1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /*- 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/bus.h> 91 #include <sys/endian.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/module.h> 96 #include <sys/socket.h> 97 #include <sys/sockio.h> 98 #include <sys/queue.h> 99 #include <sys/sysctl.h> 100 101 #include <net/bpf.h> 102 #include <net/ethernet.h> 103 #include <net/if.h> 104 #include <net/if_var.h> 105 #include <net/if_arp.h> 106 #include <net/if_dl.h> 107 #include <net/if_media.h> 108 #include <net/if_types.h> 109 #include <net/if_vlan_var.h> 110 111 #include <netinet/in.h> 112 #include <netinet/in_systm.h> 113 #include <netinet/ip.h> 114 115 #include <machine/bus.h> 116 #include <machine/in_cksum.h> 117 #include <machine/resource.h> 118 #include <sys/rman.h> 119 120 #include <dev/mii/mii.h> 121 #include <dev/mii/miivar.h> 122 #include <dev/mii/brgphyreg.h> 123 124 #include <dev/pci/pcireg.h> 125 #include <dev/pci/pcivar.h> 126 127 #if 0 128 #define SK_USEIOSPACE 129 #endif 130 131 #include <dev/sk/if_skreg.h> 132 #include <dev/sk/xmaciireg.h> 133 #include <dev/sk/yukonreg.h> 134 135 MODULE_DEPEND(sk, pci, 1, 1, 1); 136 MODULE_DEPEND(sk, ether, 1, 1, 1); 137 MODULE_DEPEND(sk, miibus, 1, 1, 1); 138 139 /* "device miibus" required. See GENERIC if you get errors here. */ 140 #include "miibus_if.h" 141 142 static const struct sk_type sk_devs[] = { 143 { 144 VENDORID_SK, 145 DEVICEID_SK_V1, 146 "SysKonnect Gigabit Ethernet (V1.0)" 147 }, 148 { 149 VENDORID_SK, 150 DEVICEID_SK_V2, 151 "SysKonnect Gigabit Ethernet (V2.0)" 152 }, 153 { 154 VENDORID_MARVELL, 155 DEVICEID_SK_V2, 156 "Marvell Gigabit Ethernet" 157 }, 158 { 159 VENDORID_MARVELL, 160 DEVICEID_BELKIN_5005, 161 "Belkin F5D5005 Gigabit Ethernet" 162 }, 163 { 164 VENDORID_3COM, 165 DEVICEID_3COM_3C940, 166 "3Com 3C940 Gigabit Ethernet" 167 }, 168 { 169 VENDORID_LINKSYS, 170 DEVICEID_LINKSYS_EG1032, 171 "Linksys EG1032 Gigabit Ethernet" 172 }, 173 { 174 VENDORID_DLINK, 175 DEVICEID_DLINK_DGE530T_A1, 176 "D-Link DGE-530T Gigabit Ethernet" 177 }, 178 { 179 VENDORID_DLINK, 180 DEVICEID_DLINK_DGE530T_B1, 181 "D-Link DGE-530T Gigabit Ethernet" 182 }, 183 { 0, 0, NULL } 184 }; 185 186 static int skc_probe(device_t); 187 static int skc_attach(device_t); 188 static int skc_detach(device_t); 189 static int skc_shutdown(device_t); 190 static int skc_suspend(device_t); 191 static int skc_resume(device_t); 192 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t); 193 static int sk_detach(device_t); 194 static int sk_probe(device_t); 195 static int sk_attach(device_t); 196 static void sk_tick(void *); 197 static void sk_yukon_tick(void *); 198 static void sk_intr(void *); 199 static void sk_intr_xmac(struct sk_if_softc *); 200 static void sk_intr_bcom(struct sk_if_softc *); 201 static void sk_intr_yukon(struct sk_if_softc *); 202 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); 203 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); 204 static void sk_rxeof(struct sk_if_softc *); 205 static void sk_jumbo_rxeof(struct sk_if_softc *); 206 static void sk_txeof(struct sk_if_softc *); 207 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); 208 static int sk_encap(struct sk_if_softc *, struct mbuf **); 209 static void sk_start(struct ifnet *); 210 static void sk_start_locked(struct ifnet *); 211 static int sk_ioctl(struct ifnet *, u_long, caddr_t); 212 static void sk_init(void *); 213 static void sk_init_locked(struct sk_if_softc *); 214 static void sk_init_xmac(struct sk_if_softc *); 215 static void sk_init_yukon(struct sk_if_softc *); 216 static void sk_stop(struct sk_if_softc *); 217 static void sk_watchdog(void *); 218 static int sk_ifmedia_upd(struct ifnet *); 219 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); 220 static void sk_reset(struct sk_softc *); 221 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); 222 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); 223 static int sk_newbuf(struct sk_if_softc *, int); 224 static int sk_jumbo_newbuf(struct sk_if_softc *, int); 225 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 226 static int sk_dma_alloc(struct sk_if_softc *); 227 static int sk_dma_jumbo_alloc(struct sk_if_softc *); 228 static void sk_dma_free(struct sk_if_softc *); 229 static void sk_dma_jumbo_free(struct sk_if_softc *); 230 static int sk_init_rx_ring(struct sk_if_softc *); 231 static int sk_init_jumbo_rx_ring(struct sk_if_softc *); 232 static void sk_init_tx_ring(struct sk_if_softc *); 233 static u_int32_t sk_win_read_4(struct sk_softc *, int); 234 static u_int16_t sk_win_read_2(struct sk_softc *, int); 235 static u_int8_t sk_win_read_1(struct sk_softc *, int); 236 static void sk_win_write_4(struct sk_softc *, int, u_int32_t); 237 static void sk_win_write_2(struct sk_softc *, int, u_int32_t); 238 static void sk_win_write_1(struct sk_softc *, int, u_int32_t); 239 240 static int sk_miibus_readreg(device_t, int, int); 241 static int sk_miibus_writereg(device_t, int, int, int); 242 static void sk_miibus_statchg(device_t); 243 244 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); 245 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, 246 int); 247 static void sk_xmac_miibus_statchg(struct sk_if_softc *); 248 249 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); 250 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, 251 int); 252 static void sk_marv_miibus_statchg(struct sk_if_softc *); 253 254 static uint32_t sk_xmchash(const uint8_t *); 255 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); 256 static void sk_rxfilter(struct sk_if_softc *); 257 static void sk_rxfilter_genesis(struct sk_if_softc *); 258 static void sk_rxfilter_yukon(struct sk_if_softc *); 259 260 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); 261 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); 262 263 /* Tunables. */ 264 static int jumbo_disable = 0; 265 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); 266 267 /* 268 * It seems that SK-NET GENESIS supports very simple checksum offload 269 * capability for Tx and I believe it can generate 0 checksum value for 270 * UDP packets in Tx as the hardware can't differenciate UDP packets from 271 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it 272 * means sender didn't perforam checksum computation. For the safety I 273 * disabled UDP checksum offload capability at the moment. Alternatively 274 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum 275 * offload routine. 276 */ 277 #define SK_CSUM_FEATURES (CSUM_TCP) 278 279 /* 280 * Note that we have newbus methods for both the GEnesis controller 281 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 282 * the miibus code is a child of the XMACs. We need to do it this way 283 * so that the miibus drivers can access the PHY registers on the 284 * right PHY. It's not quite what I had in mind, but it's the only 285 * design that achieves the desired effect. 286 */ 287 static device_method_t skc_methods[] = { 288 /* Device interface */ 289 DEVMETHOD(device_probe, skc_probe), 290 DEVMETHOD(device_attach, skc_attach), 291 DEVMETHOD(device_detach, skc_detach), 292 DEVMETHOD(device_suspend, skc_suspend), 293 DEVMETHOD(device_resume, skc_resume), 294 DEVMETHOD(device_shutdown, skc_shutdown), 295 296 DEVMETHOD(bus_get_dma_tag, skc_get_dma_tag), 297 298 DEVMETHOD_END 299 }; 300 301 static driver_t skc_driver = { 302 "skc", 303 skc_methods, 304 sizeof(struct sk_softc) 305 }; 306 307 static devclass_t skc_devclass; 308 309 static device_method_t sk_methods[] = { 310 /* Device interface */ 311 DEVMETHOD(device_probe, sk_probe), 312 DEVMETHOD(device_attach, sk_attach), 313 DEVMETHOD(device_detach, sk_detach), 314 DEVMETHOD(device_shutdown, bus_generic_shutdown), 315 316 /* MII interface */ 317 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 318 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 319 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 320 321 DEVMETHOD_END 322 }; 323 324 static driver_t sk_driver = { 325 "sk", 326 sk_methods, 327 sizeof(struct sk_if_softc) 328 }; 329 330 static devclass_t sk_devclass; 331 332 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL); 333 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL); 334 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL); 335 336 static struct resource_spec sk_res_spec_io[] = { 337 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 338 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 339 { -1, 0, 0 } 340 }; 341 342 static struct resource_spec sk_res_spec_mem[] = { 343 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 344 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 345 { -1, 0, 0 } 346 }; 347 348 #define SK_SETBIT(sc, reg, x) \ 349 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 350 351 #define SK_CLRBIT(sc, reg, x) \ 352 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 353 354 #define SK_WIN_SETBIT_4(sc, reg, x) \ 355 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 356 357 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 358 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 359 360 #define SK_WIN_SETBIT_2(sc, reg, x) \ 361 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 362 363 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 364 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 365 366 static u_int32_t 367 sk_win_read_4(sc, reg) 368 struct sk_softc *sc; 369 int reg; 370 { 371 #ifdef SK_USEIOSPACE 372 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 373 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 374 #else 375 return(CSR_READ_4(sc, reg)); 376 #endif 377 } 378 379 static u_int16_t 380 sk_win_read_2(sc, reg) 381 struct sk_softc *sc; 382 int reg; 383 { 384 #ifdef SK_USEIOSPACE 385 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 386 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 387 #else 388 return(CSR_READ_2(sc, reg)); 389 #endif 390 } 391 392 static u_int8_t 393 sk_win_read_1(sc, reg) 394 struct sk_softc *sc; 395 int reg; 396 { 397 #ifdef SK_USEIOSPACE 398 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 399 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 400 #else 401 return(CSR_READ_1(sc, reg)); 402 #endif 403 } 404 405 static void 406 sk_win_write_4(sc, reg, val) 407 struct sk_softc *sc; 408 int reg; 409 u_int32_t val; 410 { 411 #ifdef SK_USEIOSPACE 412 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 413 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 414 #else 415 CSR_WRITE_4(sc, reg, val); 416 #endif 417 return; 418 } 419 420 static void 421 sk_win_write_2(sc, reg, val) 422 struct sk_softc *sc; 423 int reg; 424 u_int32_t val; 425 { 426 #ifdef SK_USEIOSPACE 427 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 428 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 429 #else 430 CSR_WRITE_2(sc, reg, val); 431 #endif 432 return; 433 } 434 435 static void 436 sk_win_write_1(sc, reg, val) 437 struct sk_softc *sc; 438 int reg; 439 u_int32_t val; 440 { 441 #ifdef SK_USEIOSPACE 442 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 443 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 444 #else 445 CSR_WRITE_1(sc, reg, val); 446 #endif 447 return; 448 } 449 450 static int 451 sk_miibus_readreg(dev, phy, reg) 452 device_t dev; 453 int phy, reg; 454 { 455 struct sk_if_softc *sc_if; 456 int v; 457 458 sc_if = device_get_softc(dev); 459 460 SK_IF_MII_LOCK(sc_if); 461 switch(sc_if->sk_softc->sk_type) { 462 case SK_GENESIS: 463 v = sk_xmac_miibus_readreg(sc_if, phy, reg); 464 break; 465 case SK_YUKON: 466 case SK_YUKON_LITE: 467 case SK_YUKON_LP: 468 v = sk_marv_miibus_readreg(sc_if, phy, reg); 469 break; 470 default: 471 v = 0; 472 break; 473 } 474 SK_IF_MII_UNLOCK(sc_if); 475 476 return (v); 477 } 478 479 static int 480 sk_miibus_writereg(dev, phy, reg, val) 481 device_t dev; 482 int phy, reg, val; 483 { 484 struct sk_if_softc *sc_if; 485 int v; 486 487 sc_if = device_get_softc(dev); 488 489 SK_IF_MII_LOCK(sc_if); 490 switch(sc_if->sk_softc->sk_type) { 491 case SK_GENESIS: 492 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); 493 break; 494 case SK_YUKON: 495 case SK_YUKON_LITE: 496 case SK_YUKON_LP: 497 v = sk_marv_miibus_writereg(sc_if, phy, reg, val); 498 break; 499 default: 500 v = 0; 501 break; 502 } 503 SK_IF_MII_UNLOCK(sc_if); 504 505 return (v); 506 } 507 508 static void 509 sk_miibus_statchg(dev) 510 device_t dev; 511 { 512 struct sk_if_softc *sc_if; 513 514 sc_if = device_get_softc(dev); 515 516 SK_IF_MII_LOCK(sc_if); 517 switch(sc_if->sk_softc->sk_type) { 518 case SK_GENESIS: 519 sk_xmac_miibus_statchg(sc_if); 520 break; 521 case SK_YUKON: 522 case SK_YUKON_LITE: 523 case SK_YUKON_LP: 524 sk_marv_miibus_statchg(sc_if); 525 break; 526 } 527 SK_IF_MII_UNLOCK(sc_if); 528 529 return; 530 } 531 532 static int 533 sk_xmac_miibus_readreg(sc_if, phy, reg) 534 struct sk_if_softc *sc_if; 535 int phy, reg; 536 { 537 int i; 538 539 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 540 SK_XM_READ_2(sc_if, XM_PHY_DATA); 541 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 542 for (i = 0; i < SK_TIMEOUT; i++) { 543 DELAY(1); 544 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 545 XM_MMUCMD_PHYDATARDY) 546 break; 547 } 548 549 if (i == SK_TIMEOUT) { 550 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 551 return(0); 552 } 553 } 554 DELAY(1); 555 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 556 557 return(i); 558 } 559 560 static int 561 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 562 struct sk_if_softc *sc_if; 563 int phy, reg, val; 564 { 565 int i; 566 567 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 568 for (i = 0; i < SK_TIMEOUT; i++) { 569 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 570 break; 571 } 572 573 if (i == SK_TIMEOUT) { 574 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 575 return (ETIMEDOUT); 576 } 577 578 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 579 for (i = 0; i < SK_TIMEOUT; i++) { 580 DELAY(1); 581 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 582 break; 583 } 584 if (i == SK_TIMEOUT) 585 if_printf(sc_if->sk_ifp, "phy write timed out\n"); 586 587 return(0); 588 } 589 590 static void 591 sk_xmac_miibus_statchg(sc_if) 592 struct sk_if_softc *sc_if; 593 { 594 struct mii_data *mii; 595 596 mii = device_get_softc(sc_if->sk_miibus); 597 598 /* 599 * If this is a GMII PHY, manually set the XMAC's 600 * duplex mode accordingly. 601 */ 602 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 603 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 604 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 605 } else { 606 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 607 } 608 } 609 } 610 611 static int 612 sk_marv_miibus_readreg(sc_if, phy, reg) 613 struct sk_if_softc *sc_if; 614 int phy, reg; 615 { 616 u_int16_t val; 617 int i; 618 619 if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 620 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) { 621 return(0); 622 } 623 624 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 625 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 626 627 for (i = 0; i < SK_TIMEOUT; i++) { 628 DELAY(1); 629 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 630 if (val & YU_SMICR_READ_VALID) 631 break; 632 } 633 634 if (i == SK_TIMEOUT) { 635 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 636 return(0); 637 } 638 639 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 640 641 return(val); 642 } 643 644 static int 645 sk_marv_miibus_writereg(sc_if, phy, reg, val) 646 struct sk_if_softc *sc_if; 647 int phy, reg, val; 648 { 649 int i; 650 651 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 652 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 653 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 654 655 for (i = 0; i < SK_TIMEOUT; i++) { 656 DELAY(1); 657 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) 658 break; 659 } 660 if (i == SK_TIMEOUT) 661 if_printf(sc_if->sk_ifp, "phy write timeout\n"); 662 663 return(0); 664 } 665 666 static void 667 sk_marv_miibus_statchg(sc_if) 668 struct sk_if_softc *sc_if; 669 { 670 return; 671 } 672 673 #define HASH_BITS 6 674 675 static u_int32_t 676 sk_xmchash(addr) 677 const uint8_t *addr; 678 { 679 uint32_t crc; 680 681 /* Compute CRC for the address value. */ 682 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 683 684 return (~crc & ((1 << HASH_BITS) - 1)); 685 } 686 687 static void 688 sk_setfilt(sc_if, addr, slot) 689 struct sk_if_softc *sc_if; 690 u_int16_t *addr; 691 int slot; 692 { 693 int base; 694 695 base = XM_RXFILT_ENTRY(slot); 696 697 SK_XM_WRITE_2(sc_if, base, addr[0]); 698 SK_XM_WRITE_2(sc_if, base + 2, addr[1]); 699 SK_XM_WRITE_2(sc_if, base + 4, addr[2]); 700 701 return; 702 } 703 704 static void 705 sk_rxfilter(sc_if) 706 struct sk_if_softc *sc_if; 707 { 708 struct sk_softc *sc; 709 710 SK_IF_LOCK_ASSERT(sc_if); 711 712 sc = sc_if->sk_softc; 713 if (sc->sk_type == SK_GENESIS) 714 sk_rxfilter_genesis(sc_if); 715 else 716 sk_rxfilter_yukon(sc_if); 717 } 718 719 static void 720 sk_rxfilter_genesis(sc_if) 721 struct sk_if_softc *sc_if; 722 { 723 struct ifnet *ifp = sc_if->sk_ifp; 724 u_int32_t hashes[2] = { 0, 0 }, mode; 725 int h = 0, i; 726 struct ifmultiaddr *ifma; 727 u_int16_t dummy[] = { 0, 0, 0 }; 728 u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; 729 730 SK_IF_LOCK_ASSERT(sc_if); 731 732 mode = SK_XM_READ_4(sc_if, XM_MODE); 733 mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH | 734 XM_MODE_RX_USE_PERFECT); 735 /* First, zot all the existing perfect filters. */ 736 for (i = 1; i < XM_RXFILT_MAX; i++) 737 sk_setfilt(sc_if, dummy, i); 738 739 /* Now program new ones. */ 740 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 741 if (ifp->if_flags & IFF_ALLMULTI) 742 mode |= XM_MODE_RX_USE_HASH; 743 if (ifp->if_flags & IFF_PROMISC) 744 mode |= XM_MODE_RX_PROMISC; 745 hashes[0] = 0xFFFFFFFF; 746 hashes[1] = 0xFFFFFFFF; 747 } else { 748 i = 1; 749 if_maddr_rlock(ifp); 750 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, 751 ifma_link) { 752 if (ifma->ifma_addr->sa_family != AF_LINK) 753 continue; 754 /* 755 * Program the first XM_RXFILT_MAX multicast groups 756 * into the perfect filter. 757 */ 758 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 759 maddr, ETHER_ADDR_LEN); 760 if (i < XM_RXFILT_MAX) { 761 sk_setfilt(sc_if, maddr, i); 762 mode |= XM_MODE_RX_USE_PERFECT; 763 i++; 764 continue; 765 } 766 h = sk_xmchash((const uint8_t *)maddr); 767 if (h < 32) 768 hashes[0] |= (1 << h); 769 else 770 hashes[1] |= (1 << (h - 32)); 771 mode |= XM_MODE_RX_USE_HASH; 772 } 773 if_maddr_runlock(ifp); 774 } 775 776 SK_XM_WRITE_4(sc_if, XM_MODE, mode); 777 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 778 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 779 } 780 781 static void 782 sk_rxfilter_yukon(sc_if) 783 struct sk_if_softc *sc_if; 784 { 785 struct ifnet *ifp; 786 u_int32_t crc, hashes[2] = { 0, 0 }, mode; 787 struct ifmultiaddr *ifma; 788 789 SK_IF_LOCK_ASSERT(sc_if); 790 791 ifp = sc_if->sk_ifp; 792 mode = SK_YU_READ_2(sc_if, YUKON_RCR); 793 if (ifp->if_flags & IFF_PROMISC) 794 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 795 else if (ifp->if_flags & IFF_ALLMULTI) { 796 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 797 hashes[0] = 0xFFFFFFFF; 798 hashes[1] = 0xFFFFFFFF; 799 } else { 800 mode |= YU_RCR_UFLEN; 801 if_maddr_rlock(ifp); 802 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 803 if (ifma->ifma_addr->sa_family != AF_LINK) 804 continue; 805 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 806 ifma->ifma_addr), ETHER_ADDR_LEN); 807 /* Just want the 6 least significant bits. */ 808 crc &= 0x3f; 809 /* Set the corresponding bit in the hash table. */ 810 hashes[crc >> 5] |= 1 << (crc & 0x1f); 811 } 812 if_maddr_runlock(ifp); 813 if (hashes[0] != 0 || hashes[1] != 0) 814 mode |= YU_RCR_MUFLEN; 815 } 816 817 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 818 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 819 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 820 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 821 SK_YU_WRITE_2(sc_if, YUKON_RCR, mode); 822 } 823 824 static int 825 sk_init_rx_ring(sc_if) 826 struct sk_if_softc *sc_if; 827 { 828 struct sk_ring_data *rd; 829 bus_addr_t addr; 830 u_int32_t csum_start; 831 int i; 832 833 sc_if->sk_cdata.sk_rx_cons = 0; 834 835 csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | 836 ETHER_HDR_LEN; 837 rd = &sc_if->sk_rdata; 838 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 839 for (i = 0; i < SK_RX_RING_CNT; i++) { 840 if (sk_newbuf(sc_if, i) != 0) 841 return (ENOBUFS); 842 if (i == (SK_RX_RING_CNT - 1)) 843 addr = SK_RX_RING_ADDR(sc_if, 0); 844 else 845 addr = SK_RX_RING_ADDR(sc_if, i + 1); 846 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 847 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); 848 } 849 850 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 851 sc_if->sk_cdata.sk_rx_ring_map, 852 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 853 854 return(0); 855 } 856 857 static int 858 sk_init_jumbo_rx_ring(sc_if) 859 struct sk_if_softc *sc_if; 860 { 861 struct sk_ring_data *rd; 862 bus_addr_t addr; 863 u_int32_t csum_start; 864 int i; 865 866 sc_if->sk_cdata.sk_jumbo_rx_cons = 0; 867 868 csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | 869 ETHER_HDR_LEN; 870 rd = &sc_if->sk_rdata; 871 bzero(rd->sk_jumbo_rx_ring, 872 sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); 873 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 874 if (sk_jumbo_newbuf(sc_if, i) != 0) 875 return (ENOBUFS); 876 if (i == (SK_JUMBO_RX_RING_CNT - 1)) 877 addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); 878 else 879 addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); 880 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 881 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); 882 } 883 884 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 885 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 886 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 887 888 return (0); 889 } 890 891 static void 892 sk_init_tx_ring(sc_if) 893 struct sk_if_softc *sc_if; 894 { 895 struct sk_ring_data *rd; 896 struct sk_txdesc *txd; 897 bus_addr_t addr; 898 int i; 899 900 STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); 901 STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); 902 903 sc_if->sk_cdata.sk_tx_prod = 0; 904 sc_if->sk_cdata.sk_tx_cons = 0; 905 sc_if->sk_cdata.sk_tx_cnt = 0; 906 907 rd = &sc_if->sk_rdata; 908 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 909 for (i = 0; i < SK_TX_RING_CNT; i++) { 910 if (i == (SK_TX_RING_CNT - 1)) 911 addr = SK_TX_RING_ADDR(sc_if, 0); 912 else 913 addr = SK_TX_RING_ADDR(sc_if, i + 1); 914 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 915 txd = &sc_if->sk_cdata.sk_txdesc[i]; 916 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 917 } 918 919 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 920 sc_if->sk_cdata.sk_tx_ring_map, 921 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 922 } 923 924 static __inline void 925 sk_discard_rxbuf(sc_if, idx) 926 struct sk_if_softc *sc_if; 927 int idx; 928 { 929 struct sk_rx_desc *r; 930 struct sk_rxdesc *rxd; 931 struct mbuf *m; 932 933 934 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 935 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 936 m = rxd->rx_m; 937 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 938 } 939 940 static __inline void 941 sk_discard_jumbo_rxbuf(sc_if, idx) 942 struct sk_if_softc *sc_if; 943 int idx; 944 { 945 struct sk_rx_desc *r; 946 struct sk_rxdesc *rxd; 947 struct mbuf *m; 948 949 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 950 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 951 m = rxd->rx_m; 952 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 953 } 954 955 static int 956 sk_newbuf(sc_if, idx) 957 struct sk_if_softc *sc_if; 958 int idx; 959 { 960 struct sk_rx_desc *r; 961 struct sk_rxdesc *rxd; 962 struct mbuf *m; 963 bus_dma_segment_t segs[1]; 964 bus_dmamap_t map; 965 int nsegs; 966 967 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 968 if (m == NULL) 969 return (ENOBUFS); 970 m->m_len = m->m_pkthdr.len = MCLBYTES; 971 m_adj(m, ETHER_ALIGN); 972 973 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, 974 sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { 975 m_freem(m); 976 return (ENOBUFS); 977 } 978 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 979 980 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 981 if (rxd->rx_m != NULL) { 982 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 983 BUS_DMASYNC_POSTREAD); 984 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); 985 } 986 map = rxd->rx_dmamap; 987 rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; 988 sc_if->sk_cdata.sk_rx_sparemap = map; 989 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 990 BUS_DMASYNC_PREREAD); 991 rxd->rx_m = m; 992 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 993 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 994 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 995 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 996 997 return (0); 998 } 999 1000 static int 1001 sk_jumbo_newbuf(sc_if, idx) 1002 struct sk_if_softc *sc_if; 1003 int idx; 1004 { 1005 struct sk_rx_desc *r; 1006 struct sk_rxdesc *rxd; 1007 struct mbuf *m; 1008 bus_dma_segment_t segs[1]; 1009 bus_dmamap_t map; 1010 int nsegs; 1011 1012 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1013 if (m == NULL) 1014 return (ENOBUFS); 1015 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1016 /* 1017 * Adjust alignment so packet payload begins on a 1018 * longword boundary. Mandatory for Alpha, useful on 1019 * x86 too. 1020 */ 1021 m_adj(m, ETHER_ALIGN); 1022 1023 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, 1024 sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1025 m_freem(m); 1026 return (ENOBUFS); 1027 } 1028 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1029 1030 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 1031 if (rxd->rx_m != NULL) { 1032 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1033 BUS_DMASYNC_POSTREAD); 1034 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 1035 rxd->rx_dmamap); 1036 } 1037 map = rxd->rx_dmamap; 1038 rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; 1039 sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; 1040 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1041 BUS_DMASYNC_PREREAD); 1042 rxd->rx_m = m; 1043 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 1044 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1045 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1046 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1047 1048 return (0); 1049 } 1050 1051 /* 1052 * Set media options. 1053 */ 1054 static int 1055 sk_ifmedia_upd(ifp) 1056 struct ifnet *ifp; 1057 { 1058 struct sk_if_softc *sc_if = ifp->if_softc; 1059 struct mii_data *mii; 1060 1061 mii = device_get_softc(sc_if->sk_miibus); 1062 sk_init(sc_if); 1063 mii_mediachg(mii); 1064 1065 return(0); 1066 } 1067 1068 /* 1069 * Report current media status. 1070 */ 1071 static void 1072 sk_ifmedia_sts(ifp, ifmr) 1073 struct ifnet *ifp; 1074 struct ifmediareq *ifmr; 1075 { 1076 struct sk_if_softc *sc_if; 1077 struct mii_data *mii; 1078 1079 sc_if = ifp->if_softc; 1080 mii = device_get_softc(sc_if->sk_miibus); 1081 1082 mii_pollstat(mii); 1083 ifmr->ifm_active = mii->mii_media_active; 1084 ifmr->ifm_status = mii->mii_media_status; 1085 1086 return; 1087 } 1088 1089 static int 1090 sk_ioctl(ifp, command, data) 1091 struct ifnet *ifp; 1092 u_long command; 1093 caddr_t data; 1094 { 1095 struct sk_if_softc *sc_if = ifp->if_softc; 1096 struct ifreq *ifr = (struct ifreq *) data; 1097 int error, mask; 1098 struct mii_data *mii; 1099 1100 error = 0; 1101 switch(command) { 1102 case SIOCSIFMTU: 1103 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) 1104 error = EINVAL; 1105 else if (ifp->if_mtu != ifr->ifr_mtu) { 1106 if (sc_if->sk_jumbo_disable != 0 && 1107 ifr->ifr_mtu > SK_MAX_FRAMELEN) 1108 error = EINVAL; 1109 else { 1110 SK_IF_LOCK(sc_if); 1111 ifp->if_mtu = ifr->ifr_mtu; 1112 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1113 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1114 sk_init_locked(sc_if); 1115 } 1116 SK_IF_UNLOCK(sc_if); 1117 } 1118 } 1119 break; 1120 case SIOCSIFFLAGS: 1121 SK_IF_LOCK(sc_if); 1122 if (ifp->if_flags & IFF_UP) { 1123 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1124 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1125 & (IFF_PROMISC | IFF_ALLMULTI)) 1126 sk_rxfilter(sc_if); 1127 } else 1128 sk_init_locked(sc_if); 1129 } else { 1130 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1131 sk_stop(sc_if); 1132 } 1133 sc_if->sk_if_flags = ifp->if_flags; 1134 SK_IF_UNLOCK(sc_if); 1135 break; 1136 case SIOCADDMULTI: 1137 case SIOCDELMULTI: 1138 SK_IF_LOCK(sc_if); 1139 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1140 sk_rxfilter(sc_if); 1141 SK_IF_UNLOCK(sc_if); 1142 break; 1143 case SIOCGIFMEDIA: 1144 case SIOCSIFMEDIA: 1145 mii = device_get_softc(sc_if->sk_miibus); 1146 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1147 break; 1148 case SIOCSIFCAP: 1149 SK_IF_LOCK(sc_if); 1150 if (sc_if->sk_softc->sk_type == SK_GENESIS) { 1151 SK_IF_UNLOCK(sc_if); 1152 break; 1153 } 1154 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1155 if ((mask & IFCAP_TXCSUM) != 0 && 1156 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1157 ifp->if_capenable ^= IFCAP_TXCSUM; 1158 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1159 ifp->if_hwassist |= SK_CSUM_FEATURES; 1160 else 1161 ifp->if_hwassist &= ~SK_CSUM_FEATURES; 1162 } 1163 if ((mask & IFCAP_RXCSUM) != 0 && 1164 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 1165 ifp->if_capenable ^= IFCAP_RXCSUM; 1166 SK_IF_UNLOCK(sc_if); 1167 break; 1168 default: 1169 error = ether_ioctl(ifp, command, data); 1170 break; 1171 } 1172 1173 return (error); 1174 } 1175 1176 /* 1177 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1178 * IDs against our list and return a device name if we find a match. 1179 */ 1180 static int 1181 skc_probe(dev) 1182 device_t dev; 1183 { 1184 const struct sk_type *t = sk_devs; 1185 1186 while(t->sk_name != NULL) { 1187 if ((pci_get_vendor(dev) == t->sk_vid) && 1188 (pci_get_device(dev) == t->sk_did)) { 1189 /* 1190 * Only attach to rev. 2 of the Linksys EG1032 adapter. 1191 * Rev. 3 is supported by re(4). 1192 */ 1193 if ((t->sk_vid == VENDORID_LINKSYS) && 1194 (t->sk_did == DEVICEID_LINKSYS_EG1032) && 1195 (pci_get_subdevice(dev) != 1196 SUBDEVICEID_LINKSYS_EG1032_REV2)) { 1197 t++; 1198 continue; 1199 } 1200 device_set_desc(dev, t->sk_name); 1201 return (BUS_PROBE_DEFAULT); 1202 } 1203 t++; 1204 } 1205 1206 return(ENXIO); 1207 } 1208 1209 /* 1210 * Force the GEnesis into reset, then bring it out of reset. 1211 */ 1212 static void 1213 sk_reset(sc) 1214 struct sk_softc *sc; 1215 { 1216 1217 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1218 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1219 if (SK_YUKON_FAMILY(sc->sk_type)) 1220 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1221 1222 DELAY(1000); 1223 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1224 DELAY(2); 1225 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1226 if (SK_YUKON_FAMILY(sc->sk_type)) 1227 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1228 1229 if (sc->sk_type == SK_GENESIS) { 1230 /* Configure packet arbiter */ 1231 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1232 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1233 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1234 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1235 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1236 } 1237 1238 /* Enable RAM interface */ 1239 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1240 1241 /* 1242 * Configure interrupt moderation. The moderation timer 1243 * defers interrupts specified in the interrupt moderation 1244 * timer mask based on the timeout specified in the interrupt 1245 * moderation timer init register. Each bit in the timer 1246 * register represents one tick, so to specify a timeout in 1247 * microseconds, we have to multiply by the correct number of 1248 * ticks-per-microsecond. 1249 */ 1250 switch (sc->sk_type) { 1251 case SK_GENESIS: 1252 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; 1253 break; 1254 default: 1255 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; 1256 break; 1257 } 1258 if (bootverbose) 1259 device_printf(sc->sk_dev, "interrupt moderation is %d us\n", 1260 sc->sk_int_mod); 1261 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 1262 sc->sk_int_ticks)); 1263 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1264 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1265 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1266 1267 return; 1268 } 1269 1270 static int 1271 sk_probe(dev) 1272 device_t dev; 1273 { 1274 struct sk_softc *sc; 1275 1276 sc = device_get_softc(device_get_parent(dev)); 1277 1278 /* 1279 * Not much to do here. We always know there will be 1280 * at least one XMAC present, and if there are two, 1281 * skc_attach() will create a second device instance 1282 * for us. 1283 */ 1284 switch (sc->sk_type) { 1285 case SK_GENESIS: 1286 device_set_desc(dev, "XaQti Corp. XMAC II"); 1287 break; 1288 case SK_YUKON: 1289 case SK_YUKON_LITE: 1290 case SK_YUKON_LP: 1291 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1292 break; 1293 } 1294 1295 return (BUS_PROBE_DEFAULT); 1296 } 1297 1298 /* 1299 * Each XMAC chip is attached as a separate logical IP interface. 1300 * Single port cards will have only one logical interface of course. 1301 */ 1302 static int 1303 sk_attach(dev) 1304 device_t dev; 1305 { 1306 struct sk_softc *sc; 1307 struct sk_if_softc *sc_if; 1308 struct ifnet *ifp; 1309 u_int32_t r; 1310 int error, i, phy, port; 1311 u_char eaddr[6]; 1312 u_char inv_mac[] = {0, 0, 0, 0, 0, 0}; 1313 1314 if (dev == NULL) 1315 return(EINVAL); 1316 1317 error = 0; 1318 sc_if = device_get_softc(dev); 1319 sc = device_get_softc(device_get_parent(dev)); 1320 port = *(int *)device_get_ivars(dev); 1321 1322 sc_if->sk_if_dev = dev; 1323 sc_if->sk_port = port; 1324 sc_if->sk_softc = sc; 1325 sc->sk_if[port] = sc_if; 1326 if (port == SK_PORT_A) 1327 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1328 if (port == SK_PORT_B) 1329 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1330 1331 callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); 1332 callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); 1333 1334 if (sk_dma_alloc(sc_if) != 0) { 1335 error = ENOMEM; 1336 goto fail; 1337 } 1338 sk_dma_jumbo_alloc(sc_if); 1339 1340 ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); 1341 if (ifp == NULL) { 1342 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); 1343 error = ENOSPC; 1344 goto fail; 1345 } 1346 ifp->if_softc = sc_if; 1347 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1348 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1349 /* 1350 * SK_GENESIS has a bug in checksum offload - From linux. 1351 */ 1352 if (sc_if->sk_softc->sk_type != SK_GENESIS) { 1353 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM; 1354 ifp->if_hwassist = 0; 1355 } else { 1356 ifp->if_capabilities = 0; 1357 ifp->if_hwassist = 0; 1358 } 1359 ifp->if_capenable = ifp->if_capabilities; 1360 /* 1361 * Some revision of Yukon controller generates corrupted 1362 * frame when TX checksum offloading is enabled. The 1363 * frame has a valid checksum value so payload might be 1364 * modified during TX checksum calculation. Disable TX 1365 * checksum offloading but give users chance to enable it 1366 * when they know their controller works without problems 1367 * with TX checksum offloading. 1368 */ 1369 ifp->if_capenable &= ~IFCAP_TXCSUM; 1370 ifp->if_ioctl = sk_ioctl; 1371 ifp->if_start = sk_start; 1372 ifp->if_init = sk_init; 1373 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1374 ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; 1375 IFQ_SET_READY(&ifp->if_snd); 1376 1377 /* 1378 * Get station address for this interface. Note that 1379 * dual port cards actually come with three station 1380 * addresses: one for each port, plus an extra. The 1381 * extra one is used by the SysKonnect driver software 1382 * as a 'virtual' station address for when both ports 1383 * are operating in failover mode. Currently we don't 1384 * use this extra address. 1385 */ 1386 SK_IF_LOCK(sc_if); 1387 for (i = 0; i < ETHER_ADDR_LEN; i++) 1388 eaddr[i] = 1389 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1390 1391 /* Verify whether the station address is invalid or not. */ 1392 if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) { 1393 device_printf(sc_if->sk_if_dev, 1394 "Generating random ethernet address\n"); 1395 r = arc4random(); 1396 /* 1397 * Set OUI to convenient locally assigned address. 'b' 1398 * is 0x62, which has the locally assigned bit set, and 1399 * the broadcast/multicast bit clear. 1400 */ 1401 eaddr[0] = 'b'; 1402 eaddr[1] = 's'; 1403 eaddr[2] = 'd'; 1404 eaddr[3] = (r >> 16) & 0xff; 1405 eaddr[4] = (r >> 8) & 0xff; 1406 eaddr[5] = (r >> 0) & 0xff; 1407 } 1408 /* 1409 * Set up RAM buffer addresses. The NIC will have a certain 1410 * amount of SRAM on it, somewhere between 512K and 2MB. We 1411 * need to divide this up a) between the transmitter and 1412 * receiver and b) between the two XMACs, if this is a 1413 * dual port NIC. Our algotithm is to divide up the memory 1414 * evenly so that everyone gets a fair share. 1415 * 1416 * Just to be contrary, Yukon2 appears to have separate memory 1417 * for each MAC. 1418 */ 1419 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1420 u_int32_t chunk, val; 1421 1422 chunk = sc->sk_ramsize / 2; 1423 val = sc->sk_rboff / sizeof(u_int64_t); 1424 sc_if->sk_rx_ramstart = val; 1425 val += (chunk / sizeof(u_int64_t)); 1426 sc_if->sk_rx_ramend = val - 1; 1427 sc_if->sk_tx_ramstart = val; 1428 val += (chunk / sizeof(u_int64_t)); 1429 sc_if->sk_tx_ramend = val - 1; 1430 } else { 1431 u_int32_t chunk, val; 1432 1433 chunk = sc->sk_ramsize / 4; 1434 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1435 sizeof(u_int64_t); 1436 sc_if->sk_rx_ramstart = val; 1437 val += (chunk / sizeof(u_int64_t)); 1438 sc_if->sk_rx_ramend = val - 1; 1439 sc_if->sk_tx_ramstart = val; 1440 val += (chunk / sizeof(u_int64_t)); 1441 sc_if->sk_tx_ramend = val - 1; 1442 } 1443 1444 /* Read and save PHY type and set PHY address */ 1445 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1446 if (!SK_YUKON_FAMILY(sc->sk_type)) { 1447 switch(sc_if->sk_phytype) { 1448 case SK_PHYTYPE_XMAC: 1449 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1450 break; 1451 case SK_PHYTYPE_BCOM: 1452 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1453 break; 1454 default: 1455 device_printf(sc->sk_dev, "unsupported PHY type: %d\n", 1456 sc_if->sk_phytype); 1457 error = ENODEV; 1458 SK_IF_UNLOCK(sc_if); 1459 goto fail; 1460 } 1461 } else { 1462 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && 1463 sc->sk_pmd != 'S') { 1464 /* not initialized, punt */ 1465 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; 1466 sc->sk_coppertype = 1; 1467 } 1468 1469 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1470 1471 if (!(sc->sk_coppertype)) 1472 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; 1473 } 1474 1475 /* 1476 * Call MI attach routine. Can't hold locks when calling into ether_*. 1477 */ 1478 SK_IF_UNLOCK(sc_if); 1479 ether_ifattach(ifp, eaddr); 1480 SK_IF_LOCK(sc_if); 1481 1482 /* 1483 * The hardware should be ready for VLAN_MTU by default: 1484 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; 1485 * YU_SMR_MFL_VLAN is set by this driver in Yukon. 1486 * 1487 */ 1488 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1489 ifp->if_capenable |= IFCAP_VLAN_MTU; 1490 /* 1491 * Tell the upper layer(s) we support long frames. 1492 * Must appear after the call to ether_ifattach() because 1493 * ether_ifattach() sets ifi_hdrlen to the default value. 1494 */ 1495 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1496 1497 /* 1498 * Do miibus setup. 1499 */ 1500 phy = MII_PHY_ANY; 1501 switch (sc->sk_type) { 1502 case SK_GENESIS: 1503 sk_init_xmac(sc_if); 1504 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 1505 phy = 0; 1506 break; 1507 case SK_YUKON: 1508 case SK_YUKON_LITE: 1509 case SK_YUKON_LP: 1510 sk_init_yukon(sc_if); 1511 phy = 0; 1512 break; 1513 } 1514 1515 SK_IF_UNLOCK(sc_if); 1516 error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd, 1517 sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 1518 if (error != 0) { 1519 device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n"); 1520 ether_ifdetach(ifp); 1521 goto fail; 1522 } 1523 1524 fail: 1525 if (error) { 1526 /* Access should be ok even though lock has been dropped */ 1527 sc->sk_if[port] = NULL; 1528 sk_detach(dev); 1529 } 1530 1531 return(error); 1532 } 1533 1534 /* 1535 * Attach the interface. Allocate softc structures, do ifmedia 1536 * setup and ethernet/BPF attach. 1537 */ 1538 static int 1539 skc_attach(dev) 1540 device_t dev; 1541 { 1542 struct sk_softc *sc; 1543 int error = 0, *port; 1544 uint8_t skrs; 1545 const char *pname = NULL; 1546 char *revstr; 1547 1548 sc = device_get_softc(dev); 1549 sc->sk_dev = dev; 1550 1551 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1552 MTX_DEF); 1553 mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); 1554 /* 1555 * Map control/status registers. 1556 */ 1557 pci_enable_busmaster(dev); 1558 1559 /* Allocate resources */ 1560 #ifdef SK_USEIOSPACE 1561 sc->sk_res_spec = sk_res_spec_io; 1562 #else 1563 sc->sk_res_spec = sk_res_spec_mem; 1564 #endif 1565 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1566 if (error) { 1567 if (sc->sk_res_spec == sk_res_spec_mem) 1568 sc->sk_res_spec = sk_res_spec_io; 1569 else 1570 sc->sk_res_spec = sk_res_spec_mem; 1571 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1572 if (error) { 1573 device_printf(dev, "couldn't allocate %s resources\n", 1574 sc->sk_res_spec == sk_res_spec_mem ? "memory" : 1575 "I/O"); 1576 goto fail; 1577 } 1578 } 1579 1580 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1581 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; 1582 1583 /* Bail out if chip is not recognized. */ 1584 if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { 1585 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", 1586 sc->sk_type, sc->sk_rev); 1587 error = ENXIO; 1588 goto fail; 1589 } 1590 1591 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1592 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1593 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, 1594 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", 1595 "SK interrupt moderation"); 1596 1597 /* Pull in device tunables. */ 1598 sc->sk_int_mod = SK_IM_DEFAULT; 1599 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1600 "int_mod", &sc->sk_int_mod); 1601 if (error == 0) { 1602 if (sc->sk_int_mod < SK_IM_MIN || 1603 sc->sk_int_mod > SK_IM_MAX) { 1604 device_printf(dev, "int_mod value out of range; " 1605 "using default: %d\n", SK_IM_DEFAULT); 1606 sc->sk_int_mod = SK_IM_DEFAULT; 1607 } 1608 } 1609 1610 /* Reset the adapter. */ 1611 sk_reset(sc); 1612 1613 skrs = sk_win_read_1(sc, SK_EPROM0); 1614 if (sc->sk_type == SK_GENESIS) { 1615 /* Read and save RAM size and RAMbuffer offset */ 1616 switch(skrs) { 1617 case SK_RAMSIZE_512K_64: 1618 sc->sk_ramsize = 0x80000; 1619 sc->sk_rboff = SK_RBOFF_0; 1620 break; 1621 case SK_RAMSIZE_1024K_64: 1622 sc->sk_ramsize = 0x100000; 1623 sc->sk_rboff = SK_RBOFF_80000; 1624 break; 1625 case SK_RAMSIZE_1024K_128: 1626 sc->sk_ramsize = 0x100000; 1627 sc->sk_rboff = SK_RBOFF_0; 1628 break; 1629 case SK_RAMSIZE_2048K_128: 1630 sc->sk_ramsize = 0x200000; 1631 sc->sk_rboff = SK_RBOFF_0; 1632 break; 1633 default: 1634 device_printf(dev, "unknown ram size: %d\n", skrs); 1635 error = ENXIO; 1636 goto fail; 1637 } 1638 } else { /* SK_YUKON_FAMILY */ 1639 if (skrs == 0x00) 1640 sc->sk_ramsize = 0x20000; 1641 else 1642 sc->sk_ramsize = skrs * (1<<12); 1643 sc->sk_rboff = SK_RBOFF_0; 1644 } 1645 1646 /* Read and save physical media type */ 1647 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); 1648 1649 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') 1650 sc->sk_coppertype = 1; 1651 else 1652 sc->sk_coppertype = 0; 1653 1654 /* Determine whether to name it with VPD PN or just make it up. 1655 * Marvell Yukon VPD PN seems to freqently be bogus. */ 1656 switch (pci_get_device(dev)) { 1657 case DEVICEID_SK_V1: 1658 case DEVICEID_BELKIN_5005: 1659 case DEVICEID_3COM_3C940: 1660 case DEVICEID_LINKSYS_EG1032: 1661 case DEVICEID_DLINK_DGE530T_A1: 1662 case DEVICEID_DLINK_DGE530T_B1: 1663 /* Stay with VPD PN. */ 1664 (void) pci_get_vpd_ident(dev, &pname); 1665 break; 1666 case DEVICEID_SK_V2: 1667 /* YUKON VPD PN might bear no resemblance to reality. */ 1668 switch (sc->sk_type) { 1669 case SK_GENESIS: 1670 /* Stay with VPD PN. */ 1671 (void) pci_get_vpd_ident(dev, &pname); 1672 break; 1673 case SK_YUKON: 1674 pname = "Marvell Yukon Gigabit Ethernet"; 1675 break; 1676 case SK_YUKON_LITE: 1677 pname = "Marvell Yukon Lite Gigabit Ethernet"; 1678 break; 1679 case SK_YUKON_LP: 1680 pname = "Marvell Yukon LP Gigabit Ethernet"; 1681 break; 1682 default: 1683 pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1684 break; 1685 } 1686 1687 /* Yukon Lite Rev. A0 needs special test. */ 1688 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { 1689 u_int32_t far; 1690 u_int8_t testbyte; 1691 1692 /* Save flash address register before testing. */ 1693 far = sk_win_read_4(sc, SK_EP_ADDR); 1694 1695 sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); 1696 testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); 1697 1698 if (testbyte != 0x00) { 1699 /* Yukon Lite Rev. A0 detected. */ 1700 sc->sk_type = SK_YUKON_LITE; 1701 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1702 /* Restore flash address register. */ 1703 sk_win_write_4(sc, SK_EP_ADDR, far); 1704 } 1705 } 1706 break; 1707 default: 1708 device_printf(dev, "unknown device: vendor=%04x, device=%04x, " 1709 "chipver=%02x, rev=%x\n", 1710 pci_get_vendor(dev), pci_get_device(dev), 1711 sc->sk_type, sc->sk_rev); 1712 error = ENXIO; 1713 goto fail; 1714 } 1715 1716 if (sc->sk_type == SK_YUKON_LITE) { 1717 switch (sc->sk_rev) { 1718 case SK_YUKON_LITE_REV_A0: 1719 revstr = "A0"; 1720 break; 1721 case SK_YUKON_LITE_REV_A1: 1722 revstr = "A1"; 1723 break; 1724 case SK_YUKON_LITE_REV_A3: 1725 revstr = "A3"; 1726 break; 1727 default: 1728 revstr = ""; 1729 break; 1730 } 1731 } else { 1732 revstr = ""; 1733 } 1734 1735 /* Announce the product name and more VPD data if there. */ 1736 if (pname != NULL) 1737 device_printf(dev, "%s rev. %s(0x%x)\n", 1738 pname, revstr, sc->sk_rev); 1739 1740 if (bootverbose) { 1741 device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); 1742 device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); 1743 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); 1744 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); 1745 } 1746 1747 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1748 if (sc->sk_devs[SK_PORT_A] == NULL) { 1749 device_printf(dev, "failed to add child for PORT_A\n"); 1750 error = ENXIO; 1751 goto fail; 1752 } 1753 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1754 if (port == NULL) { 1755 device_printf(dev, "failed to allocate memory for " 1756 "ivars of PORT_A\n"); 1757 error = ENXIO; 1758 goto fail; 1759 } 1760 *port = SK_PORT_A; 1761 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1762 1763 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1764 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1765 if (sc->sk_devs[SK_PORT_B] == NULL) { 1766 device_printf(dev, "failed to add child for PORT_B\n"); 1767 error = ENXIO; 1768 goto fail; 1769 } 1770 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1771 if (port == NULL) { 1772 device_printf(dev, "failed to allocate memory for " 1773 "ivars of PORT_B\n"); 1774 error = ENXIO; 1775 goto fail; 1776 } 1777 *port = SK_PORT_B; 1778 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1779 } 1780 1781 /* Turn on the 'driver is loaded' LED. */ 1782 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1783 1784 error = bus_generic_attach(dev); 1785 if (error) { 1786 device_printf(dev, "failed to attach port(s)\n"); 1787 goto fail; 1788 } 1789 1790 /* Hook interrupt last to avoid having to lock softc */ 1791 error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, 1792 NULL, sk_intr, sc, &sc->sk_intrhand); 1793 1794 if (error) { 1795 device_printf(dev, "couldn't set up irq\n"); 1796 goto fail; 1797 } 1798 1799 fail: 1800 if (error) 1801 skc_detach(dev); 1802 1803 return(error); 1804 } 1805 1806 /* 1807 * Shutdown hardware and free up resources. This can be called any 1808 * time after the mutex has been initialized. It is called in both 1809 * the error case in attach and the normal detach case so it needs 1810 * to be careful about only freeing resources that have actually been 1811 * allocated. 1812 */ 1813 static int 1814 sk_detach(dev) 1815 device_t dev; 1816 { 1817 struct sk_if_softc *sc_if; 1818 struct ifnet *ifp; 1819 1820 sc_if = device_get_softc(dev); 1821 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1822 ("sk mutex not initialized in sk_detach")); 1823 SK_IF_LOCK(sc_if); 1824 1825 ifp = sc_if->sk_ifp; 1826 /* These should only be active if attach_xmac succeeded */ 1827 if (device_is_attached(dev)) { 1828 sk_stop(sc_if); 1829 /* Can't hold locks while calling detach */ 1830 SK_IF_UNLOCK(sc_if); 1831 callout_drain(&sc_if->sk_tick_ch); 1832 callout_drain(&sc_if->sk_watchdog_ch); 1833 ether_ifdetach(ifp); 1834 SK_IF_LOCK(sc_if); 1835 } 1836 /* 1837 * We're generally called from skc_detach() which is using 1838 * device_delete_child() to get to here. It's already trashed 1839 * miibus for us, so don't do it here or we'll panic. 1840 */ 1841 /* 1842 if (sc_if->sk_miibus != NULL) 1843 device_delete_child(dev, sc_if->sk_miibus); 1844 */ 1845 bus_generic_detach(dev); 1846 sk_dma_jumbo_free(sc_if); 1847 sk_dma_free(sc_if); 1848 SK_IF_UNLOCK(sc_if); 1849 if (ifp) 1850 if_free(ifp); 1851 1852 return(0); 1853 } 1854 1855 static int 1856 skc_detach(dev) 1857 device_t dev; 1858 { 1859 struct sk_softc *sc; 1860 1861 sc = device_get_softc(dev); 1862 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1863 1864 if (device_is_alive(dev)) { 1865 if (sc->sk_devs[SK_PORT_A] != NULL) { 1866 free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); 1867 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1868 } 1869 if (sc->sk_devs[SK_PORT_B] != NULL) { 1870 free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); 1871 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1872 } 1873 bus_generic_detach(dev); 1874 } 1875 1876 if (sc->sk_intrhand) 1877 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); 1878 bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); 1879 1880 mtx_destroy(&sc->sk_mii_mtx); 1881 mtx_destroy(&sc->sk_mtx); 1882 1883 return(0); 1884 } 1885 1886 static bus_dma_tag_t 1887 skc_get_dma_tag(device_t bus, device_t child __unused) 1888 { 1889 1890 return (bus_get_dma_tag(bus)); 1891 } 1892 1893 struct sk_dmamap_arg { 1894 bus_addr_t sk_busaddr; 1895 }; 1896 1897 static void 1898 sk_dmamap_cb(arg, segs, nseg, error) 1899 void *arg; 1900 bus_dma_segment_t *segs; 1901 int nseg; 1902 int error; 1903 { 1904 struct sk_dmamap_arg *ctx; 1905 1906 if (error != 0) 1907 return; 1908 1909 ctx = arg; 1910 ctx->sk_busaddr = segs[0].ds_addr; 1911 } 1912 1913 /* 1914 * Allocate jumbo buffer storage. The SysKonnect adapters support 1915 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1916 * use them in their drivers. In order for us to use them, we need 1917 * large 9K receive buffers, however standard mbuf clusters are only 1918 * 2048 bytes in size. Consequently, we need to allocate and manage 1919 * our own jumbo buffer pool. Fortunately, this does not require an 1920 * excessive amount of additional code. 1921 */ 1922 static int 1923 sk_dma_alloc(sc_if) 1924 struct sk_if_softc *sc_if; 1925 { 1926 struct sk_dmamap_arg ctx; 1927 struct sk_txdesc *txd; 1928 struct sk_rxdesc *rxd; 1929 int error, i; 1930 1931 /* create parent tag */ 1932 /* 1933 * XXX 1934 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument 1935 * in bus_dma_tag_create(9) as the NIC would support DAC mode. 1936 * However bz@ reported that it does not work on amd64 with > 4GB 1937 * RAM. Until we have more clues of the breakage, disable DAC mode 1938 * by limiting DMA address to be in 32bit address space. 1939 */ 1940 error = bus_dma_tag_create( 1941 bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1942 1, 0, /* algnmnt, boundary */ 1943 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1944 BUS_SPACE_MAXADDR, /* highaddr */ 1945 NULL, NULL, /* filter, filterarg */ 1946 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1947 0, /* nsegments */ 1948 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1949 0, /* flags */ 1950 NULL, NULL, /* lockfunc, lockarg */ 1951 &sc_if->sk_cdata.sk_parent_tag); 1952 if (error != 0) { 1953 device_printf(sc_if->sk_if_dev, 1954 "failed to create parent DMA tag\n"); 1955 goto fail; 1956 } 1957 1958 /* create tag for Tx ring */ 1959 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1960 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1961 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1962 BUS_SPACE_MAXADDR, /* highaddr */ 1963 NULL, NULL, /* filter, filterarg */ 1964 SK_TX_RING_SZ, /* maxsize */ 1965 1, /* nsegments */ 1966 SK_TX_RING_SZ, /* maxsegsize */ 1967 0, /* flags */ 1968 NULL, NULL, /* lockfunc, lockarg */ 1969 &sc_if->sk_cdata.sk_tx_ring_tag); 1970 if (error != 0) { 1971 device_printf(sc_if->sk_if_dev, 1972 "failed to allocate Tx ring DMA tag\n"); 1973 goto fail; 1974 } 1975 1976 /* create tag for Rx ring */ 1977 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1978 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1979 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1980 BUS_SPACE_MAXADDR, /* highaddr */ 1981 NULL, NULL, /* filter, filterarg */ 1982 SK_RX_RING_SZ, /* maxsize */ 1983 1, /* nsegments */ 1984 SK_RX_RING_SZ, /* maxsegsize */ 1985 0, /* flags */ 1986 NULL, NULL, /* lockfunc, lockarg */ 1987 &sc_if->sk_cdata.sk_rx_ring_tag); 1988 if (error != 0) { 1989 device_printf(sc_if->sk_if_dev, 1990 "failed to allocate Rx ring DMA tag\n"); 1991 goto fail; 1992 } 1993 1994 /* create tag for Tx buffers */ 1995 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1996 1, 0, /* algnmnt, boundary */ 1997 BUS_SPACE_MAXADDR, /* lowaddr */ 1998 BUS_SPACE_MAXADDR, /* highaddr */ 1999 NULL, NULL, /* filter, filterarg */ 2000 MCLBYTES * SK_MAXTXSEGS, /* maxsize */ 2001 SK_MAXTXSEGS, /* nsegments */ 2002 MCLBYTES, /* maxsegsize */ 2003 0, /* flags */ 2004 NULL, NULL, /* lockfunc, lockarg */ 2005 &sc_if->sk_cdata.sk_tx_tag); 2006 if (error != 0) { 2007 device_printf(sc_if->sk_if_dev, 2008 "failed to allocate Tx DMA tag\n"); 2009 goto fail; 2010 } 2011 2012 /* create tag for Rx buffers */ 2013 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2014 1, 0, /* algnmnt, boundary */ 2015 BUS_SPACE_MAXADDR, /* lowaddr */ 2016 BUS_SPACE_MAXADDR, /* highaddr */ 2017 NULL, NULL, /* filter, filterarg */ 2018 MCLBYTES, /* maxsize */ 2019 1, /* nsegments */ 2020 MCLBYTES, /* maxsegsize */ 2021 0, /* flags */ 2022 NULL, NULL, /* lockfunc, lockarg */ 2023 &sc_if->sk_cdata.sk_rx_tag); 2024 if (error != 0) { 2025 device_printf(sc_if->sk_if_dev, 2026 "failed to allocate Rx DMA tag\n"); 2027 goto fail; 2028 } 2029 2030 /* allocate DMA'able memory and load the DMA map for Tx ring */ 2031 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, 2032 (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | 2033 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map); 2034 if (error != 0) { 2035 device_printf(sc_if->sk_if_dev, 2036 "failed to allocate DMA'able memory for Tx ring\n"); 2037 goto fail; 2038 } 2039 2040 ctx.sk_busaddr = 0; 2041 error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, 2042 sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, 2043 SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2044 if (error != 0) { 2045 device_printf(sc_if->sk_if_dev, 2046 "failed to load DMA'able memory for Tx ring\n"); 2047 goto fail; 2048 } 2049 sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; 2050 2051 /* allocate DMA'able memory and load the DMA map for Rx ring */ 2052 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, 2053 (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | 2054 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map); 2055 if (error != 0) { 2056 device_printf(sc_if->sk_if_dev, 2057 "failed to allocate DMA'able memory for Rx ring\n"); 2058 goto fail; 2059 } 2060 2061 ctx.sk_busaddr = 0; 2062 error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, 2063 sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, 2064 SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2065 if (error != 0) { 2066 device_printf(sc_if->sk_if_dev, 2067 "failed to load DMA'able memory for Rx ring\n"); 2068 goto fail; 2069 } 2070 sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; 2071 2072 /* create DMA maps for Tx buffers */ 2073 for (i = 0; i < SK_TX_RING_CNT; i++) { 2074 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2075 txd->tx_m = NULL; 2076 txd->tx_dmamap = NULL; 2077 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, 2078 &txd->tx_dmamap); 2079 if (error != 0) { 2080 device_printf(sc_if->sk_if_dev, 2081 "failed to create Tx dmamap\n"); 2082 goto fail; 2083 } 2084 } 2085 2086 /* create DMA maps for Rx buffers */ 2087 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2088 &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { 2089 device_printf(sc_if->sk_if_dev, 2090 "failed to create spare Rx dmamap\n"); 2091 goto fail; 2092 } 2093 for (i = 0; i < SK_RX_RING_CNT; i++) { 2094 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2095 rxd->rx_m = NULL; 2096 rxd->rx_dmamap = NULL; 2097 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2098 &rxd->rx_dmamap); 2099 if (error != 0) { 2100 device_printf(sc_if->sk_if_dev, 2101 "failed to create Rx dmamap\n"); 2102 goto fail; 2103 } 2104 } 2105 2106 fail: 2107 return (error); 2108 } 2109 2110 static int 2111 sk_dma_jumbo_alloc(sc_if) 2112 struct sk_if_softc *sc_if; 2113 { 2114 struct sk_dmamap_arg ctx; 2115 struct sk_rxdesc *jrxd; 2116 int error, i; 2117 2118 if (jumbo_disable != 0) { 2119 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); 2120 sc_if->sk_jumbo_disable = 1; 2121 return (0); 2122 } 2123 /* create tag for jumbo Rx ring */ 2124 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2125 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 2126 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2127 BUS_SPACE_MAXADDR, /* highaddr */ 2128 NULL, NULL, /* filter, filterarg */ 2129 SK_JUMBO_RX_RING_SZ, /* maxsize */ 2130 1, /* nsegments */ 2131 SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2132 0, /* flags */ 2133 NULL, NULL, /* lockfunc, lockarg */ 2134 &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2135 if (error != 0) { 2136 device_printf(sc_if->sk_if_dev, 2137 "failed to allocate jumbo Rx ring DMA tag\n"); 2138 goto jumbo_fail; 2139 } 2140 2141 /* create tag for jumbo Rx buffers */ 2142 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2143 1, 0, /* algnmnt, boundary */ 2144 BUS_SPACE_MAXADDR, /* lowaddr */ 2145 BUS_SPACE_MAXADDR, /* highaddr */ 2146 NULL, NULL, /* filter, filterarg */ 2147 MJUM9BYTES, /* maxsize */ 2148 1, /* nsegments */ 2149 MJUM9BYTES, /* maxsegsize */ 2150 0, /* flags */ 2151 NULL, NULL, /* lockfunc, lockarg */ 2152 &sc_if->sk_cdata.sk_jumbo_rx_tag); 2153 if (error != 0) { 2154 device_printf(sc_if->sk_if_dev, 2155 "failed to allocate jumbo Rx DMA tag\n"); 2156 goto jumbo_fail; 2157 } 2158 2159 /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ 2160 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2161 (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT | 2162 BUS_DMA_COHERENT | BUS_DMA_ZERO, 2163 &sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2164 if (error != 0) { 2165 device_printf(sc_if->sk_if_dev, 2166 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2167 goto jumbo_fail; 2168 } 2169 2170 ctx.sk_busaddr = 0; 2171 error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2172 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2173 sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, 2174 &ctx, BUS_DMA_NOWAIT); 2175 if (error != 0) { 2176 device_printf(sc_if->sk_if_dev, 2177 "failed to load DMA'able memory for jumbo Rx ring\n"); 2178 goto jumbo_fail; 2179 } 2180 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; 2181 2182 /* create DMA maps for jumbo Rx buffers */ 2183 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2184 &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { 2185 device_printf(sc_if->sk_if_dev, 2186 "failed to create spare jumbo Rx dmamap\n"); 2187 goto jumbo_fail; 2188 } 2189 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2190 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2191 jrxd->rx_m = NULL; 2192 jrxd->rx_dmamap = NULL; 2193 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2194 &jrxd->rx_dmamap); 2195 if (error != 0) { 2196 device_printf(sc_if->sk_if_dev, 2197 "failed to create jumbo Rx dmamap\n"); 2198 goto jumbo_fail; 2199 } 2200 } 2201 2202 return (0); 2203 2204 jumbo_fail: 2205 sk_dma_jumbo_free(sc_if); 2206 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " 2207 "resource shortage\n"); 2208 sc_if->sk_jumbo_disable = 1; 2209 return (0); 2210 } 2211 2212 static void 2213 sk_dma_free(sc_if) 2214 struct sk_if_softc *sc_if; 2215 { 2216 struct sk_txdesc *txd; 2217 struct sk_rxdesc *rxd; 2218 int i; 2219 2220 /* Tx ring */ 2221 if (sc_if->sk_cdata.sk_tx_ring_tag) { 2222 if (sc_if->sk_rdata.sk_tx_ring_paddr) 2223 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, 2224 sc_if->sk_cdata.sk_tx_ring_map); 2225 if (sc_if->sk_rdata.sk_tx_ring) 2226 bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, 2227 sc_if->sk_rdata.sk_tx_ring, 2228 sc_if->sk_cdata.sk_tx_ring_map); 2229 sc_if->sk_rdata.sk_tx_ring = NULL; 2230 sc_if->sk_rdata.sk_tx_ring_paddr = 0; 2231 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); 2232 sc_if->sk_cdata.sk_tx_ring_tag = NULL; 2233 } 2234 /* Rx ring */ 2235 if (sc_if->sk_cdata.sk_rx_ring_tag) { 2236 if (sc_if->sk_rdata.sk_rx_ring_paddr) 2237 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, 2238 sc_if->sk_cdata.sk_rx_ring_map); 2239 if (sc_if->sk_rdata.sk_rx_ring) 2240 bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, 2241 sc_if->sk_rdata.sk_rx_ring, 2242 sc_if->sk_cdata.sk_rx_ring_map); 2243 sc_if->sk_rdata.sk_rx_ring = NULL; 2244 sc_if->sk_rdata.sk_rx_ring_paddr = 0; 2245 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); 2246 sc_if->sk_cdata.sk_rx_ring_tag = NULL; 2247 } 2248 /* Tx buffers */ 2249 if (sc_if->sk_cdata.sk_tx_tag) { 2250 for (i = 0; i < SK_TX_RING_CNT; i++) { 2251 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2252 if (txd->tx_dmamap) { 2253 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, 2254 txd->tx_dmamap); 2255 txd->tx_dmamap = NULL; 2256 } 2257 } 2258 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); 2259 sc_if->sk_cdata.sk_tx_tag = NULL; 2260 } 2261 /* Rx buffers */ 2262 if (sc_if->sk_cdata.sk_rx_tag) { 2263 for (i = 0; i < SK_RX_RING_CNT; i++) { 2264 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2265 if (rxd->rx_dmamap) { 2266 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2267 rxd->rx_dmamap); 2268 rxd->rx_dmamap = NULL; 2269 } 2270 } 2271 if (sc_if->sk_cdata.sk_rx_sparemap) { 2272 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2273 sc_if->sk_cdata.sk_rx_sparemap); 2274 sc_if->sk_cdata.sk_rx_sparemap = NULL; 2275 } 2276 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); 2277 sc_if->sk_cdata.sk_rx_tag = NULL; 2278 } 2279 2280 if (sc_if->sk_cdata.sk_parent_tag) { 2281 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); 2282 sc_if->sk_cdata.sk_parent_tag = NULL; 2283 } 2284 } 2285 2286 static void 2287 sk_dma_jumbo_free(sc_if) 2288 struct sk_if_softc *sc_if; 2289 { 2290 struct sk_rxdesc *jrxd; 2291 int i; 2292 2293 /* jumbo Rx ring */ 2294 if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { 2295 if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr) 2296 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2297 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2298 if (sc_if->sk_rdata.sk_jumbo_rx_ring) 2299 bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2300 sc_if->sk_rdata.sk_jumbo_rx_ring, 2301 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2302 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; 2303 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0; 2304 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2305 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; 2306 } 2307 2308 /* jumbo Rx buffers */ 2309 if (sc_if->sk_cdata.sk_jumbo_rx_tag) { 2310 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2311 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2312 if (jrxd->rx_dmamap) { 2313 bus_dmamap_destroy( 2314 sc_if->sk_cdata.sk_jumbo_rx_tag, 2315 jrxd->rx_dmamap); 2316 jrxd->rx_dmamap = NULL; 2317 } 2318 } 2319 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { 2320 bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, 2321 sc_if->sk_cdata.sk_jumbo_rx_sparemap); 2322 sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; 2323 } 2324 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); 2325 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; 2326 } 2327 } 2328 2329 static void 2330 sk_txcksum(ifp, m, f) 2331 struct ifnet *ifp; 2332 struct mbuf *m; 2333 struct sk_tx_desc *f; 2334 { 2335 struct ip *ip; 2336 u_int16_t offset; 2337 u_int8_t *p; 2338 2339 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2340 for(; m && m->m_len == 0; m = m->m_next) 2341 ; 2342 if (m == NULL || m->m_len < ETHER_HDR_LEN) { 2343 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); 2344 /* checksum may be corrupted */ 2345 goto sendit; 2346 } 2347 if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { 2348 if (m->m_len != ETHER_HDR_LEN) { 2349 if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", 2350 __func__); 2351 /* checksum may be corrupted */ 2352 goto sendit; 2353 } 2354 for(m = m->m_next; m && m->m_len == 0; m = m->m_next) 2355 ; 2356 if (m == NULL) { 2357 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2358 /* checksum may be corrupted */ 2359 goto sendit; 2360 } 2361 ip = mtod(m, struct ip *); 2362 } else { 2363 p = mtod(m, u_int8_t *); 2364 p += ETHER_HDR_LEN; 2365 ip = (struct ip *)p; 2366 } 2367 offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; 2368 2369 sendit: 2370 f->sk_csum_startval = 0; 2371 f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | 2372 (offset << 16)); 2373 } 2374 2375 static int 2376 sk_encap(sc_if, m_head) 2377 struct sk_if_softc *sc_if; 2378 struct mbuf **m_head; 2379 { 2380 struct sk_txdesc *txd; 2381 struct sk_tx_desc *f = NULL; 2382 struct mbuf *m; 2383 bus_dma_segment_t txsegs[SK_MAXTXSEGS]; 2384 u_int32_t cflags, frag, si, sk_ctl; 2385 int error, i, nseg; 2386 2387 SK_IF_LOCK_ASSERT(sc_if); 2388 2389 if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) 2390 return (ENOBUFS); 2391 2392 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2393 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2394 if (error == EFBIG) { 2395 m = m_defrag(*m_head, M_NOWAIT); 2396 if (m == NULL) { 2397 m_freem(*m_head); 2398 *m_head = NULL; 2399 return (ENOMEM); 2400 } 2401 *m_head = m; 2402 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2403 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2404 if (error != 0) { 2405 m_freem(*m_head); 2406 *m_head = NULL; 2407 return (error); 2408 } 2409 } else if (error != 0) 2410 return (error); 2411 if (nseg == 0) { 2412 m_freem(*m_head); 2413 *m_head = NULL; 2414 return (EIO); 2415 } 2416 if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { 2417 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2418 return (ENOBUFS); 2419 } 2420 2421 m = *m_head; 2422 if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) 2423 cflags = SK_OPCODE_CSUM; 2424 else 2425 cflags = SK_OPCODE_DEFAULT; 2426 si = frag = sc_if->sk_cdata.sk_tx_prod; 2427 for (i = 0; i < nseg; i++) { 2428 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2429 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); 2430 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); 2431 sk_ctl = txsegs[i].ds_len | cflags; 2432 if (i == 0) { 2433 if (cflags == SK_OPCODE_CSUM) 2434 sk_txcksum(sc_if->sk_ifp, m, f); 2435 sk_ctl |= SK_TXCTL_FIRSTFRAG; 2436 } else 2437 sk_ctl |= SK_TXCTL_OWN; 2438 f->sk_ctl = htole32(sk_ctl); 2439 sc_if->sk_cdata.sk_tx_cnt++; 2440 SK_INC(frag, SK_TX_RING_CNT); 2441 } 2442 sc_if->sk_cdata.sk_tx_prod = frag; 2443 2444 /* set EOF on the last desciptor */ 2445 frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; 2446 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2447 f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 2448 2449 /* turn the first descriptor ownership to NIC */ 2450 f = &sc_if->sk_rdata.sk_tx_ring[si]; 2451 f->sk_ctl |= htole32(SK_TXCTL_OWN); 2452 2453 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); 2454 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); 2455 txd->tx_m = m; 2456 2457 /* sync descriptors */ 2458 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2459 BUS_DMASYNC_PREWRITE); 2460 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2461 sc_if->sk_cdata.sk_tx_ring_map, 2462 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2463 2464 return (0); 2465 } 2466 2467 static void 2468 sk_start(ifp) 2469 struct ifnet *ifp; 2470 { 2471 struct sk_if_softc *sc_if; 2472 2473 sc_if = ifp->if_softc; 2474 2475 SK_IF_LOCK(sc_if); 2476 sk_start_locked(ifp); 2477 SK_IF_UNLOCK(sc_if); 2478 2479 return; 2480 } 2481 2482 static void 2483 sk_start_locked(ifp) 2484 struct ifnet *ifp; 2485 { 2486 struct sk_softc *sc; 2487 struct sk_if_softc *sc_if; 2488 struct mbuf *m_head; 2489 int enq; 2490 2491 sc_if = ifp->if_softc; 2492 sc = sc_if->sk_softc; 2493 2494 SK_IF_LOCK_ASSERT(sc_if); 2495 2496 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2497 sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { 2498 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2499 if (m_head == NULL) 2500 break; 2501 2502 /* 2503 * Pack the data into the transmit ring. If we 2504 * don't have room, set the OACTIVE flag and wait 2505 * for the NIC to drain the ring. 2506 */ 2507 if (sk_encap(sc_if, &m_head)) { 2508 if (m_head == NULL) 2509 break; 2510 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2511 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2512 break; 2513 } 2514 2515 enq++; 2516 /* 2517 * If there's a BPF listener, bounce a copy of this frame 2518 * to him. 2519 */ 2520 BPF_MTAP(ifp, m_head); 2521 } 2522 2523 if (enq > 0) { 2524 /* Transmit */ 2525 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2526 2527 /* Set a timeout in case the chip goes out to lunch. */ 2528 sc_if->sk_watchdog_timer = 5; 2529 } 2530 } 2531 2532 2533 static void 2534 sk_watchdog(arg) 2535 void *arg; 2536 { 2537 struct sk_if_softc *sc_if; 2538 struct ifnet *ifp; 2539 2540 ifp = arg; 2541 sc_if = ifp->if_softc; 2542 2543 SK_IF_LOCK_ASSERT(sc_if); 2544 2545 if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) 2546 goto done; 2547 2548 /* 2549 * Reclaim first as there is a possibility of losing Tx completion 2550 * interrupts. 2551 */ 2552 sk_txeof(sc_if); 2553 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2554 if_printf(sc_if->sk_ifp, "watchdog timeout\n"); 2555 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2556 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2557 sk_init_locked(sc_if); 2558 } 2559 2560 done: 2561 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 2562 2563 return; 2564 } 2565 2566 static int 2567 skc_shutdown(dev) 2568 device_t dev; 2569 { 2570 struct sk_softc *sc; 2571 2572 sc = device_get_softc(dev); 2573 SK_LOCK(sc); 2574 2575 /* Turn off the 'driver is loaded' LED. */ 2576 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2577 2578 /* 2579 * Reset the GEnesis controller. Doing this should also 2580 * assert the resets on the attached XMAC(s). 2581 */ 2582 sk_reset(sc); 2583 SK_UNLOCK(sc); 2584 2585 return (0); 2586 } 2587 2588 static int 2589 skc_suspend(dev) 2590 device_t dev; 2591 { 2592 struct sk_softc *sc; 2593 struct sk_if_softc *sc_if0, *sc_if1; 2594 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2595 2596 sc = device_get_softc(dev); 2597 2598 SK_LOCK(sc); 2599 2600 sc_if0 = sc->sk_if[SK_PORT_A]; 2601 sc_if1 = sc->sk_if[SK_PORT_B]; 2602 if (sc_if0 != NULL) 2603 ifp0 = sc_if0->sk_ifp; 2604 if (sc_if1 != NULL) 2605 ifp1 = sc_if1->sk_ifp; 2606 if (ifp0 != NULL) 2607 sk_stop(sc_if0); 2608 if (ifp1 != NULL) 2609 sk_stop(sc_if1); 2610 sc->sk_suspended = 1; 2611 2612 SK_UNLOCK(sc); 2613 2614 return (0); 2615 } 2616 2617 static int 2618 skc_resume(dev) 2619 device_t dev; 2620 { 2621 struct sk_softc *sc; 2622 struct sk_if_softc *sc_if0, *sc_if1; 2623 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2624 2625 sc = device_get_softc(dev); 2626 2627 SK_LOCK(sc); 2628 2629 sc_if0 = sc->sk_if[SK_PORT_A]; 2630 sc_if1 = sc->sk_if[SK_PORT_B]; 2631 if (sc_if0 != NULL) 2632 ifp0 = sc_if0->sk_ifp; 2633 if (sc_if1 != NULL) 2634 ifp1 = sc_if1->sk_ifp; 2635 if (ifp0 != NULL && ifp0->if_flags & IFF_UP) 2636 sk_init_locked(sc_if0); 2637 if (ifp1 != NULL && ifp1->if_flags & IFF_UP) 2638 sk_init_locked(sc_if1); 2639 sc->sk_suspended = 0; 2640 2641 SK_UNLOCK(sc); 2642 2643 return (0); 2644 } 2645 2646 /* 2647 * According to the data sheet from SK-NET GENESIS the hardware can compute 2648 * two Rx checksums at the same time(Each checksum start position is 2649 * programmed in Rx descriptors). However it seems that TCP/UDP checksum 2650 * does not work at least on my Yukon hardware. I tried every possible ways 2651 * to get correct checksum value but couldn't get correct one. So TCP/UDP 2652 * checksum offload was disabled at the moment and only IP checksum offload 2653 * was enabled. 2654 * As nomral IP header size is 20 bytes I can't expect it would give an 2655 * increase in throughput. However it seems it doesn't hurt performance in 2656 * my testing. If there is a more detailed information for checksum secret 2657 * of the hardware in question please contact yongari@FreeBSD.org to add 2658 * TCP/UDP checksum offload support. 2659 */ 2660 static __inline void 2661 sk_rxcksum(ifp, m, csum) 2662 struct ifnet *ifp; 2663 struct mbuf *m; 2664 u_int32_t csum; 2665 { 2666 struct ether_header *eh; 2667 struct ip *ip; 2668 int32_t hlen, len, pktlen; 2669 u_int16_t csum1, csum2, ipcsum; 2670 2671 pktlen = m->m_pkthdr.len; 2672 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 2673 return; 2674 eh = mtod(m, struct ether_header *); 2675 if (eh->ether_type != htons(ETHERTYPE_IP)) 2676 return; 2677 ip = (struct ip *)(eh + 1); 2678 if (ip->ip_v != IPVERSION) 2679 return; 2680 hlen = ip->ip_hl << 2; 2681 pktlen -= sizeof(struct ether_header); 2682 if (hlen < sizeof(struct ip)) 2683 return; 2684 if (ntohs(ip->ip_len) < hlen) 2685 return; 2686 if (ntohs(ip->ip_len) != pktlen) 2687 return; 2688 2689 csum1 = htons(csum & 0xffff); 2690 csum2 = htons((csum >> 16) & 0xffff); 2691 ipcsum = in_addword(csum1, ~csum2 & 0xffff); 2692 /* checksum fixup for IP options */ 2693 len = hlen - sizeof(struct ip); 2694 if (len > 0) { 2695 /* 2696 * If the second checksum value is correct we can compute IP 2697 * checksum with simple math. Unfortunately the second checksum 2698 * value is wrong so we can't verify the checksum from the 2699 * value(It seems there is some magic here to get correct 2700 * value). If the second checksum value is correct it also 2701 * means we can get TCP/UDP checksum) here. However, it still 2702 * needs pseudo header checksum calculation due to hardware 2703 * limitations. 2704 */ 2705 return; 2706 } 2707 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 2708 if (ipcsum == 0xffff) 2709 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2710 } 2711 2712 static __inline int 2713 sk_rxvalid(sc, stat, len) 2714 struct sk_softc *sc; 2715 u_int32_t stat, len; 2716 { 2717 2718 if (sc->sk_type == SK_GENESIS) { 2719 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || 2720 XM_RXSTAT_BYTES(stat) != len) 2721 return (0); 2722 } else { 2723 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2724 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2725 YU_RXSTAT_JABBER)) != 0 || 2726 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2727 YU_RXSTAT_BYTES(stat) != len) 2728 return (0); 2729 } 2730 2731 return (1); 2732 } 2733 2734 static void 2735 sk_rxeof(sc_if) 2736 struct sk_if_softc *sc_if; 2737 { 2738 struct sk_softc *sc; 2739 struct mbuf *m; 2740 struct ifnet *ifp; 2741 struct sk_rx_desc *cur_rx; 2742 struct sk_rxdesc *rxd; 2743 int cons, prog; 2744 u_int32_t csum, rxstat, sk_ctl; 2745 2746 sc = sc_if->sk_softc; 2747 ifp = sc_if->sk_ifp; 2748 2749 SK_IF_LOCK_ASSERT(sc_if); 2750 2751 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2752 sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); 2753 2754 prog = 0; 2755 for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; 2756 prog++, SK_INC(cons, SK_RX_RING_CNT)) { 2757 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; 2758 sk_ctl = le32toh(cur_rx->sk_ctl); 2759 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2760 break; 2761 rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; 2762 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2763 2764 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2765 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2766 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2767 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2768 SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || 2769 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2770 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2771 sk_discard_rxbuf(sc_if, cons); 2772 continue; 2773 } 2774 2775 m = rxd->rx_m; 2776 csum = le32toh(cur_rx->sk_csum); 2777 if (sk_newbuf(sc_if, cons) != 0) { 2778 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2779 /* reuse old buffer */ 2780 sk_discard_rxbuf(sc_if, cons); 2781 continue; 2782 } 2783 m->m_pkthdr.rcvif = ifp; 2784 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2785 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2786 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2787 sk_rxcksum(ifp, m, csum); 2788 SK_IF_UNLOCK(sc_if); 2789 (*ifp->if_input)(ifp, m); 2790 SK_IF_LOCK(sc_if); 2791 } 2792 2793 if (prog > 0) { 2794 sc_if->sk_cdata.sk_rx_cons = cons; 2795 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2796 sc_if->sk_cdata.sk_rx_ring_map, 2797 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2798 } 2799 } 2800 2801 static void 2802 sk_jumbo_rxeof(sc_if) 2803 struct sk_if_softc *sc_if; 2804 { 2805 struct sk_softc *sc; 2806 struct mbuf *m; 2807 struct ifnet *ifp; 2808 struct sk_rx_desc *cur_rx; 2809 struct sk_rxdesc *jrxd; 2810 int cons, prog; 2811 u_int32_t csum, rxstat, sk_ctl; 2812 2813 sc = sc_if->sk_softc; 2814 ifp = sc_if->sk_ifp; 2815 2816 SK_IF_LOCK_ASSERT(sc_if); 2817 2818 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2819 sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); 2820 2821 prog = 0; 2822 for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; 2823 prog < SK_JUMBO_RX_RING_CNT; 2824 prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { 2825 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; 2826 sk_ctl = le32toh(cur_rx->sk_ctl); 2827 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2828 break; 2829 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; 2830 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2831 2832 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2833 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2834 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2835 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2836 SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || 2837 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2838 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2839 sk_discard_jumbo_rxbuf(sc_if, cons); 2840 continue; 2841 } 2842 2843 m = jrxd->rx_m; 2844 csum = le32toh(cur_rx->sk_csum); 2845 if (sk_jumbo_newbuf(sc_if, cons) != 0) { 2846 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2847 /* reuse old buffer */ 2848 sk_discard_jumbo_rxbuf(sc_if, cons); 2849 continue; 2850 } 2851 m->m_pkthdr.rcvif = ifp; 2852 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2853 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2854 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2855 sk_rxcksum(ifp, m, csum); 2856 SK_IF_UNLOCK(sc_if); 2857 (*ifp->if_input)(ifp, m); 2858 SK_IF_LOCK(sc_if); 2859 } 2860 2861 if (prog > 0) { 2862 sc_if->sk_cdata.sk_jumbo_rx_cons = cons; 2863 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2864 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2865 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2866 } 2867 } 2868 2869 static void 2870 sk_txeof(sc_if) 2871 struct sk_if_softc *sc_if; 2872 { 2873 struct sk_txdesc *txd; 2874 struct sk_tx_desc *cur_tx; 2875 struct ifnet *ifp; 2876 u_int32_t idx, sk_ctl; 2877 2878 ifp = sc_if->sk_ifp; 2879 2880 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2881 if (txd == NULL) 2882 return; 2883 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2884 sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); 2885 /* 2886 * Go through our tx ring and free mbufs for those 2887 * frames that have been sent. 2888 */ 2889 for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { 2890 if (sc_if->sk_cdata.sk_tx_cnt <= 0) 2891 break; 2892 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; 2893 sk_ctl = le32toh(cur_tx->sk_ctl); 2894 if (sk_ctl & SK_TXCTL_OWN) 2895 break; 2896 sc_if->sk_cdata.sk_tx_cnt--; 2897 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2898 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) 2899 continue; 2900 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2901 BUS_DMASYNC_POSTWRITE); 2902 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2903 2904 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2905 m_freem(txd->tx_m); 2906 txd->tx_m = NULL; 2907 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); 2908 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 2909 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2910 } 2911 sc_if->sk_cdata.sk_tx_cons = idx; 2912 sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2913 2914 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2915 sc_if->sk_cdata.sk_tx_ring_map, 2916 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2917 } 2918 2919 static void 2920 sk_tick(xsc_if) 2921 void *xsc_if; 2922 { 2923 struct sk_if_softc *sc_if; 2924 struct mii_data *mii; 2925 struct ifnet *ifp; 2926 int i; 2927 2928 sc_if = xsc_if; 2929 ifp = sc_if->sk_ifp; 2930 mii = device_get_softc(sc_if->sk_miibus); 2931 2932 if (!(ifp->if_flags & IFF_UP)) 2933 return; 2934 2935 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2936 sk_intr_bcom(sc_if); 2937 return; 2938 } 2939 2940 /* 2941 * According to SysKonnect, the correct way to verify that 2942 * the link has come back up is to poll bit 0 of the GPIO 2943 * register three times. This pin has the signal from the 2944 * link_sync pin connected to it; if we read the same link 2945 * state 3 times in a row, we know the link is up. 2946 */ 2947 for (i = 0; i < 3; i++) { 2948 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2949 break; 2950 } 2951 2952 if (i != 3) { 2953 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2954 return; 2955 } 2956 2957 /* Turn the GP0 interrupt back on. */ 2958 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2959 SK_XM_READ_2(sc_if, XM_ISR); 2960 mii_tick(mii); 2961 callout_stop(&sc_if->sk_tick_ch); 2962 } 2963 2964 static void 2965 sk_yukon_tick(xsc_if) 2966 void *xsc_if; 2967 { 2968 struct sk_if_softc *sc_if; 2969 struct mii_data *mii; 2970 2971 sc_if = xsc_if; 2972 mii = device_get_softc(sc_if->sk_miibus); 2973 2974 mii_tick(mii); 2975 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 2976 } 2977 2978 static void 2979 sk_intr_bcom(sc_if) 2980 struct sk_if_softc *sc_if; 2981 { 2982 struct mii_data *mii; 2983 struct ifnet *ifp; 2984 int status; 2985 mii = device_get_softc(sc_if->sk_miibus); 2986 ifp = sc_if->sk_ifp; 2987 2988 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2989 2990 /* 2991 * Read the PHY interrupt register to make sure 2992 * we clear any pending interrupts. 2993 */ 2994 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2995 2996 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2997 sk_init_xmac(sc_if); 2998 return; 2999 } 3000 3001 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 3002 int lstat; 3003 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 3004 BRGPHY_MII_AUXSTS); 3005 3006 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 3007 mii_mediachg(mii); 3008 /* Turn off the link LED. */ 3009 SK_IF_WRITE_1(sc_if, 0, 3010 SK_LINKLED1_CTL, SK_LINKLED_OFF); 3011 sc_if->sk_link = 0; 3012 } else if (status & BRGPHY_ISR_LNK_CHG) { 3013 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3014 BRGPHY_MII_IMR, 0xFF00); 3015 mii_tick(mii); 3016 sc_if->sk_link = 1; 3017 /* Turn on the link LED. */ 3018 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3019 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 3020 SK_LINKLED_BLINK_OFF); 3021 } else { 3022 mii_tick(mii); 3023 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3024 } 3025 } 3026 3027 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3028 3029 return; 3030 } 3031 3032 static void 3033 sk_intr_xmac(sc_if) 3034 struct sk_if_softc *sc_if; 3035 { 3036 struct sk_softc *sc; 3037 u_int16_t status; 3038 3039 sc = sc_if->sk_softc; 3040 status = SK_XM_READ_2(sc_if, XM_ISR); 3041 3042 /* 3043 * Link has gone down. Start MII tick timeout to 3044 * watch for link resync. 3045 */ 3046 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 3047 if (status & XM_ISR_GP0_SET) { 3048 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 3049 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3050 } 3051 3052 if (status & XM_ISR_AUTONEG_DONE) { 3053 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3054 } 3055 } 3056 3057 if (status & XM_IMR_TX_UNDERRUN) 3058 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 3059 3060 if (status & XM_IMR_RX_OVERRUN) 3061 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 3062 3063 status = SK_XM_READ_2(sc_if, XM_ISR); 3064 3065 return; 3066 } 3067 3068 static void 3069 sk_intr_yukon(sc_if) 3070 struct sk_if_softc *sc_if; 3071 { 3072 u_int8_t status; 3073 3074 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 3075 /* RX overrun */ 3076 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 3077 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3078 SK_RFCTL_RX_FIFO_OVER); 3079 } 3080 /* TX underrun */ 3081 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 3082 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3083 SK_TFCTL_TX_FIFO_UNDER); 3084 } 3085 } 3086 3087 static void 3088 sk_intr(xsc) 3089 void *xsc; 3090 { 3091 struct sk_softc *sc = xsc; 3092 struct sk_if_softc *sc_if0, *sc_if1; 3093 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 3094 u_int32_t status; 3095 3096 SK_LOCK(sc); 3097 3098 status = CSR_READ_4(sc, SK_ISSR); 3099 if (status == 0 || status == 0xffffffff || sc->sk_suspended) 3100 goto done_locked; 3101 3102 sc_if0 = sc->sk_if[SK_PORT_A]; 3103 sc_if1 = sc->sk_if[SK_PORT_B]; 3104 3105 if (sc_if0 != NULL) 3106 ifp0 = sc_if0->sk_ifp; 3107 if (sc_if1 != NULL) 3108 ifp1 = sc_if1->sk_ifp; 3109 3110 for (; (status &= sc->sk_intrmask) != 0;) { 3111 /* Handle receive interrupts first. */ 3112 if (status & SK_ISR_RX1_EOF) { 3113 if (ifp0->if_mtu > SK_MAX_FRAMELEN) 3114 sk_jumbo_rxeof(sc_if0); 3115 else 3116 sk_rxeof(sc_if0); 3117 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 3118 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3119 } 3120 if (status & SK_ISR_RX2_EOF) { 3121 if (ifp1->if_mtu > SK_MAX_FRAMELEN) 3122 sk_jumbo_rxeof(sc_if1); 3123 else 3124 sk_rxeof(sc_if1); 3125 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 3126 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3127 } 3128 3129 /* Then transmit interrupts. */ 3130 if (status & SK_ISR_TX1_S_EOF) { 3131 sk_txeof(sc_if0); 3132 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); 3133 } 3134 if (status & SK_ISR_TX2_S_EOF) { 3135 sk_txeof(sc_if1); 3136 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); 3137 } 3138 3139 /* Then MAC interrupts. */ 3140 if (status & SK_ISR_MAC1 && 3141 ifp0->if_drv_flags & IFF_DRV_RUNNING) { 3142 if (sc->sk_type == SK_GENESIS) 3143 sk_intr_xmac(sc_if0); 3144 else 3145 sk_intr_yukon(sc_if0); 3146 } 3147 3148 if (status & SK_ISR_MAC2 && 3149 ifp1->if_drv_flags & IFF_DRV_RUNNING) { 3150 if (sc->sk_type == SK_GENESIS) 3151 sk_intr_xmac(sc_if1); 3152 else 3153 sk_intr_yukon(sc_if1); 3154 } 3155 3156 if (status & SK_ISR_EXTERNAL_REG) { 3157 if (ifp0 != NULL && 3158 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 3159 sk_intr_bcom(sc_if0); 3160 if (ifp1 != NULL && 3161 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 3162 sk_intr_bcom(sc_if1); 3163 } 3164 status = CSR_READ_4(sc, SK_ISSR); 3165 } 3166 3167 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3168 3169 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3170 sk_start_locked(ifp0); 3171 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3172 sk_start_locked(ifp1); 3173 3174 done_locked: 3175 SK_UNLOCK(sc); 3176 } 3177 3178 static void 3179 sk_init_xmac(sc_if) 3180 struct sk_if_softc *sc_if; 3181 { 3182 struct sk_softc *sc; 3183 struct ifnet *ifp; 3184 u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 3185 static const struct sk_bcom_hack bhack[] = { 3186 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 3187 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 3188 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 3189 { 0, 0 } }; 3190 3191 SK_IF_LOCK_ASSERT(sc_if); 3192 3193 sc = sc_if->sk_softc; 3194 ifp = sc_if->sk_ifp; 3195 3196 /* Unreset the XMAC. */ 3197 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 3198 DELAY(1000); 3199 3200 /* Reset the XMAC's internal state. */ 3201 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3202 3203 /* Save the XMAC II revision */ 3204 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 3205 3206 /* 3207 * Perform additional initialization for external PHYs, 3208 * namely for the 1000baseTX cards that use the XMAC's 3209 * GMII mode. 3210 */ 3211 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3212 int i = 0; 3213 u_int32_t val; 3214 3215 /* Take PHY out of reset. */ 3216 val = sk_win_read_4(sc, SK_GPIO); 3217 if (sc_if->sk_port == SK_PORT_A) 3218 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 3219 else 3220 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 3221 sk_win_write_4(sc, SK_GPIO, val); 3222 3223 /* Enable GMII mode on the XMAC. */ 3224 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 3225 3226 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3227 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 3228 DELAY(10000); 3229 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3230 BRGPHY_MII_IMR, 0xFFF0); 3231 3232 /* 3233 * Early versions of the BCM5400 apparently have 3234 * a bug that requires them to have their reserved 3235 * registers initialized to some magic values. I don't 3236 * know what the numbers do, I'm just the messenger. 3237 */ 3238 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 3239 == 0x6041) { 3240 while(bhack[i].reg) { 3241 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3242 bhack[i].reg, bhack[i].val); 3243 i++; 3244 } 3245 } 3246 } 3247 3248 /* Set station address */ 3249 bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); 3250 SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); 3251 SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); 3252 SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); 3253 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 3254 3255 if (ifp->if_flags & IFF_BROADCAST) { 3256 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3257 } else { 3258 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3259 } 3260 3261 /* We don't need the FCS appended to the packet. */ 3262 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 3263 3264 /* We want short frames padded to 60 bytes. */ 3265 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 3266 3267 /* 3268 * Enable the reception of all error frames. This is is 3269 * a necessary evil due to the design of the XMAC. The 3270 * XMAC's receive FIFO is only 8K in size, however jumbo 3271 * frames can be up to 9000 bytes in length. When bad 3272 * frame filtering is enabled, the XMAC's RX FIFO operates 3273 * in 'store and forward' mode. For this to work, the 3274 * entire frame has to fit into the FIFO, but that means 3275 * that jumbo frames larger than 8192 bytes will be 3276 * truncated. Disabling all bad frame filtering causes 3277 * the RX FIFO to operate in streaming mode, in which 3278 * case the XMAC will start transferring frames out of the 3279 * RX FIFO as soon as the FIFO threshold is reached. 3280 */ 3281 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3282 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 3283 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 3284 XM_MODE_RX_INRANGELEN); 3285 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3286 } else 3287 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3288 3289 /* 3290 * Bump up the transmit threshold. This helps hold off transmit 3291 * underruns when we're blasting traffic from both ports at once. 3292 */ 3293 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 3294 3295 /* Set Rx filter */ 3296 sk_rxfilter_genesis(sc_if); 3297 3298 /* Clear and enable interrupts */ 3299 SK_XM_READ_2(sc_if, XM_ISR); 3300 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 3301 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 3302 else 3303 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3304 3305 /* Configure MAC arbiter */ 3306 switch(sc_if->sk_xmac_rev) { 3307 case XM_XMAC_REV_B2: 3308 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 3309 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 3310 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 3311 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 3312 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 3313 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 3314 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 3315 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 3316 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3317 break; 3318 case XM_XMAC_REV_C1: 3319 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 3320 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 3321 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 3322 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 3323 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 3324 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 3325 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 3326 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 3327 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3328 break; 3329 default: 3330 break; 3331 } 3332 sk_win_write_2(sc, SK_MACARB_CTL, 3333 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 3334 3335 sc_if->sk_link = 1; 3336 3337 return; 3338 } 3339 3340 static void 3341 sk_init_yukon(sc_if) 3342 struct sk_if_softc *sc_if; 3343 { 3344 u_int32_t phy, v; 3345 u_int16_t reg; 3346 struct sk_softc *sc; 3347 struct ifnet *ifp; 3348 u_int8_t *eaddr; 3349 int i; 3350 3351 SK_IF_LOCK_ASSERT(sc_if); 3352 3353 sc = sc_if->sk_softc; 3354 ifp = sc_if->sk_ifp; 3355 3356 if (sc->sk_type == SK_YUKON_LITE && 3357 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3358 /* 3359 * Workaround code for COMA mode, set PHY reset. 3360 * Otherwise it will not correctly take chip out of 3361 * powerdown (coma) 3362 */ 3363 v = sk_win_read_4(sc, SK_GPIO); 3364 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; 3365 sk_win_write_4(sc, SK_GPIO, v); 3366 } 3367 3368 /* GMAC and GPHY Reset */ 3369 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 3370 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 3371 DELAY(1000); 3372 3373 if (sc->sk_type == SK_YUKON_LITE && 3374 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3375 /* 3376 * Workaround code for COMA mode, clear PHY reset 3377 */ 3378 v = sk_win_read_4(sc, SK_GPIO); 3379 v |= SK_GPIO_DIR9; 3380 v &= ~SK_GPIO_DAT9; 3381 sk_win_write_4(sc, SK_GPIO, v); 3382 } 3383 3384 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 3385 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 3386 3387 if (sc->sk_coppertype) 3388 phy |= SK_GPHY_COPPER; 3389 else 3390 phy |= SK_GPHY_FIBER; 3391 3392 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 3393 DELAY(1000); 3394 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 3395 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 3396 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 3397 3398 /* unused read of the interrupt source register */ 3399 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 3400 3401 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 3402 3403 /* MIB Counter Clear Mode set */ 3404 reg |= YU_PAR_MIB_CLR; 3405 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3406 3407 /* MIB Counter Clear Mode clear */ 3408 reg &= ~YU_PAR_MIB_CLR; 3409 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3410 3411 /* receive control reg */ 3412 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 3413 3414 /* transmit parameter register */ 3415 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 3416 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 3417 3418 /* serial mode register */ 3419 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); 3420 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3421 reg |= YU_SMR_MFL_JUMBO; 3422 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 3423 3424 /* Setup Yukon's station address */ 3425 eaddr = IF_LLADDR(sc_if->sk_ifp); 3426 for (i = 0; i < 3; i++) 3427 SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4, 3428 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3429 /* Set GMAC source address of flow control. */ 3430 for (i = 0; i < 3; i++) 3431 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 3432 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3433 /* Set GMAC virtual address. */ 3434 for (i = 0; i < 3; i++) 3435 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, 3436 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3437 3438 /* Set Rx filter */ 3439 sk_rxfilter_yukon(sc_if); 3440 3441 /* enable interrupt mask for counter overflows */ 3442 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 3443 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 3444 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 3445 3446 /* Configure RX MAC FIFO Flush Mask */ 3447 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 3448 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 3449 YU_RXSTAT_JABBER; 3450 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 3451 3452 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ 3453 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) 3454 v = SK_TFCTL_OPERATION_ON; 3455 else 3456 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 3457 /* Configure RX MAC FIFO */ 3458 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 3459 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 3460 3461 /* Increase flush threshould to 64 bytes */ 3462 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, 3463 SK_RFCTL_FIFO_THRESHOLD + 1); 3464 3465 /* Configure TX MAC FIFO */ 3466 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 3467 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 3468 } 3469 3470 /* 3471 * Note that to properly initialize any part of the GEnesis chip, 3472 * you first have to take it out of reset mode. 3473 */ 3474 static void 3475 sk_init(xsc) 3476 void *xsc; 3477 { 3478 struct sk_if_softc *sc_if = xsc; 3479 3480 SK_IF_LOCK(sc_if); 3481 sk_init_locked(sc_if); 3482 SK_IF_UNLOCK(sc_if); 3483 3484 return; 3485 } 3486 3487 static void 3488 sk_init_locked(sc_if) 3489 struct sk_if_softc *sc_if; 3490 { 3491 struct sk_softc *sc; 3492 struct ifnet *ifp; 3493 struct mii_data *mii; 3494 u_int16_t reg; 3495 u_int32_t imr; 3496 int error; 3497 3498 SK_IF_LOCK_ASSERT(sc_if); 3499 3500 ifp = sc_if->sk_ifp; 3501 sc = sc_if->sk_softc; 3502 mii = device_get_softc(sc_if->sk_miibus); 3503 3504 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3505 return; 3506 3507 /* Cancel pending I/O and free all RX/TX buffers. */ 3508 sk_stop(sc_if); 3509 3510 if (sc->sk_type == SK_GENESIS) { 3511 /* Configure LINK_SYNC LED */ 3512 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 3513 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3514 SK_LINKLED_LINKSYNC_ON); 3515 3516 /* Configure RX LED */ 3517 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 3518 SK_RXLEDCTL_COUNTER_START); 3519 3520 /* Configure TX LED */ 3521 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 3522 SK_TXLEDCTL_COUNTER_START); 3523 } 3524 3525 /* 3526 * Configure descriptor poll timer 3527 * 3528 * SK-NET GENESIS data sheet says that possibility of losing Start 3529 * transmit command due to CPU/cache related interim storage problems 3530 * under certain conditions. The document recommends a polling 3531 * mechanism to send a Start transmit command to initiate transfer 3532 * of ready descriptors regulary. To cope with this issue sk(4) now 3533 * enables descriptor poll timer to initiate descriptor processing 3534 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still 3535 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx 3536 * command instead of waiting for next descriptor polling time. 3537 * The same rule may apply to Rx side too but it seems that is not 3538 * needed at the moment. 3539 * Since sk(4) uses descriptor polling as a last resort there is no 3540 * need to set smaller polling time than maximum allowable one. 3541 */ 3542 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); 3543 3544 /* Configure I2C registers */ 3545 3546 /* Configure XMAC(s) */ 3547 switch (sc->sk_type) { 3548 case SK_GENESIS: 3549 sk_init_xmac(sc_if); 3550 break; 3551 case SK_YUKON: 3552 case SK_YUKON_LITE: 3553 case SK_YUKON_LP: 3554 sk_init_yukon(sc_if); 3555 break; 3556 } 3557 mii_mediachg(mii); 3558 3559 if (sc->sk_type == SK_GENESIS) { 3560 /* Configure MAC FIFOs */ 3561 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 3562 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 3563 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 3564 3565 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 3566 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 3567 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 3568 } 3569 3570 /* Configure transmit arbiter(s) */ 3571 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 3572 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 3573 3574 /* Configure RAMbuffers */ 3575 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 3576 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 3577 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 3578 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 3579 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 3580 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 3581 3582 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 3583 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 3584 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 3585 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 3586 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 3587 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 3588 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 3589 3590 /* Configure BMUs */ 3591 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 3592 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3593 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3594 SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3595 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3596 SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3597 } else { 3598 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3599 SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); 3600 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3601 SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); 3602 } 3603 3604 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 3605 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 3606 SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); 3607 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 3608 SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); 3609 3610 /* Init descriptors */ 3611 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3612 error = sk_init_jumbo_rx_ring(sc_if); 3613 else 3614 error = sk_init_rx_ring(sc_if); 3615 if (error != 0) { 3616 device_printf(sc_if->sk_if_dev, 3617 "initialization failed: no memory for rx buffers\n"); 3618 sk_stop(sc_if); 3619 return; 3620 } 3621 sk_init_tx_ring(sc_if); 3622 3623 /* Set interrupt moderation if changed via sysctl. */ 3624 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 3625 if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { 3626 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 3627 sc->sk_int_ticks)); 3628 if (bootverbose) 3629 device_printf(sc_if->sk_if_dev, 3630 "interrupt moderation is %d us.\n", 3631 sc->sk_int_mod); 3632 } 3633 3634 /* Configure interrupt handling */ 3635 CSR_READ_4(sc, SK_ISSR); 3636 if (sc_if->sk_port == SK_PORT_A) 3637 sc->sk_intrmask |= SK_INTRS1; 3638 else 3639 sc->sk_intrmask |= SK_INTRS2; 3640 3641 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 3642 3643 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3644 3645 /* Start BMUs. */ 3646 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 3647 3648 switch(sc->sk_type) { 3649 case SK_GENESIS: 3650 /* Enable XMACs TX and RX state machines */ 3651 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 3652 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3653 break; 3654 case SK_YUKON: 3655 case SK_YUKON_LITE: 3656 case SK_YUKON_LP: 3657 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 3658 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 3659 #if 0 3660 /* XXX disable 100Mbps and full duplex mode? */ 3661 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); 3662 #endif 3663 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 3664 } 3665 3666 /* Activate descriptor polling timer */ 3667 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); 3668 /* start transfer of Tx descriptors */ 3669 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 3670 3671 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3672 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3673 3674 switch (sc->sk_type) { 3675 case SK_YUKON: 3676 case SK_YUKON_LITE: 3677 case SK_YUKON_LP: 3678 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 3679 break; 3680 } 3681 3682 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 3683 3684 return; 3685 } 3686 3687 static void 3688 sk_stop(sc_if) 3689 struct sk_if_softc *sc_if; 3690 { 3691 int i; 3692 struct sk_softc *sc; 3693 struct sk_txdesc *txd; 3694 struct sk_rxdesc *rxd; 3695 struct sk_rxdesc *jrxd; 3696 struct ifnet *ifp; 3697 u_int32_t val; 3698 3699 SK_IF_LOCK_ASSERT(sc_if); 3700 sc = sc_if->sk_softc; 3701 ifp = sc_if->sk_ifp; 3702 3703 callout_stop(&sc_if->sk_tick_ch); 3704 callout_stop(&sc_if->sk_watchdog_ch); 3705 3706 /* stop Tx descriptor polling timer */ 3707 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 3708 /* stop transfer of Tx descriptors */ 3709 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); 3710 for (i = 0; i < SK_TIMEOUT; i++) { 3711 val = CSR_READ_4(sc, sc_if->sk_tx_bmu); 3712 if ((val & SK_TXBMU_TX_STOP) == 0) 3713 break; 3714 DELAY(1); 3715 } 3716 if (i == SK_TIMEOUT) 3717 device_printf(sc_if->sk_if_dev, 3718 "can not stop transfer of Tx descriptor\n"); 3719 /* stop transfer of Rx descriptors */ 3720 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); 3721 for (i = 0; i < SK_TIMEOUT; i++) { 3722 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); 3723 if ((val & SK_RXBMU_RX_STOP) == 0) 3724 break; 3725 DELAY(1); 3726 } 3727 if (i == SK_TIMEOUT) 3728 device_printf(sc_if->sk_if_dev, 3729 "can not stop transfer of Rx descriptor\n"); 3730 3731 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3732 /* Put PHY back into reset. */ 3733 val = sk_win_read_4(sc, SK_GPIO); 3734 if (sc_if->sk_port == SK_PORT_A) { 3735 val |= SK_GPIO_DIR0; 3736 val &= ~SK_GPIO_DAT0; 3737 } else { 3738 val |= SK_GPIO_DIR2; 3739 val &= ~SK_GPIO_DAT2; 3740 } 3741 sk_win_write_4(sc, SK_GPIO, val); 3742 } 3743 3744 /* Turn off various components of this interface. */ 3745 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3746 switch (sc->sk_type) { 3747 case SK_GENESIS: 3748 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 3749 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 3750 break; 3751 case SK_YUKON: 3752 case SK_YUKON_LITE: 3753 case SK_YUKON_LP: 3754 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 3755 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 3756 break; 3757 } 3758 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 3759 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3760 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 3761 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3762 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 3763 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3764 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3765 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 3766 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 3767 3768 /* Disable interrupts */ 3769 if (sc_if->sk_port == SK_PORT_A) 3770 sc->sk_intrmask &= ~SK_INTRS1; 3771 else 3772 sc->sk_intrmask &= ~SK_INTRS2; 3773 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3774 3775 SK_XM_READ_2(sc_if, XM_ISR); 3776 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3777 3778 /* Free RX and TX mbufs still in the queues. */ 3779 for (i = 0; i < SK_RX_RING_CNT; i++) { 3780 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 3781 if (rxd->rx_m != NULL) { 3782 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, 3783 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3784 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, 3785 rxd->rx_dmamap); 3786 m_freem(rxd->rx_m); 3787 rxd->rx_m = NULL; 3788 } 3789 } 3790 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 3791 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 3792 if (jrxd->rx_m != NULL) { 3793 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, 3794 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3795 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 3796 jrxd->rx_dmamap); 3797 m_freem(jrxd->rx_m); 3798 jrxd->rx_m = NULL; 3799 } 3800 } 3801 for (i = 0; i < SK_TX_RING_CNT; i++) { 3802 txd = &sc_if->sk_cdata.sk_txdesc[i]; 3803 if (txd->tx_m != NULL) { 3804 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, 3805 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3806 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, 3807 txd->tx_dmamap); 3808 m_freem(txd->tx_m); 3809 txd->tx_m = NULL; 3810 } 3811 } 3812 3813 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); 3814 3815 return; 3816 } 3817 3818 static int 3819 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3820 { 3821 int error, value; 3822 3823 if (!arg1) 3824 return (EINVAL); 3825 value = *(int *)arg1; 3826 error = sysctl_handle_int(oidp, &value, 0, req); 3827 if (error || !req->newptr) 3828 return (error); 3829 if (value < low || value > high) 3830 return (EINVAL); 3831 *(int *)arg1 = value; 3832 return (0); 3833 } 3834 3835 static int 3836 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) 3837 { 3838 return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); 3839 } 3840