1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /*- 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/bus.h> 91 #include <sys/endian.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/module.h> 96 #include <sys/socket.h> 97 #include <sys/sockio.h> 98 #include <sys/queue.h> 99 #include <sys/sysctl.h> 100 101 #include <net/bpf.h> 102 #include <net/ethernet.h> 103 #include <net/if.h> 104 #include <net/if_arp.h> 105 #include <net/if_dl.h> 106 #include <net/if_media.h> 107 #include <net/if_types.h> 108 #include <net/if_vlan_var.h> 109 110 #include <netinet/in.h> 111 #include <netinet/in_systm.h> 112 #include <netinet/ip.h> 113 114 #include <machine/bus.h> 115 #include <machine/in_cksum.h> 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/brgphyreg.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 126 #if 0 127 #define SK_USEIOSPACE 128 #endif 129 130 #include <dev/sk/if_skreg.h> 131 #include <dev/sk/xmaciireg.h> 132 #include <dev/sk/yukonreg.h> 133 134 MODULE_DEPEND(sk, pci, 1, 1, 1); 135 MODULE_DEPEND(sk, ether, 1, 1, 1); 136 MODULE_DEPEND(sk, miibus, 1, 1, 1); 137 138 /* "device miibus" required. See GENERIC if you get errors here. */ 139 #include "miibus_if.h" 140 141 #ifndef lint 142 static const char rcsid[] = 143 "$FreeBSD$"; 144 #endif 145 146 static struct sk_type sk_devs[] = { 147 { 148 VENDORID_SK, 149 DEVICEID_SK_V1, 150 "SysKonnect Gigabit Ethernet (V1.0)" 151 }, 152 { 153 VENDORID_SK, 154 DEVICEID_SK_V2, 155 "SysKonnect Gigabit Ethernet (V2.0)" 156 }, 157 { 158 VENDORID_MARVELL, 159 DEVICEID_SK_V2, 160 "Marvell Gigabit Ethernet" 161 }, 162 { 163 VENDORID_MARVELL, 164 DEVICEID_BELKIN_5005, 165 "Belkin F5D5005 Gigabit Ethernet" 166 }, 167 { 168 VENDORID_3COM, 169 DEVICEID_3COM_3C940, 170 "3Com 3C940 Gigabit Ethernet" 171 }, 172 { 173 VENDORID_LINKSYS, 174 DEVICEID_LINKSYS_EG1032, 175 "Linksys EG1032 Gigabit Ethernet" 176 }, 177 { 178 VENDORID_DLINK, 179 DEVICEID_DLINK_DGE530T_A1, 180 "D-Link DGE-530T Gigabit Ethernet" 181 }, 182 { 183 VENDORID_DLINK, 184 DEVICEID_DLINK_DGE530T_B1, 185 "D-Link DGE-530T Gigabit Ethernet" 186 }, 187 { 0, 0, NULL } 188 }; 189 190 static int skc_probe(device_t); 191 static int skc_attach(device_t); 192 static int skc_detach(device_t); 193 static int skc_shutdown(device_t); 194 static int skc_suspend(device_t); 195 static int skc_resume(device_t); 196 static int sk_detach(device_t); 197 static int sk_probe(device_t); 198 static int sk_attach(device_t); 199 static void sk_tick(void *); 200 static void sk_yukon_tick(void *); 201 static void sk_intr(void *); 202 static void sk_intr_xmac(struct sk_if_softc *); 203 static void sk_intr_bcom(struct sk_if_softc *); 204 static void sk_intr_yukon(struct sk_if_softc *); 205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); 206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); 207 static void sk_rxeof(struct sk_if_softc *); 208 static void sk_jumbo_rxeof(struct sk_if_softc *); 209 static void sk_txeof(struct sk_if_softc *); 210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); 211 static int sk_encap(struct sk_if_softc *, struct mbuf **); 212 static void sk_start(struct ifnet *); 213 static void sk_start_locked(struct ifnet *); 214 static int sk_ioctl(struct ifnet *, u_long, caddr_t); 215 static void sk_init(void *); 216 static void sk_init_locked(struct sk_if_softc *); 217 static void sk_init_xmac(struct sk_if_softc *); 218 static void sk_init_yukon(struct sk_if_softc *); 219 static void sk_stop(struct sk_if_softc *); 220 static void sk_watchdog(void *); 221 static int sk_ifmedia_upd(struct ifnet *); 222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); 223 static void sk_reset(struct sk_softc *); 224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); 225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); 226 static int sk_newbuf(struct sk_if_softc *, int); 227 static int sk_jumbo_newbuf(struct sk_if_softc *, int); 228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 229 static int sk_dma_alloc(struct sk_if_softc *); 230 static int sk_dma_jumbo_alloc(struct sk_if_softc *); 231 static void sk_dma_free(struct sk_if_softc *); 232 static void sk_dma_jumbo_free(struct sk_if_softc *); 233 static int sk_init_rx_ring(struct sk_if_softc *); 234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *); 235 static void sk_init_tx_ring(struct sk_if_softc *); 236 static u_int32_t sk_win_read_4(struct sk_softc *, int); 237 static u_int16_t sk_win_read_2(struct sk_softc *, int); 238 static u_int8_t sk_win_read_1(struct sk_softc *, int); 239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t); 240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t); 241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t); 242 243 static int sk_miibus_readreg(device_t, int, int); 244 static int sk_miibus_writereg(device_t, int, int, int); 245 static void sk_miibus_statchg(device_t); 246 247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); 248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, 249 int); 250 static void sk_xmac_miibus_statchg(struct sk_if_softc *); 251 252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); 253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, 254 int); 255 static void sk_marv_miibus_statchg(struct sk_if_softc *); 256 257 static uint32_t sk_xmchash(const uint8_t *); 258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); 259 static void sk_rxfilter(struct sk_if_softc *); 260 static void sk_rxfilter_genesis(struct sk_if_softc *); 261 static void sk_rxfilter_yukon(struct sk_if_softc *); 262 263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); 264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); 265 266 /* Tunables. */ 267 static int jumbo_disable = 0; 268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); 269 270 /* 271 * It seems that SK-NET GENESIS supports very simple checksum offload 272 * capability for Tx and I believe it can generate 0 checksum value for 273 * UDP packets in Tx as the hardware can't differenciate UDP packets from 274 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it 275 * means sender didn't perforam checksum computation. For the safety I 276 * disabled UDP checksum offload capability at the moment. Alternatively 277 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum 278 * offload routine. 279 */ 280 #define SK_CSUM_FEATURES (CSUM_TCP) 281 282 /* 283 * Note that we have newbus methods for both the GEnesis controller 284 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 285 * the miibus code is a child of the XMACs. We need to do it this way 286 * so that the miibus drivers can access the PHY registers on the 287 * right PHY. It's not quite what I had in mind, but it's the only 288 * design that achieves the desired effect. 289 */ 290 static device_method_t skc_methods[] = { 291 /* Device interface */ 292 DEVMETHOD(device_probe, skc_probe), 293 DEVMETHOD(device_attach, skc_attach), 294 DEVMETHOD(device_detach, skc_detach), 295 DEVMETHOD(device_suspend, skc_suspend), 296 DEVMETHOD(device_resume, skc_resume), 297 DEVMETHOD(device_shutdown, skc_shutdown), 298 299 DEVMETHOD_END 300 }; 301 302 static driver_t skc_driver = { 303 "skc", 304 skc_methods, 305 sizeof(struct sk_softc) 306 }; 307 308 static devclass_t skc_devclass; 309 310 static device_method_t sk_methods[] = { 311 /* Device interface */ 312 DEVMETHOD(device_probe, sk_probe), 313 DEVMETHOD(device_attach, sk_attach), 314 DEVMETHOD(device_detach, sk_detach), 315 DEVMETHOD(device_shutdown, bus_generic_shutdown), 316 317 /* MII interface */ 318 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 319 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 320 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 321 322 DEVMETHOD_END 323 }; 324 325 static driver_t sk_driver = { 326 "sk", 327 sk_methods, 328 sizeof(struct sk_if_softc) 329 }; 330 331 static devclass_t sk_devclass; 332 333 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0); 334 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 335 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 336 337 static struct resource_spec sk_res_spec_io[] = { 338 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 339 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 340 { -1, 0, 0 } 341 }; 342 343 static struct resource_spec sk_res_spec_mem[] = { 344 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 345 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 346 { -1, 0, 0 } 347 }; 348 349 #define SK_SETBIT(sc, reg, x) \ 350 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 351 352 #define SK_CLRBIT(sc, reg, x) \ 353 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 354 355 #define SK_WIN_SETBIT_4(sc, reg, x) \ 356 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 357 358 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 359 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 360 361 #define SK_WIN_SETBIT_2(sc, reg, x) \ 362 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 363 364 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 365 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 366 367 static u_int32_t 368 sk_win_read_4(sc, reg) 369 struct sk_softc *sc; 370 int reg; 371 { 372 #ifdef SK_USEIOSPACE 373 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 374 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 375 #else 376 return(CSR_READ_4(sc, reg)); 377 #endif 378 } 379 380 static u_int16_t 381 sk_win_read_2(sc, reg) 382 struct sk_softc *sc; 383 int reg; 384 { 385 #ifdef SK_USEIOSPACE 386 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 387 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 388 #else 389 return(CSR_READ_2(sc, reg)); 390 #endif 391 } 392 393 static u_int8_t 394 sk_win_read_1(sc, reg) 395 struct sk_softc *sc; 396 int reg; 397 { 398 #ifdef SK_USEIOSPACE 399 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 400 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 401 #else 402 return(CSR_READ_1(sc, reg)); 403 #endif 404 } 405 406 static void 407 sk_win_write_4(sc, reg, val) 408 struct sk_softc *sc; 409 int reg; 410 u_int32_t val; 411 { 412 #ifdef SK_USEIOSPACE 413 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 414 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 415 #else 416 CSR_WRITE_4(sc, reg, val); 417 #endif 418 return; 419 } 420 421 static void 422 sk_win_write_2(sc, reg, val) 423 struct sk_softc *sc; 424 int reg; 425 u_int32_t val; 426 { 427 #ifdef SK_USEIOSPACE 428 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 429 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 430 #else 431 CSR_WRITE_2(sc, reg, val); 432 #endif 433 return; 434 } 435 436 static void 437 sk_win_write_1(sc, reg, val) 438 struct sk_softc *sc; 439 int reg; 440 u_int32_t val; 441 { 442 #ifdef SK_USEIOSPACE 443 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 444 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 445 #else 446 CSR_WRITE_1(sc, reg, val); 447 #endif 448 return; 449 } 450 451 static int 452 sk_miibus_readreg(dev, phy, reg) 453 device_t dev; 454 int phy, reg; 455 { 456 struct sk_if_softc *sc_if; 457 int v; 458 459 sc_if = device_get_softc(dev); 460 461 SK_IF_MII_LOCK(sc_if); 462 switch(sc_if->sk_softc->sk_type) { 463 case SK_GENESIS: 464 v = sk_xmac_miibus_readreg(sc_if, phy, reg); 465 break; 466 case SK_YUKON: 467 case SK_YUKON_LITE: 468 case SK_YUKON_LP: 469 v = sk_marv_miibus_readreg(sc_if, phy, reg); 470 break; 471 default: 472 v = 0; 473 break; 474 } 475 SK_IF_MII_UNLOCK(sc_if); 476 477 return (v); 478 } 479 480 static int 481 sk_miibus_writereg(dev, phy, reg, val) 482 device_t dev; 483 int phy, reg, val; 484 { 485 struct sk_if_softc *sc_if; 486 int v; 487 488 sc_if = device_get_softc(dev); 489 490 SK_IF_MII_LOCK(sc_if); 491 switch(sc_if->sk_softc->sk_type) { 492 case SK_GENESIS: 493 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); 494 break; 495 case SK_YUKON: 496 case SK_YUKON_LITE: 497 case SK_YUKON_LP: 498 v = sk_marv_miibus_writereg(sc_if, phy, reg, val); 499 break; 500 default: 501 v = 0; 502 break; 503 } 504 SK_IF_MII_UNLOCK(sc_if); 505 506 return (v); 507 } 508 509 static void 510 sk_miibus_statchg(dev) 511 device_t dev; 512 { 513 struct sk_if_softc *sc_if; 514 515 sc_if = device_get_softc(dev); 516 517 SK_IF_MII_LOCK(sc_if); 518 switch(sc_if->sk_softc->sk_type) { 519 case SK_GENESIS: 520 sk_xmac_miibus_statchg(sc_if); 521 break; 522 case SK_YUKON: 523 case SK_YUKON_LITE: 524 case SK_YUKON_LP: 525 sk_marv_miibus_statchg(sc_if); 526 break; 527 } 528 SK_IF_MII_UNLOCK(sc_if); 529 530 return; 531 } 532 533 static int 534 sk_xmac_miibus_readreg(sc_if, phy, reg) 535 struct sk_if_softc *sc_if; 536 int phy, reg; 537 { 538 int i; 539 540 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 541 SK_XM_READ_2(sc_if, XM_PHY_DATA); 542 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 543 for (i = 0; i < SK_TIMEOUT; i++) { 544 DELAY(1); 545 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 546 XM_MMUCMD_PHYDATARDY) 547 break; 548 } 549 550 if (i == SK_TIMEOUT) { 551 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 552 return(0); 553 } 554 } 555 DELAY(1); 556 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 557 558 return(i); 559 } 560 561 static int 562 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 563 struct sk_if_softc *sc_if; 564 int phy, reg, val; 565 { 566 int i; 567 568 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 569 for (i = 0; i < SK_TIMEOUT; i++) { 570 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 571 break; 572 } 573 574 if (i == SK_TIMEOUT) { 575 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 576 return (ETIMEDOUT); 577 } 578 579 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 580 for (i = 0; i < SK_TIMEOUT; i++) { 581 DELAY(1); 582 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 583 break; 584 } 585 if (i == SK_TIMEOUT) 586 if_printf(sc_if->sk_ifp, "phy write timed out\n"); 587 588 return(0); 589 } 590 591 static void 592 sk_xmac_miibus_statchg(sc_if) 593 struct sk_if_softc *sc_if; 594 { 595 struct mii_data *mii; 596 597 mii = device_get_softc(sc_if->sk_miibus); 598 599 /* 600 * If this is a GMII PHY, manually set the XMAC's 601 * duplex mode accordingly. 602 */ 603 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 604 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 605 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 606 } else { 607 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 608 } 609 } 610 } 611 612 static int 613 sk_marv_miibus_readreg(sc_if, phy, reg) 614 struct sk_if_softc *sc_if; 615 int phy, reg; 616 { 617 u_int16_t val; 618 int i; 619 620 if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 621 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) { 622 return(0); 623 } 624 625 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 626 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 627 628 for (i = 0; i < SK_TIMEOUT; i++) { 629 DELAY(1); 630 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 631 if (val & YU_SMICR_READ_VALID) 632 break; 633 } 634 635 if (i == SK_TIMEOUT) { 636 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 637 return(0); 638 } 639 640 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 641 642 return(val); 643 } 644 645 static int 646 sk_marv_miibus_writereg(sc_if, phy, reg, val) 647 struct sk_if_softc *sc_if; 648 int phy, reg, val; 649 { 650 int i; 651 652 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 653 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 654 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 655 656 for (i = 0; i < SK_TIMEOUT; i++) { 657 DELAY(1); 658 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) 659 break; 660 } 661 if (i == SK_TIMEOUT) 662 if_printf(sc_if->sk_ifp, "phy write timeout\n"); 663 664 return(0); 665 } 666 667 static void 668 sk_marv_miibus_statchg(sc_if) 669 struct sk_if_softc *sc_if; 670 { 671 return; 672 } 673 674 #define HASH_BITS 6 675 676 static u_int32_t 677 sk_xmchash(addr) 678 const uint8_t *addr; 679 { 680 uint32_t crc; 681 682 /* Compute CRC for the address value. */ 683 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 684 685 return (~crc & ((1 << HASH_BITS) - 1)); 686 } 687 688 static void 689 sk_setfilt(sc_if, addr, slot) 690 struct sk_if_softc *sc_if; 691 u_int16_t *addr; 692 int slot; 693 { 694 int base; 695 696 base = XM_RXFILT_ENTRY(slot); 697 698 SK_XM_WRITE_2(sc_if, base, addr[0]); 699 SK_XM_WRITE_2(sc_if, base + 2, addr[1]); 700 SK_XM_WRITE_2(sc_if, base + 4, addr[2]); 701 702 return; 703 } 704 705 static void 706 sk_rxfilter(sc_if) 707 struct sk_if_softc *sc_if; 708 { 709 struct sk_softc *sc; 710 711 SK_IF_LOCK_ASSERT(sc_if); 712 713 sc = sc_if->sk_softc; 714 if (sc->sk_type == SK_GENESIS) 715 sk_rxfilter_genesis(sc_if); 716 else 717 sk_rxfilter_yukon(sc_if); 718 } 719 720 static void 721 sk_rxfilter_genesis(sc_if) 722 struct sk_if_softc *sc_if; 723 { 724 struct ifnet *ifp = sc_if->sk_ifp; 725 u_int32_t hashes[2] = { 0, 0 }, mode; 726 int h = 0, i; 727 struct ifmultiaddr *ifma; 728 u_int16_t dummy[] = { 0, 0, 0 }; 729 u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; 730 731 SK_IF_LOCK_ASSERT(sc_if); 732 733 mode = SK_XM_READ_4(sc_if, XM_MODE); 734 mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH | 735 XM_MODE_RX_USE_PERFECT); 736 /* First, zot all the existing perfect filters. */ 737 for (i = 1; i < XM_RXFILT_MAX; i++) 738 sk_setfilt(sc_if, dummy, i); 739 740 /* Now program new ones. */ 741 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 742 if (ifp->if_flags & IFF_ALLMULTI) 743 mode |= XM_MODE_RX_USE_HASH; 744 if (ifp->if_flags & IFF_PROMISC) 745 mode |= XM_MODE_RX_PROMISC; 746 hashes[0] = 0xFFFFFFFF; 747 hashes[1] = 0xFFFFFFFF; 748 } else { 749 i = 1; 750 if_maddr_rlock(ifp); 751 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, 752 ifma_link) { 753 if (ifma->ifma_addr->sa_family != AF_LINK) 754 continue; 755 /* 756 * Program the first XM_RXFILT_MAX multicast groups 757 * into the perfect filter. 758 */ 759 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 760 maddr, ETHER_ADDR_LEN); 761 if (i < XM_RXFILT_MAX) { 762 sk_setfilt(sc_if, maddr, i); 763 mode |= XM_MODE_RX_USE_PERFECT; 764 i++; 765 continue; 766 } 767 h = sk_xmchash((const uint8_t *)maddr); 768 if (h < 32) 769 hashes[0] |= (1 << h); 770 else 771 hashes[1] |= (1 << (h - 32)); 772 mode |= XM_MODE_RX_USE_HASH; 773 } 774 if_maddr_runlock(ifp); 775 } 776 777 SK_XM_WRITE_4(sc_if, XM_MODE, mode); 778 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 779 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 780 } 781 782 static void 783 sk_rxfilter_yukon(sc_if) 784 struct sk_if_softc *sc_if; 785 { 786 struct ifnet *ifp; 787 u_int32_t crc, hashes[2] = { 0, 0 }, mode; 788 struct ifmultiaddr *ifma; 789 790 SK_IF_LOCK_ASSERT(sc_if); 791 792 ifp = sc_if->sk_ifp; 793 mode = SK_YU_READ_2(sc_if, YUKON_RCR); 794 if (ifp->if_flags & IFF_PROMISC) 795 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 796 else if (ifp->if_flags & IFF_ALLMULTI) { 797 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 798 hashes[0] = 0xFFFFFFFF; 799 hashes[1] = 0xFFFFFFFF; 800 } else { 801 mode |= YU_RCR_UFLEN; 802 if_maddr_rlock(ifp); 803 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 804 if (ifma->ifma_addr->sa_family != AF_LINK) 805 continue; 806 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 807 ifma->ifma_addr), ETHER_ADDR_LEN); 808 /* Just want the 6 least significant bits. */ 809 crc &= 0x3f; 810 /* Set the corresponding bit in the hash table. */ 811 hashes[crc >> 5] |= 1 << (crc & 0x1f); 812 } 813 if_maddr_runlock(ifp); 814 if (hashes[0] != 0 || hashes[1] != 0) 815 mode |= YU_RCR_MUFLEN; 816 } 817 818 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 819 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 820 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 821 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 822 SK_YU_WRITE_2(sc_if, YUKON_RCR, mode); 823 } 824 825 static int 826 sk_init_rx_ring(sc_if) 827 struct sk_if_softc *sc_if; 828 { 829 struct sk_ring_data *rd; 830 bus_addr_t addr; 831 u_int32_t csum_start; 832 int i; 833 834 sc_if->sk_cdata.sk_rx_cons = 0; 835 836 csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | 837 ETHER_HDR_LEN; 838 rd = &sc_if->sk_rdata; 839 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 840 for (i = 0; i < SK_RX_RING_CNT; i++) { 841 if (sk_newbuf(sc_if, i) != 0) 842 return (ENOBUFS); 843 if (i == (SK_RX_RING_CNT - 1)) 844 addr = SK_RX_RING_ADDR(sc_if, 0); 845 else 846 addr = SK_RX_RING_ADDR(sc_if, i + 1); 847 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 848 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); 849 } 850 851 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 852 sc_if->sk_cdata.sk_rx_ring_map, 853 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 854 855 return(0); 856 } 857 858 static int 859 sk_init_jumbo_rx_ring(sc_if) 860 struct sk_if_softc *sc_if; 861 { 862 struct sk_ring_data *rd; 863 bus_addr_t addr; 864 u_int32_t csum_start; 865 int i; 866 867 sc_if->sk_cdata.sk_jumbo_rx_cons = 0; 868 869 csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | 870 ETHER_HDR_LEN; 871 rd = &sc_if->sk_rdata; 872 bzero(rd->sk_jumbo_rx_ring, 873 sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); 874 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 875 if (sk_jumbo_newbuf(sc_if, i) != 0) 876 return (ENOBUFS); 877 if (i == (SK_JUMBO_RX_RING_CNT - 1)) 878 addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); 879 else 880 addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); 881 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 882 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); 883 } 884 885 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 886 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 887 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 888 889 return (0); 890 } 891 892 static void 893 sk_init_tx_ring(sc_if) 894 struct sk_if_softc *sc_if; 895 { 896 struct sk_ring_data *rd; 897 struct sk_txdesc *txd; 898 bus_addr_t addr; 899 int i; 900 901 STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); 902 STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); 903 904 sc_if->sk_cdata.sk_tx_prod = 0; 905 sc_if->sk_cdata.sk_tx_cons = 0; 906 sc_if->sk_cdata.sk_tx_cnt = 0; 907 908 rd = &sc_if->sk_rdata; 909 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 910 for (i = 0; i < SK_TX_RING_CNT; i++) { 911 if (i == (SK_TX_RING_CNT - 1)) 912 addr = SK_TX_RING_ADDR(sc_if, 0); 913 else 914 addr = SK_TX_RING_ADDR(sc_if, i + 1); 915 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 916 txd = &sc_if->sk_cdata.sk_txdesc[i]; 917 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 918 } 919 920 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 921 sc_if->sk_cdata.sk_tx_ring_map, 922 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 923 } 924 925 static __inline void 926 sk_discard_rxbuf(sc_if, idx) 927 struct sk_if_softc *sc_if; 928 int idx; 929 { 930 struct sk_rx_desc *r; 931 struct sk_rxdesc *rxd; 932 struct mbuf *m; 933 934 935 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 936 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 937 m = rxd->rx_m; 938 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 939 } 940 941 static __inline void 942 sk_discard_jumbo_rxbuf(sc_if, idx) 943 struct sk_if_softc *sc_if; 944 int idx; 945 { 946 struct sk_rx_desc *r; 947 struct sk_rxdesc *rxd; 948 struct mbuf *m; 949 950 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 951 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 952 m = rxd->rx_m; 953 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 954 } 955 956 static int 957 sk_newbuf(sc_if, idx) 958 struct sk_if_softc *sc_if; 959 int idx; 960 { 961 struct sk_rx_desc *r; 962 struct sk_rxdesc *rxd; 963 struct mbuf *m; 964 bus_dma_segment_t segs[1]; 965 bus_dmamap_t map; 966 int nsegs; 967 968 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 969 if (m == NULL) 970 return (ENOBUFS); 971 m->m_len = m->m_pkthdr.len = MCLBYTES; 972 m_adj(m, ETHER_ALIGN); 973 974 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, 975 sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { 976 m_freem(m); 977 return (ENOBUFS); 978 } 979 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 980 981 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 982 if (rxd->rx_m != NULL) { 983 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 984 BUS_DMASYNC_POSTREAD); 985 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); 986 } 987 map = rxd->rx_dmamap; 988 rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; 989 sc_if->sk_cdata.sk_rx_sparemap = map; 990 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 991 BUS_DMASYNC_PREREAD); 992 rxd->rx_m = m; 993 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 994 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 995 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 996 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 997 998 return (0); 999 } 1000 1001 static int 1002 sk_jumbo_newbuf(sc_if, idx) 1003 struct sk_if_softc *sc_if; 1004 int idx; 1005 { 1006 struct sk_rx_desc *r; 1007 struct sk_rxdesc *rxd; 1008 struct mbuf *m; 1009 bus_dma_segment_t segs[1]; 1010 bus_dmamap_t map; 1011 int nsegs; 1012 1013 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1014 if (m == NULL) 1015 return (ENOBUFS); 1016 if ((m->m_flags & M_EXT) == 0) { 1017 m_freem(m); 1018 return (ENOBUFS); 1019 } 1020 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1021 /* 1022 * Adjust alignment so packet payload begins on a 1023 * longword boundary. Mandatory for Alpha, useful on 1024 * x86 too. 1025 */ 1026 m_adj(m, ETHER_ALIGN); 1027 1028 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, 1029 sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1030 m_freem(m); 1031 return (ENOBUFS); 1032 } 1033 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1034 1035 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 1036 if (rxd->rx_m != NULL) { 1037 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1038 BUS_DMASYNC_POSTREAD); 1039 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 1040 rxd->rx_dmamap); 1041 } 1042 map = rxd->rx_dmamap; 1043 rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; 1044 sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; 1045 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1046 BUS_DMASYNC_PREREAD); 1047 rxd->rx_m = m; 1048 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 1049 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1050 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1051 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1052 1053 return (0); 1054 } 1055 1056 /* 1057 * Set media options. 1058 */ 1059 static int 1060 sk_ifmedia_upd(ifp) 1061 struct ifnet *ifp; 1062 { 1063 struct sk_if_softc *sc_if = ifp->if_softc; 1064 struct mii_data *mii; 1065 1066 mii = device_get_softc(sc_if->sk_miibus); 1067 sk_init(sc_if); 1068 mii_mediachg(mii); 1069 1070 return(0); 1071 } 1072 1073 /* 1074 * Report current media status. 1075 */ 1076 static void 1077 sk_ifmedia_sts(ifp, ifmr) 1078 struct ifnet *ifp; 1079 struct ifmediareq *ifmr; 1080 { 1081 struct sk_if_softc *sc_if; 1082 struct mii_data *mii; 1083 1084 sc_if = ifp->if_softc; 1085 mii = device_get_softc(sc_if->sk_miibus); 1086 1087 mii_pollstat(mii); 1088 ifmr->ifm_active = mii->mii_media_active; 1089 ifmr->ifm_status = mii->mii_media_status; 1090 1091 return; 1092 } 1093 1094 static int 1095 sk_ioctl(ifp, command, data) 1096 struct ifnet *ifp; 1097 u_long command; 1098 caddr_t data; 1099 { 1100 struct sk_if_softc *sc_if = ifp->if_softc; 1101 struct ifreq *ifr = (struct ifreq *) data; 1102 int error, mask; 1103 struct mii_data *mii; 1104 1105 error = 0; 1106 switch(command) { 1107 case SIOCSIFMTU: 1108 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) 1109 error = EINVAL; 1110 else if (ifp->if_mtu != ifr->ifr_mtu) { 1111 if (sc_if->sk_jumbo_disable != 0 && 1112 ifr->ifr_mtu > SK_MAX_FRAMELEN) 1113 error = EINVAL; 1114 else { 1115 SK_IF_LOCK(sc_if); 1116 ifp->if_mtu = ifr->ifr_mtu; 1117 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1118 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1119 sk_init_locked(sc_if); 1120 } 1121 SK_IF_UNLOCK(sc_if); 1122 } 1123 } 1124 break; 1125 case SIOCSIFFLAGS: 1126 SK_IF_LOCK(sc_if); 1127 if (ifp->if_flags & IFF_UP) { 1128 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1129 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1130 & (IFF_PROMISC | IFF_ALLMULTI)) 1131 sk_rxfilter(sc_if); 1132 } else 1133 sk_init_locked(sc_if); 1134 } else { 1135 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1136 sk_stop(sc_if); 1137 } 1138 sc_if->sk_if_flags = ifp->if_flags; 1139 SK_IF_UNLOCK(sc_if); 1140 break; 1141 case SIOCADDMULTI: 1142 case SIOCDELMULTI: 1143 SK_IF_LOCK(sc_if); 1144 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1145 sk_rxfilter(sc_if); 1146 SK_IF_UNLOCK(sc_if); 1147 break; 1148 case SIOCGIFMEDIA: 1149 case SIOCSIFMEDIA: 1150 mii = device_get_softc(sc_if->sk_miibus); 1151 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1152 break; 1153 case SIOCSIFCAP: 1154 SK_IF_LOCK(sc_if); 1155 if (sc_if->sk_softc->sk_type == SK_GENESIS) { 1156 SK_IF_UNLOCK(sc_if); 1157 break; 1158 } 1159 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1160 if ((mask & IFCAP_TXCSUM) != 0 && 1161 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1162 ifp->if_capenable ^= IFCAP_TXCSUM; 1163 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1164 ifp->if_hwassist |= SK_CSUM_FEATURES; 1165 else 1166 ifp->if_hwassist &= ~SK_CSUM_FEATURES; 1167 } 1168 if ((mask & IFCAP_RXCSUM) != 0 && 1169 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 1170 ifp->if_capenable ^= IFCAP_RXCSUM; 1171 SK_IF_UNLOCK(sc_if); 1172 break; 1173 default: 1174 error = ether_ioctl(ifp, command, data); 1175 break; 1176 } 1177 1178 return (error); 1179 } 1180 1181 /* 1182 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1183 * IDs against our list and return a device name if we find a match. 1184 */ 1185 static int 1186 skc_probe(dev) 1187 device_t dev; 1188 { 1189 struct sk_type *t = sk_devs; 1190 1191 while(t->sk_name != NULL) { 1192 if ((pci_get_vendor(dev) == t->sk_vid) && 1193 (pci_get_device(dev) == t->sk_did)) { 1194 /* 1195 * Only attach to rev. 2 of the Linksys EG1032 adapter. 1196 * Rev. 3 is supported by re(4). 1197 */ 1198 if ((t->sk_vid == VENDORID_LINKSYS) && 1199 (t->sk_did == DEVICEID_LINKSYS_EG1032) && 1200 (pci_get_subdevice(dev) != 1201 SUBDEVICEID_LINKSYS_EG1032_REV2)) { 1202 t++; 1203 continue; 1204 } 1205 device_set_desc(dev, t->sk_name); 1206 return (BUS_PROBE_DEFAULT); 1207 } 1208 t++; 1209 } 1210 1211 return(ENXIO); 1212 } 1213 1214 /* 1215 * Force the GEnesis into reset, then bring it out of reset. 1216 */ 1217 static void 1218 sk_reset(sc) 1219 struct sk_softc *sc; 1220 { 1221 1222 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1223 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1224 if (SK_YUKON_FAMILY(sc->sk_type)) 1225 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1226 1227 DELAY(1000); 1228 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1229 DELAY(2); 1230 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1231 if (SK_YUKON_FAMILY(sc->sk_type)) 1232 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1233 1234 if (sc->sk_type == SK_GENESIS) { 1235 /* Configure packet arbiter */ 1236 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1237 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1238 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1239 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1240 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1241 } 1242 1243 /* Enable RAM interface */ 1244 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1245 1246 /* 1247 * Configure interrupt moderation. The moderation timer 1248 * defers interrupts specified in the interrupt moderation 1249 * timer mask based on the timeout specified in the interrupt 1250 * moderation timer init register. Each bit in the timer 1251 * register represents one tick, so to specify a timeout in 1252 * microseconds, we have to multiply by the correct number of 1253 * ticks-per-microsecond. 1254 */ 1255 switch (sc->sk_type) { 1256 case SK_GENESIS: 1257 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; 1258 break; 1259 default: 1260 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; 1261 break; 1262 } 1263 if (bootverbose) 1264 device_printf(sc->sk_dev, "interrupt moderation is %d us\n", 1265 sc->sk_int_mod); 1266 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 1267 sc->sk_int_ticks)); 1268 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1269 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1270 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1271 1272 return; 1273 } 1274 1275 static int 1276 sk_probe(dev) 1277 device_t dev; 1278 { 1279 struct sk_softc *sc; 1280 1281 sc = device_get_softc(device_get_parent(dev)); 1282 1283 /* 1284 * Not much to do here. We always know there will be 1285 * at least one XMAC present, and if there are two, 1286 * skc_attach() will create a second device instance 1287 * for us. 1288 */ 1289 switch (sc->sk_type) { 1290 case SK_GENESIS: 1291 device_set_desc(dev, "XaQti Corp. XMAC II"); 1292 break; 1293 case SK_YUKON: 1294 case SK_YUKON_LITE: 1295 case SK_YUKON_LP: 1296 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1297 break; 1298 } 1299 1300 return (BUS_PROBE_DEFAULT); 1301 } 1302 1303 /* 1304 * Each XMAC chip is attached as a separate logical IP interface. 1305 * Single port cards will have only one logical interface of course. 1306 */ 1307 static int 1308 sk_attach(dev) 1309 device_t dev; 1310 { 1311 struct sk_softc *sc; 1312 struct sk_if_softc *sc_if; 1313 struct ifnet *ifp; 1314 u_int32_t r; 1315 int error, i, phy, port; 1316 u_char eaddr[6]; 1317 u_char inv_mac[] = {0, 0, 0, 0, 0, 0}; 1318 1319 if (dev == NULL) 1320 return(EINVAL); 1321 1322 error = 0; 1323 sc_if = device_get_softc(dev); 1324 sc = device_get_softc(device_get_parent(dev)); 1325 port = *(int *)device_get_ivars(dev); 1326 1327 sc_if->sk_if_dev = dev; 1328 sc_if->sk_port = port; 1329 sc_if->sk_softc = sc; 1330 sc->sk_if[port] = sc_if; 1331 if (port == SK_PORT_A) 1332 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1333 if (port == SK_PORT_B) 1334 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1335 1336 callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); 1337 callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); 1338 1339 if (sk_dma_alloc(sc_if) != 0) { 1340 error = ENOMEM; 1341 goto fail; 1342 } 1343 sk_dma_jumbo_alloc(sc_if); 1344 1345 ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); 1346 if (ifp == NULL) { 1347 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); 1348 error = ENOSPC; 1349 goto fail; 1350 } 1351 ifp->if_softc = sc_if; 1352 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1353 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1354 /* 1355 * SK_GENESIS has a bug in checksum offload - From linux. 1356 */ 1357 if (sc_if->sk_softc->sk_type != SK_GENESIS) { 1358 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM; 1359 ifp->if_hwassist = 0; 1360 } else { 1361 ifp->if_capabilities = 0; 1362 ifp->if_hwassist = 0; 1363 } 1364 ifp->if_capenable = ifp->if_capabilities; 1365 /* 1366 * Some revision of Yukon controller generates corrupted 1367 * frame when TX checksum offloading is enabled. The 1368 * frame has a valid checksum value so payload might be 1369 * modified during TX checksum calculation. Disable TX 1370 * checksum offloading but give users chance to enable it 1371 * when they know their controller works without problems 1372 * with TX checksum offloading. 1373 */ 1374 ifp->if_capenable &= ~IFCAP_TXCSUM; 1375 ifp->if_ioctl = sk_ioctl; 1376 ifp->if_start = sk_start; 1377 ifp->if_init = sk_init; 1378 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1379 ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; 1380 IFQ_SET_READY(&ifp->if_snd); 1381 1382 /* 1383 * Get station address for this interface. Note that 1384 * dual port cards actually come with three station 1385 * addresses: one for each port, plus an extra. The 1386 * extra one is used by the SysKonnect driver software 1387 * as a 'virtual' station address for when both ports 1388 * are operating in failover mode. Currently we don't 1389 * use this extra address. 1390 */ 1391 SK_IF_LOCK(sc_if); 1392 for (i = 0; i < ETHER_ADDR_LEN; i++) 1393 eaddr[i] = 1394 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1395 1396 /* Verify whether the station address is invalid or not. */ 1397 if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) { 1398 device_printf(sc_if->sk_if_dev, 1399 "Generating random ethernet address\n"); 1400 r = arc4random(); 1401 /* 1402 * Set OUI to convenient locally assigned address. 'b' 1403 * is 0x62, which has the locally assigned bit set, and 1404 * the broadcast/multicast bit clear. 1405 */ 1406 eaddr[0] = 'b'; 1407 eaddr[1] = 's'; 1408 eaddr[2] = 'd'; 1409 eaddr[3] = (r >> 16) & 0xff; 1410 eaddr[4] = (r >> 8) & 0xff; 1411 eaddr[5] = (r >> 0) & 0xff; 1412 } 1413 /* 1414 * Set up RAM buffer addresses. The NIC will have a certain 1415 * amount of SRAM on it, somewhere between 512K and 2MB. We 1416 * need to divide this up a) between the transmitter and 1417 * receiver and b) between the two XMACs, if this is a 1418 * dual port NIC. Our algotithm is to divide up the memory 1419 * evenly so that everyone gets a fair share. 1420 * 1421 * Just to be contrary, Yukon2 appears to have separate memory 1422 * for each MAC. 1423 */ 1424 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1425 u_int32_t chunk, val; 1426 1427 chunk = sc->sk_ramsize / 2; 1428 val = sc->sk_rboff / sizeof(u_int64_t); 1429 sc_if->sk_rx_ramstart = val; 1430 val += (chunk / sizeof(u_int64_t)); 1431 sc_if->sk_rx_ramend = val - 1; 1432 sc_if->sk_tx_ramstart = val; 1433 val += (chunk / sizeof(u_int64_t)); 1434 sc_if->sk_tx_ramend = val - 1; 1435 } else { 1436 u_int32_t chunk, val; 1437 1438 chunk = sc->sk_ramsize / 4; 1439 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1440 sizeof(u_int64_t); 1441 sc_if->sk_rx_ramstart = val; 1442 val += (chunk / sizeof(u_int64_t)); 1443 sc_if->sk_rx_ramend = val - 1; 1444 sc_if->sk_tx_ramstart = val; 1445 val += (chunk / sizeof(u_int64_t)); 1446 sc_if->sk_tx_ramend = val - 1; 1447 } 1448 1449 /* Read and save PHY type and set PHY address */ 1450 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1451 if (!SK_YUKON_FAMILY(sc->sk_type)) { 1452 switch(sc_if->sk_phytype) { 1453 case SK_PHYTYPE_XMAC: 1454 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1455 break; 1456 case SK_PHYTYPE_BCOM: 1457 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1458 break; 1459 default: 1460 device_printf(sc->sk_dev, "unsupported PHY type: %d\n", 1461 sc_if->sk_phytype); 1462 error = ENODEV; 1463 SK_IF_UNLOCK(sc_if); 1464 goto fail; 1465 } 1466 } else { 1467 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && 1468 sc->sk_pmd != 'S') { 1469 /* not initialized, punt */ 1470 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; 1471 sc->sk_coppertype = 1; 1472 } 1473 1474 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1475 1476 if (!(sc->sk_coppertype)) 1477 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; 1478 } 1479 1480 /* 1481 * Call MI attach routine. Can't hold locks when calling into ether_*. 1482 */ 1483 SK_IF_UNLOCK(sc_if); 1484 ether_ifattach(ifp, eaddr); 1485 SK_IF_LOCK(sc_if); 1486 1487 /* 1488 * The hardware should be ready for VLAN_MTU by default: 1489 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; 1490 * YU_SMR_MFL_VLAN is set by this driver in Yukon. 1491 * 1492 */ 1493 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1494 ifp->if_capenable |= IFCAP_VLAN_MTU; 1495 /* 1496 * Tell the upper layer(s) we support long frames. 1497 * Must appear after the call to ether_ifattach() because 1498 * ether_ifattach() sets ifi_hdrlen to the default value. 1499 */ 1500 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1501 1502 /* 1503 * Do miibus setup. 1504 */ 1505 phy = MII_PHY_ANY; 1506 switch (sc->sk_type) { 1507 case SK_GENESIS: 1508 sk_init_xmac(sc_if); 1509 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 1510 phy = 0; 1511 break; 1512 case SK_YUKON: 1513 case SK_YUKON_LITE: 1514 case SK_YUKON_LP: 1515 sk_init_yukon(sc_if); 1516 phy = 0; 1517 break; 1518 } 1519 1520 SK_IF_UNLOCK(sc_if); 1521 error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd, 1522 sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 1523 if (error != 0) { 1524 device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n"); 1525 ether_ifdetach(ifp); 1526 goto fail; 1527 } 1528 1529 fail: 1530 if (error) { 1531 /* Access should be ok even though lock has been dropped */ 1532 sc->sk_if[port] = NULL; 1533 sk_detach(dev); 1534 } 1535 1536 return(error); 1537 } 1538 1539 /* 1540 * Attach the interface. Allocate softc structures, do ifmedia 1541 * setup and ethernet/BPF attach. 1542 */ 1543 static int 1544 skc_attach(dev) 1545 device_t dev; 1546 { 1547 struct sk_softc *sc; 1548 int error = 0, *port; 1549 uint8_t skrs; 1550 const char *pname = NULL; 1551 char *revstr; 1552 1553 sc = device_get_softc(dev); 1554 sc->sk_dev = dev; 1555 1556 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1557 MTX_DEF); 1558 mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); 1559 /* 1560 * Map control/status registers. 1561 */ 1562 pci_enable_busmaster(dev); 1563 1564 /* Allocate resources */ 1565 #ifdef SK_USEIOSPACE 1566 sc->sk_res_spec = sk_res_spec_io; 1567 #else 1568 sc->sk_res_spec = sk_res_spec_mem; 1569 #endif 1570 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1571 if (error) { 1572 if (sc->sk_res_spec == sk_res_spec_mem) 1573 sc->sk_res_spec = sk_res_spec_io; 1574 else 1575 sc->sk_res_spec = sk_res_spec_mem; 1576 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1577 if (error) { 1578 device_printf(dev, "couldn't allocate %s resources\n", 1579 sc->sk_res_spec == sk_res_spec_mem ? "memory" : 1580 "I/O"); 1581 goto fail; 1582 } 1583 } 1584 1585 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1586 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; 1587 1588 /* Bail out if chip is not recognized. */ 1589 if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { 1590 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", 1591 sc->sk_type, sc->sk_rev); 1592 error = ENXIO; 1593 goto fail; 1594 } 1595 1596 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1597 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1598 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, 1599 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", 1600 "SK interrupt moderation"); 1601 1602 /* Pull in device tunables. */ 1603 sc->sk_int_mod = SK_IM_DEFAULT; 1604 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1605 "int_mod", &sc->sk_int_mod); 1606 if (error == 0) { 1607 if (sc->sk_int_mod < SK_IM_MIN || 1608 sc->sk_int_mod > SK_IM_MAX) { 1609 device_printf(dev, "int_mod value out of range; " 1610 "using default: %d\n", SK_IM_DEFAULT); 1611 sc->sk_int_mod = SK_IM_DEFAULT; 1612 } 1613 } 1614 1615 /* Reset the adapter. */ 1616 sk_reset(sc); 1617 1618 skrs = sk_win_read_1(sc, SK_EPROM0); 1619 if (sc->sk_type == SK_GENESIS) { 1620 /* Read and save RAM size and RAMbuffer offset */ 1621 switch(skrs) { 1622 case SK_RAMSIZE_512K_64: 1623 sc->sk_ramsize = 0x80000; 1624 sc->sk_rboff = SK_RBOFF_0; 1625 break; 1626 case SK_RAMSIZE_1024K_64: 1627 sc->sk_ramsize = 0x100000; 1628 sc->sk_rboff = SK_RBOFF_80000; 1629 break; 1630 case SK_RAMSIZE_1024K_128: 1631 sc->sk_ramsize = 0x100000; 1632 sc->sk_rboff = SK_RBOFF_0; 1633 break; 1634 case SK_RAMSIZE_2048K_128: 1635 sc->sk_ramsize = 0x200000; 1636 sc->sk_rboff = SK_RBOFF_0; 1637 break; 1638 default: 1639 device_printf(dev, "unknown ram size: %d\n", skrs); 1640 error = ENXIO; 1641 goto fail; 1642 } 1643 } else { /* SK_YUKON_FAMILY */ 1644 if (skrs == 0x00) 1645 sc->sk_ramsize = 0x20000; 1646 else 1647 sc->sk_ramsize = skrs * (1<<12); 1648 sc->sk_rboff = SK_RBOFF_0; 1649 } 1650 1651 /* Read and save physical media type */ 1652 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); 1653 1654 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') 1655 sc->sk_coppertype = 1; 1656 else 1657 sc->sk_coppertype = 0; 1658 1659 /* Determine whether to name it with VPD PN or just make it up. 1660 * Marvell Yukon VPD PN seems to freqently be bogus. */ 1661 switch (pci_get_device(dev)) { 1662 case DEVICEID_SK_V1: 1663 case DEVICEID_BELKIN_5005: 1664 case DEVICEID_3COM_3C940: 1665 case DEVICEID_LINKSYS_EG1032: 1666 case DEVICEID_DLINK_DGE530T_A1: 1667 case DEVICEID_DLINK_DGE530T_B1: 1668 /* Stay with VPD PN. */ 1669 (void) pci_get_vpd_ident(dev, &pname); 1670 break; 1671 case DEVICEID_SK_V2: 1672 /* YUKON VPD PN might bear no resemblance to reality. */ 1673 switch (sc->sk_type) { 1674 case SK_GENESIS: 1675 /* Stay with VPD PN. */ 1676 (void) pci_get_vpd_ident(dev, &pname); 1677 break; 1678 case SK_YUKON: 1679 pname = "Marvell Yukon Gigabit Ethernet"; 1680 break; 1681 case SK_YUKON_LITE: 1682 pname = "Marvell Yukon Lite Gigabit Ethernet"; 1683 break; 1684 case SK_YUKON_LP: 1685 pname = "Marvell Yukon LP Gigabit Ethernet"; 1686 break; 1687 default: 1688 pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1689 break; 1690 } 1691 1692 /* Yukon Lite Rev. A0 needs special test. */ 1693 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { 1694 u_int32_t far; 1695 u_int8_t testbyte; 1696 1697 /* Save flash address register before testing. */ 1698 far = sk_win_read_4(sc, SK_EP_ADDR); 1699 1700 sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); 1701 testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); 1702 1703 if (testbyte != 0x00) { 1704 /* Yukon Lite Rev. A0 detected. */ 1705 sc->sk_type = SK_YUKON_LITE; 1706 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1707 /* Restore flash address register. */ 1708 sk_win_write_4(sc, SK_EP_ADDR, far); 1709 } 1710 } 1711 break; 1712 default: 1713 device_printf(dev, "unknown device: vendor=%04x, device=%04x, " 1714 "chipver=%02x, rev=%x\n", 1715 pci_get_vendor(dev), pci_get_device(dev), 1716 sc->sk_type, sc->sk_rev); 1717 error = ENXIO; 1718 goto fail; 1719 } 1720 1721 if (sc->sk_type == SK_YUKON_LITE) { 1722 switch (sc->sk_rev) { 1723 case SK_YUKON_LITE_REV_A0: 1724 revstr = "A0"; 1725 break; 1726 case SK_YUKON_LITE_REV_A1: 1727 revstr = "A1"; 1728 break; 1729 case SK_YUKON_LITE_REV_A3: 1730 revstr = "A3"; 1731 break; 1732 default: 1733 revstr = ""; 1734 break; 1735 } 1736 } else { 1737 revstr = ""; 1738 } 1739 1740 /* Announce the product name and more VPD data if there. */ 1741 if (pname != NULL) 1742 device_printf(dev, "%s rev. %s(0x%x)\n", 1743 pname, revstr, sc->sk_rev); 1744 1745 if (bootverbose) { 1746 device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); 1747 device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); 1748 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); 1749 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); 1750 } 1751 1752 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1753 if (sc->sk_devs[SK_PORT_A] == NULL) { 1754 device_printf(dev, "failed to add child for PORT_A\n"); 1755 error = ENXIO; 1756 goto fail; 1757 } 1758 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1759 if (port == NULL) { 1760 device_printf(dev, "failed to allocate memory for " 1761 "ivars of PORT_A\n"); 1762 error = ENXIO; 1763 goto fail; 1764 } 1765 *port = SK_PORT_A; 1766 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1767 1768 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1769 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1770 if (sc->sk_devs[SK_PORT_B] == NULL) { 1771 device_printf(dev, "failed to add child for PORT_B\n"); 1772 error = ENXIO; 1773 goto fail; 1774 } 1775 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1776 if (port == NULL) { 1777 device_printf(dev, "failed to allocate memory for " 1778 "ivars of PORT_B\n"); 1779 error = ENXIO; 1780 goto fail; 1781 } 1782 *port = SK_PORT_B; 1783 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1784 } 1785 1786 /* Turn on the 'driver is loaded' LED. */ 1787 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1788 1789 error = bus_generic_attach(dev); 1790 if (error) { 1791 device_printf(dev, "failed to attach port(s)\n"); 1792 goto fail; 1793 } 1794 1795 /* Hook interrupt last to avoid having to lock softc */ 1796 error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, 1797 NULL, sk_intr, sc, &sc->sk_intrhand); 1798 1799 if (error) { 1800 device_printf(dev, "couldn't set up irq\n"); 1801 goto fail; 1802 } 1803 1804 fail: 1805 if (error) 1806 skc_detach(dev); 1807 1808 return(error); 1809 } 1810 1811 /* 1812 * Shutdown hardware and free up resources. This can be called any 1813 * time after the mutex has been initialized. It is called in both 1814 * the error case in attach and the normal detach case so it needs 1815 * to be careful about only freeing resources that have actually been 1816 * allocated. 1817 */ 1818 static int 1819 sk_detach(dev) 1820 device_t dev; 1821 { 1822 struct sk_if_softc *sc_if; 1823 struct ifnet *ifp; 1824 1825 sc_if = device_get_softc(dev); 1826 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1827 ("sk mutex not initialized in sk_detach")); 1828 SK_IF_LOCK(sc_if); 1829 1830 ifp = sc_if->sk_ifp; 1831 /* These should only be active if attach_xmac succeeded */ 1832 if (device_is_attached(dev)) { 1833 sk_stop(sc_if); 1834 /* Can't hold locks while calling detach */ 1835 SK_IF_UNLOCK(sc_if); 1836 callout_drain(&sc_if->sk_tick_ch); 1837 callout_drain(&sc_if->sk_watchdog_ch); 1838 ether_ifdetach(ifp); 1839 SK_IF_LOCK(sc_if); 1840 } 1841 if (ifp) 1842 if_free(ifp); 1843 /* 1844 * We're generally called from skc_detach() which is using 1845 * device_delete_child() to get to here. It's already trashed 1846 * miibus for us, so don't do it here or we'll panic. 1847 */ 1848 /* 1849 if (sc_if->sk_miibus != NULL) 1850 device_delete_child(dev, sc_if->sk_miibus); 1851 */ 1852 bus_generic_detach(dev); 1853 sk_dma_jumbo_free(sc_if); 1854 sk_dma_free(sc_if); 1855 SK_IF_UNLOCK(sc_if); 1856 1857 return(0); 1858 } 1859 1860 static int 1861 skc_detach(dev) 1862 device_t dev; 1863 { 1864 struct sk_softc *sc; 1865 1866 sc = device_get_softc(dev); 1867 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1868 1869 if (device_is_alive(dev)) { 1870 if (sc->sk_devs[SK_PORT_A] != NULL) { 1871 free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); 1872 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1873 } 1874 if (sc->sk_devs[SK_PORT_B] != NULL) { 1875 free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); 1876 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1877 } 1878 bus_generic_detach(dev); 1879 } 1880 1881 if (sc->sk_intrhand) 1882 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); 1883 bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); 1884 1885 mtx_destroy(&sc->sk_mii_mtx); 1886 mtx_destroy(&sc->sk_mtx); 1887 1888 return(0); 1889 } 1890 1891 struct sk_dmamap_arg { 1892 bus_addr_t sk_busaddr; 1893 }; 1894 1895 static void 1896 sk_dmamap_cb(arg, segs, nseg, error) 1897 void *arg; 1898 bus_dma_segment_t *segs; 1899 int nseg; 1900 int error; 1901 { 1902 struct sk_dmamap_arg *ctx; 1903 1904 if (error != 0) 1905 return; 1906 1907 ctx = arg; 1908 ctx->sk_busaddr = segs[0].ds_addr; 1909 } 1910 1911 /* 1912 * Allocate jumbo buffer storage. The SysKonnect adapters support 1913 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1914 * use them in their drivers. In order for us to use them, we need 1915 * large 9K receive buffers, however standard mbuf clusters are only 1916 * 2048 bytes in size. Consequently, we need to allocate and manage 1917 * our own jumbo buffer pool. Fortunately, this does not require an 1918 * excessive amount of additional code. 1919 */ 1920 static int 1921 sk_dma_alloc(sc_if) 1922 struct sk_if_softc *sc_if; 1923 { 1924 struct sk_dmamap_arg ctx; 1925 struct sk_txdesc *txd; 1926 struct sk_rxdesc *rxd; 1927 int error, i; 1928 1929 /* create parent tag */ 1930 /* 1931 * XXX 1932 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument 1933 * in bus_dma_tag_create(9) as the NIC would support DAC mode. 1934 * However bz@ reported that it does not work on amd64 with > 4GB 1935 * RAM. Until we have more clues of the breakage, disable DAC mode 1936 * by limiting DMA address to be in 32bit address space. 1937 */ 1938 error = bus_dma_tag_create( 1939 bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1940 1, 0, /* algnmnt, boundary */ 1941 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1942 BUS_SPACE_MAXADDR, /* highaddr */ 1943 NULL, NULL, /* filter, filterarg */ 1944 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1945 0, /* nsegments */ 1946 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1947 0, /* flags */ 1948 NULL, NULL, /* lockfunc, lockarg */ 1949 &sc_if->sk_cdata.sk_parent_tag); 1950 if (error != 0) { 1951 device_printf(sc_if->sk_if_dev, 1952 "failed to create parent DMA tag\n"); 1953 goto fail; 1954 } 1955 1956 /* create tag for Tx ring */ 1957 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1958 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1959 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1960 BUS_SPACE_MAXADDR, /* highaddr */ 1961 NULL, NULL, /* filter, filterarg */ 1962 SK_TX_RING_SZ, /* maxsize */ 1963 1, /* nsegments */ 1964 SK_TX_RING_SZ, /* maxsegsize */ 1965 0, /* flags */ 1966 NULL, NULL, /* lockfunc, lockarg */ 1967 &sc_if->sk_cdata.sk_tx_ring_tag); 1968 if (error != 0) { 1969 device_printf(sc_if->sk_if_dev, 1970 "failed to allocate Tx ring DMA tag\n"); 1971 goto fail; 1972 } 1973 1974 /* create tag for Rx ring */ 1975 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1976 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1977 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1978 BUS_SPACE_MAXADDR, /* highaddr */ 1979 NULL, NULL, /* filter, filterarg */ 1980 SK_RX_RING_SZ, /* maxsize */ 1981 1, /* nsegments */ 1982 SK_RX_RING_SZ, /* maxsegsize */ 1983 0, /* flags */ 1984 NULL, NULL, /* lockfunc, lockarg */ 1985 &sc_if->sk_cdata.sk_rx_ring_tag); 1986 if (error != 0) { 1987 device_printf(sc_if->sk_if_dev, 1988 "failed to allocate Rx ring DMA tag\n"); 1989 goto fail; 1990 } 1991 1992 /* create tag for Tx buffers */ 1993 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1994 1, 0, /* algnmnt, boundary */ 1995 BUS_SPACE_MAXADDR, /* lowaddr */ 1996 BUS_SPACE_MAXADDR, /* highaddr */ 1997 NULL, NULL, /* filter, filterarg */ 1998 MCLBYTES * SK_MAXTXSEGS, /* maxsize */ 1999 SK_MAXTXSEGS, /* nsegments */ 2000 MCLBYTES, /* maxsegsize */ 2001 0, /* flags */ 2002 NULL, NULL, /* lockfunc, lockarg */ 2003 &sc_if->sk_cdata.sk_tx_tag); 2004 if (error != 0) { 2005 device_printf(sc_if->sk_if_dev, 2006 "failed to allocate Tx DMA tag\n"); 2007 goto fail; 2008 } 2009 2010 /* create tag for Rx buffers */ 2011 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2012 1, 0, /* algnmnt, boundary */ 2013 BUS_SPACE_MAXADDR, /* lowaddr */ 2014 BUS_SPACE_MAXADDR, /* highaddr */ 2015 NULL, NULL, /* filter, filterarg */ 2016 MCLBYTES, /* maxsize */ 2017 1, /* nsegments */ 2018 MCLBYTES, /* maxsegsize */ 2019 0, /* flags */ 2020 NULL, NULL, /* lockfunc, lockarg */ 2021 &sc_if->sk_cdata.sk_rx_tag); 2022 if (error != 0) { 2023 device_printf(sc_if->sk_if_dev, 2024 "failed to allocate Rx DMA tag\n"); 2025 goto fail; 2026 } 2027 2028 /* allocate DMA'able memory and load the DMA map for Tx ring */ 2029 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, 2030 (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | 2031 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map); 2032 if (error != 0) { 2033 device_printf(sc_if->sk_if_dev, 2034 "failed to allocate DMA'able memory for Tx ring\n"); 2035 goto fail; 2036 } 2037 2038 ctx.sk_busaddr = 0; 2039 error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, 2040 sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, 2041 SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2042 if (error != 0) { 2043 device_printf(sc_if->sk_if_dev, 2044 "failed to load DMA'able memory for Tx ring\n"); 2045 goto fail; 2046 } 2047 sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; 2048 2049 /* allocate DMA'able memory and load the DMA map for Rx ring */ 2050 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, 2051 (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | 2052 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map); 2053 if (error != 0) { 2054 device_printf(sc_if->sk_if_dev, 2055 "failed to allocate DMA'able memory for Rx ring\n"); 2056 goto fail; 2057 } 2058 2059 ctx.sk_busaddr = 0; 2060 error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, 2061 sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, 2062 SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2063 if (error != 0) { 2064 device_printf(sc_if->sk_if_dev, 2065 "failed to load DMA'able memory for Rx ring\n"); 2066 goto fail; 2067 } 2068 sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; 2069 2070 /* create DMA maps for Tx buffers */ 2071 for (i = 0; i < SK_TX_RING_CNT; i++) { 2072 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2073 txd->tx_m = NULL; 2074 txd->tx_dmamap = NULL; 2075 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, 2076 &txd->tx_dmamap); 2077 if (error != 0) { 2078 device_printf(sc_if->sk_if_dev, 2079 "failed to create Tx dmamap\n"); 2080 goto fail; 2081 } 2082 } 2083 2084 /* create DMA maps for Rx buffers */ 2085 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2086 &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { 2087 device_printf(sc_if->sk_if_dev, 2088 "failed to create spare Rx dmamap\n"); 2089 goto fail; 2090 } 2091 for (i = 0; i < SK_RX_RING_CNT; i++) { 2092 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2093 rxd->rx_m = NULL; 2094 rxd->rx_dmamap = NULL; 2095 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2096 &rxd->rx_dmamap); 2097 if (error != 0) { 2098 device_printf(sc_if->sk_if_dev, 2099 "failed to create Rx dmamap\n"); 2100 goto fail; 2101 } 2102 } 2103 2104 fail: 2105 return (error); 2106 } 2107 2108 static int 2109 sk_dma_jumbo_alloc(sc_if) 2110 struct sk_if_softc *sc_if; 2111 { 2112 struct sk_dmamap_arg ctx; 2113 struct sk_rxdesc *jrxd; 2114 int error, i; 2115 2116 if (jumbo_disable != 0) { 2117 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); 2118 sc_if->sk_jumbo_disable = 1; 2119 return (0); 2120 } 2121 /* create tag for jumbo Rx ring */ 2122 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2123 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 2124 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2125 BUS_SPACE_MAXADDR, /* highaddr */ 2126 NULL, NULL, /* filter, filterarg */ 2127 SK_JUMBO_RX_RING_SZ, /* maxsize */ 2128 1, /* nsegments */ 2129 SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2130 0, /* flags */ 2131 NULL, NULL, /* lockfunc, lockarg */ 2132 &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2133 if (error != 0) { 2134 device_printf(sc_if->sk_if_dev, 2135 "failed to allocate jumbo Rx ring DMA tag\n"); 2136 goto jumbo_fail; 2137 } 2138 2139 /* create tag for jumbo Rx buffers */ 2140 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2141 1, 0, /* algnmnt, boundary */ 2142 BUS_SPACE_MAXADDR, /* lowaddr */ 2143 BUS_SPACE_MAXADDR, /* highaddr */ 2144 NULL, NULL, /* filter, filterarg */ 2145 MJUM9BYTES, /* maxsize */ 2146 1, /* nsegments */ 2147 MJUM9BYTES, /* maxsegsize */ 2148 0, /* flags */ 2149 NULL, NULL, /* lockfunc, lockarg */ 2150 &sc_if->sk_cdata.sk_jumbo_rx_tag); 2151 if (error != 0) { 2152 device_printf(sc_if->sk_if_dev, 2153 "failed to allocate jumbo Rx DMA tag\n"); 2154 goto jumbo_fail; 2155 } 2156 2157 /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ 2158 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2159 (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT | 2160 BUS_DMA_COHERENT | BUS_DMA_ZERO, 2161 &sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2162 if (error != 0) { 2163 device_printf(sc_if->sk_if_dev, 2164 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2165 goto jumbo_fail; 2166 } 2167 2168 ctx.sk_busaddr = 0; 2169 error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2170 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2171 sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, 2172 &ctx, BUS_DMA_NOWAIT); 2173 if (error != 0) { 2174 device_printf(sc_if->sk_if_dev, 2175 "failed to load DMA'able memory for jumbo Rx ring\n"); 2176 goto jumbo_fail; 2177 } 2178 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; 2179 2180 /* create DMA maps for jumbo Rx buffers */ 2181 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2182 &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { 2183 device_printf(sc_if->sk_if_dev, 2184 "failed to create spare jumbo Rx dmamap\n"); 2185 goto jumbo_fail; 2186 } 2187 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2188 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2189 jrxd->rx_m = NULL; 2190 jrxd->rx_dmamap = NULL; 2191 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2192 &jrxd->rx_dmamap); 2193 if (error != 0) { 2194 device_printf(sc_if->sk_if_dev, 2195 "failed to create jumbo Rx dmamap\n"); 2196 goto jumbo_fail; 2197 } 2198 } 2199 2200 return (0); 2201 2202 jumbo_fail: 2203 sk_dma_jumbo_free(sc_if); 2204 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " 2205 "resource shortage\n"); 2206 sc_if->sk_jumbo_disable = 1; 2207 return (0); 2208 } 2209 2210 static void 2211 sk_dma_free(sc_if) 2212 struct sk_if_softc *sc_if; 2213 { 2214 struct sk_txdesc *txd; 2215 struct sk_rxdesc *rxd; 2216 int i; 2217 2218 /* Tx ring */ 2219 if (sc_if->sk_cdata.sk_tx_ring_tag) { 2220 if (sc_if->sk_cdata.sk_tx_ring_map) 2221 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, 2222 sc_if->sk_cdata.sk_tx_ring_map); 2223 if (sc_if->sk_cdata.sk_tx_ring_map && 2224 sc_if->sk_rdata.sk_tx_ring) 2225 bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, 2226 sc_if->sk_rdata.sk_tx_ring, 2227 sc_if->sk_cdata.sk_tx_ring_map); 2228 sc_if->sk_rdata.sk_tx_ring = NULL; 2229 sc_if->sk_cdata.sk_tx_ring_map = NULL; 2230 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); 2231 sc_if->sk_cdata.sk_tx_ring_tag = NULL; 2232 } 2233 /* Rx ring */ 2234 if (sc_if->sk_cdata.sk_rx_ring_tag) { 2235 if (sc_if->sk_cdata.sk_rx_ring_map) 2236 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, 2237 sc_if->sk_cdata.sk_rx_ring_map); 2238 if (sc_if->sk_cdata.sk_rx_ring_map && 2239 sc_if->sk_rdata.sk_rx_ring) 2240 bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, 2241 sc_if->sk_rdata.sk_rx_ring, 2242 sc_if->sk_cdata.sk_rx_ring_map); 2243 sc_if->sk_rdata.sk_rx_ring = NULL; 2244 sc_if->sk_cdata.sk_rx_ring_map = NULL; 2245 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); 2246 sc_if->sk_cdata.sk_rx_ring_tag = NULL; 2247 } 2248 /* Tx buffers */ 2249 if (sc_if->sk_cdata.sk_tx_tag) { 2250 for (i = 0; i < SK_TX_RING_CNT; i++) { 2251 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2252 if (txd->tx_dmamap) { 2253 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, 2254 txd->tx_dmamap); 2255 txd->tx_dmamap = NULL; 2256 } 2257 } 2258 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); 2259 sc_if->sk_cdata.sk_tx_tag = NULL; 2260 } 2261 /* Rx buffers */ 2262 if (sc_if->sk_cdata.sk_rx_tag) { 2263 for (i = 0; i < SK_RX_RING_CNT; i++) { 2264 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2265 if (rxd->rx_dmamap) { 2266 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2267 rxd->rx_dmamap); 2268 rxd->rx_dmamap = NULL; 2269 } 2270 } 2271 if (sc_if->sk_cdata.sk_rx_sparemap) { 2272 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2273 sc_if->sk_cdata.sk_rx_sparemap); 2274 sc_if->sk_cdata.sk_rx_sparemap = NULL; 2275 } 2276 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); 2277 sc_if->sk_cdata.sk_rx_tag = NULL; 2278 } 2279 2280 if (sc_if->sk_cdata.sk_parent_tag) { 2281 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); 2282 sc_if->sk_cdata.sk_parent_tag = NULL; 2283 } 2284 } 2285 2286 static void 2287 sk_dma_jumbo_free(sc_if) 2288 struct sk_if_softc *sc_if; 2289 { 2290 struct sk_rxdesc *jrxd; 2291 int i; 2292 2293 /* jumbo Rx ring */ 2294 if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { 2295 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map) 2296 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2297 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2298 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map && 2299 sc_if->sk_rdata.sk_jumbo_rx_ring) 2300 bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2301 sc_if->sk_rdata.sk_jumbo_rx_ring, 2302 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2303 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; 2304 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL; 2305 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2306 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; 2307 } 2308 2309 /* jumbo Rx buffers */ 2310 if (sc_if->sk_cdata.sk_jumbo_rx_tag) { 2311 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2312 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2313 if (jrxd->rx_dmamap) { 2314 bus_dmamap_destroy( 2315 sc_if->sk_cdata.sk_jumbo_rx_tag, 2316 jrxd->rx_dmamap); 2317 jrxd->rx_dmamap = NULL; 2318 } 2319 } 2320 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { 2321 bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, 2322 sc_if->sk_cdata.sk_jumbo_rx_sparemap); 2323 sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; 2324 } 2325 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); 2326 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; 2327 } 2328 } 2329 2330 static void 2331 sk_txcksum(ifp, m, f) 2332 struct ifnet *ifp; 2333 struct mbuf *m; 2334 struct sk_tx_desc *f; 2335 { 2336 struct ip *ip; 2337 u_int16_t offset; 2338 u_int8_t *p; 2339 2340 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2341 for(; m && m->m_len == 0; m = m->m_next) 2342 ; 2343 if (m == NULL || m->m_len < ETHER_HDR_LEN) { 2344 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); 2345 /* checksum may be corrupted */ 2346 goto sendit; 2347 } 2348 if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { 2349 if (m->m_len != ETHER_HDR_LEN) { 2350 if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", 2351 __func__); 2352 /* checksum may be corrupted */ 2353 goto sendit; 2354 } 2355 for(m = m->m_next; m && m->m_len == 0; m = m->m_next) 2356 ; 2357 if (m == NULL) { 2358 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2359 /* checksum may be corrupted */ 2360 goto sendit; 2361 } 2362 ip = mtod(m, struct ip *); 2363 } else { 2364 p = mtod(m, u_int8_t *); 2365 p += ETHER_HDR_LEN; 2366 ip = (struct ip *)p; 2367 } 2368 offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; 2369 2370 sendit: 2371 f->sk_csum_startval = 0; 2372 f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | 2373 (offset << 16)); 2374 } 2375 2376 static int 2377 sk_encap(sc_if, m_head) 2378 struct sk_if_softc *sc_if; 2379 struct mbuf **m_head; 2380 { 2381 struct sk_txdesc *txd; 2382 struct sk_tx_desc *f = NULL; 2383 struct mbuf *m; 2384 bus_dma_segment_t txsegs[SK_MAXTXSEGS]; 2385 u_int32_t cflags, frag, si, sk_ctl; 2386 int error, i, nseg; 2387 2388 SK_IF_LOCK_ASSERT(sc_if); 2389 2390 if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) 2391 return (ENOBUFS); 2392 2393 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2394 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2395 if (error == EFBIG) { 2396 m = m_defrag(*m_head, M_DONTWAIT); 2397 if (m == NULL) { 2398 m_freem(*m_head); 2399 *m_head = NULL; 2400 return (ENOMEM); 2401 } 2402 *m_head = m; 2403 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2404 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2405 if (error != 0) { 2406 m_freem(*m_head); 2407 *m_head = NULL; 2408 return (error); 2409 } 2410 } else if (error != 0) 2411 return (error); 2412 if (nseg == 0) { 2413 m_freem(*m_head); 2414 *m_head = NULL; 2415 return (EIO); 2416 } 2417 if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { 2418 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2419 return (ENOBUFS); 2420 } 2421 2422 m = *m_head; 2423 if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) 2424 cflags = SK_OPCODE_CSUM; 2425 else 2426 cflags = SK_OPCODE_DEFAULT; 2427 si = frag = sc_if->sk_cdata.sk_tx_prod; 2428 for (i = 0; i < nseg; i++) { 2429 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2430 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); 2431 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); 2432 sk_ctl = txsegs[i].ds_len | cflags; 2433 if (i == 0) { 2434 if (cflags == SK_OPCODE_CSUM) 2435 sk_txcksum(sc_if->sk_ifp, m, f); 2436 sk_ctl |= SK_TXCTL_FIRSTFRAG; 2437 } else 2438 sk_ctl |= SK_TXCTL_OWN; 2439 f->sk_ctl = htole32(sk_ctl); 2440 sc_if->sk_cdata.sk_tx_cnt++; 2441 SK_INC(frag, SK_TX_RING_CNT); 2442 } 2443 sc_if->sk_cdata.sk_tx_prod = frag; 2444 2445 /* set EOF on the last desciptor */ 2446 frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; 2447 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2448 f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 2449 2450 /* turn the first descriptor ownership to NIC */ 2451 f = &sc_if->sk_rdata.sk_tx_ring[si]; 2452 f->sk_ctl |= htole32(SK_TXCTL_OWN); 2453 2454 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); 2455 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); 2456 txd->tx_m = m; 2457 2458 /* sync descriptors */ 2459 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2460 BUS_DMASYNC_PREWRITE); 2461 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2462 sc_if->sk_cdata.sk_tx_ring_map, 2463 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2464 2465 return (0); 2466 } 2467 2468 static void 2469 sk_start(ifp) 2470 struct ifnet *ifp; 2471 { 2472 struct sk_if_softc *sc_if; 2473 2474 sc_if = ifp->if_softc; 2475 2476 SK_IF_LOCK(sc_if); 2477 sk_start_locked(ifp); 2478 SK_IF_UNLOCK(sc_if); 2479 2480 return; 2481 } 2482 2483 static void 2484 sk_start_locked(ifp) 2485 struct ifnet *ifp; 2486 { 2487 struct sk_softc *sc; 2488 struct sk_if_softc *sc_if; 2489 struct mbuf *m_head; 2490 int enq; 2491 2492 sc_if = ifp->if_softc; 2493 sc = sc_if->sk_softc; 2494 2495 SK_IF_LOCK_ASSERT(sc_if); 2496 2497 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2498 sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { 2499 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2500 if (m_head == NULL) 2501 break; 2502 2503 /* 2504 * Pack the data into the transmit ring. If we 2505 * don't have room, set the OACTIVE flag and wait 2506 * for the NIC to drain the ring. 2507 */ 2508 if (sk_encap(sc_if, &m_head)) { 2509 if (m_head == NULL) 2510 break; 2511 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2512 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2513 break; 2514 } 2515 2516 enq++; 2517 /* 2518 * If there's a BPF listener, bounce a copy of this frame 2519 * to him. 2520 */ 2521 BPF_MTAP(ifp, m_head); 2522 } 2523 2524 if (enq > 0) { 2525 /* Transmit */ 2526 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2527 2528 /* Set a timeout in case the chip goes out to lunch. */ 2529 sc_if->sk_watchdog_timer = 5; 2530 } 2531 } 2532 2533 2534 static void 2535 sk_watchdog(arg) 2536 void *arg; 2537 { 2538 struct sk_if_softc *sc_if; 2539 struct ifnet *ifp; 2540 2541 ifp = arg; 2542 sc_if = ifp->if_softc; 2543 2544 SK_IF_LOCK_ASSERT(sc_if); 2545 2546 if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) 2547 goto done; 2548 2549 /* 2550 * Reclaim first as there is a possibility of losing Tx completion 2551 * interrupts. 2552 */ 2553 sk_txeof(sc_if); 2554 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2555 if_printf(sc_if->sk_ifp, "watchdog timeout\n"); 2556 ifp->if_oerrors++; 2557 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2558 sk_init_locked(sc_if); 2559 } 2560 2561 done: 2562 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 2563 2564 return; 2565 } 2566 2567 static int 2568 skc_shutdown(dev) 2569 device_t dev; 2570 { 2571 struct sk_softc *sc; 2572 2573 sc = device_get_softc(dev); 2574 SK_LOCK(sc); 2575 2576 /* Turn off the 'driver is loaded' LED. */ 2577 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2578 2579 /* 2580 * Reset the GEnesis controller. Doing this should also 2581 * assert the resets on the attached XMAC(s). 2582 */ 2583 sk_reset(sc); 2584 SK_UNLOCK(sc); 2585 2586 return (0); 2587 } 2588 2589 static int 2590 skc_suspend(dev) 2591 device_t dev; 2592 { 2593 struct sk_softc *sc; 2594 struct sk_if_softc *sc_if0, *sc_if1; 2595 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2596 2597 sc = device_get_softc(dev); 2598 2599 SK_LOCK(sc); 2600 2601 sc_if0 = sc->sk_if[SK_PORT_A]; 2602 sc_if1 = sc->sk_if[SK_PORT_B]; 2603 if (sc_if0 != NULL) 2604 ifp0 = sc_if0->sk_ifp; 2605 if (sc_if1 != NULL) 2606 ifp1 = sc_if1->sk_ifp; 2607 if (ifp0 != NULL) 2608 sk_stop(sc_if0); 2609 if (ifp1 != NULL) 2610 sk_stop(sc_if1); 2611 sc->sk_suspended = 1; 2612 2613 SK_UNLOCK(sc); 2614 2615 return (0); 2616 } 2617 2618 static int 2619 skc_resume(dev) 2620 device_t dev; 2621 { 2622 struct sk_softc *sc; 2623 struct sk_if_softc *sc_if0, *sc_if1; 2624 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2625 2626 sc = device_get_softc(dev); 2627 2628 SK_LOCK(sc); 2629 2630 sc_if0 = sc->sk_if[SK_PORT_A]; 2631 sc_if1 = sc->sk_if[SK_PORT_B]; 2632 if (sc_if0 != NULL) 2633 ifp0 = sc_if0->sk_ifp; 2634 if (sc_if1 != NULL) 2635 ifp1 = sc_if1->sk_ifp; 2636 if (ifp0 != NULL && ifp0->if_flags & IFF_UP) 2637 sk_init_locked(sc_if0); 2638 if (ifp1 != NULL && ifp1->if_flags & IFF_UP) 2639 sk_init_locked(sc_if1); 2640 sc->sk_suspended = 0; 2641 2642 SK_UNLOCK(sc); 2643 2644 return (0); 2645 } 2646 2647 /* 2648 * According to the data sheet from SK-NET GENESIS the hardware can compute 2649 * two Rx checksums at the same time(Each checksum start position is 2650 * programmed in Rx descriptors). However it seems that TCP/UDP checksum 2651 * does not work at least on my Yukon hardware. I tried every possible ways 2652 * to get correct checksum value but couldn't get correct one. So TCP/UDP 2653 * checksum offload was disabled at the moment and only IP checksum offload 2654 * was enabled. 2655 * As nomral IP header size is 20 bytes I can't expect it would give an 2656 * increase in throughput. However it seems it doesn't hurt performance in 2657 * my testing. If there is a more detailed information for checksum secret 2658 * of the hardware in question please contact yongari@FreeBSD.org to add 2659 * TCP/UDP checksum offload support. 2660 */ 2661 static __inline void 2662 sk_rxcksum(ifp, m, csum) 2663 struct ifnet *ifp; 2664 struct mbuf *m; 2665 u_int32_t csum; 2666 { 2667 struct ether_header *eh; 2668 struct ip *ip; 2669 int32_t hlen, len, pktlen; 2670 u_int16_t csum1, csum2, ipcsum; 2671 2672 pktlen = m->m_pkthdr.len; 2673 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 2674 return; 2675 eh = mtod(m, struct ether_header *); 2676 if (eh->ether_type != htons(ETHERTYPE_IP)) 2677 return; 2678 ip = (struct ip *)(eh + 1); 2679 if (ip->ip_v != IPVERSION) 2680 return; 2681 hlen = ip->ip_hl << 2; 2682 pktlen -= sizeof(struct ether_header); 2683 if (hlen < sizeof(struct ip)) 2684 return; 2685 if (ntohs(ip->ip_len) < hlen) 2686 return; 2687 if (ntohs(ip->ip_len) != pktlen) 2688 return; 2689 2690 csum1 = htons(csum & 0xffff); 2691 csum2 = htons((csum >> 16) & 0xffff); 2692 ipcsum = in_addword(csum1, ~csum2 & 0xffff); 2693 /* checksum fixup for IP options */ 2694 len = hlen - sizeof(struct ip); 2695 if (len > 0) { 2696 /* 2697 * If the second checksum value is correct we can compute IP 2698 * checksum with simple math. Unfortunately the second checksum 2699 * value is wrong so we can't verify the checksum from the 2700 * value(It seems there is some magic here to get correct 2701 * value). If the second checksum value is correct it also 2702 * means we can get TCP/UDP checksum) here. However, it still 2703 * needs pseudo header checksum calculation due to hardware 2704 * limitations. 2705 */ 2706 return; 2707 } 2708 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 2709 if (ipcsum == 0xffff) 2710 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2711 } 2712 2713 static __inline int 2714 sk_rxvalid(sc, stat, len) 2715 struct sk_softc *sc; 2716 u_int32_t stat, len; 2717 { 2718 2719 if (sc->sk_type == SK_GENESIS) { 2720 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || 2721 XM_RXSTAT_BYTES(stat) != len) 2722 return (0); 2723 } else { 2724 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2725 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2726 YU_RXSTAT_JABBER)) != 0 || 2727 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2728 YU_RXSTAT_BYTES(stat) != len) 2729 return (0); 2730 } 2731 2732 return (1); 2733 } 2734 2735 static void 2736 sk_rxeof(sc_if) 2737 struct sk_if_softc *sc_if; 2738 { 2739 struct sk_softc *sc; 2740 struct mbuf *m; 2741 struct ifnet *ifp; 2742 struct sk_rx_desc *cur_rx; 2743 struct sk_rxdesc *rxd; 2744 int cons, prog; 2745 u_int32_t csum, rxstat, sk_ctl; 2746 2747 sc = sc_if->sk_softc; 2748 ifp = sc_if->sk_ifp; 2749 2750 SK_IF_LOCK_ASSERT(sc_if); 2751 2752 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2753 sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); 2754 2755 prog = 0; 2756 for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; 2757 prog++, SK_INC(cons, SK_RX_RING_CNT)) { 2758 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; 2759 sk_ctl = le32toh(cur_rx->sk_ctl); 2760 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2761 break; 2762 rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; 2763 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2764 2765 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2766 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2767 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2768 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2769 SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || 2770 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2771 ifp->if_ierrors++; 2772 sk_discard_rxbuf(sc_if, cons); 2773 continue; 2774 } 2775 2776 m = rxd->rx_m; 2777 csum = le32toh(cur_rx->sk_csum); 2778 if (sk_newbuf(sc_if, cons) != 0) { 2779 ifp->if_iqdrops++; 2780 /* reuse old buffer */ 2781 sk_discard_rxbuf(sc_if, cons); 2782 continue; 2783 } 2784 m->m_pkthdr.rcvif = ifp; 2785 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2786 ifp->if_ipackets++; 2787 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2788 sk_rxcksum(ifp, m, csum); 2789 SK_IF_UNLOCK(sc_if); 2790 (*ifp->if_input)(ifp, m); 2791 SK_IF_LOCK(sc_if); 2792 } 2793 2794 if (prog > 0) { 2795 sc_if->sk_cdata.sk_rx_cons = cons; 2796 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2797 sc_if->sk_cdata.sk_rx_ring_map, 2798 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2799 } 2800 } 2801 2802 static void 2803 sk_jumbo_rxeof(sc_if) 2804 struct sk_if_softc *sc_if; 2805 { 2806 struct sk_softc *sc; 2807 struct mbuf *m; 2808 struct ifnet *ifp; 2809 struct sk_rx_desc *cur_rx; 2810 struct sk_rxdesc *jrxd; 2811 int cons, prog; 2812 u_int32_t csum, rxstat, sk_ctl; 2813 2814 sc = sc_if->sk_softc; 2815 ifp = sc_if->sk_ifp; 2816 2817 SK_IF_LOCK_ASSERT(sc_if); 2818 2819 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2820 sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); 2821 2822 prog = 0; 2823 for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; 2824 prog < SK_JUMBO_RX_RING_CNT; 2825 prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { 2826 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; 2827 sk_ctl = le32toh(cur_rx->sk_ctl); 2828 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2829 break; 2830 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; 2831 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2832 2833 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2834 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2835 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2836 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2837 SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || 2838 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2839 ifp->if_ierrors++; 2840 sk_discard_jumbo_rxbuf(sc_if, cons); 2841 continue; 2842 } 2843 2844 m = jrxd->rx_m; 2845 csum = le32toh(cur_rx->sk_csum); 2846 if (sk_jumbo_newbuf(sc_if, cons) != 0) { 2847 ifp->if_iqdrops++; 2848 /* reuse old buffer */ 2849 sk_discard_jumbo_rxbuf(sc_if, cons); 2850 continue; 2851 } 2852 m->m_pkthdr.rcvif = ifp; 2853 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2854 ifp->if_ipackets++; 2855 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2856 sk_rxcksum(ifp, m, csum); 2857 SK_IF_UNLOCK(sc_if); 2858 (*ifp->if_input)(ifp, m); 2859 SK_IF_LOCK(sc_if); 2860 } 2861 2862 if (prog > 0) { 2863 sc_if->sk_cdata.sk_jumbo_rx_cons = cons; 2864 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2865 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2866 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2867 } 2868 } 2869 2870 static void 2871 sk_txeof(sc_if) 2872 struct sk_if_softc *sc_if; 2873 { 2874 struct sk_softc *sc; 2875 struct sk_txdesc *txd; 2876 struct sk_tx_desc *cur_tx; 2877 struct ifnet *ifp; 2878 u_int32_t idx, sk_ctl; 2879 2880 sc = sc_if->sk_softc; 2881 ifp = sc_if->sk_ifp; 2882 2883 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2884 if (txd == NULL) 2885 return; 2886 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2887 sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); 2888 /* 2889 * Go through our tx ring and free mbufs for those 2890 * frames that have been sent. 2891 */ 2892 for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { 2893 if (sc_if->sk_cdata.sk_tx_cnt <= 0) 2894 break; 2895 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; 2896 sk_ctl = le32toh(cur_tx->sk_ctl); 2897 if (sk_ctl & SK_TXCTL_OWN) 2898 break; 2899 sc_if->sk_cdata.sk_tx_cnt--; 2900 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2901 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) 2902 continue; 2903 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2904 BUS_DMASYNC_POSTWRITE); 2905 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2906 2907 ifp->if_opackets++; 2908 m_freem(txd->tx_m); 2909 txd->tx_m = NULL; 2910 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); 2911 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 2912 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2913 } 2914 sc_if->sk_cdata.sk_tx_cons = idx; 2915 sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2916 2917 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2918 sc_if->sk_cdata.sk_tx_ring_map, 2919 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2920 } 2921 2922 static void 2923 sk_tick(xsc_if) 2924 void *xsc_if; 2925 { 2926 struct sk_if_softc *sc_if; 2927 struct mii_data *mii; 2928 struct ifnet *ifp; 2929 int i; 2930 2931 sc_if = xsc_if; 2932 ifp = sc_if->sk_ifp; 2933 mii = device_get_softc(sc_if->sk_miibus); 2934 2935 if (!(ifp->if_flags & IFF_UP)) 2936 return; 2937 2938 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2939 sk_intr_bcom(sc_if); 2940 return; 2941 } 2942 2943 /* 2944 * According to SysKonnect, the correct way to verify that 2945 * the link has come back up is to poll bit 0 of the GPIO 2946 * register three times. This pin has the signal from the 2947 * link_sync pin connected to it; if we read the same link 2948 * state 3 times in a row, we know the link is up. 2949 */ 2950 for (i = 0; i < 3; i++) { 2951 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2952 break; 2953 } 2954 2955 if (i != 3) { 2956 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2957 return; 2958 } 2959 2960 /* Turn the GP0 interrupt back on. */ 2961 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2962 SK_XM_READ_2(sc_if, XM_ISR); 2963 mii_tick(mii); 2964 callout_stop(&sc_if->sk_tick_ch); 2965 } 2966 2967 static void 2968 sk_yukon_tick(xsc_if) 2969 void *xsc_if; 2970 { 2971 struct sk_if_softc *sc_if; 2972 struct mii_data *mii; 2973 2974 sc_if = xsc_if; 2975 mii = device_get_softc(sc_if->sk_miibus); 2976 2977 mii_tick(mii); 2978 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 2979 } 2980 2981 static void 2982 sk_intr_bcom(sc_if) 2983 struct sk_if_softc *sc_if; 2984 { 2985 struct mii_data *mii; 2986 struct ifnet *ifp; 2987 int status; 2988 mii = device_get_softc(sc_if->sk_miibus); 2989 ifp = sc_if->sk_ifp; 2990 2991 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2992 2993 /* 2994 * Read the PHY interrupt register to make sure 2995 * we clear any pending interrupts. 2996 */ 2997 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2998 2999 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3000 sk_init_xmac(sc_if); 3001 return; 3002 } 3003 3004 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 3005 int lstat; 3006 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 3007 BRGPHY_MII_AUXSTS); 3008 3009 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 3010 mii_mediachg(mii); 3011 /* Turn off the link LED. */ 3012 SK_IF_WRITE_1(sc_if, 0, 3013 SK_LINKLED1_CTL, SK_LINKLED_OFF); 3014 sc_if->sk_link = 0; 3015 } else if (status & BRGPHY_ISR_LNK_CHG) { 3016 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3017 BRGPHY_MII_IMR, 0xFF00); 3018 mii_tick(mii); 3019 sc_if->sk_link = 1; 3020 /* Turn on the link LED. */ 3021 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3022 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 3023 SK_LINKLED_BLINK_OFF); 3024 } else { 3025 mii_tick(mii); 3026 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3027 } 3028 } 3029 3030 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3031 3032 return; 3033 } 3034 3035 static void 3036 sk_intr_xmac(sc_if) 3037 struct sk_if_softc *sc_if; 3038 { 3039 struct sk_softc *sc; 3040 u_int16_t status; 3041 3042 sc = sc_if->sk_softc; 3043 status = SK_XM_READ_2(sc_if, XM_ISR); 3044 3045 /* 3046 * Link has gone down. Start MII tick timeout to 3047 * watch for link resync. 3048 */ 3049 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 3050 if (status & XM_ISR_GP0_SET) { 3051 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 3052 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3053 } 3054 3055 if (status & XM_ISR_AUTONEG_DONE) { 3056 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3057 } 3058 } 3059 3060 if (status & XM_IMR_TX_UNDERRUN) 3061 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 3062 3063 if (status & XM_IMR_RX_OVERRUN) 3064 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 3065 3066 status = SK_XM_READ_2(sc_if, XM_ISR); 3067 3068 return; 3069 } 3070 3071 static void 3072 sk_intr_yukon(sc_if) 3073 struct sk_if_softc *sc_if; 3074 { 3075 u_int8_t status; 3076 3077 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 3078 /* RX overrun */ 3079 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 3080 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3081 SK_RFCTL_RX_FIFO_OVER); 3082 } 3083 /* TX underrun */ 3084 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 3085 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3086 SK_TFCTL_TX_FIFO_UNDER); 3087 } 3088 } 3089 3090 static void 3091 sk_intr(xsc) 3092 void *xsc; 3093 { 3094 struct sk_softc *sc = xsc; 3095 struct sk_if_softc *sc_if0, *sc_if1; 3096 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 3097 u_int32_t status; 3098 3099 SK_LOCK(sc); 3100 3101 status = CSR_READ_4(sc, SK_ISSR); 3102 if (status == 0 || status == 0xffffffff || sc->sk_suspended) 3103 goto done_locked; 3104 3105 sc_if0 = sc->sk_if[SK_PORT_A]; 3106 sc_if1 = sc->sk_if[SK_PORT_B]; 3107 3108 if (sc_if0 != NULL) 3109 ifp0 = sc_if0->sk_ifp; 3110 if (sc_if1 != NULL) 3111 ifp1 = sc_if1->sk_ifp; 3112 3113 for (; (status &= sc->sk_intrmask) != 0;) { 3114 /* Handle receive interrupts first. */ 3115 if (status & SK_ISR_RX1_EOF) { 3116 if (ifp0->if_mtu > SK_MAX_FRAMELEN) 3117 sk_jumbo_rxeof(sc_if0); 3118 else 3119 sk_rxeof(sc_if0); 3120 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 3121 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3122 } 3123 if (status & SK_ISR_RX2_EOF) { 3124 if (ifp1->if_mtu > SK_MAX_FRAMELEN) 3125 sk_jumbo_rxeof(sc_if1); 3126 else 3127 sk_rxeof(sc_if1); 3128 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 3129 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3130 } 3131 3132 /* Then transmit interrupts. */ 3133 if (status & SK_ISR_TX1_S_EOF) { 3134 sk_txeof(sc_if0); 3135 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); 3136 } 3137 if (status & SK_ISR_TX2_S_EOF) { 3138 sk_txeof(sc_if1); 3139 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); 3140 } 3141 3142 /* Then MAC interrupts. */ 3143 if (status & SK_ISR_MAC1 && 3144 ifp0->if_drv_flags & IFF_DRV_RUNNING) { 3145 if (sc->sk_type == SK_GENESIS) 3146 sk_intr_xmac(sc_if0); 3147 else 3148 sk_intr_yukon(sc_if0); 3149 } 3150 3151 if (status & SK_ISR_MAC2 && 3152 ifp1->if_drv_flags & IFF_DRV_RUNNING) { 3153 if (sc->sk_type == SK_GENESIS) 3154 sk_intr_xmac(sc_if1); 3155 else 3156 sk_intr_yukon(sc_if1); 3157 } 3158 3159 if (status & SK_ISR_EXTERNAL_REG) { 3160 if (ifp0 != NULL && 3161 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 3162 sk_intr_bcom(sc_if0); 3163 if (ifp1 != NULL && 3164 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 3165 sk_intr_bcom(sc_if1); 3166 } 3167 status = CSR_READ_4(sc, SK_ISSR); 3168 } 3169 3170 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3171 3172 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3173 sk_start_locked(ifp0); 3174 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3175 sk_start_locked(ifp1); 3176 3177 done_locked: 3178 SK_UNLOCK(sc); 3179 } 3180 3181 static void 3182 sk_init_xmac(sc_if) 3183 struct sk_if_softc *sc_if; 3184 { 3185 struct sk_softc *sc; 3186 struct ifnet *ifp; 3187 u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 3188 struct sk_bcom_hack bhack[] = { 3189 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 3190 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 3191 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 3192 { 0, 0 } }; 3193 3194 SK_IF_LOCK_ASSERT(sc_if); 3195 3196 sc = sc_if->sk_softc; 3197 ifp = sc_if->sk_ifp; 3198 3199 /* Unreset the XMAC. */ 3200 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 3201 DELAY(1000); 3202 3203 /* Reset the XMAC's internal state. */ 3204 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3205 3206 /* Save the XMAC II revision */ 3207 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 3208 3209 /* 3210 * Perform additional initialization for external PHYs, 3211 * namely for the 1000baseTX cards that use the XMAC's 3212 * GMII mode. 3213 */ 3214 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3215 int i = 0; 3216 u_int32_t val; 3217 3218 /* Take PHY out of reset. */ 3219 val = sk_win_read_4(sc, SK_GPIO); 3220 if (sc_if->sk_port == SK_PORT_A) 3221 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 3222 else 3223 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 3224 sk_win_write_4(sc, SK_GPIO, val); 3225 3226 /* Enable GMII mode on the XMAC. */ 3227 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 3228 3229 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3230 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 3231 DELAY(10000); 3232 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3233 BRGPHY_MII_IMR, 0xFFF0); 3234 3235 /* 3236 * Early versions of the BCM5400 apparently have 3237 * a bug that requires them to have their reserved 3238 * registers initialized to some magic values. I don't 3239 * know what the numbers do, I'm just the messenger. 3240 */ 3241 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 3242 == 0x6041) { 3243 while(bhack[i].reg) { 3244 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3245 bhack[i].reg, bhack[i].val); 3246 i++; 3247 } 3248 } 3249 } 3250 3251 /* Set station address */ 3252 bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); 3253 SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); 3254 SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); 3255 SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); 3256 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 3257 3258 if (ifp->if_flags & IFF_BROADCAST) { 3259 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3260 } else { 3261 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3262 } 3263 3264 /* We don't need the FCS appended to the packet. */ 3265 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 3266 3267 /* We want short frames padded to 60 bytes. */ 3268 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 3269 3270 /* 3271 * Enable the reception of all error frames. This is is 3272 * a necessary evil due to the design of the XMAC. The 3273 * XMAC's receive FIFO is only 8K in size, however jumbo 3274 * frames can be up to 9000 bytes in length. When bad 3275 * frame filtering is enabled, the XMAC's RX FIFO operates 3276 * in 'store and forward' mode. For this to work, the 3277 * entire frame has to fit into the FIFO, but that means 3278 * that jumbo frames larger than 8192 bytes will be 3279 * truncated. Disabling all bad frame filtering causes 3280 * the RX FIFO to operate in streaming mode, in which 3281 * case the XMAC will start transfering frames out of the 3282 * RX FIFO as soon as the FIFO threshold is reached. 3283 */ 3284 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3285 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 3286 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 3287 XM_MODE_RX_INRANGELEN); 3288 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3289 } else 3290 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3291 3292 /* 3293 * Bump up the transmit threshold. This helps hold off transmit 3294 * underruns when we're blasting traffic from both ports at once. 3295 */ 3296 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 3297 3298 /* Set Rx filter */ 3299 sk_rxfilter_genesis(sc_if); 3300 3301 /* Clear and enable interrupts */ 3302 SK_XM_READ_2(sc_if, XM_ISR); 3303 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 3304 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 3305 else 3306 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3307 3308 /* Configure MAC arbiter */ 3309 switch(sc_if->sk_xmac_rev) { 3310 case XM_XMAC_REV_B2: 3311 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 3312 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 3313 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 3314 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 3315 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 3316 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 3317 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 3318 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 3319 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3320 break; 3321 case XM_XMAC_REV_C1: 3322 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 3323 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 3324 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 3325 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 3326 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 3327 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 3328 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 3329 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 3330 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3331 break; 3332 default: 3333 break; 3334 } 3335 sk_win_write_2(sc, SK_MACARB_CTL, 3336 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 3337 3338 sc_if->sk_link = 1; 3339 3340 return; 3341 } 3342 3343 static void 3344 sk_init_yukon(sc_if) 3345 struct sk_if_softc *sc_if; 3346 { 3347 u_int32_t phy, v; 3348 u_int16_t reg; 3349 struct sk_softc *sc; 3350 struct ifnet *ifp; 3351 u_int8_t *eaddr; 3352 int i; 3353 3354 SK_IF_LOCK_ASSERT(sc_if); 3355 3356 sc = sc_if->sk_softc; 3357 ifp = sc_if->sk_ifp; 3358 3359 if (sc->sk_type == SK_YUKON_LITE && 3360 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3361 /* 3362 * Workaround code for COMA mode, set PHY reset. 3363 * Otherwise it will not correctly take chip out of 3364 * powerdown (coma) 3365 */ 3366 v = sk_win_read_4(sc, SK_GPIO); 3367 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; 3368 sk_win_write_4(sc, SK_GPIO, v); 3369 } 3370 3371 /* GMAC and GPHY Reset */ 3372 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 3373 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 3374 DELAY(1000); 3375 3376 if (sc->sk_type == SK_YUKON_LITE && 3377 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3378 /* 3379 * Workaround code for COMA mode, clear PHY reset 3380 */ 3381 v = sk_win_read_4(sc, SK_GPIO); 3382 v |= SK_GPIO_DIR9; 3383 v &= ~SK_GPIO_DAT9; 3384 sk_win_write_4(sc, SK_GPIO, v); 3385 } 3386 3387 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 3388 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 3389 3390 if (sc->sk_coppertype) 3391 phy |= SK_GPHY_COPPER; 3392 else 3393 phy |= SK_GPHY_FIBER; 3394 3395 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 3396 DELAY(1000); 3397 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 3398 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 3399 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 3400 3401 /* unused read of the interrupt source register */ 3402 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 3403 3404 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 3405 3406 /* MIB Counter Clear Mode set */ 3407 reg |= YU_PAR_MIB_CLR; 3408 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3409 3410 /* MIB Counter Clear Mode clear */ 3411 reg &= ~YU_PAR_MIB_CLR; 3412 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3413 3414 /* receive control reg */ 3415 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 3416 3417 /* transmit parameter register */ 3418 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 3419 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 3420 3421 /* serial mode register */ 3422 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); 3423 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3424 reg |= YU_SMR_MFL_JUMBO; 3425 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 3426 3427 /* Setup Yukon's station address */ 3428 eaddr = IF_LLADDR(sc_if->sk_ifp); 3429 for (i = 0; i < 3; i++) 3430 SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4, 3431 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3432 /* Set GMAC source address of flow control. */ 3433 for (i = 0; i < 3; i++) 3434 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 3435 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3436 /* Set GMAC virtual address. */ 3437 for (i = 0; i < 3; i++) 3438 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, 3439 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3440 3441 /* Set Rx filter */ 3442 sk_rxfilter_yukon(sc_if); 3443 3444 /* enable interrupt mask for counter overflows */ 3445 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 3446 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 3447 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 3448 3449 /* Configure RX MAC FIFO Flush Mask */ 3450 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 3451 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 3452 YU_RXSTAT_JABBER; 3453 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 3454 3455 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ 3456 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) 3457 v = SK_TFCTL_OPERATION_ON; 3458 else 3459 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 3460 /* Configure RX MAC FIFO */ 3461 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 3462 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 3463 3464 /* Increase flush threshould to 64 bytes */ 3465 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, 3466 SK_RFCTL_FIFO_THRESHOLD + 1); 3467 3468 /* Configure TX MAC FIFO */ 3469 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 3470 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 3471 } 3472 3473 /* 3474 * Note that to properly initialize any part of the GEnesis chip, 3475 * you first have to take it out of reset mode. 3476 */ 3477 static void 3478 sk_init(xsc) 3479 void *xsc; 3480 { 3481 struct sk_if_softc *sc_if = xsc; 3482 3483 SK_IF_LOCK(sc_if); 3484 sk_init_locked(sc_if); 3485 SK_IF_UNLOCK(sc_if); 3486 3487 return; 3488 } 3489 3490 static void 3491 sk_init_locked(sc_if) 3492 struct sk_if_softc *sc_if; 3493 { 3494 struct sk_softc *sc; 3495 struct ifnet *ifp; 3496 struct mii_data *mii; 3497 u_int16_t reg; 3498 u_int32_t imr; 3499 int error; 3500 3501 SK_IF_LOCK_ASSERT(sc_if); 3502 3503 ifp = sc_if->sk_ifp; 3504 sc = sc_if->sk_softc; 3505 mii = device_get_softc(sc_if->sk_miibus); 3506 3507 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3508 return; 3509 3510 /* Cancel pending I/O and free all RX/TX buffers. */ 3511 sk_stop(sc_if); 3512 3513 if (sc->sk_type == SK_GENESIS) { 3514 /* Configure LINK_SYNC LED */ 3515 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 3516 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3517 SK_LINKLED_LINKSYNC_ON); 3518 3519 /* Configure RX LED */ 3520 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 3521 SK_RXLEDCTL_COUNTER_START); 3522 3523 /* Configure TX LED */ 3524 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 3525 SK_TXLEDCTL_COUNTER_START); 3526 } 3527 3528 /* 3529 * Configure descriptor poll timer 3530 * 3531 * SK-NET GENESIS data sheet says that possibility of losing Start 3532 * transmit command due to CPU/cache related interim storage problems 3533 * under certain conditions. The document recommends a polling 3534 * mechanism to send a Start transmit command to initiate transfer 3535 * of ready descriptors regulary. To cope with this issue sk(4) now 3536 * enables descriptor poll timer to initiate descriptor processing 3537 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still 3538 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx 3539 * command instead of waiting for next descriptor polling time. 3540 * The same rule may apply to Rx side too but it seems that is not 3541 * needed at the moment. 3542 * Since sk(4) uses descriptor polling as a last resort there is no 3543 * need to set smaller polling time than maximum allowable one. 3544 */ 3545 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); 3546 3547 /* Configure I2C registers */ 3548 3549 /* Configure XMAC(s) */ 3550 switch (sc->sk_type) { 3551 case SK_GENESIS: 3552 sk_init_xmac(sc_if); 3553 break; 3554 case SK_YUKON: 3555 case SK_YUKON_LITE: 3556 case SK_YUKON_LP: 3557 sk_init_yukon(sc_if); 3558 break; 3559 } 3560 mii_mediachg(mii); 3561 3562 if (sc->sk_type == SK_GENESIS) { 3563 /* Configure MAC FIFOs */ 3564 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 3565 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 3566 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 3567 3568 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 3569 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 3570 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 3571 } 3572 3573 /* Configure transmit arbiter(s) */ 3574 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 3575 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 3576 3577 /* Configure RAMbuffers */ 3578 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 3579 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 3580 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 3581 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 3582 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 3583 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 3584 3585 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 3586 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 3587 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 3588 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 3589 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 3590 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 3591 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 3592 3593 /* Configure BMUs */ 3594 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 3595 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3596 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3597 SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3598 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3599 SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3600 } else { 3601 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3602 SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); 3603 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3604 SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); 3605 } 3606 3607 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 3608 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 3609 SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); 3610 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 3611 SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); 3612 3613 /* Init descriptors */ 3614 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3615 error = sk_init_jumbo_rx_ring(sc_if); 3616 else 3617 error = sk_init_rx_ring(sc_if); 3618 if (error != 0) { 3619 device_printf(sc_if->sk_if_dev, 3620 "initialization failed: no memory for rx buffers\n"); 3621 sk_stop(sc_if); 3622 return; 3623 } 3624 sk_init_tx_ring(sc_if); 3625 3626 /* Set interrupt moderation if changed via sysctl. */ 3627 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 3628 if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { 3629 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 3630 sc->sk_int_ticks)); 3631 if (bootverbose) 3632 device_printf(sc_if->sk_if_dev, 3633 "interrupt moderation is %d us.\n", 3634 sc->sk_int_mod); 3635 } 3636 3637 /* Configure interrupt handling */ 3638 CSR_READ_4(sc, SK_ISSR); 3639 if (sc_if->sk_port == SK_PORT_A) 3640 sc->sk_intrmask |= SK_INTRS1; 3641 else 3642 sc->sk_intrmask |= SK_INTRS2; 3643 3644 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 3645 3646 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3647 3648 /* Start BMUs. */ 3649 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 3650 3651 switch(sc->sk_type) { 3652 case SK_GENESIS: 3653 /* Enable XMACs TX and RX state machines */ 3654 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 3655 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3656 break; 3657 case SK_YUKON: 3658 case SK_YUKON_LITE: 3659 case SK_YUKON_LP: 3660 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 3661 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 3662 #if 0 3663 /* XXX disable 100Mbps and full duplex mode? */ 3664 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); 3665 #endif 3666 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 3667 } 3668 3669 /* Activate descriptor polling timer */ 3670 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); 3671 /* start transfer of Tx descriptors */ 3672 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 3673 3674 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3675 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3676 3677 switch (sc->sk_type) { 3678 case SK_YUKON: 3679 case SK_YUKON_LITE: 3680 case SK_YUKON_LP: 3681 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 3682 break; 3683 } 3684 3685 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 3686 3687 return; 3688 } 3689 3690 static void 3691 sk_stop(sc_if) 3692 struct sk_if_softc *sc_if; 3693 { 3694 int i; 3695 struct sk_softc *sc; 3696 struct sk_txdesc *txd; 3697 struct sk_rxdesc *rxd; 3698 struct sk_rxdesc *jrxd; 3699 struct ifnet *ifp; 3700 u_int32_t val; 3701 3702 SK_IF_LOCK_ASSERT(sc_if); 3703 sc = sc_if->sk_softc; 3704 ifp = sc_if->sk_ifp; 3705 3706 callout_stop(&sc_if->sk_tick_ch); 3707 callout_stop(&sc_if->sk_watchdog_ch); 3708 3709 /* stop Tx descriptor polling timer */ 3710 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 3711 /* stop transfer of Tx descriptors */ 3712 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); 3713 for (i = 0; i < SK_TIMEOUT; i++) { 3714 val = CSR_READ_4(sc, sc_if->sk_tx_bmu); 3715 if ((val & SK_TXBMU_TX_STOP) == 0) 3716 break; 3717 DELAY(1); 3718 } 3719 if (i == SK_TIMEOUT) 3720 device_printf(sc_if->sk_if_dev, 3721 "can not stop transfer of Tx descriptor\n"); 3722 /* stop transfer of Rx descriptors */ 3723 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); 3724 for (i = 0; i < SK_TIMEOUT; i++) { 3725 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); 3726 if ((val & SK_RXBMU_RX_STOP) == 0) 3727 break; 3728 DELAY(1); 3729 } 3730 if (i == SK_TIMEOUT) 3731 device_printf(sc_if->sk_if_dev, 3732 "can not stop transfer of Rx descriptor\n"); 3733 3734 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3735 /* Put PHY back into reset. */ 3736 val = sk_win_read_4(sc, SK_GPIO); 3737 if (sc_if->sk_port == SK_PORT_A) { 3738 val |= SK_GPIO_DIR0; 3739 val &= ~SK_GPIO_DAT0; 3740 } else { 3741 val |= SK_GPIO_DIR2; 3742 val &= ~SK_GPIO_DAT2; 3743 } 3744 sk_win_write_4(sc, SK_GPIO, val); 3745 } 3746 3747 /* Turn off various components of this interface. */ 3748 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3749 switch (sc->sk_type) { 3750 case SK_GENESIS: 3751 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 3752 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 3753 break; 3754 case SK_YUKON: 3755 case SK_YUKON_LITE: 3756 case SK_YUKON_LP: 3757 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 3758 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 3759 break; 3760 } 3761 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 3762 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3763 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 3764 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3765 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 3766 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3767 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3768 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 3769 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 3770 3771 /* Disable interrupts */ 3772 if (sc_if->sk_port == SK_PORT_A) 3773 sc->sk_intrmask &= ~SK_INTRS1; 3774 else 3775 sc->sk_intrmask &= ~SK_INTRS2; 3776 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3777 3778 SK_XM_READ_2(sc_if, XM_ISR); 3779 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3780 3781 /* Free RX and TX mbufs still in the queues. */ 3782 for (i = 0; i < SK_RX_RING_CNT; i++) { 3783 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 3784 if (rxd->rx_m != NULL) { 3785 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, 3786 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3787 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, 3788 rxd->rx_dmamap); 3789 m_freem(rxd->rx_m); 3790 rxd->rx_m = NULL; 3791 } 3792 } 3793 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 3794 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 3795 if (jrxd->rx_m != NULL) { 3796 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, 3797 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3798 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 3799 jrxd->rx_dmamap); 3800 m_freem(jrxd->rx_m); 3801 jrxd->rx_m = NULL; 3802 } 3803 } 3804 for (i = 0; i < SK_TX_RING_CNT; i++) { 3805 txd = &sc_if->sk_cdata.sk_txdesc[i]; 3806 if (txd->tx_m != NULL) { 3807 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, 3808 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3809 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, 3810 txd->tx_dmamap); 3811 m_freem(txd->tx_m); 3812 txd->tx_m = NULL; 3813 } 3814 } 3815 3816 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); 3817 3818 return; 3819 } 3820 3821 static int 3822 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3823 { 3824 int error, value; 3825 3826 if (!arg1) 3827 return (EINVAL); 3828 value = *(int *)arg1; 3829 error = sysctl_handle_int(oidp, &value, 0, req); 3830 if (error || !req->newptr) 3831 return (error); 3832 if (value < low || value > high) 3833 return (EINVAL); 3834 *(int *)arg1 = value; 3835 return (0); 3836 } 3837 3838 static int 3839 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) 3840 { 3841 return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); 3842 } 3843