xref: /freebsd/sys/dev/sk/if_sk.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 /*
56  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
57  * the SK-984x series adapters, both single port and dual port.
58  * References:
59  * 	The XaQti XMAC II datasheet,
60  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
61  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
62  *
63  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
64  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
65  * convenience to others until Vitesse corrects this problem:
66  *
67  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
68  *
69  * Written by Bill Paul <wpaul@ee.columbia.edu>
70  * Department of Electrical Engineering
71  * Columbia University, New York City
72  */
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/bus.h>
93 #include <sys/endian.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sockio.h>
100 #include <sys/queue.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 
117 #include <machine/bus.h>
118 #include <machine/in_cksum.h>
119 #include <machine/resource.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #if 0
130 #define SK_USEIOSPACE
131 #endif
132 
133 #include <dev/sk/if_skreg.h>
134 #include <dev/sk/xmaciireg.h>
135 #include <dev/sk/yukonreg.h>
136 
137 MODULE_DEPEND(sk, pci, 1, 1, 1);
138 MODULE_DEPEND(sk, ether, 1, 1, 1);
139 MODULE_DEPEND(sk, miibus, 1, 1, 1);
140 
141 /* "device miibus" required.  See GENERIC if you get errors here. */
142 #include "miibus_if.h"
143 
144 static const struct sk_type sk_devs[] = {
145 	{
146 		VENDORID_SK,
147 		DEVICEID_SK_V1,
148 		"SysKonnect Gigabit Ethernet (V1.0)"
149 	},
150 	{
151 		VENDORID_SK,
152 		DEVICEID_SK_V2,
153 		"SysKonnect Gigabit Ethernet (V2.0)"
154 	},
155 	{
156 		VENDORID_MARVELL,
157 		DEVICEID_SK_V2,
158 		"Marvell Gigabit Ethernet"
159 	},
160 	{
161 		VENDORID_MARVELL,
162 		DEVICEID_BELKIN_5005,
163 		"Belkin F5D5005 Gigabit Ethernet"
164 	},
165 	{
166 		VENDORID_3COM,
167 		DEVICEID_3COM_3C940,
168 		"3Com 3C940 Gigabit Ethernet"
169 	},
170 	{
171 		VENDORID_LINKSYS,
172 		DEVICEID_LINKSYS_EG1032,
173 		"Linksys EG1032 Gigabit Ethernet"
174 	},
175 	{
176 		VENDORID_DLINK,
177 		DEVICEID_DLINK_DGE530T_A1,
178 		"D-Link DGE-530T Gigabit Ethernet"
179 	},
180 	{
181 		VENDORID_DLINK,
182 		DEVICEID_DLINK_DGE530T_B1,
183 		"D-Link DGE-530T Gigabit Ethernet"
184 	},
185 	{ 0, 0, NULL }
186 };
187 
188 static int skc_probe(device_t);
189 static int skc_attach(device_t);
190 static int skc_detach(device_t);
191 static int skc_shutdown(device_t);
192 static int skc_suspend(device_t);
193 static int skc_resume(device_t);
194 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
195 static int sk_detach(device_t);
196 static int sk_probe(device_t);
197 static int sk_attach(device_t);
198 static void sk_tick(void *);
199 static void sk_yukon_tick(void *);
200 static void sk_intr(void *);
201 static void sk_intr_xmac(struct sk_if_softc *);
202 static void sk_intr_bcom(struct sk_if_softc *);
203 static void sk_intr_yukon(struct sk_if_softc *);
204 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
205 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
206 static void sk_rxeof(struct sk_if_softc *);
207 static void sk_jumbo_rxeof(struct sk_if_softc *);
208 static void sk_txeof(struct sk_if_softc *);
209 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
210 static int sk_encap(struct sk_if_softc *, struct mbuf **);
211 static void sk_start(struct ifnet *);
212 static void sk_start_locked(struct ifnet *);
213 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
214 static void sk_init(void *);
215 static void sk_init_locked(struct sk_if_softc *);
216 static void sk_init_xmac(struct sk_if_softc *);
217 static void sk_init_yukon(struct sk_if_softc *);
218 static void sk_stop(struct sk_if_softc *);
219 static void sk_watchdog(void *);
220 static int sk_ifmedia_upd(struct ifnet *);
221 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
222 static void sk_reset(struct sk_softc *);
223 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
224 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
225 static int sk_newbuf(struct sk_if_softc *, int);
226 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
227 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
228 static int sk_dma_alloc(struct sk_if_softc *);
229 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
230 static void sk_dma_free(struct sk_if_softc *);
231 static void sk_dma_jumbo_free(struct sk_if_softc *);
232 static int sk_init_rx_ring(struct sk_if_softc *);
233 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
234 static void sk_init_tx_ring(struct sk_if_softc *);
235 static u_int32_t sk_win_read_4(struct sk_softc *, int);
236 static u_int16_t sk_win_read_2(struct sk_softc *, int);
237 static u_int8_t sk_win_read_1(struct sk_softc *, int);
238 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
241 
242 static int sk_miibus_readreg(device_t, int, int);
243 static int sk_miibus_writereg(device_t, int, int, int);
244 static void sk_miibus_statchg(device_t);
245 
246 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
247 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
248 						int);
249 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
250 
251 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
252 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
253 						int);
254 static void sk_marv_miibus_statchg(struct sk_if_softc *);
255 
256 static uint32_t sk_xmchash(const uint8_t *);
257 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
258 static void sk_rxfilter(struct sk_if_softc *);
259 static void sk_rxfilter_genesis(struct sk_if_softc *);
260 static void sk_rxfilter_yukon(struct sk_if_softc *);
261 
262 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
263 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
264 
265 /* Tunables. */
266 static int jumbo_disable = 0;
267 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
268 
269 /*
270  * It seems that SK-NET GENESIS supports very simple checksum offload
271  * capability for Tx and I believe it can generate 0 checksum value for
272  * UDP packets in Tx as the hardware can't differenciate UDP packets from
273  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
274  * means sender didn't perforam checksum computation. For the safety I
275  * disabled UDP checksum offload capability at the moment.
276  */
277 #define SK_CSUM_FEATURES	(CSUM_TCP)
278 
279 /*
280  * Note that we have newbus methods for both the GEnesis controller
281  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
282  * the miibus code is a child of the XMACs. We need to do it this way
283  * so that the miibus drivers can access the PHY registers on the
284  * right PHY. It's not quite what I had in mind, but it's the only
285  * design that achieves the desired effect.
286  */
287 static device_method_t skc_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		skc_probe),
290 	DEVMETHOD(device_attach,	skc_attach),
291 	DEVMETHOD(device_detach,	skc_detach),
292 	DEVMETHOD(device_suspend,	skc_suspend),
293 	DEVMETHOD(device_resume,	skc_resume),
294 	DEVMETHOD(device_shutdown,	skc_shutdown),
295 
296 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297 
298 	DEVMETHOD_END
299 };
300 
301 static driver_t skc_driver = {
302 	"skc",
303 	skc_methods,
304 	sizeof(struct sk_softc)
305 };
306 
307 static device_method_t sk_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		sk_probe),
310 	DEVMETHOD(device_attach,	sk_attach),
311 	DEVMETHOD(device_detach,	sk_detach),
312 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
313 
314 	/* MII interface */
315 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
316 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
317 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
318 
319 	DEVMETHOD_END
320 };
321 
322 static driver_t sk_driver = {
323 	"sk",
324 	sk_methods,
325 	sizeof(struct sk_if_softc)
326 };
327 
328 DRIVER_MODULE(skc, pci, skc_driver, NULL, NULL);
329 DRIVER_MODULE(sk, skc, sk_driver, NULL, NULL);
330 DRIVER_MODULE(miibus, sk, miibus_driver, NULL, NULL);
331 
332 static struct resource_spec sk_res_spec_io[] = {
333 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
334 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
335 	{ -1,			0,		0 }
336 };
337 
338 static struct resource_spec sk_res_spec_mem[] = {
339 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 #define SK_SETBIT(sc, reg, x)		\
345 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
346 
347 #define SK_CLRBIT(sc, reg, x)		\
348 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
349 
350 #define SK_WIN_SETBIT_4(sc, reg, x)	\
351 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
352 
353 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
354 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_2(sc, reg, x)	\
357 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
360 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
361 
362 static u_int32_t
363 sk_win_read_4(sc, reg)
364 	struct sk_softc		*sc;
365 	int			reg;
366 {
367 #ifdef SK_USEIOSPACE
368 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
369 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
370 #else
371 	return(CSR_READ_4(sc, reg));
372 #endif
373 }
374 
375 static u_int16_t
376 sk_win_read_2(sc, reg)
377 	struct sk_softc		*sc;
378 	int			reg;
379 {
380 #ifdef SK_USEIOSPACE
381 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
382 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
383 #else
384 	return(CSR_READ_2(sc, reg));
385 #endif
386 }
387 
388 static u_int8_t
389 sk_win_read_1(sc, reg)
390 	struct sk_softc		*sc;
391 	int			reg;
392 {
393 #ifdef SK_USEIOSPACE
394 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
395 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
396 #else
397 	return(CSR_READ_1(sc, reg));
398 #endif
399 }
400 
401 static void
402 sk_win_write_4(sc, reg, val)
403 	struct sk_softc		*sc;
404 	int			reg;
405 	u_int32_t		val;
406 {
407 #ifdef SK_USEIOSPACE
408 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
409 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
410 #else
411 	CSR_WRITE_4(sc, reg, val);
412 #endif
413 	return;
414 }
415 
416 static void
417 sk_win_write_2(sc, reg, val)
418 	struct sk_softc		*sc;
419 	int			reg;
420 	u_int32_t		val;
421 {
422 #ifdef SK_USEIOSPACE
423 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
424 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
425 #else
426 	CSR_WRITE_2(sc, reg, val);
427 #endif
428 	return;
429 }
430 
431 static void
432 sk_win_write_1(sc, reg, val)
433 	struct sk_softc		*sc;
434 	int			reg;
435 	u_int32_t		val;
436 {
437 #ifdef SK_USEIOSPACE
438 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
439 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
440 #else
441 	CSR_WRITE_1(sc, reg, val);
442 #endif
443 	return;
444 }
445 
446 static int
447 sk_miibus_readreg(dev, phy, reg)
448 	device_t		dev;
449 	int			phy, reg;
450 {
451 	struct sk_if_softc	*sc_if;
452 	int			v;
453 
454 	sc_if = device_get_softc(dev);
455 
456 	SK_IF_MII_LOCK(sc_if);
457 	switch(sc_if->sk_softc->sk_type) {
458 	case SK_GENESIS:
459 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
460 		break;
461 	case SK_YUKON:
462 	case SK_YUKON_LITE:
463 	case SK_YUKON_LP:
464 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
465 		break;
466 	default:
467 		v = 0;
468 		break;
469 	}
470 	SK_IF_MII_UNLOCK(sc_if);
471 
472 	return (v);
473 }
474 
475 static int
476 sk_miibus_writereg(dev, phy, reg, val)
477 	device_t		dev;
478 	int			phy, reg, val;
479 {
480 	struct sk_if_softc	*sc_if;
481 	int			v;
482 
483 	sc_if = device_get_softc(dev);
484 
485 	SK_IF_MII_LOCK(sc_if);
486 	switch(sc_if->sk_softc->sk_type) {
487 	case SK_GENESIS:
488 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
489 		break;
490 	case SK_YUKON:
491 	case SK_YUKON_LITE:
492 	case SK_YUKON_LP:
493 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
494 		break;
495 	default:
496 		v = 0;
497 		break;
498 	}
499 	SK_IF_MII_UNLOCK(sc_if);
500 
501 	return (v);
502 }
503 
504 static void
505 sk_miibus_statchg(dev)
506 	device_t		dev;
507 {
508 	struct sk_if_softc	*sc_if;
509 
510 	sc_if = device_get_softc(dev);
511 
512 	SK_IF_MII_LOCK(sc_if);
513 	switch(sc_if->sk_softc->sk_type) {
514 	case SK_GENESIS:
515 		sk_xmac_miibus_statchg(sc_if);
516 		break;
517 	case SK_YUKON:
518 	case SK_YUKON_LITE:
519 	case SK_YUKON_LP:
520 		sk_marv_miibus_statchg(sc_if);
521 		break;
522 	}
523 	SK_IF_MII_UNLOCK(sc_if);
524 
525 	return;
526 }
527 
528 static int
529 sk_xmac_miibus_readreg(sc_if, phy, reg)
530 	struct sk_if_softc	*sc_if;
531 	int			phy, reg;
532 {
533 	int			i;
534 
535 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
536 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
537 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
538 		for (i = 0; i < SK_TIMEOUT; i++) {
539 			DELAY(1);
540 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
541 			    XM_MMUCMD_PHYDATARDY)
542 				break;
543 		}
544 
545 		if (i == SK_TIMEOUT) {
546 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
547 			return(0);
548 		}
549 	}
550 	DELAY(1);
551 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
552 
553 	return(i);
554 }
555 
556 static int
557 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
558 	struct sk_if_softc	*sc_if;
559 	int			phy, reg, val;
560 {
561 	int			i;
562 
563 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
564 	for (i = 0; i < SK_TIMEOUT; i++) {
565 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
566 			break;
567 	}
568 
569 	if (i == SK_TIMEOUT) {
570 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
571 		return (ETIMEDOUT);
572 	}
573 
574 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
575 	for (i = 0; i < SK_TIMEOUT; i++) {
576 		DELAY(1);
577 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
578 			break;
579 	}
580 	if (i == SK_TIMEOUT)
581 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
582 
583 	return(0);
584 }
585 
586 static void
587 sk_xmac_miibus_statchg(sc_if)
588 	struct sk_if_softc	*sc_if;
589 {
590 	struct mii_data		*mii;
591 
592 	mii = device_get_softc(sc_if->sk_miibus);
593 
594 	/*
595 	 * If this is a GMII PHY, manually set the XMAC's
596 	 * duplex mode accordingly.
597 	 */
598 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
599 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
600 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
601 		} else {
602 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
603 		}
604 	}
605 }
606 
607 static int
608 sk_marv_miibus_readreg(sc_if, phy, reg)
609 	struct sk_if_softc	*sc_if;
610 	int			phy, reg;
611 {
612 	u_int16_t		val;
613 	int			i;
614 
615 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
616 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
617 		return(0);
618 	}
619 
620         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
621 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
622 
623 	for (i = 0; i < SK_TIMEOUT; i++) {
624 		DELAY(1);
625 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
626 		if (val & YU_SMICR_READ_VALID)
627 			break;
628 	}
629 
630 	if (i == SK_TIMEOUT) {
631 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
632 		return(0);
633 	}
634 
635 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
636 
637 	return(val);
638 }
639 
640 static int
641 sk_marv_miibus_writereg(sc_if, phy, reg, val)
642 	struct sk_if_softc	*sc_if;
643 	int			phy, reg, val;
644 {
645 	int			i;
646 
647 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
648 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
649 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
650 
651 	for (i = 0; i < SK_TIMEOUT; i++) {
652 		DELAY(1);
653 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
654 			break;
655 	}
656 	if (i == SK_TIMEOUT)
657 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
658 
659 	return(0);
660 }
661 
662 static void
663 sk_marv_miibus_statchg(sc_if)
664 	struct sk_if_softc	*sc_if;
665 {
666 	return;
667 }
668 
669 #define HASH_BITS		6
670 
671 static u_int32_t
672 sk_xmchash(addr)
673 	const uint8_t *addr;
674 {
675 	uint32_t crc;
676 
677 	/* Compute CRC for the address value. */
678 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
679 
680 	return (~crc & ((1 << HASH_BITS) - 1));
681 }
682 
683 static void
684 sk_setfilt(sc_if, addr, slot)
685 	struct sk_if_softc	*sc_if;
686 	u_int16_t		*addr;
687 	int			slot;
688 {
689 	int			base;
690 
691 	base = XM_RXFILT_ENTRY(slot);
692 
693 	SK_XM_WRITE_2(sc_if, base, addr[0]);
694 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
695 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
696 
697 	return;
698 }
699 
700 static void
701 sk_rxfilter(sc_if)
702 	struct sk_if_softc	*sc_if;
703 {
704 	struct sk_softc		*sc;
705 
706 	SK_IF_LOCK_ASSERT(sc_if);
707 
708 	sc = sc_if->sk_softc;
709 	if (sc->sk_type == SK_GENESIS)
710 		sk_rxfilter_genesis(sc_if);
711 	else
712 		sk_rxfilter_yukon(sc_if);
713 }
714 
715 struct sk_add_maddr_genesis_ctx {
716 	struct sk_if_softc *sc_if;
717 	uint32_t hashes[2];
718 	uint32_t mode;
719 };
720 
721 static u_int
722 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
723 {
724 	struct sk_add_maddr_genesis_ctx *ctx = arg;
725 	int h;
726 
727 	/*
728 	 * Program the first XM_RXFILT_MAX multicast groups
729 	 * into the perfect filter.
730 	 */
731 	if (cnt + 1 < XM_RXFILT_MAX) {
732 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
733 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
734 		return (1);
735 	}
736 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
737 	if (h < 32)
738 		ctx->hashes[0] |= (1 << h);
739 	else
740 		ctx->hashes[1] |= (1 << (h - 32));
741 	ctx->mode |= XM_MODE_RX_USE_HASH;
742 
743 	return (1);
744 }
745 
746 static void
747 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
748 {
749 	struct ifnet		*ifp = sc_if->sk_ifp;
750 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
751 	int			i;
752 	u_int16_t		dummy[] = { 0, 0, 0 };
753 
754 	SK_IF_LOCK_ASSERT(sc_if);
755 
756 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
757 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
758 	    XM_MODE_RX_USE_PERFECT);
759 	/* First, zot all the existing perfect filters. */
760 	for (i = 1; i < XM_RXFILT_MAX; i++)
761 		sk_setfilt(sc_if, dummy, i);
762 
763 	/* Now program new ones. */
764 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
765 		if (ifp->if_flags & IFF_ALLMULTI)
766 			ctx.mode |= XM_MODE_RX_USE_HASH;
767 		if (ifp->if_flags & IFF_PROMISC)
768 			ctx.mode |= XM_MODE_RX_PROMISC;
769 		ctx.hashes[0] = 0xFFFFFFFF;
770 		ctx.hashes[1] = 0xFFFFFFFF;
771 	} else
772 		/* XXX want to maintain reverse semantics */
773 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
774 
775 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
776 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
777 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
778 }
779 
780 static u_int
781 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
782 {
783 	uint32_t crc, *hashes = arg;
784 
785 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
786 	/* Just want the 6 least significant bits. */
787 	crc &= 0x3f;
788 	/* Set the corresponding bit in the hash table. */
789 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
790 
791 	return (1);
792 }
793 
794 static void
795 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
796 {
797 	struct ifnet		*ifp;
798 	uint32_t		hashes[2] = { 0, 0 }, mode;
799 
800 	SK_IF_LOCK_ASSERT(sc_if);
801 
802 	ifp = sc_if->sk_ifp;
803 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
804 	if (ifp->if_flags & IFF_PROMISC)
805 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
806 	else if (ifp->if_flags & IFF_ALLMULTI) {
807 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
808 		hashes[0] = 0xFFFFFFFF;
809 		hashes[1] = 0xFFFFFFFF;
810 	} else {
811 		mode |= YU_RCR_UFLEN;
812 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
813 		if (hashes[0] != 0 || hashes[1] != 0)
814 			mode |= YU_RCR_MUFLEN;
815 	}
816 
817 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
818 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
819 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
820 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
821 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
822 }
823 
824 static int
825 sk_init_rx_ring(sc_if)
826 	struct sk_if_softc	*sc_if;
827 {
828 	struct sk_ring_data	*rd;
829 	bus_addr_t		addr;
830 	u_int32_t		csum_start;
831 	int			i;
832 
833 	sc_if->sk_cdata.sk_rx_cons = 0;
834 
835 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
836 	    ETHER_HDR_LEN;
837 	rd = &sc_if->sk_rdata;
838 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
839 	for (i = 0; i < SK_RX_RING_CNT; i++) {
840 		if (sk_newbuf(sc_if, i) != 0)
841 			return (ENOBUFS);
842 		if (i == (SK_RX_RING_CNT - 1))
843 			addr = SK_RX_RING_ADDR(sc_if, 0);
844 		else
845 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
846 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
847 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
848 	}
849 
850 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
851 	    sc_if->sk_cdata.sk_rx_ring_map,
852 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
853 
854 	return(0);
855 }
856 
857 static int
858 sk_init_jumbo_rx_ring(sc_if)
859 	struct sk_if_softc	*sc_if;
860 {
861 	struct sk_ring_data	*rd;
862 	bus_addr_t		addr;
863 	u_int32_t		csum_start;
864 	int			i;
865 
866 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
867 
868 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
869 	    ETHER_HDR_LEN;
870 	rd = &sc_if->sk_rdata;
871 	bzero(rd->sk_jumbo_rx_ring,
872 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
873 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
874 		if (sk_jumbo_newbuf(sc_if, i) != 0)
875 			return (ENOBUFS);
876 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
877 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
878 		else
879 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
880 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
881 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
882 	}
883 
884 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
885 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
886 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
887 
888 	return (0);
889 }
890 
891 static void
892 sk_init_tx_ring(sc_if)
893 	struct sk_if_softc	*sc_if;
894 {
895 	struct sk_ring_data	*rd;
896 	struct sk_txdesc	*txd;
897 	bus_addr_t		addr;
898 	int			i;
899 
900 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
901 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
902 
903 	sc_if->sk_cdata.sk_tx_prod = 0;
904 	sc_if->sk_cdata.sk_tx_cons = 0;
905 	sc_if->sk_cdata.sk_tx_cnt = 0;
906 
907 	rd = &sc_if->sk_rdata;
908 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
909 	for (i = 0; i < SK_TX_RING_CNT; i++) {
910 		if (i == (SK_TX_RING_CNT - 1))
911 			addr = SK_TX_RING_ADDR(sc_if, 0);
912 		else
913 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
914 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
915 		txd = &sc_if->sk_cdata.sk_txdesc[i];
916 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
917 	}
918 
919 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
920 	    sc_if->sk_cdata.sk_tx_ring_map,
921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
922 }
923 
924 static __inline void
925 sk_discard_rxbuf(sc_if, idx)
926 	struct sk_if_softc	*sc_if;
927 	int			idx;
928 {
929 	struct sk_rx_desc	*r;
930 	struct sk_rxdesc	*rxd;
931 	struct mbuf		*m;
932 
933 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
934 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
935 	m = rxd->rx_m;
936 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
937 }
938 
939 static __inline void
940 sk_discard_jumbo_rxbuf(sc_if, idx)
941 	struct sk_if_softc	*sc_if;
942 	int			idx;
943 {
944 	struct sk_rx_desc	*r;
945 	struct sk_rxdesc	*rxd;
946 	struct mbuf		*m;
947 
948 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
949 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
950 	m = rxd->rx_m;
951 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
952 }
953 
954 static int
955 sk_newbuf(sc_if, idx)
956 	struct sk_if_softc	*sc_if;
957 	int 			idx;
958 {
959 	struct sk_rx_desc	*r;
960 	struct sk_rxdesc	*rxd;
961 	struct mbuf		*m;
962 	bus_dma_segment_t	segs[1];
963 	bus_dmamap_t		map;
964 	int			nsegs;
965 
966 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
967 	if (m == NULL)
968 		return (ENOBUFS);
969 	m->m_len = m->m_pkthdr.len = MCLBYTES;
970 	m_adj(m, ETHER_ALIGN);
971 
972 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
973 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
974 		m_freem(m);
975 		return (ENOBUFS);
976 	}
977 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
978 
979 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
980 	if (rxd->rx_m != NULL) {
981 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
982 		    BUS_DMASYNC_POSTREAD);
983 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
984 	}
985 	map = rxd->rx_dmamap;
986 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
987 	sc_if->sk_cdata.sk_rx_sparemap = map;
988 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
989 	    BUS_DMASYNC_PREREAD);
990 	rxd->rx_m = m;
991 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
992 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
993 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
994 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
995 
996 	return (0);
997 }
998 
999 static int
1000 sk_jumbo_newbuf(sc_if, idx)
1001 	struct sk_if_softc	*sc_if;
1002 	int			idx;
1003 {
1004 	struct sk_rx_desc	*r;
1005 	struct sk_rxdesc	*rxd;
1006 	struct mbuf		*m;
1007 	bus_dma_segment_t	segs[1];
1008 	bus_dmamap_t		map;
1009 	int			nsegs;
1010 
1011 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1012 	if (m == NULL)
1013 		return (ENOBUFS);
1014 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1015 	/*
1016 	 * Adjust alignment so packet payload begins on a
1017 	 * longword boundary. Mandatory for Alpha, useful on
1018 	 * x86 too.
1019 	 */
1020 	m_adj(m, ETHER_ALIGN);
1021 
1022 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1023 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1024 		m_freem(m);
1025 		return (ENOBUFS);
1026 	}
1027 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1028 
1029 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1030 	if (rxd->rx_m != NULL) {
1031 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1032 		    BUS_DMASYNC_POSTREAD);
1033 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1034 		    rxd->rx_dmamap);
1035 	}
1036 	map = rxd->rx_dmamap;
1037 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1038 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1039 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1040 	    BUS_DMASYNC_PREREAD);
1041 	rxd->rx_m = m;
1042 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1043 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1044 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1045 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Set media options.
1052  */
1053 static int
1054 sk_ifmedia_upd(ifp)
1055 	struct ifnet		*ifp;
1056 {
1057 	struct sk_if_softc	*sc_if = ifp->if_softc;
1058 	struct mii_data		*mii;
1059 
1060 	mii = device_get_softc(sc_if->sk_miibus);
1061 	sk_init(sc_if);
1062 	mii_mediachg(mii);
1063 
1064 	return(0);
1065 }
1066 
1067 /*
1068  * Report current media status.
1069  */
1070 static void
1071 sk_ifmedia_sts(ifp, ifmr)
1072 	struct ifnet		*ifp;
1073 	struct ifmediareq	*ifmr;
1074 {
1075 	struct sk_if_softc	*sc_if;
1076 	struct mii_data		*mii;
1077 
1078 	sc_if = ifp->if_softc;
1079 	mii = device_get_softc(sc_if->sk_miibus);
1080 
1081 	mii_pollstat(mii);
1082 	ifmr->ifm_active = mii->mii_media_active;
1083 	ifmr->ifm_status = mii->mii_media_status;
1084 
1085 	return;
1086 }
1087 
1088 static int
1089 sk_ioctl(ifp, command, data)
1090 	struct ifnet		*ifp;
1091 	u_long			command;
1092 	caddr_t			data;
1093 {
1094 	struct sk_if_softc	*sc_if = ifp->if_softc;
1095 	struct ifreq		*ifr = (struct ifreq *) data;
1096 	int			error, mask;
1097 	struct mii_data		*mii;
1098 
1099 	error = 0;
1100 	switch(command) {
1101 	case SIOCSIFMTU:
1102 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1103 			error = EINVAL;
1104 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1105 			if (sc_if->sk_jumbo_disable != 0 &&
1106 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1107 				error = EINVAL;
1108 			else {
1109 				SK_IF_LOCK(sc_if);
1110 				ifp->if_mtu = ifr->ifr_mtu;
1111 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1112 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1113 					sk_init_locked(sc_if);
1114 				}
1115 				SK_IF_UNLOCK(sc_if);
1116 			}
1117 		}
1118 		break;
1119 	case SIOCSIFFLAGS:
1120 		SK_IF_LOCK(sc_if);
1121 		if (ifp->if_flags & IFF_UP) {
1122 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1123 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1124 				    & (IFF_PROMISC | IFF_ALLMULTI))
1125 					sk_rxfilter(sc_if);
1126 			} else
1127 				sk_init_locked(sc_if);
1128 		} else {
1129 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1130 				sk_stop(sc_if);
1131 		}
1132 		sc_if->sk_if_flags = ifp->if_flags;
1133 		SK_IF_UNLOCK(sc_if);
1134 		break;
1135 	case SIOCADDMULTI:
1136 	case SIOCDELMULTI:
1137 		SK_IF_LOCK(sc_if);
1138 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1139 			sk_rxfilter(sc_if);
1140 		SK_IF_UNLOCK(sc_if);
1141 		break;
1142 	case SIOCGIFMEDIA:
1143 	case SIOCSIFMEDIA:
1144 		mii = device_get_softc(sc_if->sk_miibus);
1145 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1146 		break;
1147 	case SIOCSIFCAP:
1148 		SK_IF_LOCK(sc_if);
1149 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1150 			SK_IF_UNLOCK(sc_if);
1151 			break;
1152 		}
1153 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1154 		if ((mask & IFCAP_TXCSUM) != 0 &&
1155 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1156 			ifp->if_capenable ^= IFCAP_TXCSUM;
1157 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1158 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1159 			else
1160 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1161 		}
1162 		if ((mask & IFCAP_RXCSUM) != 0 &&
1163 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1164 			ifp->if_capenable ^= IFCAP_RXCSUM;
1165 		SK_IF_UNLOCK(sc_if);
1166 		break;
1167 	default:
1168 		error = ether_ioctl(ifp, command, data);
1169 		break;
1170 	}
1171 
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1177  * IDs against our list and return a device name if we find a match.
1178  */
1179 static int
1180 skc_probe(dev)
1181 	device_t		dev;
1182 {
1183 	const struct sk_type	*t = sk_devs;
1184 
1185 	while(t->sk_name != NULL) {
1186 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1187 		    (pci_get_device(dev) == t->sk_did)) {
1188 			/*
1189 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1190 			 * Rev. 3 is supported by re(4).
1191 			 */
1192 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1193 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1194 				(pci_get_subdevice(dev) !=
1195 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1196 				t++;
1197 				continue;
1198 			}
1199 			device_set_desc(dev, t->sk_name);
1200 			return (BUS_PROBE_DEFAULT);
1201 		}
1202 		t++;
1203 	}
1204 
1205 	return(ENXIO);
1206 }
1207 
1208 /*
1209  * Force the GEnesis into reset, then bring it out of reset.
1210  */
1211 static void
1212 sk_reset(sc)
1213 	struct sk_softc		*sc;
1214 {
1215 
1216 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1217 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1218 	if (SK_YUKON_FAMILY(sc->sk_type))
1219 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1220 
1221 	DELAY(1000);
1222 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1223 	DELAY(2);
1224 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1225 	if (SK_YUKON_FAMILY(sc->sk_type))
1226 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1227 
1228 	if (sc->sk_type == SK_GENESIS) {
1229 		/* Configure packet arbiter */
1230 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1231 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1232 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1233 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1234 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1235 	}
1236 
1237 	/* Enable RAM interface */
1238 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1239 
1240 	/*
1241          * Configure interrupt moderation. The moderation timer
1242 	 * defers interrupts specified in the interrupt moderation
1243 	 * timer mask based on the timeout specified in the interrupt
1244 	 * moderation timer init register. Each bit in the timer
1245 	 * register represents one tick, so to specify a timeout in
1246 	 * microseconds, we have to multiply by the correct number of
1247 	 * ticks-per-microsecond.
1248 	 */
1249 	switch (sc->sk_type) {
1250 	case SK_GENESIS:
1251 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1252 		break;
1253 	default:
1254 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1255 		break;
1256 	}
1257 	if (bootverbose)
1258 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1259 		    sc->sk_int_mod);
1260 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1261 	    sc->sk_int_ticks));
1262 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1263 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1264 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1265 
1266 	return;
1267 }
1268 
1269 static int
1270 sk_probe(dev)
1271 	device_t		dev;
1272 {
1273 	struct sk_softc		*sc;
1274 
1275 	sc = device_get_softc(device_get_parent(dev));
1276 
1277 	/*
1278 	 * Not much to do here. We always know there will be
1279 	 * at least one XMAC present, and if there are two,
1280 	 * skc_attach() will create a second device instance
1281 	 * for us.
1282 	 */
1283 	switch (sc->sk_type) {
1284 	case SK_GENESIS:
1285 		device_set_desc(dev, "XaQti Corp. XMAC II");
1286 		break;
1287 	case SK_YUKON:
1288 	case SK_YUKON_LITE:
1289 	case SK_YUKON_LP:
1290 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1291 		break;
1292 	}
1293 
1294 	return (BUS_PROBE_DEFAULT);
1295 }
1296 
1297 /*
1298  * Each XMAC chip is attached as a separate logical IP interface.
1299  * Single port cards will have only one logical interface of course.
1300  */
1301 static int
1302 sk_attach(dev)
1303 	device_t		dev;
1304 {
1305 	struct sk_softc		*sc;
1306 	struct sk_if_softc	*sc_if;
1307 	struct ifnet		*ifp;
1308 	u_int32_t		r;
1309 	int			error, i, phy, port;
1310 	u_char			eaddr[6];
1311 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1312 
1313 	if (dev == NULL)
1314 		return(EINVAL);
1315 
1316 	error = 0;
1317 	sc_if = device_get_softc(dev);
1318 	sc = device_get_softc(device_get_parent(dev));
1319 	port = *(int *)device_get_ivars(dev);
1320 
1321 	sc_if->sk_if_dev = dev;
1322 	sc_if->sk_port = port;
1323 	sc_if->sk_softc = sc;
1324 	sc->sk_if[port] = sc_if;
1325 	if (port == SK_PORT_A)
1326 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1327 	if (port == SK_PORT_B)
1328 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1329 
1330 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1331 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1332 
1333 	if (sk_dma_alloc(sc_if) != 0) {
1334 		error = ENOMEM;
1335 		goto fail;
1336 	}
1337 	sk_dma_jumbo_alloc(sc_if);
1338 
1339 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1340 	if (ifp == NULL) {
1341 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1342 		error = ENOSPC;
1343 		goto fail;
1344 	}
1345 	ifp->if_softc = sc_if;
1346 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1347 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1348 	/*
1349 	 * SK_GENESIS has a bug in checksum offload - From linux.
1350 	 */
1351 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1352 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1353 		ifp->if_hwassist = 0;
1354 	} else {
1355 		ifp->if_capabilities = 0;
1356 		ifp->if_hwassist = 0;
1357 	}
1358 	ifp->if_capenable = ifp->if_capabilities;
1359 	/*
1360 	 * Some revision of Yukon controller generates corrupted
1361 	 * frame when TX checksum offloading is enabled.  The
1362 	 * frame has a valid checksum value so payload might be
1363 	 * modified during TX checksum calculation. Disable TX
1364 	 * checksum offloading but give users chance to enable it
1365 	 * when they know their controller works without problems
1366 	 * with TX checksum offloading.
1367 	 */
1368 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1369 	ifp->if_ioctl = sk_ioctl;
1370 	ifp->if_start = sk_start;
1371 	ifp->if_init = sk_init;
1372 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1373 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1374 	IFQ_SET_READY(&ifp->if_snd);
1375 
1376 	/*
1377 	 * Get station address for this interface. Note that
1378 	 * dual port cards actually come with three station
1379 	 * addresses: one for each port, plus an extra. The
1380 	 * extra one is used by the SysKonnect driver software
1381 	 * as a 'virtual' station address for when both ports
1382 	 * are operating in failover mode. Currently we don't
1383 	 * use this extra address.
1384 	 */
1385 	SK_IF_LOCK(sc_if);
1386 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1387 		eaddr[i] =
1388 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1389 
1390 	/* Verify whether the station address is invalid or not. */
1391 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1392 		device_printf(sc_if->sk_if_dev,
1393 		    "Generating random ethernet address\n");
1394 		r = arc4random();
1395 		/*
1396 		 * Set OUI to convenient locally assigned address.  'b'
1397 		 * is 0x62, which has the locally assigned bit set, and
1398 		 * the broadcast/multicast bit clear.
1399 		 */
1400 		eaddr[0] = 'b';
1401 		eaddr[1] = 's';
1402 		eaddr[2] = 'd';
1403 		eaddr[3] = (r >> 16) & 0xff;
1404 		eaddr[4] = (r >>  8) & 0xff;
1405 		eaddr[5] = (r >>  0) & 0xff;
1406 	}
1407 	/*
1408 	 * Set up RAM buffer addresses. The NIC will have a certain
1409 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1410 	 * need to divide this up a) between the transmitter and
1411  	 * receiver and b) between the two XMACs, if this is a
1412 	 * dual port NIC. Our algotithm is to divide up the memory
1413 	 * evenly so that everyone gets a fair share.
1414 	 *
1415 	 * Just to be contrary, Yukon2 appears to have separate memory
1416 	 * for each MAC.
1417 	 */
1418 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1419 		u_int32_t		chunk, val;
1420 
1421 		chunk = sc->sk_ramsize / 2;
1422 		val = sc->sk_rboff / sizeof(u_int64_t);
1423 		sc_if->sk_rx_ramstart = val;
1424 		val += (chunk / sizeof(u_int64_t));
1425 		sc_if->sk_rx_ramend = val - 1;
1426 		sc_if->sk_tx_ramstart = val;
1427 		val += (chunk / sizeof(u_int64_t));
1428 		sc_if->sk_tx_ramend = val - 1;
1429 	} else {
1430 		u_int32_t		chunk, val;
1431 
1432 		chunk = sc->sk_ramsize / 4;
1433 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1434 		    sizeof(u_int64_t);
1435 		sc_if->sk_rx_ramstart = val;
1436 		val += (chunk / sizeof(u_int64_t));
1437 		sc_if->sk_rx_ramend = val - 1;
1438 		sc_if->sk_tx_ramstart = val;
1439 		val += (chunk / sizeof(u_int64_t));
1440 		sc_if->sk_tx_ramend = val - 1;
1441 	}
1442 
1443 	/* Read and save PHY type and set PHY address */
1444 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1445 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1446 		switch(sc_if->sk_phytype) {
1447 		case SK_PHYTYPE_XMAC:
1448 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1449 			break;
1450 		case SK_PHYTYPE_BCOM:
1451 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1452 			break;
1453 		default:
1454 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1455 			    sc_if->sk_phytype);
1456 			error = ENODEV;
1457 			SK_IF_UNLOCK(sc_if);
1458 			goto fail;
1459 		}
1460 	} else {
1461 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1462 		    sc->sk_pmd != 'S') {
1463 			/* not initialized, punt */
1464 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1465 			sc->sk_coppertype = 1;
1466 		}
1467 
1468 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1469 
1470 		if (!(sc->sk_coppertype))
1471 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1472 	}
1473 
1474 	/*
1475 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1476 	 */
1477 	SK_IF_UNLOCK(sc_if);
1478 	ether_ifattach(ifp, eaddr);
1479 	SK_IF_LOCK(sc_if);
1480 
1481 	/*
1482 	 * The hardware should be ready for VLAN_MTU by default:
1483 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1484 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1485 	 *
1486 	 */
1487         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1488         ifp->if_capenable |= IFCAP_VLAN_MTU;
1489 	/*
1490 	 * Tell the upper layer(s) we support long frames.
1491 	 * Must appear after the call to ether_ifattach() because
1492 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1493 	 */
1494         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1495 
1496 	/*
1497 	 * Do miibus setup.
1498 	 */
1499 	phy = MII_PHY_ANY;
1500 	switch (sc->sk_type) {
1501 	case SK_GENESIS:
1502 		sk_init_xmac(sc_if);
1503 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1504 			phy = 0;
1505 		break;
1506 	case SK_YUKON:
1507 	case SK_YUKON_LITE:
1508 	case SK_YUKON_LP:
1509 		sk_init_yukon(sc_if);
1510 		phy = 0;
1511 		break;
1512 	}
1513 
1514 	SK_IF_UNLOCK(sc_if);
1515 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1516 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1517 	if (error != 0) {
1518 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1519 		ether_ifdetach(ifp);
1520 		goto fail;
1521 	}
1522 
1523 fail:
1524 	if (error) {
1525 		/* Access should be ok even though lock has been dropped */
1526 		sc->sk_if[port] = NULL;
1527 		sk_detach(dev);
1528 	}
1529 
1530 	return(error);
1531 }
1532 
1533 /*
1534  * Attach the interface. Allocate softc structures, do ifmedia
1535  * setup and ethernet/BPF attach.
1536  */
1537 static int
1538 skc_attach(dev)
1539 	device_t		dev;
1540 {
1541 	struct sk_softc		*sc;
1542 	int			error = 0, *port;
1543 	uint8_t			skrs;
1544 	const char		*pname = NULL;
1545 	char			*revstr;
1546 
1547 	sc = device_get_softc(dev);
1548 	sc->sk_dev = dev;
1549 
1550 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1551 	    MTX_DEF);
1552 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1553 	/*
1554 	 * Map control/status registers.
1555 	 */
1556 	pci_enable_busmaster(dev);
1557 
1558 	/* Allocate resources */
1559 #ifdef SK_USEIOSPACE
1560 	sc->sk_res_spec = sk_res_spec_io;
1561 #else
1562 	sc->sk_res_spec = sk_res_spec_mem;
1563 #endif
1564 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1565 	if (error) {
1566 		if (sc->sk_res_spec == sk_res_spec_mem)
1567 			sc->sk_res_spec = sk_res_spec_io;
1568 		else
1569 			sc->sk_res_spec = sk_res_spec_mem;
1570 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1571 		if (error) {
1572 			device_printf(dev, "couldn't allocate %s resources\n",
1573 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1574 			    "I/O");
1575 			goto fail;
1576 		}
1577 	}
1578 
1579 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1580 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1581 
1582 	/* Bail out if chip is not recognized. */
1583 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1584 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1585 		    sc->sk_type, sc->sk_rev);
1586 		error = ENXIO;
1587 		goto fail;
1588 	}
1589 
1590 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1591 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1592 		OID_AUTO, "int_mod",
1593 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1594 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1595 		"SK interrupt moderation");
1596 
1597 	/* Pull in device tunables. */
1598 	sc->sk_int_mod = SK_IM_DEFAULT;
1599 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1600 		"int_mod", &sc->sk_int_mod);
1601 	if (error == 0) {
1602 		if (sc->sk_int_mod < SK_IM_MIN ||
1603 		    sc->sk_int_mod > SK_IM_MAX) {
1604 			device_printf(dev, "int_mod value out of range; "
1605 			    "using default: %d\n", SK_IM_DEFAULT);
1606 			sc->sk_int_mod = SK_IM_DEFAULT;
1607 		}
1608 	}
1609 
1610 	/* Reset the adapter. */
1611 	sk_reset(sc);
1612 
1613 	skrs = sk_win_read_1(sc, SK_EPROM0);
1614 	if (sc->sk_type == SK_GENESIS) {
1615 		/* Read and save RAM size and RAMbuffer offset */
1616 		switch(skrs) {
1617 		case SK_RAMSIZE_512K_64:
1618 			sc->sk_ramsize = 0x80000;
1619 			sc->sk_rboff = SK_RBOFF_0;
1620 			break;
1621 		case SK_RAMSIZE_1024K_64:
1622 			sc->sk_ramsize = 0x100000;
1623 			sc->sk_rboff = SK_RBOFF_80000;
1624 			break;
1625 		case SK_RAMSIZE_1024K_128:
1626 			sc->sk_ramsize = 0x100000;
1627 			sc->sk_rboff = SK_RBOFF_0;
1628 			break;
1629 		case SK_RAMSIZE_2048K_128:
1630 			sc->sk_ramsize = 0x200000;
1631 			sc->sk_rboff = SK_RBOFF_0;
1632 			break;
1633 		default:
1634 			device_printf(dev, "unknown ram size: %d\n", skrs);
1635 			error = ENXIO;
1636 			goto fail;
1637 		}
1638 	} else { /* SK_YUKON_FAMILY */
1639 		if (skrs == 0x00)
1640 			sc->sk_ramsize = 0x20000;
1641 		else
1642 			sc->sk_ramsize = skrs * (1<<12);
1643 		sc->sk_rboff = SK_RBOFF_0;
1644 	}
1645 
1646 	/* Read and save physical media type */
1647 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1648 
1649 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1650 		 sc->sk_coppertype = 1;
1651 	 else
1652 		 sc->sk_coppertype = 0;
1653 
1654 	/* Determine whether to name it with VPD PN or just make it up.
1655 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1656 	switch (pci_get_device(dev)) {
1657 	case DEVICEID_SK_V1:
1658 	case DEVICEID_BELKIN_5005:
1659 	case DEVICEID_3COM_3C940:
1660 	case DEVICEID_LINKSYS_EG1032:
1661 	case DEVICEID_DLINK_DGE530T_A1:
1662 	case DEVICEID_DLINK_DGE530T_B1:
1663 		/* Stay with VPD PN. */
1664 		(void) pci_get_vpd_ident(dev, &pname);
1665 		break;
1666 	case DEVICEID_SK_V2:
1667 		/* YUKON VPD PN might bear no resemblance to reality. */
1668 		switch (sc->sk_type) {
1669 		case SK_GENESIS:
1670 			/* Stay with VPD PN. */
1671 			(void) pci_get_vpd_ident(dev, &pname);
1672 			break;
1673 		case SK_YUKON:
1674 			pname = "Marvell Yukon Gigabit Ethernet";
1675 			break;
1676 		case SK_YUKON_LITE:
1677 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1678 			break;
1679 		case SK_YUKON_LP:
1680 			pname = "Marvell Yukon LP Gigabit Ethernet";
1681 			break;
1682 		default:
1683 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1684 			break;
1685 		}
1686 
1687 		/* Yukon Lite Rev. A0 needs special test. */
1688 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1689 			u_int32_t far;
1690 			u_int8_t testbyte;
1691 
1692 			/* Save flash address register before testing. */
1693 			far = sk_win_read_4(sc, SK_EP_ADDR);
1694 
1695 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1696 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1697 
1698 			if (testbyte != 0x00) {
1699 				/* Yukon Lite Rev. A0 detected. */
1700 				sc->sk_type = SK_YUKON_LITE;
1701 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1702 				/* Restore flash address register. */
1703 				sk_win_write_4(sc, SK_EP_ADDR, far);
1704 			}
1705 		}
1706 		break;
1707 	default:
1708 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1709 			"chipver=%02x, rev=%x\n",
1710 			pci_get_vendor(dev), pci_get_device(dev),
1711 			sc->sk_type, sc->sk_rev);
1712 		error = ENXIO;
1713 		goto fail;
1714 	}
1715 
1716 	if (sc->sk_type == SK_YUKON_LITE) {
1717 		switch (sc->sk_rev) {
1718 		case SK_YUKON_LITE_REV_A0:
1719 			revstr = "A0";
1720 			break;
1721 		case SK_YUKON_LITE_REV_A1:
1722 			revstr = "A1";
1723 			break;
1724 		case SK_YUKON_LITE_REV_A3:
1725 			revstr = "A3";
1726 			break;
1727 		default:
1728 			revstr = "";
1729 			break;
1730 		}
1731 	} else {
1732 		revstr = "";
1733 	}
1734 
1735 	/* Announce the product name and more VPD data if there. */
1736 	if (pname != NULL)
1737 		device_printf(dev, "%s rev. %s(0x%x)\n",
1738 			pname, revstr, sc->sk_rev);
1739 
1740 	if (bootverbose) {
1741 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1742 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1743 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1744 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1745 	}
1746 
1747 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1748 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1749 		device_printf(dev, "failed to add child for PORT_A\n");
1750 		error = ENXIO;
1751 		goto fail;
1752 	}
1753 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1754 	if (port == NULL) {
1755 		device_printf(dev, "failed to allocate memory for "
1756 		    "ivars of PORT_A\n");
1757 		error = ENXIO;
1758 		goto fail;
1759 	}
1760 	*port = SK_PORT_A;
1761 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1762 
1763 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1764 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1765 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1766 			device_printf(dev, "failed to add child for PORT_B\n");
1767 			error = ENXIO;
1768 			goto fail;
1769 		}
1770 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1771 		if (port == NULL) {
1772 			device_printf(dev, "failed to allocate memory for "
1773 			    "ivars of PORT_B\n");
1774 			error = ENXIO;
1775 			goto fail;
1776 		}
1777 		*port = SK_PORT_B;
1778 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1779 	}
1780 
1781 	/* Turn on the 'driver is loaded' LED. */
1782 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1783 
1784 	error = bus_generic_attach(dev);
1785 	if (error) {
1786 		device_printf(dev, "failed to attach port(s)\n");
1787 		goto fail;
1788 	}
1789 
1790 	/* Hook interrupt last to avoid having to lock softc */
1791 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1792 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1793 
1794 	if (error) {
1795 		device_printf(dev, "couldn't set up irq\n");
1796 		goto fail;
1797 	}
1798 
1799 fail:
1800 	if (error)
1801 		skc_detach(dev);
1802 
1803 	return(error);
1804 }
1805 
1806 /*
1807  * Shutdown hardware and free up resources. This can be called any
1808  * time after the mutex has been initialized. It is called in both
1809  * the error case in attach and the normal detach case so it needs
1810  * to be careful about only freeing resources that have actually been
1811  * allocated.
1812  */
1813 static int
1814 sk_detach(dev)
1815 	device_t		dev;
1816 {
1817 	struct sk_if_softc	*sc_if;
1818 	struct ifnet		*ifp;
1819 
1820 	sc_if = device_get_softc(dev);
1821 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1822 	    ("sk mutex not initialized in sk_detach"));
1823 	SK_IF_LOCK(sc_if);
1824 
1825 	ifp = sc_if->sk_ifp;
1826 	/* These should only be active if attach_xmac succeeded */
1827 	if (device_is_attached(dev)) {
1828 		sk_stop(sc_if);
1829 		/* Can't hold locks while calling detach */
1830 		SK_IF_UNLOCK(sc_if);
1831 		callout_drain(&sc_if->sk_tick_ch);
1832 		callout_drain(&sc_if->sk_watchdog_ch);
1833 		ether_ifdetach(ifp);
1834 		SK_IF_LOCK(sc_if);
1835 	}
1836 	/*
1837 	 * We're generally called from skc_detach() which is using
1838 	 * device_delete_child() to get to here. It's already trashed
1839 	 * miibus for us, so don't do it here or we'll panic.
1840 	 */
1841 	/*
1842 	if (sc_if->sk_miibus != NULL)
1843 		device_delete_child(dev, sc_if->sk_miibus);
1844 	*/
1845 	bus_generic_detach(dev);
1846 	sk_dma_jumbo_free(sc_if);
1847 	sk_dma_free(sc_if);
1848 	SK_IF_UNLOCK(sc_if);
1849 	if (ifp)
1850 		if_free(ifp);
1851 
1852 	return(0);
1853 }
1854 
1855 static int
1856 skc_detach(dev)
1857 	device_t		dev;
1858 {
1859 	struct sk_softc		*sc;
1860 
1861 	sc = device_get_softc(dev);
1862 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1863 
1864 	if (device_is_alive(dev)) {
1865 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1866 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1867 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1868 		}
1869 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1870 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1871 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1872 		}
1873 		bus_generic_detach(dev);
1874 	}
1875 
1876 	if (sc->sk_intrhand)
1877 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1878 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1879 
1880 	mtx_destroy(&sc->sk_mii_mtx);
1881 	mtx_destroy(&sc->sk_mtx);
1882 
1883 	return(0);
1884 }
1885 
1886 static bus_dma_tag_t
1887 skc_get_dma_tag(device_t bus, device_t child __unused)
1888 {
1889 
1890 	return (bus_get_dma_tag(bus));
1891 }
1892 
1893 struct sk_dmamap_arg {
1894 	bus_addr_t	sk_busaddr;
1895 };
1896 
1897 static void
1898 sk_dmamap_cb(arg, segs, nseg, error)
1899 	void			*arg;
1900 	bus_dma_segment_t	*segs;
1901 	int			nseg;
1902 	int			error;
1903 {
1904 	struct sk_dmamap_arg	*ctx;
1905 
1906 	if (error != 0)
1907 		return;
1908 
1909 	ctx = arg;
1910 	ctx->sk_busaddr = segs[0].ds_addr;
1911 }
1912 
1913 /*
1914  * Allocate jumbo buffer storage. The SysKonnect adapters support
1915  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1916  * use them in their drivers. In order for us to use them, we need
1917  * large 9K receive buffers, however standard mbuf clusters are only
1918  * 2048 bytes in size. Consequently, we need to allocate and manage
1919  * our own jumbo buffer pool. Fortunately, this does not require an
1920  * excessive amount of additional code.
1921  */
1922 static int
1923 sk_dma_alloc(sc_if)
1924 	struct sk_if_softc	*sc_if;
1925 {
1926 	struct sk_dmamap_arg	ctx;
1927 	struct sk_txdesc	*txd;
1928 	struct sk_rxdesc	*rxd;
1929 	int			error, i;
1930 
1931 	/* create parent tag */
1932 	/*
1933 	 * XXX
1934 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1935 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1936 	 * However bz@ reported that it does not work on amd64 with > 4GB
1937 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1938 	 * by limiting DMA address to be in 32bit address space.
1939 	 */
1940 	error = bus_dma_tag_create(
1941 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1942 		    1, 0,			/* algnmnt, boundary */
1943 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1944 		    BUS_SPACE_MAXADDR,		/* highaddr */
1945 		    NULL, NULL,			/* filter, filterarg */
1946 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1947 		    0,				/* nsegments */
1948 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1949 		    0,				/* flags */
1950 		    NULL, NULL,			/* lockfunc, lockarg */
1951 		    &sc_if->sk_cdata.sk_parent_tag);
1952 	if (error != 0) {
1953 		device_printf(sc_if->sk_if_dev,
1954 		    "failed to create parent DMA tag\n");
1955 		goto fail;
1956 	}
1957 
1958 	/* create tag for Tx ring */
1959 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1960 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1961 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1962 		    BUS_SPACE_MAXADDR,		/* highaddr */
1963 		    NULL, NULL,			/* filter, filterarg */
1964 		    SK_TX_RING_SZ,		/* maxsize */
1965 		    1,				/* nsegments */
1966 		    SK_TX_RING_SZ,		/* maxsegsize */
1967 		    0,				/* flags */
1968 		    NULL, NULL,			/* lockfunc, lockarg */
1969 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1970 	if (error != 0) {
1971 		device_printf(sc_if->sk_if_dev,
1972 		    "failed to allocate Tx ring DMA tag\n");
1973 		goto fail;
1974 	}
1975 
1976 	/* create tag for Rx ring */
1977 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1978 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1979 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1980 		    BUS_SPACE_MAXADDR,		/* highaddr */
1981 		    NULL, NULL,			/* filter, filterarg */
1982 		    SK_RX_RING_SZ,		/* maxsize */
1983 		    1,				/* nsegments */
1984 		    SK_RX_RING_SZ,		/* maxsegsize */
1985 		    0,				/* flags */
1986 		    NULL, NULL,			/* lockfunc, lockarg */
1987 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1988 	if (error != 0) {
1989 		device_printf(sc_if->sk_if_dev,
1990 		    "failed to allocate Rx ring DMA tag\n");
1991 		goto fail;
1992 	}
1993 
1994 	/* create tag for Tx buffers */
1995 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1996 		    1, 0,			/* algnmnt, boundary */
1997 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1998 		    BUS_SPACE_MAXADDR,		/* highaddr */
1999 		    NULL, NULL,			/* filter, filterarg */
2000 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2001 		    SK_MAXTXSEGS,		/* nsegments */
2002 		    MCLBYTES,			/* maxsegsize */
2003 		    0,				/* flags */
2004 		    NULL, NULL,			/* lockfunc, lockarg */
2005 		    &sc_if->sk_cdata.sk_tx_tag);
2006 	if (error != 0) {
2007 		device_printf(sc_if->sk_if_dev,
2008 		    "failed to allocate Tx DMA tag\n");
2009 		goto fail;
2010 	}
2011 
2012 	/* create tag for Rx buffers */
2013 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2014 		    1, 0,			/* algnmnt, boundary */
2015 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2016 		    BUS_SPACE_MAXADDR,		/* highaddr */
2017 		    NULL, NULL,			/* filter, filterarg */
2018 		    MCLBYTES,			/* maxsize */
2019 		    1,				/* nsegments */
2020 		    MCLBYTES,			/* maxsegsize */
2021 		    0,				/* flags */
2022 		    NULL, NULL,			/* lockfunc, lockarg */
2023 		    &sc_if->sk_cdata.sk_rx_tag);
2024 	if (error != 0) {
2025 		device_printf(sc_if->sk_if_dev,
2026 		    "failed to allocate Rx DMA tag\n");
2027 		goto fail;
2028 	}
2029 
2030 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2031 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2032 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2033 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2034 	if (error != 0) {
2035 		device_printf(sc_if->sk_if_dev,
2036 		    "failed to allocate DMA'able memory for Tx ring\n");
2037 		goto fail;
2038 	}
2039 
2040 	ctx.sk_busaddr = 0;
2041 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2042 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2043 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2044 	if (error != 0) {
2045 		device_printf(sc_if->sk_if_dev,
2046 		    "failed to load DMA'able memory for Tx ring\n");
2047 		goto fail;
2048 	}
2049 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2050 
2051 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2052 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2053 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2054 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2055 	if (error != 0) {
2056 		device_printf(sc_if->sk_if_dev,
2057 		    "failed to allocate DMA'able memory for Rx ring\n");
2058 		goto fail;
2059 	}
2060 
2061 	ctx.sk_busaddr = 0;
2062 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2063 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2064 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2065 	if (error != 0) {
2066 		device_printf(sc_if->sk_if_dev,
2067 		    "failed to load DMA'able memory for Rx ring\n");
2068 		goto fail;
2069 	}
2070 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2071 
2072 	/* create DMA maps for Tx buffers */
2073 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2074 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2075 		txd->tx_m = NULL;
2076 		txd->tx_dmamap = NULL;
2077 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2078 		    &txd->tx_dmamap);
2079 		if (error != 0) {
2080 			device_printf(sc_if->sk_if_dev,
2081 			    "failed to create Tx dmamap\n");
2082 			goto fail;
2083 		}
2084 	}
2085 
2086 	/* create DMA maps for Rx buffers */
2087 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2088 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2089 		device_printf(sc_if->sk_if_dev,
2090 		    "failed to create spare Rx dmamap\n");
2091 		goto fail;
2092 	}
2093 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2094 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2095 		rxd->rx_m = NULL;
2096 		rxd->rx_dmamap = NULL;
2097 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2098 		    &rxd->rx_dmamap);
2099 		if (error != 0) {
2100 			device_printf(sc_if->sk_if_dev,
2101 			    "failed to create Rx dmamap\n");
2102 			goto fail;
2103 		}
2104 	}
2105 
2106 fail:
2107 	return (error);
2108 }
2109 
2110 static int
2111 sk_dma_jumbo_alloc(sc_if)
2112 	struct sk_if_softc	*sc_if;
2113 {
2114 	struct sk_dmamap_arg	ctx;
2115 	struct sk_rxdesc	*jrxd;
2116 	int			error, i;
2117 
2118 	if (jumbo_disable != 0) {
2119 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2120 		sc_if->sk_jumbo_disable = 1;
2121 		return (0);
2122 	}
2123 	/* create tag for jumbo Rx ring */
2124 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2125 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2126 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2127 		    BUS_SPACE_MAXADDR,		/* highaddr */
2128 		    NULL, NULL,			/* filter, filterarg */
2129 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2130 		    1,				/* nsegments */
2131 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2132 		    0,				/* flags */
2133 		    NULL, NULL,			/* lockfunc, lockarg */
2134 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2135 	if (error != 0) {
2136 		device_printf(sc_if->sk_if_dev,
2137 		    "failed to allocate jumbo Rx ring DMA tag\n");
2138 		goto jumbo_fail;
2139 	}
2140 
2141 	/* create tag for jumbo Rx buffers */
2142 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2143 		    1, 0,			/* algnmnt, boundary */
2144 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2145 		    BUS_SPACE_MAXADDR,		/* highaddr */
2146 		    NULL, NULL,			/* filter, filterarg */
2147 		    MJUM9BYTES,			/* maxsize */
2148 		    1,				/* nsegments */
2149 		    MJUM9BYTES,			/* maxsegsize */
2150 		    0,				/* flags */
2151 		    NULL, NULL,			/* lockfunc, lockarg */
2152 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2153 	if (error != 0) {
2154 		device_printf(sc_if->sk_if_dev,
2155 		    "failed to allocate jumbo Rx DMA tag\n");
2156 		goto jumbo_fail;
2157 	}
2158 
2159 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2160 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2161 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2162 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2163 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2164 	if (error != 0) {
2165 		device_printf(sc_if->sk_if_dev,
2166 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2167 		goto jumbo_fail;
2168 	}
2169 
2170 	ctx.sk_busaddr = 0;
2171 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2172 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2173 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2174 	    &ctx, BUS_DMA_NOWAIT);
2175 	if (error != 0) {
2176 		device_printf(sc_if->sk_if_dev,
2177 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2178 		goto jumbo_fail;
2179 	}
2180 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2181 
2182 	/* create DMA maps for jumbo Rx buffers */
2183 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2184 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2185 		device_printf(sc_if->sk_if_dev,
2186 		    "failed to create spare jumbo Rx dmamap\n");
2187 		goto jumbo_fail;
2188 	}
2189 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2190 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2191 		jrxd->rx_m = NULL;
2192 		jrxd->rx_dmamap = NULL;
2193 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2194 		    &jrxd->rx_dmamap);
2195 		if (error != 0) {
2196 			device_printf(sc_if->sk_if_dev,
2197 			    "failed to create jumbo Rx dmamap\n");
2198 			goto jumbo_fail;
2199 		}
2200 	}
2201 
2202 	return (0);
2203 
2204 jumbo_fail:
2205 	sk_dma_jumbo_free(sc_if);
2206 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2207 	    "resource shortage\n");
2208 	sc_if->sk_jumbo_disable = 1;
2209 	return (0);
2210 }
2211 
2212 static void
2213 sk_dma_free(sc_if)
2214 	struct sk_if_softc	*sc_if;
2215 {
2216 	struct sk_txdesc	*txd;
2217 	struct sk_rxdesc	*rxd;
2218 	int			i;
2219 
2220 	/* Tx ring */
2221 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2222 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2223 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2224 			    sc_if->sk_cdata.sk_tx_ring_map);
2225 		if (sc_if->sk_rdata.sk_tx_ring)
2226 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2227 			    sc_if->sk_rdata.sk_tx_ring,
2228 			    sc_if->sk_cdata.sk_tx_ring_map);
2229 		sc_if->sk_rdata.sk_tx_ring = NULL;
2230 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2231 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2232 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2233 	}
2234 	/* Rx ring */
2235 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2236 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2237 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2238 			    sc_if->sk_cdata.sk_rx_ring_map);
2239 		if (sc_if->sk_rdata.sk_rx_ring)
2240 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2241 			    sc_if->sk_rdata.sk_rx_ring,
2242 			    sc_if->sk_cdata.sk_rx_ring_map);
2243 		sc_if->sk_rdata.sk_rx_ring = NULL;
2244 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2245 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2246 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2247 	}
2248 	/* Tx buffers */
2249 	if (sc_if->sk_cdata.sk_tx_tag) {
2250 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2251 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2252 			if (txd->tx_dmamap) {
2253 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2254 				    txd->tx_dmamap);
2255 				txd->tx_dmamap = NULL;
2256 			}
2257 		}
2258 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2259 		sc_if->sk_cdata.sk_tx_tag = NULL;
2260 	}
2261 	/* Rx buffers */
2262 	if (sc_if->sk_cdata.sk_rx_tag) {
2263 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2264 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2265 			if (rxd->rx_dmamap) {
2266 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2267 				    rxd->rx_dmamap);
2268 				rxd->rx_dmamap = NULL;
2269 			}
2270 		}
2271 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2272 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273 			    sc_if->sk_cdata.sk_rx_sparemap);
2274 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2275 		}
2276 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2277 		sc_if->sk_cdata.sk_rx_tag = NULL;
2278 	}
2279 
2280 	if (sc_if->sk_cdata.sk_parent_tag) {
2281 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2282 		sc_if->sk_cdata.sk_parent_tag = NULL;
2283 	}
2284 }
2285 
2286 static void
2287 sk_dma_jumbo_free(sc_if)
2288 	struct sk_if_softc	*sc_if;
2289 {
2290 	struct sk_rxdesc	*jrxd;
2291 	int			i;
2292 
2293 	/* jumbo Rx ring */
2294 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2295 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2296 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2297 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2298 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2299 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2300 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2301 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2302 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2303 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2304 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2305 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2306 	}
2307 
2308 	/* jumbo Rx buffers */
2309 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2310 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2311 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2312 			if (jrxd->rx_dmamap) {
2313 				bus_dmamap_destroy(
2314 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2315 				    jrxd->rx_dmamap);
2316 				jrxd->rx_dmamap = NULL;
2317 			}
2318 		}
2319 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2320 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2321 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2322 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2323 		}
2324 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2325 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2326 	}
2327 }
2328 
2329 static void
2330 sk_txcksum(ifp, m, f)
2331 	struct ifnet		*ifp;
2332 	struct mbuf		*m;
2333 	struct sk_tx_desc	*f;
2334 {
2335 	struct ip		*ip;
2336 	u_int16_t		offset;
2337 	u_int8_t 		*p;
2338 
2339 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2340 	for(; m && m->m_len == 0; m = m->m_next)
2341 		;
2342 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2343 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2344 		/* checksum may be corrupted */
2345 		goto sendit;
2346 	}
2347 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2348 		if (m->m_len != ETHER_HDR_LEN) {
2349 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2350 			    __func__);
2351 			/* checksum may be corrupted */
2352 			goto sendit;
2353 		}
2354 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2355 			;
2356 		if (m == NULL) {
2357 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2358 			/* checksum may be corrupted */
2359 			goto sendit;
2360 		}
2361 		ip = mtod(m, struct ip *);
2362 	} else {
2363 		p = mtod(m, u_int8_t *);
2364 		p += ETHER_HDR_LEN;
2365 		ip = (struct ip *)p;
2366 	}
2367 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2368 
2369 sendit:
2370 	f->sk_csum_startval = 0;
2371 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2372 	    (offset << 16));
2373 }
2374 
2375 static int
2376 sk_encap(sc_if, m_head)
2377         struct sk_if_softc	*sc_if;
2378         struct mbuf		**m_head;
2379 {
2380 	struct sk_txdesc	*txd;
2381 	struct sk_tx_desc	*f = NULL;
2382 	struct mbuf		*m;
2383 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2384 	u_int32_t		cflags, frag, si, sk_ctl;
2385 	int			error, i, nseg;
2386 
2387 	SK_IF_LOCK_ASSERT(sc_if);
2388 
2389 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2390 		return (ENOBUFS);
2391 
2392 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2393 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2394 	if (error == EFBIG) {
2395 		m = m_defrag(*m_head, M_NOWAIT);
2396 		if (m == NULL) {
2397 			m_freem(*m_head);
2398 			*m_head = NULL;
2399 			return (ENOMEM);
2400 		}
2401 		*m_head = m;
2402 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2403 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2404 		if (error != 0) {
2405 			m_freem(*m_head);
2406 			*m_head = NULL;
2407 			return (error);
2408 		}
2409 	} else if (error != 0)
2410 		return (error);
2411 	if (nseg == 0) {
2412 		m_freem(*m_head);
2413 		*m_head = NULL;
2414 		return (EIO);
2415 	}
2416 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2417 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2418 		return (ENOBUFS);
2419 	}
2420 
2421 	m = *m_head;
2422 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2423 		cflags = SK_OPCODE_CSUM;
2424 	else
2425 		cflags = SK_OPCODE_DEFAULT;
2426 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2427 	for (i = 0; i < nseg; i++) {
2428 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2429 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2430 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2431 		sk_ctl = txsegs[i].ds_len | cflags;
2432 		if (i == 0) {
2433 			if (cflags == SK_OPCODE_CSUM)
2434 				sk_txcksum(sc_if->sk_ifp, m, f);
2435 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2436 		} else
2437 			sk_ctl |= SK_TXCTL_OWN;
2438 		f->sk_ctl = htole32(sk_ctl);
2439 		sc_if->sk_cdata.sk_tx_cnt++;
2440 		SK_INC(frag, SK_TX_RING_CNT);
2441 	}
2442 	sc_if->sk_cdata.sk_tx_prod = frag;
2443 
2444 	/* set EOF on the last descriptor */
2445 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2446 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2447 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2448 
2449 	/* turn the first descriptor ownership to NIC */
2450 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2451 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2452 
2453 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2454 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2455 	txd->tx_m = m;
2456 
2457 	/* sync descriptors */
2458 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2459 	    BUS_DMASYNC_PREWRITE);
2460 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2461 	    sc_if->sk_cdata.sk_tx_ring_map,
2462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463 
2464 	return (0);
2465 }
2466 
2467 static void
2468 sk_start(ifp)
2469 	struct ifnet		*ifp;
2470 {
2471 	struct sk_if_softc *sc_if;
2472 
2473 	sc_if = ifp->if_softc;
2474 
2475 	SK_IF_LOCK(sc_if);
2476 	sk_start_locked(ifp);
2477 	SK_IF_UNLOCK(sc_if);
2478 
2479 	return;
2480 }
2481 
2482 static void
2483 sk_start_locked(ifp)
2484 	struct ifnet		*ifp;
2485 {
2486         struct sk_softc		*sc;
2487         struct sk_if_softc	*sc_if;
2488         struct mbuf		*m_head;
2489 	int			enq;
2490 
2491 	sc_if = ifp->if_softc;
2492 	sc = sc_if->sk_softc;
2493 
2494 	SK_IF_LOCK_ASSERT(sc_if);
2495 
2496 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2497 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2498 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2499 		if (m_head == NULL)
2500 			break;
2501 
2502 		/*
2503 		 * Pack the data into the transmit ring. If we
2504 		 * don't have room, set the OACTIVE flag and wait
2505 		 * for the NIC to drain the ring.
2506 		 */
2507 		if (sk_encap(sc_if, &m_head)) {
2508 			if (m_head == NULL)
2509 				break;
2510 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2511 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2512 			break;
2513 		}
2514 
2515 		enq++;
2516 		/*
2517 		 * If there's a BPF listener, bounce a copy of this frame
2518 		 * to him.
2519 		 */
2520 		BPF_MTAP(ifp, m_head);
2521 	}
2522 
2523 	if (enq > 0) {
2524 		/* Transmit */
2525 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2526 
2527 		/* Set a timeout in case the chip goes out to lunch. */
2528 		sc_if->sk_watchdog_timer = 5;
2529 	}
2530 }
2531 
2532 static void
2533 sk_watchdog(arg)
2534 	void			*arg;
2535 {
2536 	struct sk_if_softc	*sc_if;
2537 	struct ifnet		*ifp;
2538 
2539 	ifp = arg;
2540 	sc_if = ifp->if_softc;
2541 
2542 	SK_IF_LOCK_ASSERT(sc_if);
2543 
2544 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2545 		goto done;
2546 
2547 	/*
2548 	 * Reclaim first as there is a possibility of losing Tx completion
2549 	 * interrupts.
2550 	 */
2551 	sk_txeof(sc_if);
2552 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2553 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2554 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2555 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2556 		sk_init_locked(sc_if);
2557 	}
2558 
2559 done:
2560 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2561 
2562 	return;
2563 }
2564 
2565 static int
2566 skc_shutdown(dev)
2567 	device_t		dev;
2568 {
2569 	struct sk_softc		*sc;
2570 
2571 	sc = device_get_softc(dev);
2572 	SK_LOCK(sc);
2573 
2574 	/* Turn off the 'driver is loaded' LED. */
2575 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2576 
2577 	/*
2578 	 * Reset the GEnesis controller. Doing this should also
2579 	 * assert the resets on the attached XMAC(s).
2580 	 */
2581 	sk_reset(sc);
2582 	SK_UNLOCK(sc);
2583 
2584 	return (0);
2585 }
2586 
2587 static int
2588 skc_suspend(dev)
2589 	device_t		dev;
2590 {
2591 	struct sk_softc		*sc;
2592 	struct sk_if_softc	*sc_if0, *sc_if1;
2593 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2594 
2595 	sc = device_get_softc(dev);
2596 
2597 	SK_LOCK(sc);
2598 
2599 	sc_if0 = sc->sk_if[SK_PORT_A];
2600 	sc_if1 = sc->sk_if[SK_PORT_B];
2601 	if (sc_if0 != NULL)
2602 		ifp0 = sc_if0->sk_ifp;
2603 	if (sc_if1 != NULL)
2604 		ifp1 = sc_if1->sk_ifp;
2605 	if (ifp0 != NULL)
2606 		sk_stop(sc_if0);
2607 	if (ifp1 != NULL)
2608 		sk_stop(sc_if1);
2609 	sc->sk_suspended = 1;
2610 
2611 	SK_UNLOCK(sc);
2612 
2613 	return (0);
2614 }
2615 
2616 static int
2617 skc_resume(dev)
2618 	device_t		dev;
2619 {
2620 	struct sk_softc		*sc;
2621 	struct sk_if_softc	*sc_if0, *sc_if1;
2622 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2623 
2624 	sc = device_get_softc(dev);
2625 
2626 	SK_LOCK(sc);
2627 
2628 	sc_if0 = sc->sk_if[SK_PORT_A];
2629 	sc_if1 = sc->sk_if[SK_PORT_B];
2630 	if (sc_if0 != NULL)
2631 		ifp0 = sc_if0->sk_ifp;
2632 	if (sc_if1 != NULL)
2633 		ifp1 = sc_if1->sk_ifp;
2634 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2635 		sk_init_locked(sc_if0);
2636 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2637 		sk_init_locked(sc_if1);
2638 	sc->sk_suspended = 0;
2639 
2640 	SK_UNLOCK(sc);
2641 
2642 	return (0);
2643 }
2644 
2645 /*
2646  * According to the data sheet from SK-NET GENESIS the hardware can compute
2647  * two Rx checksums at the same time(Each checksum start position is
2648  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2649  * does not work at least on my Yukon hardware. I tried every possible ways
2650  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2651  * checksum offload was disabled at the moment and only IP checksum offload
2652  * was enabled.
2653  * As nomral IP header size is 20 bytes I can't expect it would give an
2654  * increase in throughput. However it seems it doesn't hurt performance in
2655  * my testing. If there is a more detailed information for checksum secret
2656  * of the hardware in question please contact yongari@FreeBSD.org to add
2657  * TCP/UDP checksum offload support.
2658  */
2659 static __inline void
2660 sk_rxcksum(ifp, m, csum)
2661 	struct ifnet		*ifp;
2662 	struct mbuf		*m;
2663 	u_int32_t		csum;
2664 {
2665 	struct ether_header	*eh;
2666 	struct ip		*ip;
2667 	int32_t			hlen, len, pktlen;
2668 	u_int16_t		csum1, csum2, ipcsum;
2669 
2670 	pktlen = m->m_pkthdr.len;
2671 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2672 		return;
2673 	eh = mtod(m, struct ether_header *);
2674 	if (eh->ether_type != htons(ETHERTYPE_IP))
2675 		return;
2676 	ip = (struct ip *)(eh + 1);
2677 	if (ip->ip_v != IPVERSION)
2678 		return;
2679 	hlen = ip->ip_hl << 2;
2680 	pktlen -= sizeof(struct ether_header);
2681 	if (hlen < sizeof(struct ip))
2682 		return;
2683 	if (ntohs(ip->ip_len) < hlen)
2684 		return;
2685 	if (ntohs(ip->ip_len) != pktlen)
2686 		return;
2687 
2688 	csum1 = htons(csum & 0xffff);
2689 	csum2 = htons((csum >> 16) & 0xffff);
2690 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2691 	/* checksum fixup for IP options */
2692 	len = hlen - sizeof(struct ip);
2693 	if (len > 0) {
2694 		/*
2695 		 * If the second checksum value is correct we can compute IP
2696 		 * checksum with simple math. Unfortunately the second checksum
2697 		 * value is wrong so we can't verify the checksum from the
2698 		 * value(It seems there is some magic here to get correct
2699 		 * value). If the second checksum value is correct it also
2700 		 * means we can get TCP/UDP checksum) here. However, it still
2701 		 * needs pseudo header checksum calculation due to hardware
2702 		 * limitations.
2703 		 */
2704 		return;
2705 	}
2706 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2707 	if (ipcsum == 0xffff)
2708 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2709 }
2710 
2711 static __inline int
2712 sk_rxvalid(sc, stat, len)
2713 	struct sk_softc		*sc;
2714 	u_int32_t		stat, len;
2715 {
2716 
2717 	if (sc->sk_type == SK_GENESIS) {
2718 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2719 		    XM_RXSTAT_BYTES(stat) != len)
2720 			return (0);
2721 	} else {
2722 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2723 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2724 		    YU_RXSTAT_JABBER)) != 0 ||
2725 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2726 		    YU_RXSTAT_BYTES(stat) != len)
2727 			return (0);
2728 	}
2729 
2730 	return (1);
2731 }
2732 
2733 static void
2734 sk_rxeof(sc_if)
2735 	struct sk_if_softc	*sc_if;
2736 {
2737 	struct sk_softc		*sc;
2738 	struct mbuf		*m;
2739 	struct ifnet		*ifp;
2740 	struct sk_rx_desc	*cur_rx;
2741 	struct sk_rxdesc	*rxd;
2742 	int			cons, prog;
2743 	u_int32_t		csum, rxstat, sk_ctl;
2744 
2745 	sc = sc_if->sk_softc;
2746 	ifp = sc_if->sk_ifp;
2747 
2748 	SK_IF_LOCK_ASSERT(sc_if);
2749 
2750 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2751 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2752 
2753 	prog = 0;
2754 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2755 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2756 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2757 		sk_ctl = le32toh(cur_rx->sk_ctl);
2758 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2759 			break;
2760 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2761 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2762 
2763 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2764 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2765 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2766 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2767 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2768 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2769 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2770 			sk_discard_rxbuf(sc_if, cons);
2771 			continue;
2772 		}
2773 
2774 		m = rxd->rx_m;
2775 		csum = le32toh(cur_rx->sk_csum);
2776 		if (sk_newbuf(sc_if, cons) != 0) {
2777 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2778 			/* reuse old buffer */
2779 			sk_discard_rxbuf(sc_if, cons);
2780 			continue;
2781 		}
2782 		m->m_pkthdr.rcvif = ifp;
2783 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2784 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2785 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2786 			sk_rxcksum(ifp, m, csum);
2787 		SK_IF_UNLOCK(sc_if);
2788 		(*ifp->if_input)(ifp, m);
2789 		SK_IF_LOCK(sc_if);
2790 	}
2791 
2792 	if (prog > 0) {
2793 		sc_if->sk_cdata.sk_rx_cons = cons;
2794 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2795 		    sc_if->sk_cdata.sk_rx_ring_map,
2796 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2797 	}
2798 }
2799 
2800 static void
2801 sk_jumbo_rxeof(sc_if)
2802 	struct sk_if_softc	*sc_if;
2803 {
2804 	struct sk_softc		*sc;
2805 	struct mbuf		*m;
2806 	struct ifnet		*ifp;
2807 	struct sk_rx_desc	*cur_rx;
2808 	struct sk_rxdesc	*jrxd;
2809 	int			cons, prog;
2810 	u_int32_t		csum, rxstat, sk_ctl;
2811 
2812 	sc = sc_if->sk_softc;
2813 	ifp = sc_if->sk_ifp;
2814 
2815 	SK_IF_LOCK_ASSERT(sc_if);
2816 
2817 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2818 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2819 
2820 	prog = 0;
2821 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2822 	    prog < SK_JUMBO_RX_RING_CNT;
2823 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2824 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2825 		sk_ctl = le32toh(cur_rx->sk_ctl);
2826 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2827 			break;
2828 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2829 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2830 
2831 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2832 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2833 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2834 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2835 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2836 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2837 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2838 			sk_discard_jumbo_rxbuf(sc_if, cons);
2839 			continue;
2840 		}
2841 
2842 		m = jrxd->rx_m;
2843 		csum = le32toh(cur_rx->sk_csum);
2844 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2845 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2846 			/* reuse old buffer */
2847 			sk_discard_jumbo_rxbuf(sc_if, cons);
2848 			continue;
2849 		}
2850 		m->m_pkthdr.rcvif = ifp;
2851 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2852 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2853 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2854 			sk_rxcksum(ifp, m, csum);
2855 		SK_IF_UNLOCK(sc_if);
2856 		(*ifp->if_input)(ifp, m);
2857 		SK_IF_LOCK(sc_if);
2858 	}
2859 
2860 	if (prog > 0) {
2861 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2862 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2863 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2864 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2865 	}
2866 }
2867 
2868 static void
2869 sk_txeof(sc_if)
2870 	struct sk_if_softc	*sc_if;
2871 {
2872 	struct sk_txdesc	*txd;
2873 	struct sk_tx_desc	*cur_tx;
2874 	struct ifnet		*ifp;
2875 	u_int32_t		idx, sk_ctl;
2876 
2877 	ifp = sc_if->sk_ifp;
2878 
2879 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2880 	if (txd == NULL)
2881 		return;
2882 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2883 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2884 	/*
2885 	 * Go through our tx ring and free mbufs for those
2886 	 * frames that have been sent.
2887 	 */
2888 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2889 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2890 			break;
2891 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2892 		sk_ctl = le32toh(cur_tx->sk_ctl);
2893 		if (sk_ctl & SK_TXCTL_OWN)
2894 			break;
2895 		sc_if->sk_cdata.sk_tx_cnt--;
2896 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2897 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2898 			continue;
2899 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2900 		    BUS_DMASYNC_POSTWRITE);
2901 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2902 
2903 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2904 		m_freem(txd->tx_m);
2905 		txd->tx_m = NULL;
2906 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2907 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2908 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2909 	}
2910 	sc_if->sk_cdata.sk_tx_cons = idx;
2911 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2912 
2913 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2914 	    sc_if->sk_cdata.sk_tx_ring_map,
2915 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2916 }
2917 
2918 static void
2919 sk_tick(xsc_if)
2920 	void			*xsc_if;
2921 {
2922 	struct sk_if_softc	*sc_if;
2923 	struct mii_data		*mii;
2924 	struct ifnet		*ifp;
2925 	int			i;
2926 
2927 	sc_if = xsc_if;
2928 	ifp = sc_if->sk_ifp;
2929 	mii = device_get_softc(sc_if->sk_miibus);
2930 
2931 	if (!(ifp->if_flags & IFF_UP))
2932 		return;
2933 
2934 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2935 		sk_intr_bcom(sc_if);
2936 		return;
2937 	}
2938 
2939 	/*
2940 	 * According to SysKonnect, the correct way to verify that
2941 	 * the link has come back up is to poll bit 0 of the GPIO
2942 	 * register three times. This pin has the signal from the
2943 	 * link_sync pin connected to it; if we read the same link
2944 	 * state 3 times in a row, we know the link is up.
2945 	 */
2946 	for (i = 0; i < 3; i++) {
2947 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2948 			break;
2949 	}
2950 
2951 	if (i != 3) {
2952 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2953 		return;
2954 	}
2955 
2956 	/* Turn the GP0 interrupt back on. */
2957 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2958 	SK_XM_READ_2(sc_if, XM_ISR);
2959 	mii_tick(mii);
2960 	callout_stop(&sc_if->sk_tick_ch);
2961 }
2962 
2963 static void
2964 sk_yukon_tick(xsc_if)
2965 	void			*xsc_if;
2966 {
2967 	struct sk_if_softc	*sc_if;
2968 	struct mii_data		*mii;
2969 
2970 	sc_if = xsc_if;
2971 	mii = device_get_softc(sc_if->sk_miibus);
2972 
2973 	mii_tick(mii);
2974 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2975 }
2976 
2977 static void
2978 sk_intr_bcom(sc_if)
2979 	struct sk_if_softc	*sc_if;
2980 {
2981 	struct mii_data		*mii;
2982 	struct ifnet		*ifp;
2983 	int			status;
2984 	mii = device_get_softc(sc_if->sk_miibus);
2985 	ifp = sc_if->sk_ifp;
2986 
2987 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2988 
2989 	/*
2990 	 * Read the PHY interrupt register to make sure
2991 	 * we clear any pending interrupts.
2992 	 */
2993 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2994 
2995 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2996 		sk_init_xmac(sc_if);
2997 		return;
2998 	}
2999 
3000 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3001 		int			lstat;
3002 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3003 		    BRGPHY_MII_AUXSTS);
3004 
3005 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3006 			mii_mediachg(mii);
3007 			/* Turn off the link LED. */
3008 			SK_IF_WRITE_1(sc_if, 0,
3009 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3010 			sc_if->sk_link = 0;
3011 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3012 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3013 	    		    BRGPHY_MII_IMR, 0xFF00);
3014 			mii_tick(mii);
3015 			sc_if->sk_link = 1;
3016 			/* Turn on the link LED. */
3017 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3018 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3019 			    SK_LINKLED_BLINK_OFF);
3020 		} else {
3021 			mii_tick(mii);
3022 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3023 		}
3024 	}
3025 
3026 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3027 
3028 	return;
3029 }
3030 
3031 static void
3032 sk_intr_xmac(sc_if)
3033 	struct sk_if_softc	*sc_if;
3034 {
3035 	u_int16_t		status;
3036 
3037 	status = SK_XM_READ_2(sc_if, XM_ISR);
3038 
3039 	/*
3040 	 * Link has gone down. Start MII tick timeout to
3041 	 * watch for link resync.
3042 	 */
3043 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3044 		if (status & XM_ISR_GP0_SET) {
3045 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3046 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3047 		}
3048 
3049 		if (status & XM_ISR_AUTONEG_DONE) {
3050 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3051 		}
3052 	}
3053 
3054 	if (status & XM_IMR_TX_UNDERRUN)
3055 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3056 
3057 	if (status & XM_IMR_RX_OVERRUN)
3058 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3059 
3060 	status = SK_XM_READ_2(sc_if, XM_ISR);
3061 
3062 	return;
3063 }
3064 
3065 static void
3066 sk_intr_yukon(sc_if)
3067 	struct sk_if_softc	*sc_if;
3068 {
3069 	u_int8_t status;
3070 
3071 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3072 	/* RX overrun */
3073 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3074 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3075 		    SK_RFCTL_RX_FIFO_OVER);
3076 	}
3077 	/* TX underrun */
3078 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3079 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3080 		    SK_TFCTL_TX_FIFO_UNDER);
3081 	}
3082 }
3083 
3084 static void
3085 sk_intr(xsc)
3086 	void			*xsc;
3087 {
3088 	struct sk_softc		*sc = xsc;
3089 	struct sk_if_softc	*sc_if0, *sc_if1;
3090 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3091 	u_int32_t		status;
3092 
3093 	SK_LOCK(sc);
3094 
3095 	status = CSR_READ_4(sc, SK_ISSR);
3096 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3097 		goto done_locked;
3098 
3099 	sc_if0 = sc->sk_if[SK_PORT_A];
3100 	sc_if1 = sc->sk_if[SK_PORT_B];
3101 
3102 	if (sc_if0 != NULL)
3103 		ifp0 = sc_if0->sk_ifp;
3104 	if (sc_if1 != NULL)
3105 		ifp1 = sc_if1->sk_ifp;
3106 
3107 	for (; (status &= sc->sk_intrmask) != 0;) {
3108 		/* Handle receive interrupts first. */
3109 		if (status & SK_ISR_RX1_EOF) {
3110 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3111 				sk_jumbo_rxeof(sc_if0);
3112 			else
3113 				sk_rxeof(sc_if0);
3114 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3115 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3116 		}
3117 		if (status & SK_ISR_RX2_EOF) {
3118 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3119 				sk_jumbo_rxeof(sc_if1);
3120 			else
3121 				sk_rxeof(sc_if1);
3122 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3123 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3124 		}
3125 
3126 		/* Then transmit interrupts. */
3127 		if (status & SK_ISR_TX1_S_EOF) {
3128 			sk_txeof(sc_if0);
3129 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3130 		}
3131 		if (status & SK_ISR_TX2_S_EOF) {
3132 			sk_txeof(sc_if1);
3133 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3134 		}
3135 
3136 		/* Then MAC interrupts. */
3137 		if (status & SK_ISR_MAC1 &&
3138 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3139 			if (sc->sk_type == SK_GENESIS)
3140 				sk_intr_xmac(sc_if0);
3141 			else
3142 				sk_intr_yukon(sc_if0);
3143 		}
3144 
3145 		if (status & SK_ISR_MAC2 &&
3146 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3147 			if (sc->sk_type == SK_GENESIS)
3148 				sk_intr_xmac(sc_if1);
3149 			else
3150 				sk_intr_yukon(sc_if1);
3151 		}
3152 
3153 		if (status & SK_ISR_EXTERNAL_REG) {
3154 			if (ifp0 != NULL &&
3155 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3156 				sk_intr_bcom(sc_if0);
3157 			if (ifp1 != NULL &&
3158 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3159 				sk_intr_bcom(sc_if1);
3160 		}
3161 		status = CSR_READ_4(sc, SK_ISSR);
3162 	}
3163 
3164 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3165 
3166 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3167 		sk_start_locked(ifp0);
3168 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3169 		sk_start_locked(ifp1);
3170 
3171 done_locked:
3172 	SK_UNLOCK(sc);
3173 }
3174 
3175 static void
3176 sk_init_xmac(sc_if)
3177 	struct sk_if_softc	*sc_if;
3178 {
3179 	struct sk_softc		*sc;
3180 	struct ifnet		*ifp;
3181 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3182 	static const struct sk_bcom_hack bhack[] = {
3183 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3184 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3185 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3186 	{ 0, 0 } };
3187 
3188 	SK_IF_LOCK_ASSERT(sc_if);
3189 
3190 	sc = sc_if->sk_softc;
3191 	ifp = sc_if->sk_ifp;
3192 
3193 	/* Unreset the XMAC. */
3194 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3195 	DELAY(1000);
3196 
3197 	/* Reset the XMAC's internal state. */
3198 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3199 
3200 	/* Save the XMAC II revision */
3201 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3202 
3203 	/*
3204 	 * Perform additional initialization for external PHYs,
3205 	 * namely for the 1000baseTX cards that use the XMAC's
3206 	 * GMII mode.
3207 	 */
3208 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3209 		int			i = 0;
3210 		u_int32_t		val;
3211 
3212 		/* Take PHY out of reset. */
3213 		val = sk_win_read_4(sc, SK_GPIO);
3214 		if (sc_if->sk_port == SK_PORT_A)
3215 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3216 		else
3217 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3218 		sk_win_write_4(sc, SK_GPIO, val);
3219 
3220 		/* Enable GMII mode on the XMAC. */
3221 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3222 
3223 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3224 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3225 		DELAY(10000);
3226 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3227 		    BRGPHY_MII_IMR, 0xFFF0);
3228 
3229 		/*
3230 		 * Early versions of the BCM5400 apparently have
3231 		 * a bug that requires them to have their reserved
3232 		 * registers initialized to some magic values. I don't
3233 		 * know what the numbers do, I'm just the messenger.
3234 		 */
3235 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3236 		    == 0x6041) {
3237 			while(bhack[i].reg) {
3238 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3239 				    bhack[i].reg, bhack[i].val);
3240 				i++;
3241 			}
3242 		}
3243 	}
3244 
3245 	/* Set station address */
3246 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3247 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3248 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3249 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3250 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3251 
3252 	if (ifp->if_flags & IFF_BROADCAST) {
3253 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3254 	} else {
3255 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3256 	}
3257 
3258 	/* We don't need the FCS appended to the packet. */
3259 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3260 
3261 	/* We want short frames padded to 60 bytes. */
3262 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3263 
3264 	/*
3265 	 * Enable the reception of all error frames. This is is
3266 	 * a necessary evil due to the design of the XMAC. The
3267 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3268 	 * frames can be up to 9000 bytes in length. When bad
3269 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3270 	 * in 'store and forward' mode. For this to work, the
3271 	 * entire frame has to fit into the FIFO, but that means
3272 	 * that jumbo frames larger than 8192 bytes will be
3273 	 * truncated. Disabling all bad frame filtering causes
3274 	 * the RX FIFO to operate in streaming mode, in which
3275 	 * case the XMAC will start transferring frames out of the
3276 	 * RX FIFO as soon as the FIFO threshold is reached.
3277 	 */
3278 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3279 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3280 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3281 		    XM_MODE_RX_INRANGELEN);
3282 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3283 	} else
3284 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3285 
3286 	/*
3287 	 * Bump up the transmit threshold. This helps hold off transmit
3288 	 * underruns when we're blasting traffic from both ports at once.
3289 	 */
3290 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3291 
3292 	/* Set Rx filter */
3293 	sk_rxfilter_genesis(sc_if);
3294 
3295 	/* Clear and enable interrupts */
3296 	SK_XM_READ_2(sc_if, XM_ISR);
3297 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3298 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3299 	else
3300 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3301 
3302 	/* Configure MAC arbiter */
3303 	switch(sc_if->sk_xmac_rev) {
3304 	case XM_XMAC_REV_B2:
3305 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3306 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3307 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3308 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3309 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3310 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3311 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3312 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3313 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3314 		break;
3315 	case XM_XMAC_REV_C1:
3316 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3317 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3318 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3319 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3320 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3321 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3322 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3323 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3324 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3325 		break;
3326 	default:
3327 		break;
3328 	}
3329 	sk_win_write_2(sc, SK_MACARB_CTL,
3330 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3331 
3332 	sc_if->sk_link = 1;
3333 
3334 	return;
3335 }
3336 
3337 static void
3338 sk_init_yukon(sc_if)
3339 	struct sk_if_softc	*sc_if;
3340 {
3341 	u_int32_t		phy, v;
3342 	u_int16_t		reg;
3343 	struct sk_softc		*sc;
3344 	struct ifnet		*ifp;
3345 	u_int8_t		*eaddr;
3346 	int			i;
3347 
3348 	SK_IF_LOCK_ASSERT(sc_if);
3349 
3350 	sc = sc_if->sk_softc;
3351 	ifp = sc_if->sk_ifp;
3352 
3353 	if (sc->sk_type == SK_YUKON_LITE &&
3354 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3355 		/*
3356 		 * Workaround code for COMA mode, set PHY reset.
3357 		 * Otherwise it will not correctly take chip out of
3358 		 * powerdown (coma)
3359 		 */
3360 		v = sk_win_read_4(sc, SK_GPIO);
3361 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3362 		sk_win_write_4(sc, SK_GPIO, v);
3363 	}
3364 
3365 	/* GMAC and GPHY Reset */
3366 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3367 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3368 	DELAY(1000);
3369 
3370 	if (sc->sk_type == SK_YUKON_LITE &&
3371 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3372 		/*
3373 		 * Workaround code for COMA mode, clear PHY reset
3374 		 */
3375 		v = sk_win_read_4(sc, SK_GPIO);
3376 		v |= SK_GPIO_DIR9;
3377 		v &= ~SK_GPIO_DAT9;
3378 		sk_win_write_4(sc, SK_GPIO, v);
3379 	}
3380 
3381 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3382 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3383 
3384 	if (sc->sk_coppertype)
3385 		phy |= SK_GPHY_COPPER;
3386 	else
3387 		phy |= SK_GPHY_FIBER;
3388 
3389 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3390 	DELAY(1000);
3391 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3392 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3393 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3394 
3395 	/* unused read of the interrupt source register */
3396 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3397 
3398 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3399 
3400 	/* MIB Counter Clear Mode set */
3401 	reg |= YU_PAR_MIB_CLR;
3402 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3403 
3404 	/* MIB Counter Clear Mode clear */
3405 	reg &= ~YU_PAR_MIB_CLR;
3406 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3407 
3408 	/* receive control reg */
3409 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3410 
3411 	/* transmit parameter register */
3412 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3413 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3414 
3415 	/* serial mode register */
3416 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3417 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3418 		reg |= YU_SMR_MFL_JUMBO;
3419 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3420 
3421 	/* Setup Yukon's station address */
3422 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3423 	for (i = 0; i < 3; i++)
3424 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3425 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3426 	/* Set GMAC source address of flow control. */
3427 	for (i = 0; i < 3; i++)
3428 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3429 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3430 	/* Set GMAC virtual address. */
3431 	for (i = 0; i < 3; i++)
3432 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3433 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3434 
3435 	/* Set Rx filter */
3436 	sk_rxfilter_yukon(sc_if);
3437 
3438 	/* enable interrupt mask for counter overflows */
3439 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3440 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3441 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3442 
3443 	/* Configure RX MAC FIFO Flush Mask */
3444 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3445 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3446 	    YU_RXSTAT_JABBER;
3447 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3448 
3449 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3450 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3451 		v = SK_TFCTL_OPERATION_ON;
3452 	else
3453 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3454 	/* Configure RX MAC FIFO */
3455 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3456 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3457 
3458 	/* Increase flush threshould to 64 bytes */
3459 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3460 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3461 
3462 	/* Configure TX MAC FIFO */
3463 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3464 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3465 }
3466 
3467 /*
3468  * Note that to properly initialize any part of the GEnesis chip,
3469  * you first have to take it out of reset mode.
3470  */
3471 static void
3472 sk_init(xsc)
3473 	void			*xsc;
3474 {
3475 	struct sk_if_softc	*sc_if = xsc;
3476 
3477 	SK_IF_LOCK(sc_if);
3478 	sk_init_locked(sc_if);
3479 	SK_IF_UNLOCK(sc_if);
3480 
3481 	return;
3482 }
3483 
3484 static void
3485 sk_init_locked(sc_if)
3486 	struct sk_if_softc	*sc_if;
3487 {
3488 	struct sk_softc		*sc;
3489 	struct ifnet		*ifp;
3490 	struct mii_data		*mii;
3491 	u_int16_t		reg;
3492 	u_int32_t		imr;
3493 	int			error;
3494 
3495 	SK_IF_LOCK_ASSERT(sc_if);
3496 
3497 	ifp = sc_if->sk_ifp;
3498 	sc = sc_if->sk_softc;
3499 	mii = device_get_softc(sc_if->sk_miibus);
3500 
3501 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3502 		return;
3503 
3504 	/* Cancel pending I/O and free all RX/TX buffers. */
3505 	sk_stop(sc_if);
3506 
3507 	if (sc->sk_type == SK_GENESIS) {
3508 		/* Configure LINK_SYNC LED */
3509 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3510 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3511 			SK_LINKLED_LINKSYNC_ON);
3512 
3513 		/* Configure RX LED */
3514 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3515 			SK_RXLEDCTL_COUNTER_START);
3516 
3517 		/* Configure TX LED */
3518 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3519 			SK_TXLEDCTL_COUNTER_START);
3520 	}
3521 
3522 	/*
3523 	 * Configure descriptor poll timer
3524 	 *
3525 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3526 	 * transmit command due to CPU/cache related interim storage problems
3527 	 * under certain conditions. The document recommends a polling
3528 	 * mechanism to send a Start transmit command to initiate transfer
3529 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3530 	 * enables descriptor poll timer to initiate descriptor processing
3531 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3532 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3533 	 * command instead of waiting for next descriptor polling time.
3534 	 * The same rule may apply to Rx side too but it seems that is not
3535 	 * needed at the moment.
3536 	 * Since sk(4) uses descriptor polling as a last resort there is no
3537 	 * need to set smaller polling time than maximum allowable one.
3538 	 */
3539 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3540 
3541 	/* Configure I2C registers */
3542 
3543 	/* Configure XMAC(s) */
3544 	switch (sc->sk_type) {
3545 	case SK_GENESIS:
3546 		sk_init_xmac(sc_if);
3547 		break;
3548 	case SK_YUKON:
3549 	case SK_YUKON_LITE:
3550 	case SK_YUKON_LP:
3551 		sk_init_yukon(sc_if);
3552 		break;
3553 	}
3554 	mii_mediachg(mii);
3555 
3556 	if (sc->sk_type == SK_GENESIS) {
3557 		/* Configure MAC FIFOs */
3558 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3559 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3560 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3561 
3562 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3563 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3564 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3565 	}
3566 
3567 	/* Configure transmit arbiter(s) */
3568 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3569 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3570 
3571 	/* Configure RAMbuffers */
3572 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3573 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3574 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3575 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3576 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3577 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3578 
3579 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3580 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3581 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3582 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3583 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3584 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3585 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3586 
3587 	/* Configure BMUs */
3588 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3589 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3590 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3591 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3592 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3593 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3594 	} else {
3595 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3596 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3597 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3598 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3599 	}
3600 
3601 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3602 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3603 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3604 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3605 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3606 
3607 	/* Init descriptors */
3608 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3609 		error = sk_init_jumbo_rx_ring(sc_if);
3610 	else
3611 		error = sk_init_rx_ring(sc_if);
3612 	if (error != 0) {
3613 		device_printf(sc_if->sk_if_dev,
3614 		    "initialization failed: no memory for rx buffers\n");
3615 		sk_stop(sc_if);
3616 		return;
3617 	}
3618 	sk_init_tx_ring(sc_if);
3619 
3620 	/* Set interrupt moderation if changed via sysctl. */
3621 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3622 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3623 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3624 		    sc->sk_int_ticks));
3625 		if (bootverbose)
3626 			device_printf(sc_if->sk_if_dev,
3627 			    "interrupt moderation is %d us.\n",
3628 			    sc->sk_int_mod);
3629 	}
3630 
3631 	/* Configure interrupt handling */
3632 	CSR_READ_4(sc, SK_ISSR);
3633 	if (sc_if->sk_port == SK_PORT_A)
3634 		sc->sk_intrmask |= SK_INTRS1;
3635 	else
3636 		sc->sk_intrmask |= SK_INTRS2;
3637 
3638 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3639 
3640 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3641 
3642 	/* Start BMUs. */
3643 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3644 
3645 	switch(sc->sk_type) {
3646 	case SK_GENESIS:
3647 		/* Enable XMACs TX and RX state machines */
3648 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3649 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3650 		break;
3651 	case SK_YUKON:
3652 	case SK_YUKON_LITE:
3653 	case SK_YUKON_LP:
3654 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3655 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3656 #if 0
3657 		/* XXX disable 100Mbps and full duplex mode? */
3658 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3659 #endif
3660 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3661 	}
3662 
3663 	/* Activate descriptor polling timer */
3664 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3665 	/* start transfer of Tx descriptors */
3666 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3667 
3668 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3669 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3670 
3671 	switch (sc->sk_type) {
3672 	case SK_YUKON:
3673 	case SK_YUKON_LITE:
3674 	case SK_YUKON_LP:
3675 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3676 		break;
3677 	}
3678 
3679 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3680 
3681 	return;
3682 }
3683 
3684 static void
3685 sk_stop(sc_if)
3686 	struct sk_if_softc	*sc_if;
3687 {
3688 	int			i;
3689 	struct sk_softc		*sc;
3690 	struct sk_txdesc	*txd;
3691 	struct sk_rxdesc	*rxd;
3692 	struct sk_rxdesc	*jrxd;
3693 	struct ifnet		*ifp;
3694 	u_int32_t		val;
3695 
3696 	SK_IF_LOCK_ASSERT(sc_if);
3697 	sc = sc_if->sk_softc;
3698 	ifp = sc_if->sk_ifp;
3699 
3700 	callout_stop(&sc_if->sk_tick_ch);
3701 	callout_stop(&sc_if->sk_watchdog_ch);
3702 
3703 	/* stop Tx descriptor polling timer */
3704 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3705 	/* stop transfer of Tx descriptors */
3706 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3707 	for (i = 0; i < SK_TIMEOUT; i++) {
3708 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3709 		if ((val & SK_TXBMU_TX_STOP) == 0)
3710 			break;
3711 		DELAY(1);
3712 	}
3713 	if (i == SK_TIMEOUT)
3714 		device_printf(sc_if->sk_if_dev,
3715 		    "can not stop transfer of Tx descriptor\n");
3716 	/* stop transfer of Rx descriptors */
3717 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3718 	for (i = 0; i < SK_TIMEOUT; i++) {
3719 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3720 		if ((val & SK_RXBMU_RX_STOP) == 0)
3721 			break;
3722 		DELAY(1);
3723 	}
3724 	if (i == SK_TIMEOUT)
3725 		device_printf(sc_if->sk_if_dev,
3726 		    "can not stop transfer of Rx descriptor\n");
3727 
3728 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3729 		/* Put PHY back into reset. */
3730 		val = sk_win_read_4(sc, SK_GPIO);
3731 		if (sc_if->sk_port == SK_PORT_A) {
3732 			val |= SK_GPIO_DIR0;
3733 			val &= ~SK_GPIO_DAT0;
3734 		} else {
3735 			val |= SK_GPIO_DIR2;
3736 			val &= ~SK_GPIO_DAT2;
3737 		}
3738 		sk_win_write_4(sc, SK_GPIO, val);
3739 	}
3740 
3741 	/* Turn off various components of this interface. */
3742 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3743 	switch (sc->sk_type) {
3744 	case SK_GENESIS:
3745 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3747 		break;
3748 	case SK_YUKON:
3749 	case SK_YUKON_LITE:
3750 	case SK_YUKON_LP:
3751 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3752 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3753 		break;
3754 	}
3755 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3756 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3757 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3758 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3759 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3760 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3761 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3762 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3763 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3764 
3765 	/* Disable interrupts */
3766 	if (sc_if->sk_port == SK_PORT_A)
3767 		sc->sk_intrmask &= ~SK_INTRS1;
3768 	else
3769 		sc->sk_intrmask &= ~SK_INTRS2;
3770 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3771 
3772 	SK_XM_READ_2(sc_if, XM_ISR);
3773 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3774 
3775 	/* Free RX and TX mbufs still in the queues. */
3776 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3777 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3778 		if (rxd->rx_m != NULL) {
3779 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3780 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3781 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3782 			    rxd->rx_dmamap);
3783 			m_freem(rxd->rx_m);
3784 			rxd->rx_m = NULL;
3785 		}
3786 	}
3787 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3788 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3789 		if (jrxd->rx_m != NULL) {
3790 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3791 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3792 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3793 			    jrxd->rx_dmamap);
3794 			m_freem(jrxd->rx_m);
3795 			jrxd->rx_m = NULL;
3796 		}
3797 	}
3798 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3799 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3800 		if (txd->tx_m != NULL) {
3801 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3802 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3803 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3804 			    txd->tx_dmamap);
3805 			m_freem(txd->tx_m);
3806 			txd->tx_m = NULL;
3807 		}
3808 	}
3809 
3810 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3811 
3812 	return;
3813 }
3814 
3815 static int
3816 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3817 {
3818 	int error, value;
3819 
3820 	if (!arg1)
3821 		return (EINVAL);
3822 	value = *(int *)arg1;
3823 	error = sysctl_handle_int(oidp, &value, 0, req);
3824 	if (error || !req->newptr)
3825 		return (error);
3826 	if (value < low || value > high)
3827 		return (EINVAL);
3828 	*(int *)arg1 = value;
3829 	return (0);
3830 }
3831 
3832 static int
3833 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3834 {
3835 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3836 }
3837