr[4] = (r >>  8) & 0xff;
1420 		eaddr[5] = (r >>  0) & 0xff;
1421 	}
1422 	/*
1423 	 * Set up RAM buffer addresses. The NIC will have a certain
1424 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1425 	 * need to divide this up a) between the transmitter and
1426  	 * receiver and b) between the two XMACs, if this is a
1427 	 * dual port NIC. Our algotithm is to divide up the memory
1428 	 * evenly so that everyone gets a fair share.
1429 	 *
1430 	 * Just to be contrary, Yukon2 appears to have separate memory
1431 	 * for each MAC.
1432 	 */
1433 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1434 		u_int32_t		chunk, val;
1435 
1436 		chunk = sc->sk_ramsize / 2;
1437 		val = sc->sk_rboff / sizeof(u_int64_t);
1438 		sc_if->sk_rx_ramstart = val;
1439 		val += (chunk / sizeof(u_int64_t));
1440 		sc_if->sk_rx_ramend = val - 1;
1441 		sc_if->sk_tx_ramstart = val;
1442 		val += (chunk / sizeof(u_int64_t));
1443 		sc_if->sk_tx_ramend = val - 1;
1444 	} else {
1445 		u_int32_t		chunk, val;
1446 
1447 		chunk = sc->sk_ramsize / 4;
1448 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1449 		    sizeof(u_int64_t);
1450 		sc_if->sk_rx_ramstart = val;
1451 		val += (chunk / sizeof(u_int64_t));
1452 		sc_if->sk_rx_ramend = val - 1;
1453 		sc_if->sk_tx_ramstart = val;
1454 		val += (chunk / sizeof(u_int64_t));
1455 		sc_if->sk_tx_ramend = val - 1;
1456 	}
1457 
1458 	/* Read and save PHY type and set PHY address */
1459 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1460 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1461 		switch(sc_if->sk_phytype) {
1462 		case SK_PHYTYPE_XMAC:
1463 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1464 			break;
1465 		case SK_PHYTYPE_BCOM:
1466 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1467 			break;
1468 		default:
1469 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1470 			    sc_if->sk_phytype);
1471 			error = ENODEV;
1472 			SK_IF_UNLOCK(sc_if);
1473 			goto fail;
1474 		}
1475 	} else {
1476 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1477 		    sc->sk_pmd != 'S') {
1478 			/* not initialized, punt */
1479 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1480 			sc->sk_coppertype = 1;
1481 		}
1482 
1483 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1484 
1485 		if (!(sc->sk_coppertype))
1486 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1487 	}
1488 
1489 	/*
1490 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1491 	 */
1492 	SK_IF_UNLOCK(sc_if);
1493 	ether_ifattach(ifp, eaddr);
1494 	SK_IF_LOCK(sc_if);
1495 
1496 	/*
1497 	 * The hardware should be ready for VLAN_MTU by default:
1498 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1499 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1500 	 *
1501 	 */
1502         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1503         ifp->if_capenable |= IFCAP_VLAN_MTU;
1504 	/*
1505 	 * Tell the upper layer(s) we support long frames.
1506 	 * Must appear after the call to ether_ifattach() because
1507 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1508 	 */
1509         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1510 
1511 	/*
1512 	 * Do miibus setup.
1513 	 */
1514 	phy = MII_PHY_ANY;
1515 	switch (sc->sk_type) {
1516 	case SK_GENESIS:
1517 		sk_init_xmac(sc_if);
1518 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1519 			phy = 0;
1520 		break;
1521 	case SK_YUKON:
1522 	case SK_YUKON_LITE:
1523 	case SK_YUKON_LP:
1524 		sk_init_yukon(sc_if);
1525 		phy = 0;
1526 		break;
1527 	}
1528 
1529 	SK_IF_UNLOCK(sc_if);
1530 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1531 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1532 	if (error != 0) {
1533 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1534 		ether_ifdetach(ifp);
1535 		goto fail;
1536 	}
1537 
1538 fail:
1539 	if (error) {
1540 		/* Access should be ok even though lock has been dropped */
1541 		sc->sk_if[port] = NULL;
1542 		sk_detach(dev);
1543 	}
1544 
1545 	return(error);
1546 }
1547 
1548 /*
1549  * Attach the interface. Allocate softc structures, do ifmedia
1550  * setup and ethernet/BPF attach.
1551  */
1552 static int
1553 skc_attach(dev)
1554 	device_t		dev;
1555 {
1556 	struct sk_softc		*sc;
1557 	int			error = 0, *port;
1558 	uint8_t			skrs;
1559 	const char		*pname = NULL;
1560 	char			*revstr;
1561 
1562 	sc = device_get_softc(dev);
1563 	sc->sk_dev = dev;
1564 
1565 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1566 	    MTX_DEF);
1567 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1568 	/*
1569 	 * Map control/status registers.
1570 	 */
1571 	pci_enable_busmaster(dev);
1572 
1573 	/* Allocate resources */
1574 #ifdef SK_USEIOSPACE
1575 	sc->sk_res_spec = sk_res_spec_io;
1576 #else
1577 	sc->sk_res_spec = sk_res_spec_mem;
1578 #endif
1579 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1580 	if (error) {
1581 		if (sc->sk_res_spec == sk_res_spec_mem)
1582 			sc->sk_res_spec = sk_res_spec_io;
1583 		else
1584 			sc->sk_res_spec = sk_res_spec_mem;
1585 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1586 		if (error) {
1587 			device_printf(dev, "couldn't allocate %s resources\n",
1588 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1589 			    "I/O");
1590 			goto fail;
1591 		}
1592 	}
1593 
1594 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1595 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1596 
1597 	/* Bail out if chip is not recognized. */
1598 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1599 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1600 		    sc->sk_type, sc->sk_rev);
1601 		error = ENXIO;
1602 		goto fail;
1603 	}
1604 
1605 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1606 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1607 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1608 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1609 		"SK interrupt moderation");
1610 
1611 	/* Pull in device tunables. */
1612 	sc->sk_int_mod = SK_IM_DEFAULT;
1613 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1614 		"int_mod", &sc->sk_int_mod);
1615 	if (error == 0) {
1616 		if (sc->sk_int_mod < SK_IM_MIN ||
1617 		    sc->sk_int_mod > SK_IM_MAX) {
1618 			device_printf(dev, "int_mod value out of range; "
1619 			    "using default: %d\n", SK_IM_DEFAULT);
1620 			sc->sk_int_mod = SK_IM_DEFAULT;
1621 		}
1622 	}
1623 
1624 	/* Reset the adapter. */
1625 	sk_reset(sc);
1626 
1627 	skrs = sk_win_read_1(sc, SK_EPROM0);
1628 	if (sc->sk_type == SK_GENESIS) {
1629 		/* Read and save RAM size and RAMbuffer offset */
1630 		switch(skrs) {
1631 		case SK_RAMSIZE_512K_64:
1632 			sc->sk_ramsize = 0x80000;
1633 			sc->sk_rboff = SK_RBOFF_0;
1634 			break;
1635 		case SK_RAMSIZE_1024K_64:
1636 			sc->sk_ramsize = 0x100000;
1637 			sc->sk_rboff = SK_RBOFF_80000;
1638 			break;
1639 		case SK_RAMSIZE_1024K_128:
1640 			sc->sk_ramsize = 0x100000;
1641 			sc->sk_rboff = SK_RBOFF_0;
1642 			break;
1643 		case SK_RAMSIZE_2048K_128:
1644 			sc->sk_ramsize = 0x200000;
1645 			sc->sk_rboff = SK_RBOFF_0;
1646 			break;
1647 		default:
1648 			device_printf(dev, "unknown ram size: %d\n", skrs);
1649 			error = ENXIO;
1650 			goto fail;
1651 		}
1652 	} else { /* SK_YUKON_FAMILY */
1653 		if (skrs == 0x00)
1654 			sc->sk_ramsize = 0x20000;
1655 		else
1656 			sc->sk_ramsize = skrs * (1<<12);
1657 		sc->sk_rboff = SK_RBOFF_0;
1658 	}
1659 
1660 	/* Read and save physical media type */
1661 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1662 
1663 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1664 		 sc->sk_coppertype = 1;
1665 	 else
1666 		 sc->sk_coppertype = 0;
1667 
1668 	/* Determine whether to name it with VPD PN or just make it up.
1669 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1670 	switch (pci_get_device(dev)) {
1671 	case DEVICEID_SK_V1:
1672 	case DEVICEID_BELKIN_5005:
1673 	case DEVICEID_3COM_3C940:
1674 	case DEVICEID_LINKSYS_EG1032:
1675 	case DEVICEID_DLINK_DGE530T_A1:
1676 	case DEVICEID_DLINK_DGE530T_B1:
1677 		/* Stay with VPD PN. */
1678 		(void) pci_get_vpd_ident(dev, &pname);
1679 		break;
1680 	case DEVICEID_SK_V2:
1681 		/* YUKON VPD PN might bear no resemblance to reality. */
1682 		switch (sc->sk_type) {
1683 		case SK_GENESIS:
1684 			/* Stay with VPD PN. */
1685 			(void) pci_get_vpd_ident(dev, &pname);
1686 			break;
1687 		case SK_YUKON:
1688 			pname = "Marvell Yukon Gigabit Ethernet";
1689 			break;
1690 		case SK_YUKON_LITE:
1691 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1692 			break;
1693 		case SK_YUKON_LP:
1694 			pname = "Marvell Yukon LP Gigabit Ethernet";
1695 			break;
1696 		default:
1697 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1698 			break;
1699 		}
1700 
1701 		/* Yukon Lite Rev. A0 needs special test. */
1702 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1703 			u_int32_t far;
1704 			u_int8_t testbyte;
1705 
1706 			/* Save flash address register before testing. */
1707 			far = sk_win_read_4(sc, SK_EP_ADDR);
1708 
1709 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1710 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1711 
1712 			if (testbyte != 0x00) {
1713 				/* Yukon Lite Rev. A0 detected. */
1714 				sc->sk_type = SK_YUKON_LITE;
1715 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1716 				/* Restore flash address register. */
1717 				sk_win_write_4(sc, SK_EP_ADDR, far);
1718 			}
1719 		}
1720 		break;
1721 	default:
1722 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1723 			"chipver=%02x, rev=%x\n",
1724 			pci_get_vendor(dev), pci_get_device(dev),
1725 			sc->sk_type, sc->sk_rev);
1726 		error = ENXIO;
1727 		goto fail;
1728 	}
1729 
1730 	if (sc->sk_type == SK_YUKON_LITE) {
1731 		switch (sc->sk_rev) {
1732 		case SK_YUKON_LITE_REV_A0:
1733 			revstr = "A0";
1734 			break;
1735 		case SK_YUKON_LITE_REV_A1:
1736 			revstr = "A1";
1737 			break;
1738 		case SK_YUKON_LITE_REV_A3:
1739 			revstr = "A3";
1740 			break;
1741 		default:
1742 			revstr = "";
1743 			break;
1744 		}
1745 	} else {
1746 		revstr = "";
1747 	}
1748 
1749 	/* Announce the product name and more VPD data if there. */
1750 	if (pname != NULL)
1751 		device_printf(dev, "%s rev. %s(0x%x)\n",
1752 			pname, revstr, sc->sk_rev);
1753 
1754 	if (bootverbose) {
1755 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1756 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1757 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1758 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1759 	}
1760 
1761 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1762 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1763 		device_printf(dev, "failed to add child for PORT_A\n");
1764 		error = ENXIO;
1765 		goto fail;
1766 	}
1767 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1768 	if (port == NULL) {
1769 		device_printf(dev, "failed to allocate memory for "
1770 		    "ivars of PORT_A\n");
1771 		error = ENXIO;
1772 		goto fail;
1773 	}
1774 	*port = SK_PORT_A;
1775 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1776 
1777 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1778 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1779 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1780 			device_printf(dev, "failed to add child for PORT_B\n");
1781 			error = ENXIO;
1782 			goto fail;
1783 		}
1784 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1785 		if (port == NULL) {
1786 			device_printf(dev, "failed to allocate memory for "
1787 			    "ivars of PORT_B\n");
1788 			error = ENXIO;
1789 			goto fail;
1790 		}
1791 		*port = SK_PORT_B;
1792 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1793 	}
1794 
1795 	/* Turn on the 'driver is loaded' LED. */
1796 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1797 
1798 	error = bus_generic_attach(dev);
1799 	if (error) {
1800 		device_printf(dev, "failed to attach port(s)\n");
1801 		goto fail;
1802 	}
1803 
1804 	/* Hook interrupt last to avoid having to lock softc */
1805 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1806 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1807 
1808 	if (error) {
1809 		device_printf(dev, "couldn't set up irq\n");
1810 		goto fail;
1811 	}
1812 
1813 fail:
1814 	if (error)
1815 		skc_detach(dev);
1816 
1817 	return(error);
1818 }
1819 
1820 /*
1821  * Shutdown hardware and free up resources. This can be called any
1822  * time after the mutex has been initialized. It is called in both
1823  * the error case in attach and the normal detach case so it needs
1824  * to be careful about only freeing resources that have actually been
1825  * allocated.
1826  */
1827 static int
1828 sk_detach(dev)
1829 	device_t		dev;
1830 {
1831 	struct sk_if_softc	*sc_if;
1832 	struct ifnet		*ifp;
1833 
1834 	sc_if = device_get_softc(dev);
1835 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1836 	    ("sk mutex not initialized in sk_detach"));
1837 	SK_IF_LOCK(sc_if);
1838 
1839 	ifp = sc_if->sk_ifp;
1840 	/* These should only be active if attach_xmac succeeded */
1841 	if (device_is_attached(dev)) {
1842 		sk_stop(sc_if);
1843 		/* Can't hold locks while calling detach */
1844 		SK_IF_UNLOCK(sc_if);
1845 		callout_drain(&sc_if->sk_tick_ch);
1846 		callout_drain(&sc_if->sk_watchdog_ch);
1847 		ether_ifdetach(ifp);
1848 		SK_IF_LOCK(sc_if);
1849 	}
1850 	if (ifp)
1851 		if_free(ifp);
1852 	/*
1853 	 * We're generally called from skc_detach() which is using
1854 	 * device_delete_child() to get to here. It's already trashed
1855 	 * miibus for us, so don't do it here or we'll panic.
1856 	 */
1857 	/*
1858 	if (sc_if->sk_miibus != NULL)
1859 		device_delete_child(dev, sc_if->sk_miibus);
1860 	*/
1861 	bus_generic_detach(dev);
1862 	sk_dma_jumbo_free(sc_if);
1863 	sk_dma_free(sc_if);
1864 	SK_IF_UNLOCK(sc_if);
1865 
1866 	return(0);
1867 }
1868 
1869 static int
1870 skc_detach(dev)
1871 	device_t		dev;
1872 {
1873 	struct sk_softc		*sc;
1874 
1875 	sc = device_get_softc(dev);
1876 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1877 
1878 	if (device_is_alive(dev)) {
1879 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1880 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1881 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1882 		}
1883 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1884 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1885 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1886 		}
1887 		bus_generic_detach(dev);
1888 	}
1889 
1890 	if (sc->sk_intrhand)
1891 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1892 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1893 
1894 	mtx_destroy(&sc->sk_mii_mtx);
1895 	mtx_destroy(&sc->sk_mtx);
1896 
1897 	return(0);
1898 }
1899 
1900 struct sk_dmamap_arg {
1901 	bus_addr_t	sk_busaddr;
1902 };
1903 
1904 static void
1905 sk_dmamap_cb(arg, segs, nseg, error)
1906 	void			*arg;
1907 	bus_dma_segment_t	*segs;
1908 	int			nseg;
1909 	int			error;
1910 {
1911 	struct sk_dmamap_arg	*ctx;
1912 
1913 	if (error != 0)
1914 		return;
1915 
1916 	ctx = arg;
1917 	ctx->sk_busaddr = segs[0].ds_addr;
1918 }
1919 
1920 /*
1921  * Allocate jumbo buffer storage. The SysKonnect adapters support
1922  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1923  * use them in their drivers. In order for us to use them, we need
1924  * large 9K receive buffers, however standard mbuf clusters are only
1925  * 2048 bytes in size. Consequently, we need to allocate and manage
1926  * our own jumbo buffer pool. Fortunately, this does not require an
1927  * excessive amount of additional code.
1928  */
1929 static int
1930 sk_dma_alloc(sc_if)
1931 	struct sk_if_softc	*sc_if;
1932 {
1933 	struct sk_dmamap_arg	ctx;
1934 	struct sk_txdesc	*txd;
1935 	struct sk_rxdesc	*rxd;
1936 	int			error, i;
1937 
1938 	/* create parent tag */
1939 	/*
1940 	 * XXX
1941 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1942 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1943 	 * However bz@ reported that it does not work on amd64 with > 4GB
1944 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1945 	 * by limiting DMA address to be in 32bit address space.
1946 	 */
1947 	error = bus_dma_tag_create(
1948 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1949 		    1, 0,			/* algnmnt, boundary */
1950 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1951 		    BUS_SPACE_MAXADDR,		/* highaddr */
1952 		    NULL, NULL,			/* filter, filterarg */
1953 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1954 		    0,				/* nsegments */
1955 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1956 		    0,				/* flags */
1957 		    NULL, NULL,			/* lockfunc, lockarg */
1958 		    &sc_if->sk_cdata.sk_parent_tag);
1959 	if (error != 0) {
1960 		device_printf(sc_if->sk_if_dev,
1961 		    "failed to create parent DMA tag\n");
1962 		goto fail;
1963 	}
1964 
1965 	/* create tag for Tx ring */
1966 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1967 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1968 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1969 		    BUS_SPACE_MAXADDR,		/* highaddr */
1970 		    NULL, NULL,			/* filter, filterarg */
1971 		    SK_TX_RING_SZ,		/* maxsize */
1972 		    1,				/* nsegments */
1973 		    SK_TX_RING_SZ,		/* maxsegsize */
1974 		    0,				/* flags */
1975 		    NULL, NULL,			/* lockfunc, lockarg */
1976 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1977 	if (error != 0) {
1978 		device_printf(sc_if->sk_if_dev,
1979 		    "failed to allocate Tx ring DMA tag\n");
1980 		goto fail;
1981 	}
1982 
1983 	/* create tag for Rx ring */
1984 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1985 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1986 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1987 		    BUS_SPACE_MAXADDR,		/* highaddr */
1988 		    NULL, NULL,			/* filter, filterarg */
1989 		    SK_RX_RING_SZ,		/* maxsize */
1990 		    1,				/* nsegments */
1991 		    SK_RX_RING_SZ,		/* maxsegsize */
1992 		    0,				/* flags */
1993 		    NULL, NULL,			/* lockfunc, lockarg */
1994 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1995 	if (error != 0) {
1996 		device_printf(sc_if->sk_if_dev,
1997 		    "failed to allocate Rx ring DMA tag\n");
1998 		goto fail;
1999 	}
2000 
2001 	/* create tag for Tx buffers */
2002 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2003 		    1, 0,			/* algnmnt, boundary */
2004 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2005 		    BUS_SPACE_MAXADDR,		/* highaddr */
2006 		    NULL, NULL,			/* filter, filterarg */
2007 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2008 		    SK_MAXTXSEGS,		/* nsegments */
2009 		    MCLBYTES,			/* maxsegsize */
2010 		    0,				/* flags */
2011 		    NULL, NULL,			/* lockfunc, lockarg */
2012 		    &sc_if->sk_cdata.sk_tx_tag);
2013 	if (error != 0) {
2014 		device_printf(sc_if->sk_if_dev,
2015 		    "failed to allocate Tx DMA tag\n");
2016 		goto fail;
2017 	}
2018 
2019 	/* create tag for Rx buffers */
2020 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2021 		    1, 0,			/* algnmnt, boundary */
2022 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2023 		    BUS_SPACE_MAXADDR,		/* highaddr */
2024 		    NULL, NULL,			/* filter, filterarg */
2025 		    MCLBYTES,			/* maxsize */
2026 		    1,				/* nsegments */
2027 		    MCLBYTES,			/* maxsegsize */
2028 		    0,				/* flags */
2029 		    NULL, NULL,			/* lockfunc, lockarg */
2030 		    &sc_if->sk_cdata.sk_rx_tag);
2031 	if (error != 0) {
2032 		device_printf(sc_if->sk_if_dev,
2033 		    "failed to allocate Rx DMA tag\n");
2034 		goto fail;
2035 	}
2036 
2037 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2038 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2039 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2040 	    &sc_if->sk_cdata.sk_tx_ring_map);
2041 	if (error != 0) {
2042 		device_printf(sc_if->sk_if_dev,
2043 		    "failed to allocate DMA'able memory for Tx ring\n");
2044 		goto fail;
2045 	}
2046 
2047 	ctx.sk_busaddr = 0;
2048 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2049 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2050 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2051 	if (error != 0) {
2052 		device_printf(sc_if->sk_if_dev,
2053 		    "failed to load DMA'able memory for Tx ring\n");
2054 		goto fail;
2055 	}
2056 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2057 
2058 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2059 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2060 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2061 	    &sc_if->sk_cdata.sk_rx_ring_map);
2062 	if (error != 0) {
2063 		device_printf(sc_if->sk_if_dev,
2064 		    "failed to allocate DMA'able memory for Rx ring\n");
2065 		goto fail;
2066 	}
2067 
2068 	ctx.sk_busaddr = 0;
2069 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2070 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2071 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2072 	if (error != 0) {
2073 		device_printf(sc_if->sk_if_dev,
2074 		    "failed to load DMA'able memory for Rx ring\n");
2075 		goto fail;
2076 	}
2077 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2078 
2079 	/* create DMA maps for Tx buffers */
2080 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2081 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2082 		txd->tx_m = NULL;
2083 		txd->tx_dmamap = NULL;
2084 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2085 		    &txd->tx_dmamap);
2086 		if (error != 0) {
2087 			device_printf(sc_if->sk_if_dev,
2088 			    "failed to create Tx dmamap\n");
2089 			goto fail;
2090 		}
2091 	}
2092 
2093 	/* create DMA maps for Rx buffers */
2094 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2095 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2096 		device_printf(sc_if->sk_if_dev,
2097 		    "failed to create spare Rx dmamap\n");
2098 		goto fail;
2099 	}
2100 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2101 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2102 		rxd->rx_m = NULL;
2103 		rxd->rx_dmamap = NULL;
2104 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2105 		    &rxd->rx_dmamap);
2106 		if (error != 0) {
2107 			device_printf(sc_if->sk_if_dev,
2108 			    "failed to create Rx dmamap\n");
2109 			goto fail;
2110 		}
2111 	}
2112 
2113 fail:
2114 	return (error);
2115 }
2116 
2117 static int
2118 sk_dma_jumbo_alloc(sc_if)
2119 	struct sk_if_softc	*sc_if;
2120 {
2121 	struct sk_dmamap_arg	ctx;
2122 	struct sk_rxdesc	*jrxd;
2123 	int			error, i;
2124 
2125 	if (jumbo_disable != 0) {
2126 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2127 		sc_if->sk_jumbo_disable = 1;
2128 		return (0);
2129 	}
2130 	/* create tag for jumbo Rx ring */
2131 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2132 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2133 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2134 		    BUS_SPACE_MAXADDR,		/* highaddr */
2135 		    NULL, NULL,			/* filter, filterarg */
2136 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2137 		    1,				/* nsegments */
2138 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2139 		    0,				/* flags */
2140 		    NULL, NULL,			/* lockfunc, lockarg */
2141 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2142 	if (error != 0) {
2143 		device_printf(sc_if->sk_if_dev,
2144 		    "failed to allocate jumbo Rx ring DMA tag\n");
2145 		goto jumbo_fail;
2146 	}
2147 
2148 	/* create tag for jumbo Rx buffers */
2149 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2150 		    1, 0,			/* algnmnt, boundary */
2151 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2152 		    BUS_SPACE_MAXADDR,		/* highaddr */
2153 		    NULL, NULL,			/* filter, filterarg */
2154 		    MJUM9BYTES,			/* maxsize */
2155 		    1,				/* nsegments */
2156 		    MJUM9BYTES,			/* maxsegsize */
2157 		    0,				/* flags */
2158 		    NULL, NULL,			/* lockfunc, lockarg */
2159 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2160 	if (error != 0) {
2161 		device_printf(sc_if->sk_if_dev,
2162 		    "failed to allocate jumbo Rx DMA tag\n");
2163 		goto jumbo_fail;
2164 	}
2165 
2166 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2167 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2168 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2169 	    BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2170 	if (error != 0) {
2171 		device_printf(sc_if->sk_if_dev,
2172 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2173 		goto jumbo_fail;
2174 	}
2175 
2176 	ctx.sk_busaddr = 0;
2177 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2178 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2179 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2180 	    &ctx, BUS_DMA_NOWAIT);
2181 	if (error != 0) {
2182 		device_printf(sc_if->sk_if_dev,
2183 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2184 		goto jumbo_fail;
2185 	}
2186 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2187 
2188 	/* create DMA maps for jumbo Rx buffers */
2189 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2190 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2191 		device_printf(sc_if->sk_if_dev,
2192 		    "failed to create spare jumbo Rx dmamap\n");
2193 		goto jumbo_fail;
2194 	}
2195 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2196 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2197 		jrxd->rx_m = NULL;
2198 		jrxd->rx_dmamap = NULL;
2199 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2200 		    &jrxd->rx_dmamap);
2201 		if (error != 0) {
2202 			device_printf(sc_if->sk_if_dev,
2203 			    "failed to create jumbo Rx dmamap\n");
2204 			goto jumbo_fail;
2205 		}
2206 	}
2207 
2208 	return (0);
2209 
2210 jumbo_fail:
2211 	sk_dma_jumbo_free(sc_if);
2212 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2213 	    "resource shortage\n");
2214 	sc_if->sk_jumbo_disable = 1;
2215 	return (0);
2216 }
2217 
2218 static void
2219 sk_dma_free(sc_if)
2220 	struct sk_if_softc	*sc_if;
2221 {
2222 	struct sk_txdesc	*txd;
2223 	struct sk_rxdesc	*rxd;
2224 	int			i;
2225 
2226 	/* Tx ring */
2227 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2228 		if (sc_if->sk_cdata.sk_tx_ring_map)
2229 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2230 			    sc_if->sk_cdata.sk_tx_ring_map);
2231 		if (sc_if->sk_cdata.sk_tx_ring_map &&
2232 		    sc_if->sk_rdata.sk_tx_ring)
2233 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2234 			    sc_if->sk_rdata.sk_tx_ring,
2235 			    sc_if->sk_cdata.sk_tx_ring_map);
2236 		sc_if->sk_rdata.sk_tx_ring = NULL;
2237 		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2238 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2239 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2240 	}
2241 	/* Rx ring */
2242 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2243 		if (sc_if->sk_cdata.sk_rx_ring_map)
2244 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2245 			    sc_if->sk_cdata.sk_rx_ring_map);
2246 		if (sc_if->sk_cdata.sk_rx_ring_map &&
2247 		    sc_if->sk_rdata.sk_rx_ring)
2248 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2249 			    sc_if->sk_rdata.sk_rx_ring,
2250 			    sc_if->sk_cdata.sk_rx_ring_map);
2251 		sc_if->sk_rdata.sk_rx_ring = NULL;
2252 		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2253 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2254 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2255 	}
2256 	/* Tx buffers */
2257 	if (sc_if->sk_cdata.sk_tx_tag) {
2258 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2259 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2260 			if (txd->tx_dmamap) {
2261 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2262 				    txd->tx_dmamap);
2263 				txd->tx_dmamap = NULL;
2264 			}
2265 		}
2266 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2267 		sc_if->sk_cdata.sk_tx_tag = NULL;
2268 	}
2269 	/* Rx buffers */
2270 	if (sc_if->sk_cdata.sk_rx_tag) {
2271 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2272 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2273 			if (rxd->rx_dmamap) {
2274 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2275 				    rxd->rx_dmamap);
2276 				rxd->rx_dmamap = NULL;
2277 			}
2278 		}
2279 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2280 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2281 			    sc_if->sk_cdata.sk_rx_sparemap);
2282 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2283 		}
2284 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2285 		sc_if->sk_cdata.sk_rx_tag = NULL;
2286 	}
2287 
2288 	if (sc_if->sk_cdata.sk_parent_tag) {
2289 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2290 		sc_if->sk_cdata.sk_parent_tag = NULL;
2291 	}
2292 }
2293 
2294 static void
2295 sk_dma_jumbo_free(sc_if)
2296 	struct sk_if_softc	*sc_if;
2297 {
2298 	struct sk_rxdesc	*jrxd;
2299 	int			i;
2300 
2301 	/* jumbo Rx ring */
2302 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2303 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2304 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2305 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2306 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2307 		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2308 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2309 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2310 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2311 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2312 		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2313 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2314 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2315 	}
2316 
2317 	/* jumbo Rx buffers */
2318 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2319 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2320 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2321 			if (jrxd->rx_dmamap) {
2322 				bus_dmamap_destroy(
2323 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2324 				    jrxd->rx_dmamap);
2325 				jrxd->rx_dmamap = NULL;
2326 			}
2327 		}
2328 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2329 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2330 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2331 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2332 		}
2333 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2334 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2335 	}
2336 }
2337 
2338 static void
2339 sk_txcksum(ifp, m, f)
2340 	struct ifnet		*ifp;
2341 	struct mbuf		*m;
2342 	struct sk_tx_desc	*f;
2343 {
2344 	struct ip		*ip;
2345 	u_int16_t		offset;
2346 	u_int8_t 		*p;
2347 
2348 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2349 	for(; m && m->m_len == 0; m = m->m_next)
2350 		;
2351 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2352 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2353 		/* checksum may be corrupted */
2354 		goto sendit;
2355 	}
2356 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2357 		if (m->m_len != ETHER_HDR_LEN) {
2358 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2359 			    __func__);
2360 			/* checksum may be corrupted */
2361 			goto sendit;
2362 		}
2363 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2364 			;
2365 		if (m == NULL) {
2366 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2367 			/* checksum may be corrupted */
2368 			goto sendit;
2369 		}
2370 		ip = mtod(m, struct ip *);
2371 	} else {
2372 		p = mtod(m, u_int8_t *);
2373 		p += ETHER_HDR_LEN;
2374 		ip = (struct ip *)p;
2375 	}
2376 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2377 
2378 sendit:
2379 	f->sk_csum_startval = 0;
2380 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2381 	    (offset << 16));
2382 }
2383 
2384 static int
2385 sk_encap(sc_if, m_head)
2386         struct sk_if_softc	*sc_if;
2387         struct mbuf		**m_head;
2388 {
2389 	struct sk_txdesc	*txd;
2390 	struct sk_tx_desc	*f = NULL;
2391 	struct mbuf		*m;
2392 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2393 	u_int32_t		cflags, frag, si, sk_ctl;
2394 	int			error, i, nseg;
2395 
2396 	SK_IF_LOCK_ASSERT(sc_if);
2397 
2398 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2399 		return (ENOBUFS);
2400 
2401 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2402 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2403 	if (error == EFBIG) {
2404 		m = m_defrag(*m_head, M_DONTWAIT);
2405 		if (m == NULL) {
2406 			m_freem(*m_head);
2407 			*m_head = NULL;
2408 			return (ENOMEM);
2409 		}
2410 		*m_head = m;
2411 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2412 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2413 		if (error != 0) {
2414 			m_freem(*m_head);
2415 			*m_head = NULL;
2416 			return (error);
2417 		}
2418 	} else if (error != 0)
2419 		return (error);
2420 	if (nseg == 0) {
2421 		m_freem(*m_head);
2422 		*m_head = NULL;
2423 		return (EIO);
2424 	}
2425 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2426 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2427 		return (ENOBUFS);
2428 	}
2429 
2430 	m = *m_head;
2431 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2432 		cflags = SK_OPCODE_CSUM;
2433 	else
2434 		cflags = SK_OPCODE_DEFAULT;
2435 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2436 	for (i = 0; i < nseg; i++) {
2437 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2438 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2439 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2440 		sk_ctl = txsegs[i].ds_len | cflags;
2441 		if (i == 0) {
2442 			if (cflags == SK_OPCODE_CSUM)
2443 				sk_txcksum(sc_if->sk_ifp, m, f);
2444 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2445 		} else
2446 			sk_ctl |= SK_TXCTL_OWN;
2447 		f->sk_ctl = htole32(sk_ctl);
2448 		sc_if->sk_cdata.sk_tx_cnt++;
2449 		SK_INC(frag, SK_TX_RING_CNT);
2450 	}
2451 	sc_if->sk_cdata.sk_tx_prod = frag;
2452 
2453 	/* set EOF on the last desciptor */
2454 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2455 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2456 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2457 
2458 	/* turn the first descriptor ownership to NIC */
2459 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2460 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2461 
2462 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2463 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2464 	txd->tx_m = m;
2465 
2466 	/* sync descriptors */
2467 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2468 	    BUS_DMASYNC_PREWRITE);
2469 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2470 	    sc_if->sk_cdata.sk_tx_ring_map,
2471 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2472 
2473 	return (0);
2474 }
2475 
2476 static void
2477 sk_start(ifp)
2478 	struct ifnet		*ifp;
2479 {
2480 	struct sk_if_softc *sc_if;
2481 
2482 	sc_if = ifp->if_softc;
2483 
2484 	SK_IF_LOCK(sc_if);
2485 	sk_start_locked(ifp);
2486 	SK_IF_UNLOCK(sc_if);
2487 
2488 	return;
2489 }
2490 
2491 static void
2492 sk_start_locked(ifp)
2493 	struct ifnet		*ifp;
2494 {
2495         struct sk_softc		*sc;
2496         struct sk_if_softc	*sc_if;
2497         struct mbuf		*m_head;
2498 	int			enq;
2499 
2500 	sc_if = ifp->if_softc;
2501 	sc = sc_if->sk_softc;
2502 
2503 	SK_IF_LOCK_ASSERT(sc_if);
2504 
2505 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2506 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2507 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2508 		if (m_head == NULL)
2509 			break;
2510 
2511 		/*
2512 		 * Pack the data into the transmit ring. If we
2513 		 * don't have room, set the OACTIVE flag and wait
2514 		 * for the NIC to drain the ring.
2515 		 */
2516 		if (sk_encap(sc_if, &m_head)) {
2517 			if (m_head == NULL)
2518 				break;
2519 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2520 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2521 			break;
2522 		}
2523 
2524 		enq++;
2525 		/*
2526 		 * If there's a BPF listener, bounce a copy of this frame
2527 		 * to him.
2528 		 */
2529 		BPF_MTAP(ifp, m_head);
2530 	}
2531 
2532 	if (enq > 0) {
2533 		/* Transmit */
2534 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2535 
2536 		/* Set a timeout in case the chip goes out to lunch. */
2537 		sc_if->sk_watchdog_timer = 5;
2538 	}
2539 }
2540 
2541 
2542 static void
2543 sk_watchdog(arg)
2544 	void			*arg;
2545 {
2546 	struct sk_if_softc	*sc_if;
2547 	struct ifnet		*ifp;
2548 
2549 	ifp = arg;
2550 	sc_if = ifp->if_softc;
2551 
2552 	SK_IF_LOCK_ASSERT(sc_if);
2553 
2554 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2555 		goto done;
2556 
2557 	/*
2558 	 * Reclaim first as there is a possibility of losing Tx completion
2559 	 * interrupts.
2560 	 */
2561 	sk_txeof(sc_if);
2562 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2563 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2564 		ifp->if_oerrors++;
2565 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2566 		sk_init_locked(sc_if);
2567 	}
2568 
2569 done:
2570 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2571 
2572 	return;
2573 }
2574 
2575 static int
2576 skc_shutdown(dev)
2577 	device_t		dev;
2578 {
2579 	struct sk_softc		*sc;
2580 
2581 	sc = device_get_softc(dev);
2582 	SK_LOCK(sc);
2583 
2584 	/* Turn off the 'driver is loaded' LED. */
2585 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2586 
2587 	/*
2588 	 * Reset the GEnesis controller. Doing this should also
2589 	 * assert the resets on the attached XMAC(s).
2590 	 */
2591 	sk_reset(sc);
2592 	SK_UNLOCK(sc);
2593 
2594 	return (0);
2595 }
2596 
2597 static int
2598 skc_suspend(dev)
2599 	device_t		dev;
2600 {
2601 	struct sk_softc		*sc;
2602 	struct sk_if_softc	*sc_if0, *sc_if1;
2603 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2604 
2605 	sc = device_get_softc(dev);
2606 
2607 	SK_LOCK(sc);
2608 
2609 	sc_if0 = sc->sk_if[SK_PORT_A];
2610 	sc_if1 = sc->sk_if[SK_PORT_B];
2611 	if (sc_if0 != NULL)
2612 		ifp0 = sc_if0->sk_ifp;
2613 	if (sc_if1 != NULL)
2614 		ifp1 = sc_if1->sk_ifp;
2615 	if (ifp0 != NULL)
2616 		sk_stop(sc_if0);
2617 	if (ifp1 != NULL)
2618 		sk_stop(sc_if1);
2619 	sc->sk_suspended = 1;
2620 
2621 	SK_UNLOCK(sc);
2622 
2623 	return (0);
2624 }
2625 
2626 static int
2627 skc_resume(dev)
2628 	device_t		dev;
2629 {
2630 	struct sk_softc		*sc;
2631 	struct sk_if_softc	*sc_if0, *sc_if1;
2632 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2633 
2634 	sc = device_get_softc(dev);
2635 
2636 	SK_LOCK(sc);
2637 
2638 	sc_if0 = sc->sk_if[SK_PORT_A];
2639 	sc_if1 = sc->sk_if[SK_PORT_B];
2640 	if (sc_if0 != NULL)
2641 		ifp0 = sc_if0->sk_ifp;
2642 	if (sc_if1 != NULL)
2643 		ifp1 = sc_if1->sk_ifp;
2644 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2645 		sk_init_locked(sc_if0);
2646 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2647 		sk_init_locked(sc_if1);
2648 	sc->sk_suspended = 0;
2649 
2650 	SK_UNLOCK(sc);
2651 
2652 	return (0);
2653 }
2654 
2655 /*
2656  * According to the data sheet from SK-NET GENESIS the hardware can compute
2657  * two Rx checksums at the same time(Each checksum start position is
2658  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2659  * does not work at least on my Yukon hardware. I tried every possible ways
2660  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2661  * checksum offload was disabled at the moment and only IP checksum offload
2662  * was enabled.
2663  * As nomral IP header size is 20 bytes I can't expect it would give an
2664  * increase in throughput. However it seems it doesn't hurt performance in
2665  * my testing. If there is a more detailed information for checksum secret
2666  * of the hardware in question please contact yongari@FreeBSD.org to add
2667  * TCP/UDP checksum offload support.
2668  */
2669 static __inline void
2670 sk_rxcksum(ifp, m, csum)
2671 	struct ifnet		*ifp;
2672 	struct mbuf		*m;
2673 	u_int32_t		csum;
2674 {
2675 	struct ether_header	*eh;
2676 	struct ip		*ip;
2677 	int32_t			hlen, len, pktlen;
2678 	u_int16_t		csum1, csum2, ipcsum;
2679 
2680 	pktlen = m->m_pkthdr.len;
2681 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2682 		return;
2683 	eh = mtod(m, struct ether_header *);
2684 	if (eh->ether_type != htons(ETHERTYPE_IP))
2685 		return;
2686 	ip = (struct ip *)(eh + 1);
2687 	if (ip->ip_v != IPVERSION)
2688 		return;
2689 	hlen = ip->ip_hl << 2;
2690 	pktlen -= sizeof(struct ether_header);
2691 	if (hlen < sizeof(struct ip))
2692 		return;
2693 	if (ntohs(ip->ip_len) < hlen)
2694 		return;
2695 	if (ntohs(ip->ip_len) != pktlen)
2696 		return;
2697 
2698 	csum1 = htons(csum & 0xffff);
2699 	csum2 = htons((csum >> 16) & 0xffff);
2700 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2701 	/* checksum fixup for IP options */
2702 	len = hlen - sizeof(struct ip);
2703 	if (len > 0) {
2704 		/*
2705 		 * If the second checksum value is correct we can compute IP
2706 		 * checksum with simple math. Unfortunately the second checksum
2707 		 * value is wrong so we can't verify the checksum from the
2708 		 * value(It seems there is some magic here to get correct
2709 		 * value). If the second checksum value is correct it also
2710 		 * means we can get TCP/UDP checksum) here. However, it still
2711 		 * needs pseudo header checksum calculation due to hardware
2712 		 * limitations.
2713 		 */
2714 		return;
2715 	}
2716 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2717 	if (ipcsum == 0xffff)
2718 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2719 }
2720 
2721 static __inline int
2722 sk_rxvalid(sc, stat, len)
2723 	struct sk_softc		*sc;
2724 	u_int32_t		stat, len;
2725 {
2726 
2727 	if (sc->sk_type == SK_GENESIS) {
2728 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2729 		    XM_RXSTAT_BYTES(stat) != len)
2730 			return (0);
2731 	} else {
2732 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2733 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2734 		    YU_RXSTAT_JABBER)) != 0 ||
2735 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2736 		    YU_RXSTAT_BYTES(stat) != len)
2737 			return (0);
2738 	}
2739 
2740 	return (1);
2741 }
2742 
2743 static void
2744 sk_rxeof(sc_if)
2745 	struct sk_if_softc	*sc_if;
2746 {
2747 	struct sk_softc		*sc;
2748 	struct mbuf		*m;
2749 	struct ifnet		*ifp;
2750 	struct sk_rx_desc	*cur_rx;
2751 	struct sk_rxdesc	*rxd;
2752 	int			cons, prog;
2753 	u_int32_t		csum, rxstat, sk_ctl;
2754 
2755 	sc = sc_if->sk_softc;
2756 	ifp = sc_if->sk_ifp;
2757 
2758 	SK_IF_LOCK_ASSERT(sc_if);
2759 
2760 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2761 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2762 
2763 	prog = 0;
2764 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2765 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2766 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2767 		sk_ctl = le32toh(cur_rx->sk_ctl);
2768 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2769 			break;
2770 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2771 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2772 
2773 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2774 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2775 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2776 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2777 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2778 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2779 			ifp->if_ierrors++;
2780 			sk_discard_rxbuf(sc_if, cons);
2781 			continue;
2782 		}
2783 
2784 		m = rxd->rx_m;
2785 		csum = le32toh(cur_rx->sk_csum);
2786 		if (sk_newbuf(sc_if, cons) != 0) {
2787 			ifp->if_iqdrops++;
2788 			/* reuse old buffer */
2789 			sk_discard_rxbuf(sc_if, cons);
2790 			continue;
2791 		}
2792 		m->m_pkthdr.rcvif = ifp;
2793 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2794 		ifp->if_ipackets++;
2795 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2796 			sk_rxcksum(ifp, m, csum);
2797 		SK_IF_UNLOCK(sc_if);
2798 		(*ifp->if_input)(ifp, m);
2799 		SK_IF_LOCK(sc_if);
2800 	}
2801 
2802 	if (prog > 0) {
2803 		sc_if->sk_cdata.sk_rx_cons = cons;
2804 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2805 		    sc_if->sk_cdata.sk_rx_ring_map,
2806 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2807 	}
2808 }
2809 
2810 static void
2811 sk_jumbo_rxeof(sc_if)
2812 	struct sk_if_softc	*sc_if;
2813 {
2814 	struct sk_softc		*sc;
2815 	struct mbuf		*m;
2816 	struct ifnet		*ifp;
2817 	struct sk_rx_desc	*cur_rx;
2818 	struct sk_rxdesc	*jrxd;
2819 	int			cons, prog;
2820 	u_int32_t		csum, rxstat, sk_ctl;
2821 
2822 	sc = sc_if->sk_softc;
2823 	ifp = sc_if->sk_ifp;
2824 
2825 	SK_IF_LOCK_ASSERT(sc_if);
2826 
2827 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2828 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2829 
2830 	prog = 0;
2831 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2832 	    prog < SK_JUMBO_RX_RING_CNT;
2833 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2834 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2835 		sk_ctl = le32toh(cur_rx->sk_ctl);
2836 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2837 			break;
2838 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2839 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2840 
2841 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2842 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2843 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2844 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2845 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2846 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2847 			ifp->if_ierrors++;
2848 			sk_discard_jumbo_rxbuf(sc_if, cons);
2849 			continue;
2850 		}
2851 
2852 		m = jrxd->rx_m;
2853 		csum = le32toh(cur_rx->sk_csum);
2854 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2855 			ifp->if_iqdrops++;
2856 			/* reuse old buffer */
2857 			sk_discard_jumbo_rxbuf(sc_if, cons);
2858 			continue;
2859 		}
2860 		m->m_pkthdr.rcvif = ifp;
2861 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2862 		ifp->if_ipackets++;
2863 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2864 			sk_rxcksum(ifp, m, csum);
2865 		SK_IF_UNLOCK(sc_if);
2866 		(*ifp->if_input)(ifp, m);
2867 		SK_IF_LOCK(sc_if);
2868 	}
2869 
2870 	if (prog > 0) {
2871 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2872 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2873 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2874 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2875 	}
2876 }
2877 
2878 static void
2879 sk_txeof(sc_if)
2880 	struct sk_if_softc	*sc_if;
2881 {
2882 	struct sk_softc		*sc;
2883 	struct sk_txdesc	*txd;
2884 	struct sk_tx_desc	*cur_tx;
2885 	struct ifnet		*ifp;
2886 	u_int32_t		idx, sk_ctl;
2887 
2888 	sc = sc_if->sk_softc;
2889 	ifp = sc_if->sk_ifp;
2890 
2891 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2892 	if (txd == NULL)
2893 		return;
2894 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2895 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2896 	/*
2897 	 * Go through our tx ring and free mbufs for those
2898 	 * frames that have been sent.
2899 	 */
2900 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2901 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2902 			break;
2903 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2904 		sk_ctl = le32toh(cur_tx->sk_ctl);
2905 		if (sk_ctl & SK_TXCTL_OWN)
2906 			break;
2907 		sc_if->sk_cdata.sk_tx_cnt--;
2908 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2909 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2910 			continue;
2911 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2912 		    BUS_DMASYNC_POSTWRITE);
2913 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2914 
2915 		ifp->if_opackets++;
2916 		m_freem(txd->tx_m);
2917 		txd->tx_m = NULL;
2918 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2919 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2920 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2921 	}
2922 	sc_if->sk_cdata.sk_tx_cons = idx;
2923 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2924 
2925 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2926 	    sc_if->sk_cdata.sk_tx_ring_map,
2927 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2928 }
2929 
2930 static void
2931 sk_tick(xsc_if)
2932 	void			*xsc_if;
2933 {
2934 	struct sk_if_softc	*sc_if;
2935 	struct mii_data		*mii;
2936 	struct ifnet		*ifp;
2937 	int			i;
2938 
2939 	sc_if = xsc_if;
2940 	ifp = sc_if->sk_ifp;
2941 	mii = device_get_softc(sc_if->sk_miibus);
2942 
2943 	if (!(ifp->if_flags & IFF_UP))
2944 		return;
2945 
2946 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2947 		sk_intr_bcom(sc_if);
2948 		return;
2949 	}
2950 
2951 	/*
2952 	 * According to SysKonnect, the correct way to verify that
2953 	 * the link has come back up is to poll bit 0 of the GPIO
2954 	 * register three times. This pin has the signal from the
2955 	 * link_sync pin connected to it; if we read the same link
2956 	 * state 3 times in a row, we know the link is up.
2957 	 */
2958 	for (i = 0; i < 3; i++) {
2959 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2960 			break;
2961 	}
2962 
2963 	if (i != 3) {
2964 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2965 		return;
2966 	}
2967 
2968 	/* Turn the GP0 interrupt back on. */
2969 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2970 	SK_XM_READ_2(sc_if, XM_ISR);
2971 	mii_tick(mii);
2972 	callout_stop(&sc_if->sk_tick_ch);
2973 }
2974 
2975 static void
2976 sk_yukon_tick(xsc_if)
2977 	void			*xsc_if;
2978 {
2979 	struct sk_if_softc	*sc_if;
2980 	struct mii_data		*mii;
2981 
2982 	sc_if = xsc_if;
2983 	mii = device_get_softc(sc_if->sk_miibus);
2984 
2985 	mii_tick(mii);
2986 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2987 }
2988 
2989 static void
2990 sk_intr_bcom(sc_if)
2991 	struct sk_if_softc	*sc_if;
2992 {
2993 	struct mii_data		*mii;
2994 	struct ifnet		*ifp;
2995 	int			status;
2996 	mii = device_get_softc(sc_if->sk_miibus);
2997 	ifp = sc_if->sk_ifp;
2998 
2999 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3000 
3001 	/*
3002 	 * Read the PHY interrupt register to make sure
3003 	 * we clear any pending interrupts.
3004 	 */
3005 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3006 
3007 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3008 		sk_init_xmac(sc_if);
3009 		return;
3010 	}
3011 
3012 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3013 		int			lstat;
3014 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3015 		    BRGPHY_MII_AUXSTS);
3016 
3017 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3018 			mii_mediachg(mii);
3019 			/* Turn off the link LED. */
3020 			SK_IF_WRITE_1(sc_if, 0,
3021 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3022 			sc_if->sk_link = 0;
3023 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3024 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3025 	    		    BRGPHY_MII_IMR, 0xFF00);
3026 			mii_tick(mii);
3027 			sc_if->sk_link = 1;
3028 			/* Turn on the link LED. */
3029 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3030 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3031 			    SK_LINKLED_BLINK_OFF);
3032 		} else {
3033 			mii_tick(mii);
3034 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3035 		}
3036 	}
3037 
3038 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3039 
3040 	return;
3041 }
3042 
3043 static void
3044 sk_intr_xmac(sc_if)
3045 	struct sk_if_softc	*sc_if;
3046 {
3047 	struct sk_softc		*sc;
3048 	u_int16_t		status;
3049 
3050 	sc = sc_if->sk_softc;
3051 	status = SK_XM_READ_2(sc_if, XM_ISR);
3052 
3053 	/*
3054 	 * Link has gone down. Start MII tick timeout to
3055 	 * watch for link resync.
3056 	 */
3057 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3058 		if (status & XM_ISR_GP0_SET) {
3059 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3060 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3061 		}
3062 
3063 		if (status & XM_ISR_AUTONEG_DONE) {
3064 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3065 		}
3066 	}
3067 
3068 	if (status & XM_IMR_TX_UNDERRUN)
3069 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3070 
3071 	if (status & XM_IMR_RX_OVERRUN)
3072 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3073 
3074 	status = SK_XM_READ_2(sc_if, XM_ISR);
3075 
3076 	return;
3077 }
3078 
3079 static void
3080 sk_intr_yukon(sc_if)
3081 	struct sk_if_softc	*sc_if;
3082 {
3083 	u_int8_t status;
3084 
3085 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3086 	/* RX overrun */
3087 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3088 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3089 		    SK_RFCTL_RX_FIFO_OVER);
3090 	}
3091 	/* TX underrun */
3092 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3093 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3094 		    SK_TFCTL_TX_FIFO_UNDER);
3095 	}
3096 }
3097 
3098 static void
3099 sk_intr(xsc)
3100 	void			*xsc;
3101 {
3102 	struct sk_softc		*sc = xsc;
3103 	struct sk_if_softc	*sc_if0, *sc_if1;
3104 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3105 	u_int32_t		status;
3106 
3107 	SK_LOCK(sc);
3108 
3109 	status = CSR_READ_4(sc, SK_ISSR);
3110 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3111 		goto done_locked;
3112 
3113 	sc_if0 = sc->sk_if[SK_PORT_A];
3114 	sc_if1 = sc->sk_if[SK_PORT_B];
3115 
3116 	if (sc_if0 != NULL)
3117 		ifp0 = sc_if0->sk_ifp;
3118 	if (sc_if1 != NULL)
3119 		ifp1 = sc_if1->sk_ifp;
3120 
3121 	for (; (status &= sc->sk_intrmask) != 0;) {
3122 		/* Handle receive interrupts first. */
3123 		if (status & SK_ISR_RX1_EOF) {
3124 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3125 				sk_jumbo_rxeof(sc_if0);
3126 			else
3127 				sk_rxeof(sc_if0);
3128 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3129 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3130 		}
3131 		if (status & SK_ISR_RX2_EOF) {
3132 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3133 				sk_jumbo_rxeof(sc_if1);
3134 			else
3135 				sk_rxeof(sc_if1);
3136 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3137 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3138 		}
3139 
3140 		/* Then transmit interrupts. */
3141 		if (status & SK_ISR_TX1_S_EOF) {
3142 			sk_txeof(sc_if0);
3143 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3144 		}
3145 		if (status & SK_ISR_TX2_S_EOF) {
3146 			sk_txeof(sc_if1);
3147 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3148 		}
3149 
3150 		/* Then MAC interrupts. */
3151 		if (status & SK_ISR_MAC1 &&
3152 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3153 			if (sc->sk_type == SK_GENESIS)
3154 				sk_intr_xmac(sc_if0);
3155 			else
3156 				sk_intr_yukon(sc_if0);
3157 		}
3158 
3159 		if (status & SK_ISR_MAC2 &&
3160 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3161 			if (sc->sk_type == SK_GENESIS)
3162 				sk_intr_xmac(sc_if1);
3163 			else
3164 				sk_intr_yukon(sc_if1);
3165 		}
3166 
3167 		if (status & SK_ISR_EXTERNAL_REG) {
3168 			if (ifp0 != NULL &&
3169 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3170 				sk_intr_bcom(sc_if0);
3171 			if (ifp1 != NULL &&
3172 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3173 				sk_intr_bcom(sc_if1);
3174 		}
3175 		status = CSR_READ_4(sc, SK_ISSR);
3176 	}
3177 
3178 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3179 
3180 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3181 		sk_start_locked(ifp0);
3182 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3183 		sk_start_locked(ifp1);
3184 
3185 done_locked:
3186 	SK_UNLOCK(sc);
3187 }
3188 
3189 static void
3190 sk_init_xmac(sc_if)
3191 	struct sk_if_softc	*sc_if;
3192 {
3193 	struct sk_softc		*sc;
3194 	struct ifnet		*ifp;
3195 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3196 	struct sk_bcom_hack	bhack[] = {
3197 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3198 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3199 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3200 	{ 0, 0 } };
3201 
3202 	SK_IF_LOCK_ASSERT(sc_if);
3203 
3204 	sc = sc_if->sk_softc;
3205 	ifp = sc_if->sk_ifp;
3206 
3207 	/* Unreset the XMAC. */
3208 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3209 	DELAY(1000);
3210 
3211 	/* Reset the XMAC's internal state. */
3212 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3213 
3214 	/* Save the XMAC II revision */
3215 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3216 
3217 	/*
3218 	 * Perform additional initialization for external PHYs,
3219 	 * namely for the 1000baseTX cards that use the XMAC's
3220 	 * GMII mode.
3221 	 */
3222 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3223 		int			i = 0;
3224 		u_int32_t		val;
3225 
3226 		/* Take PHY out of reset. */
3227 		val = sk_win_read_4(sc, SK_GPIO);
3228 		if (sc_if->sk_port == SK_PORT_A)
3229 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3230 		else
3231 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3232 		sk_win_write_4(sc, SK_GPIO, val);
3233 
3234 		/* Enable GMII mode on the XMAC. */
3235 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3236 
3237 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3238 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3239 		DELAY(10000);
3240 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3241 		    BRGPHY_MII_IMR, 0xFFF0);
3242 
3243 		/*
3244 		 * Early versions of the BCM5400 apparently have
3245 		 * a bug that requires them to have their reserved
3246 		 * registers initialized to some magic values. I don't
3247 		 * know what the numbers do, I'm just the messenger.
3248 		 */
3249 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3250 		    == 0x6041) {
3251 			while(bhack[i].reg) {
3252 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3253 				    bhack[i].reg, bhack[i].val);
3254 				i++;
3255 			}
3256 		}
3257 	}
3258 
3259 	/* Set station address */
3260 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3261 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3262 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3263 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3264 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3265 
3266 	if (ifp->if_flags & IFF_BROADCAST) {
3267 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3268 	} else {
3269 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3270 	}
3271 
3272 	/* We don't need the FCS appended to the packet. */
3273 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3274 
3275 	/* We want short frames padded to 60 bytes. */
3276 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3277 
3278 	/*
3279 	 * Enable the reception of all error frames. This is is
3280 	 * a necessary evil due to the design of the XMAC. The
3281 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3282 	 * frames can be up to 9000 bytes in length. When bad
3283 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3284 	 * in 'store and forward' mode. For this to work, the
3285 	 * entire frame has to fit into the FIFO, but that means
3286 	 * that jumbo frames larger than 8192 bytes will be
3287 	 * truncated. Disabling all bad frame filtering causes
3288 	 * the RX FIFO to operate in streaming mode, in which
3289 	 * case the XMAC will start transfering frames out of the
3290 	 * RX FIFO as soon as the FIFO threshold is reached.
3291 	 */
3292 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3293 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3294 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3295 		    XM_MODE_RX_INRANGELEN);
3296 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3297 	} else
3298 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3299 
3300 	/*
3301 	 * Bump up the transmit threshold. This helps hold off transmit
3302 	 * underruns when we're blasting traffic from both ports at once.
3303 	 */
3304 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3305 
3306 	/* Set Rx filter */
3307 	sk_rxfilter_genesis(sc_if);
3308 
3309 	/* Clear and enable interrupts */
3310 	SK_XM_READ_2(sc_if, XM_ISR);
3311 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3312 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3313 	else
3314 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3315 
3316 	/* Configure MAC arbiter */
3317 	switch(sc_if->sk_xmac_rev) {
3318 	case XM_XMAC_REV_B2:
3319 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3320 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3321 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3322 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3323 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3324 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3325 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3326 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3327 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3328 		break;
3329 	case XM_XMAC_REV_C1:
3330 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3331 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3332 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3333 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3334 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3335 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3336 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3337 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3338 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3339 		break;
3340 	default:
3341 		break;
3342 	}
3343 	sk_win_write_2(sc, SK_MACARB_CTL,
3344 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3345 
3346 	sc_if->sk_link = 1;
3347 
3348 	return;
3349 }
3350 
3351 static void
3352 sk_init_yukon(sc_if)
3353 	struct sk_if_softc	*sc_if;
3354 {
3355 	u_int32_t		phy, v;
3356 	u_int16_t		reg;
3357 	struct sk_softc		*sc;
3358 	struct ifnet		*ifp;
3359 	u_int8_t		*eaddr;
3360 	int			i;
3361 
3362 	SK_IF_LOCK_ASSERT(sc_if);
3363 
3364 	sc = sc_if->sk_softc;
3365 	ifp = sc_if->sk_ifp;
3366 
3367 	if (sc->sk_type == SK_YUKON_LITE &&
3368 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3369 		/*
3370 		 * Workaround code for COMA mode, set PHY reset.
3371 		 * Otherwise it will not correctly take chip out of
3372 		 * powerdown (coma)
3373 		 */
3374 		v = sk_win_read_4(sc, SK_GPIO);
3375 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3376 		sk_win_write_4(sc, SK_GPIO, v);
3377 	}
3378 
3379 	/* GMAC and GPHY Reset */
3380 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3381 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3382 	DELAY(1000);
3383 
3384 	if (sc->sk_type == SK_YUKON_LITE &&
3385 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3386 		/*
3387 		 * Workaround code for COMA mode, clear PHY reset
3388 		 */
3389 		v = sk_win_read_4(sc, SK_GPIO);
3390 		v |= SK_GPIO_DIR9;
3391 		v &= ~SK_GPIO_DAT9;
3392 		sk_win_write_4(sc, SK_GPIO, v);
3393 	}
3394 
3395 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3396 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3397 
3398 	if (sc->sk_coppertype)
3399 		phy |= SK_GPHY_COPPER;
3400 	else
3401 		phy |= SK_GPHY_FIBER;
3402 
3403 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3404 	DELAY(1000);
3405 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3406 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3407 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3408 
3409 	/* unused read of the interrupt source register */
3410 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3411 
3412 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3413 
3414 	/* MIB Counter Clear Mode set */
3415 	reg |= YU_PAR_MIB_CLR;
3416 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3417 
3418 	/* MIB Counter Clear Mode clear */
3419 	reg &= ~YU_PAR_MIB_CLR;
3420 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3421 
3422 	/* receive control reg */
3423 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3424 
3425 	/* transmit parameter register */
3426 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3427 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3428 
3429 	/* serial mode register */
3430 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3431 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3432 		reg |= YU_SMR_MFL_JUMBO;
3433 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3434 
3435 	/* Setup Yukon's station address */
3436 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3437 	for (i = 0; i < 3; i++)
3438 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3439 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3440 	/* Set GMAC source address of flow control. */
3441 	for (i = 0; i < 3; i++)
3442 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3443 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3444 	/* Set GMAC virtual address. */
3445 	for (i = 0; i < 3; i++)
3446 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3447 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3448 
3449 	/* Set Rx filter */
3450 	sk_rxfilter_yukon(sc_if);
3451 
3452 	/* enable interrupt mask for counter overflows */
3453 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3454 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3455 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3456 
3457 	/* Configure RX MAC FIFO Flush Mask */
3458 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3459 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3460 	    YU_RXSTAT_JABBER;
3461 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3462 
3463 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3464 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3465 		v = SK_TFCTL_OPERATION_ON;
3466 	else
3467 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3468 	/* Configure RX MAC FIFO */
3469 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3470 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3471 
3472 	/* Increase flush threshould to 64 bytes */
3473 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3474 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3475 
3476 	/* Configure TX MAC FIFO */
3477 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3478 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3479 }
3480 
3481 /*
3482  * Note that to properly initialize any part of the GEnesis chip,
3483  * you first have to take it out of reset mode.
3484  */
3485 static void
3486 sk_init(xsc)
3487 	void			*xsc;
3488 {
3489 	struct sk_if_softc	*sc_if = xsc;
3490 
3491 	SK_IF_LOCK(sc_if);
3492 	sk_init_locked(sc_if);
3493 	SK_IF_UNLOCK(sc_if);
3494 
3495 	return;
3496 }
3497 
3498 static void
3499 sk_init_locked(sc_if)
3500 	struct sk_if_softc	*sc_if;
3501 {
3502 	struct sk_softc		*sc;
3503 	struct ifnet		*ifp;
3504 	struct mii_data		*mii;
3505 	u_int16_t		reg;
3506 	u_int32_t		imr;
3507 	int			error;
3508 
3509 	SK_IF_LOCK_ASSERT(sc_if);
3510 
3511 	ifp = sc_if->sk_ifp;
3512 	sc = sc_if->sk_softc;
3513 	mii = device_get_softc(sc_if->sk_miibus);
3514 
3515 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3516 		return;
3517 
3518 	/* Cancel pending I/O and free all RX/TX buffers. */
3519 	sk_stop(sc_if);
3520 
3521 	if (sc->sk_type == SK_GENESIS) {
3522 		/* Configure LINK_SYNC LED */
3523 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3524 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3525 			SK_LINKLED_LINKSYNC_ON);
3526 
3527 		/* Configure RX LED */
3528 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3529 			SK_RXLEDCTL_COUNTER_START);
3530 
3531 		/* Configure TX LED */
3532 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3533 			SK_TXLEDCTL_COUNTER_START);
3534 	}
3535 
3536 	/*
3537 	 * Configure descriptor poll timer
3538 	 *
3539 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3540 	 * transmit command due to CPU/cache related interim storage problems
3541 	 * under certain conditions. The document recommends a polling
3542 	 * mechanism to send a Start transmit command to initiate transfer
3543 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3544 	 * enables descriptor poll timer to initiate descriptor processing
3545 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3546 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3547 	 * command instead of waiting for next descriptor polling time.
3548 	 * The same rule may apply to Rx side too but it seems that is not
3549 	 * needed at the moment.
3550 	 * Since sk(4) uses descriptor polling as a last resort there is no
3551 	 * need to set smaller polling time than maximum allowable one.
3552 	 */
3553 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3554 
3555 	/* Configure I2C registers */
3556 
3557 	/* Configure XMAC(s) */
3558 	switch (sc->sk_type) {
3559 	case SK_GENESIS:
3560 		sk_init_xmac(sc_if);
3561 		break;
3562 	case SK_YUKON:
3563 	case SK_YUKON_LITE:
3564 	case SK_YUKON_LP:
3565 		sk_init_yukon(sc_if);
3566 		break;
3567 	}
3568 	mii_mediachg(mii);
3569 
3570 	if (sc->sk_type == SK_GENESIS) {
3571 		/* Configure MAC FIFOs */
3572 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3573 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3574 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3575 
3576 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3577 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3578 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3579 	}
3580 
3581 	/* Configure transmit arbiter(s) */
3582 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3583 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3584 
3585 	/* Configure RAMbuffers */
3586 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3587 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3588 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3589 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3590 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3591 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3592 
3593 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3594 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3595 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3596 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3597 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3598 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3599 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3600 
3601 	/* Configure BMUs */
3602 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3603 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3604 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3605 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3606 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3607 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3608 	} else {
3609 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3610 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3611 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3612 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3613 	}
3614 
3615 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3616 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3617 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3618 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3619 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3620 
3621 	/* Init descriptors */
3622 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3623 		error = sk_init_jumbo_rx_ring(sc_if);
3624 	else
3625 		error = sk_init_rx_ring(sc_if);
3626 	if (error != 0) {
3627 		device_printf(sc_if->sk_if_dev,
3628 		    "initialization failed: no memory for rx buffers\n");
3629 		sk_stop(sc_if);
3630 		return;
3631 	}
3632 	sk_init_tx_ring(sc_if);
3633 
3634 	/* Set interrupt moderation if changed via sysctl. */
3635 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3636 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3637 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3638 		    sc->sk_int_ticks));
3639 		if (bootverbose)
3640 			device_printf(sc_if->sk_if_dev,
3641 			    "interrupt moderation is %d us.\n",
3642 			    sc->sk_int_mod);
3643 	}
3644 
3645 	/* Configure interrupt handling */
3646 	CSR_READ_4(sc, SK_ISSR);
3647 	if (sc_if->sk_port == SK_PORT_A)
3648 		sc->sk_intrmask |= SK_INTRS1;
3649 	else
3650 		sc->sk_intrmask |= SK_INTRS2;
3651 
3652 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3653 
3654 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3655 
3656 	/* Start BMUs. */
3657 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3658 
3659 	switch(sc->sk_type) {
3660 	case SK_GENESIS:
3661 		/* Enable XMACs TX and RX state machines */
3662 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3663 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3664 		break;
3665 	case SK_YUKON:
3666 	case SK_YUKON_LITE:
3667 	case SK_YUKON_LP:
3668 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3669 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3670 #if 0
3671 		/* XXX disable 100Mbps and full duplex mode? */
3672 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3673 #endif
3674 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3675 	}
3676 
3677 	/* Activate descriptor polling timer */
3678 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3679 	/* start transfer of Tx descriptors */
3680 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3681 
3682 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3683 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3684 
3685 	switch (sc->sk_type) {
3686 	case SK_YUKON:
3687 	case SK_YUKON_LITE:
3688 	case SK_YUKON_LP:
3689 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3690 		break;
3691 	}
3692 
3693 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3694 
3695 	return;
3696 }
3697 
3698 static void
3699 sk_stop(sc_if)
3700 	struct sk_if_softc	*sc_if;
3701 {
3702 	int			i;
3703 	struct sk_softc		*sc;
3704 	struct sk_txdesc	*txd;
3705 	struct sk_rxdesc	*rxd;
3706 	struct sk_rxdesc	*jrxd;
3707 	struct ifnet		*ifp;
3708 	u_int32_t		val;
3709 
3710 	SK_IF_LOCK_ASSERT(sc_if);
3711 	sc = sc_if->sk_softc;
3712 	ifp = sc_if->sk_ifp;
3713 
3714 	callout_stop(&sc_if->sk_tick_ch);
3715 	callout_stop(&sc_if->sk_watchdog_ch);
3716 
3717 	/* stop Tx descriptor polling timer */
3718 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3719 	/* stop transfer of Tx descriptors */
3720 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3721 	for (i = 0; i < SK_TIMEOUT; i++) {
3722 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3723 		if ((val & SK_TXBMU_TX_STOP) == 0)
3724 			break;
3725 		DELAY(1);
3726 	}
3727 	if (i == SK_TIMEOUT)
3728 		device_printf(sc_if->sk_if_dev,
3729 		    "can not stop transfer of Tx descriptor\n");
3730 	/* stop transfer of Rx descriptors */
3731 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3732 	for (i = 0; i < SK_TIMEOUT; i++) {
3733 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3734 		if ((val & SK_RXBMU_RX_STOP) == 0)
3735 			break;
3736 		DELAY(1);
3737 	}
3738 	if (i == SK_TIMEOUT)
3739 		device_printf(sc_if->sk_if_dev,
3740 		    "can not stop transfer of Rx descriptor\n");
3741 
3742 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3743 		/* Put PHY back into reset. */
3744 		val = sk_win_read_4(sc, SK_GPIO);
3745 		if (sc_if->sk_port == SK_PORT_A) {
3746 			val |= SK_GPIO_DIR0;
3747 			val &= ~SK_GPIO_DAT0;
3748 		} else {
3749 			val |= SK_GPIO_DIR2;
3750 			val &= ~SK_GPIO_DAT2;
3751 		}
3752 		sk_win_write_4(sc, SK_GPIO, val);
3753 	}
3754 
3755 	/* Turn off various components of this interface. */
3756 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3757 	switch (sc->sk_type) {
3758 	case SK_GENESIS:
3759 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3760 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3761 		break;
3762 	case SK_YUKON:
3763 	case SK_YUKON_LITE:
3764 	case SK_YUKON_LP:
3765 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3766 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3767 		break;
3768 	}
3769 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3770 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3771 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3773 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3774 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3775 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3776 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3777 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3778 
3779 	/* Disable interrupts */
3780 	if (sc_if->sk_port == SK_PORT_A)
3781 		sc->sk_intrmask &= ~SK_INTRS1;
3782 	else
3783 		sc->sk_intrmask &= ~SK_INTRS2;
3784 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3785 
3786 	SK_XM_READ_2(sc_if, XM_ISR);
3787 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3788 
3789 	/* Free RX and TX mbufs still in the queues. */
3790 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3791 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3792 		if (rxd->rx_m != NULL) {
3793 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3794 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3795 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3796 			    rxd->rx_dmamap);
3797 			m_freem(rxd->rx_m);
3798 			rxd->rx_m = NULL;
3799 		}
3800 	}
3801 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3802 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3803 		if (jrxd->rx_m != NULL) {
3804 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3805 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3806 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3807 			    jrxd->rx_dmamap);
3808 			m_freem(jrxd->rx_m);
3809 			jrxd->rx_m = NULL;
3810 		}
3811 	}
3812 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3813 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3814 		if (txd->tx_m != NULL) {
3815 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3816 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3817 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3818 			    txd->tx_dmamap);
3819 			m_freem(txd->tx_m);
3820 			txd->tx_m = NULL;
3821 		}
3822 	}
3823 
3824 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3825 
3826 	return;
3827 }
3828 
3829 static int
3830 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3831 {
3832 	int error, value;
3833 
3834 	if (!arg1)
3835 		return (EINVAL);
3836 	value = *(int *)arg1;
3837 	error = sysctl_handle_int(oidp, &value, 0, req);
3838 	if (error || !req->newptr)
3839 		return (error);
3840 	if (value < low || value > high)
3841 		return (EINVAL);
3842 	*(int *)arg1 = value;
3843 	return (0);
3844 }
3845 
3846 static int
3847 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3848 {
3849 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3850 }
3851