xref: /freebsd/sys/dev/sk/if_sk.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/module.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/sysctl.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #include <dev/mii/brgphyreg.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #if 0
123 #define SK_USEIOSPACE
124 #endif
125 
126 #include <pci/if_skreg.h>
127 #include <pci/xmaciireg.h>
128 #include <pci/yukonreg.h>
129 
130 MODULE_DEPEND(sk, pci, 1, 1, 1);
131 MODULE_DEPEND(sk, ether, 1, 1, 1);
132 MODULE_DEPEND(sk, miibus, 1, 1, 1);
133 
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 #ifndef lint
138 static const char rcsid[] =
139   "$FreeBSD$";
140 #endif
141 
142 static struct sk_type sk_devs[] = {
143 	{
144 		VENDORID_SK,
145 		DEVICEID_SK_V1,
146 		"SysKonnect Gigabit Ethernet (V1.0)"
147 	},
148 	{
149 		VENDORID_SK,
150 		DEVICEID_SK_V2,
151 		"SysKonnect Gigabit Ethernet (V2.0)"
152 	},
153 	{
154 		VENDORID_MARVELL,
155 		DEVICEID_SK_V2,
156 		"Marvell Gigabit Ethernet"
157 	},
158 	{
159 		VENDORID_MARVELL,
160 		DEVICEID_BELKIN_5005,
161 		"Belkin F5D5005 Gigabit Ethernet"
162 	},
163 	{
164 		VENDORID_3COM,
165 		DEVICEID_3COM_3C940,
166 		"3Com 3C940 Gigabit Ethernet"
167 	},
168 	{
169 		VENDORID_LINKSYS,
170 		DEVICEID_LINKSYS_EG1032,
171 		"Linksys EG1032 Gigabit Ethernet"
172 	},
173 	{
174 		VENDORID_DLINK,
175 		DEVICEID_DLINK_DGE530T,
176 		"D-Link DGE-530T Gigabit Ethernet"
177 	},
178 	{ 0, 0, NULL }
179 };
180 
181 static int skc_probe(device_t);
182 static int skc_attach(device_t);
183 static int skc_detach(device_t);
184 static void skc_shutdown(device_t);
185 static int sk_detach(device_t);
186 static int sk_probe(device_t);
187 static int sk_attach(device_t);
188 static void sk_tick(void *);
189 static void sk_intr(void *);
190 static void sk_intr_xmac(struct sk_if_softc *);
191 static void sk_intr_bcom(struct sk_if_softc *);
192 static void sk_intr_yukon(struct sk_if_softc *);
193 static void sk_rxeof(struct sk_if_softc *);
194 static void sk_txeof(struct sk_if_softc *);
195 static int sk_encap(struct sk_if_softc *, struct mbuf *,
196 					u_int32_t *);
197 static void sk_start(struct ifnet *);
198 static void sk_start_locked(struct ifnet *);
199 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
200 static void sk_init(void *);
201 static void sk_init_locked(struct sk_if_softc *);
202 static void sk_init_xmac(struct sk_if_softc *);
203 static void sk_init_yukon(struct sk_if_softc *);
204 static void sk_stop(struct sk_if_softc *);
205 static void sk_watchdog(struct ifnet *);
206 static int sk_ifmedia_upd(struct ifnet *);
207 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
208 static void sk_reset(struct sk_softc *);
209 static int sk_newbuf(struct sk_if_softc *,
210 					struct sk_chain *, struct mbuf *);
211 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
212 static void sk_free_jumbo_mem(struct sk_if_softc *);
213 static void *sk_jalloc(struct sk_if_softc *);
214 static void sk_jfree(void *, void *);
215 static int sk_init_rx_ring(struct sk_if_softc *);
216 static void sk_init_tx_ring(struct sk_if_softc *);
217 static u_int32_t sk_win_read_4(struct sk_softc *, int);
218 static u_int16_t sk_win_read_2(struct sk_softc *, int);
219 static u_int8_t sk_win_read_1(struct sk_softc *, int);
220 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
221 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
222 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
223 static u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
224 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
225 static void sk_vpd_read(struct sk_softc *);
226 
227 static int sk_miibus_readreg(device_t, int, int);
228 static int sk_miibus_writereg(device_t, int, int, int);
229 static void sk_miibus_statchg(device_t);
230 
231 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
232 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
233 						int);
234 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
235 
236 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
237 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
238 						int);
239 static void sk_marv_miibus_statchg(struct sk_if_softc *);
240 
241 static uint32_t sk_xmchash(const uint8_t *);
242 static uint32_t sk_gmchash(const uint8_t *);
243 static void sk_setfilt(struct sk_if_softc *, caddr_t, int);
244 static void sk_setmulti(struct sk_if_softc *);
245 static void sk_setpromisc(struct sk_if_softc *);
246 
247 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
248 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
249 
250 #ifdef SK_USEIOSPACE
251 #define SK_RES		SYS_RES_IOPORT
252 #define SK_RID		SK_PCI_LOIO
253 #else
254 #define SK_RES		SYS_RES_MEMORY
255 #define SK_RID		SK_PCI_LOMEM
256 #endif
257 
258 /*
259  * Note that we have newbus methods for both the GEnesis controller
260  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
261  * the miibus code is a child of the XMACs. We need to do it this way
262  * so that the miibus drivers can access the PHY registers on the
263  * right PHY. It's not quite what I had in mind, but it's the only
264  * design that achieves the desired effect.
265  */
266 static device_method_t skc_methods[] = {
267 	/* Device interface */
268 	DEVMETHOD(device_probe,		skc_probe),
269 	DEVMETHOD(device_attach,	skc_attach),
270 	DEVMETHOD(device_detach,	skc_detach),
271 	DEVMETHOD(device_shutdown,	skc_shutdown),
272 
273 	/* bus interface */
274 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
275 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
276 
277 	{ 0, 0 }
278 };
279 
280 static driver_t skc_driver = {
281 	"skc",
282 	skc_methods,
283 	sizeof(struct sk_softc)
284 };
285 
286 static devclass_t skc_devclass;
287 
288 static device_method_t sk_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		sk_probe),
291 	DEVMETHOD(device_attach,	sk_attach),
292 	DEVMETHOD(device_detach,	sk_detach),
293 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
294 
295 	/* bus interface */
296 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
297 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
298 
299 	/* MII interface */
300 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
301 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
302 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
303 
304 	{ 0, 0 }
305 };
306 
307 static driver_t sk_driver = {
308 	"sk",
309 	sk_methods,
310 	sizeof(struct sk_if_softc)
311 };
312 
313 static devclass_t sk_devclass;
314 
315 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
316 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
317 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
318 
319 #define SK_SETBIT(sc, reg, x)		\
320 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
321 
322 #define SK_CLRBIT(sc, reg, x)		\
323 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
324 
325 #define SK_WIN_SETBIT_4(sc, reg, x)	\
326 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
327 
328 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
329 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
330 
331 #define SK_WIN_SETBIT_2(sc, reg, x)	\
332 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
333 
334 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
335 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
336 
337 static u_int32_t
338 sk_win_read_4(sc, reg)
339 	struct sk_softc		*sc;
340 	int			reg;
341 {
342 #ifdef SK_USEIOSPACE
343 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
344 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
345 #else
346 	return(CSR_READ_4(sc, reg));
347 #endif
348 }
349 
350 static u_int16_t
351 sk_win_read_2(sc, reg)
352 	struct sk_softc		*sc;
353 	int			reg;
354 {
355 #ifdef SK_USEIOSPACE
356 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
357 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
358 #else
359 	return(CSR_READ_2(sc, reg));
360 #endif
361 }
362 
363 static u_int8_t
364 sk_win_read_1(sc, reg)
365 	struct sk_softc		*sc;
366 	int			reg;
367 {
368 #ifdef SK_USEIOSPACE
369 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
370 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
371 #else
372 	return(CSR_READ_1(sc, reg));
373 #endif
374 }
375 
376 static void
377 sk_win_write_4(sc, reg, val)
378 	struct sk_softc		*sc;
379 	int			reg;
380 	u_int32_t		val;
381 {
382 #ifdef SK_USEIOSPACE
383 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
384 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
385 #else
386 	CSR_WRITE_4(sc, reg, val);
387 #endif
388 	return;
389 }
390 
391 static void
392 sk_win_write_2(sc, reg, val)
393 	struct sk_softc		*sc;
394 	int			reg;
395 	u_int32_t		val;
396 {
397 #ifdef SK_USEIOSPACE
398 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
399 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
400 #else
401 	CSR_WRITE_2(sc, reg, val);
402 #endif
403 	return;
404 }
405 
406 static void
407 sk_win_write_1(sc, reg, val)
408 	struct sk_softc		*sc;
409 	int			reg;
410 	u_int32_t		val;
411 {
412 #ifdef SK_USEIOSPACE
413 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
414 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
415 #else
416 	CSR_WRITE_1(sc, reg, val);
417 #endif
418 	return;
419 }
420 
421 /*
422  * The VPD EEPROM contains Vital Product Data, as suggested in
423  * the PCI 2.1 specification. The VPD data is separared into areas
424  * denoted by resource IDs. The SysKonnect VPD contains an ID string
425  * resource (the name of the adapter), a read-only area resource
426  * containing various key/data fields and a read/write area which
427  * can be used to store asset management information or log messages.
428  * We read the ID string and read-only into buffers attached to
429  * the controller softc structure for later use. At the moment,
430  * we only use the ID string during skc_attach().
431  */
432 static u_int8_t
433 sk_vpd_readbyte(sc, addr)
434 	struct sk_softc		*sc;
435 	int			addr;
436 {
437 	int			i;
438 
439 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
440 	for (i = 0; i < SK_TIMEOUT; i++) {
441 		DELAY(1);
442 		if (sk_win_read_2(sc,
443 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
444 			break;
445 	}
446 
447 	if (i == SK_TIMEOUT)
448 		return(0);
449 
450 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
451 }
452 
453 static void
454 sk_vpd_read_res(sc, res, addr)
455 	struct sk_softc		*sc;
456 	struct vpd_res		*res;
457 	int			addr;
458 {
459 	int			i;
460 	u_int8_t		*ptr;
461 
462 	ptr = (u_int8_t *)res;
463 	for (i = 0; i < sizeof(struct vpd_res); i++)
464 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
465 
466 	return;
467 }
468 
469 static void
470 sk_vpd_read(sc)
471 	struct sk_softc		*sc;
472 {
473 	int			pos = 0, i;
474 	struct vpd_res		res;
475 
476 	if (sc->sk_vpd_prodname != NULL)
477 		free(sc->sk_vpd_prodname, M_DEVBUF);
478 	if (sc->sk_vpd_readonly != NULL)
479 		free(sc->sk_vpd_readonly, M_DEVBUF);
480 	sc->sk_vpd_prodname = NULL;
481 	sc->sk_vpd_readonly = NULL;
482 	sc->sk_vpd_readonly_len = 0;
483 
484 	sk_vpd_read_res(sc, &res, pos);
485 
486 	/*
487 	 * Bail out quietly if the eeprom appears to be missing or empty.
488 	 */
489 	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
490 		return;
491 
492 	if (res.vr_id != VPD_RES_ID) {
493 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
494 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
495 		return;
496 	}
497 
498 	pos += sizeof(res);
499 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
500 	if (sc->sk_vpd_prodname != NULL) {
501 		for (i = 0; i < res.vr_len; i++)
502 			sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
503 		sc->sk_vpd_prodname[i] = '\0';
504 	}
505 	pos += res.vr_len;
506 
507 	sk_vpd_read_res(sc, &res, pos);
508 
509 	if (res.vr_id != VPD_RES_READ) {
510 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
511 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
512 		return;
513 	}
514 
515 	pos += sizeof(res);
516 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
517 	for (i = 0; i < res.vr_len; i++)
518 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
519 	sc->sk_vpd_readonly_len = res.vr_len;
520 
521 	return;
522 }
523 
524 static int
525 sk_miibus_readreg(dev, phy, reg)
526 	device_t		dev;
527 	int			phy, reg;
528 {
529 	struct sk_if_softc	*sc_if;
530 
531 	sc_if = device_get_softc(dev);
532 
533 	switch(sc_if->sk_softc->sk_type) {
534 	case SK_GENESIS:
535 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
536 	case SK_YUKON:
537 	case SK_YUKON_LITE:
538 	case SK_YUKON_LP:
539 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
540 	}
541 
542 	return(0);
543 }
544 
545 static int
546 sk_miibus_writereg(dev, phy, reg, val)
547 	device_t		dev;
548 	int			phy, reg, val;
549 {
550 	struct sk_if_softc	*sc_if;
551 
552 	sc_if = device_get_softc(dev);
553 
554 	switch(sc_if->sk_softc->sk_type) {
555 	case SK_GENESIS:
556 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
557 	case SK_YUKON:
558 	case SK_YUKON_LITE:
559 	case SK_YUKON_LP:
560 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
561 	}
562 
563 	return(0);
564 }
565 
566 static void
567 sk_miibus_statchg(dev)
568 	device_t		dev;
569 {
570 	struct sk_if_softc	*sc_if;
571 
572 	sc_if = device_get_softc(dev);
573 
574 	switch(sc_if->sk_softc->sk_type) {
575 	case SK_GENESIS:
576 		sk_xmac_miibus_statchg(sc_if);
577 		break;
578 	case SK_YUKON:
579 	case SK_YUKON_LITE:
580 	case SK_YUKON_LP:
581 		sk_marv_miibus_statchg(sc_if);
582 		break;
583 	}
584 
585 	return;
586 }
587 
588 static int
589 sk_xmac_miibus_readreg(sc_if, phy, reg)
590 	struct sk_if_softc	*sc_if;
591 	int			phy, reg;
592 {
593 	int			i;
594 
595 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
596 		return(0);
597 
598 	SK_IF_LOCK(sc_if);
599 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
600 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
601 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
602 		for (i = 0; i < SK_TIMEOUT; i++) {
603 			DELAY(1);
604 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
605 			    XM_MMUCMD_PHYDATARDY)
606 				break;
607 		}
608 
609 		if (i == SK_TIMEOUT) {
610 			printf("sk%d: phy failed to come ready\n",
611 			    sc_if->sk_unit);
612 			SK_IF_UNLOCK(sc_if);
613 			return(0);
614 		}
615 	}
616 	DELAY(1);
617 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
618 	SK_IF_UNLOCK(sc_if);
619 	return(i);
620 }
621 
622 static int
623 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
624 	struct sk_if_softc	*sc_if;
625 	int			phy, reg, val;
626 {
627 	int			i;
628 
629 	SK_IF_LOCK(sc_if);
630 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
631 	for (i = 0; i < SK_TIMEOUT; i++) {
632 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
633 			break;
634 	}
635 
636 	if (i == SK_TIMEOUT) {
637 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
638 		SK_IF_UNLOCK(sc_if);
639 		return(ETIMEDOUT);
640 	}
641 
642 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
643 	for (i = 0; i < SK_TIMEOUT; i++) {
644 		DELAY(1);
645 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
646 			break;
647 	}
648 	SK_IF_UNLOCK(sc_if);
649 	if (i == SK_TIMEOUT)
650 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
651 
652 	return(0);
653 }
654 
655 static void
656 sk_xmac_miibus_statchg(sc_if)
657 	struct sk_if_softc	*sc_if;
658 {
659 	struct mii_data		*mii;
660 
661 	mii = device_get_softc(sc_if->sk_miibus);
662 
663 	SK_IF_LOCK(sc_if);
664 	/*
665 	 * If this is a GMII PHY, manually set the XMAC's
666 	 * duplex mode accordingly.
667 	 */
668 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
669 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
670 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
671 		} else {
672 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
673 		}
674 	}
675 	SK_IF_UNLOCK(sc_if);
676 
677 	return;
678 }
679 
680 static int
681 sk_marv_miibus_readreg(sc_if, phy, reg)
682 	struct sk_if_softc	*sc_if;
683 	int			phy, reg;
684 {
685 	u_int16_t		val;
686 	int			i;
687 
688 	if (phy != 0 ||
689 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
690 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
691 		return(0);
692 	}
693 
694 	SK_IF_LOCK(sc_if);
695         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
696 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
697 
698 	for (i = 0; i < SK_TIMEOUT; i++) {
699 		DELAY(1);
700 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
701 		if (val & YU_SMICR_READ_VALID)
702 			break;
703 	}
704 
705 	if (i == SK_TIMEOUT) {
706 		printf("sk%d: phy failed to come ready\n",
707 		    sc_if->sk_unit);
708 		SK_IF_UNLOCK(sc_if);
709 		return(0);
710 	}
711 
712 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
713 	SK_IF_UNLOCK(sc_if);
714 
715 	return(val);
716 }
717 
718 static int
719 sk_marv_miibus_writereg(sc_if, phy, reg, val)
720 	struct sk_if_softc	*sc_if;
721 	int			phy, reg, val;
722 {
723 	int			i;
724 
725 	SK_IF_LOCK(sc_if);
726 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
727 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
728 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
729 
730 	for (i = 0; i < SK_TIMEOUT; i++) {
731 		DELAY(1);
732 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
733 			break;
734 	}
735 	SK_IF_UNLOCK(sc_if);
736 
737 	return(0);
738 }
739 
740 static void
741 sk_marv_miibus_statchg(sc_if)
742 	struct sk_if_softc	*sc_if;
743 {
744 	return;
745 }
746 
747 #define HASH_BITS		6
748 
749 static u_int32_t
750 sk_xmchash(addr)
751 	const uint8_t *addr;
752 {
753 	uint32_t crc;
754 
755 	/* Compute CRC for the address value. */
756 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
757 
758 	return (~crc & ((1 << HASH_BITS) - 1));
759 }
760 
761 /* gmchash is just a big endian crc */
762 static u_int32_t
763 sk_gmchash(addr)
764 	const uint8_t *addr;
765 {
766 	uint32_t crc;
767 
768 	/* Compute CRC for the address value. */
769 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
770 
771 	return (crc & ((1 << HASH_BITS) - 1));
772 }
773 
774 static void
775 sk_setfilt(sc_if, addr, slot)
776 	struct sk_if_softc	*sc_if;
777 	caddr_t			addr;
778 	int			slot;
779 {
780 	int			base;
781 
782 	base = XM_RXFILT_ENTRY(slot);
783 
784 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
785 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
786 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
787 
788 	return;
789 }
790 
791 static void
792 sk_setmulti(sc_if)
793 	struct sk_if_softc	*sc_if;
794 {
795 	struct sk_softc		*sc = sc_if->sk_softc;
796 	struct ifnet		*ifp = sc_if->sk_ifp;
797 	u_int32_t		hashes[2] = { 0, 0 };
798 	int			h = 0, i;
799 	struct ifmultiaddr	*ifma;
800 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
801 
802 	SK_IF_LOCK_ASSERT(sc_if);
803 
804 	/* First, zot all the existing filters. */
805 	switch(sc->sk_type) {
806 	case SK_GENESIS:
807 		for (i = 1; i < XM_RXFILT_MAX; i++)
808 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
809 
810 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
811 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
812 		break;
813 	case SK_YUKON:
814 	case SK_YUKON_LITE:
815 	case SK_YUKON_LP:
816 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
817 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
818 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
819 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
820 		break;
821 	}
822 
823 	/* Now program new ones. */
824 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
825 		hashes[0] = 0xFFFFFFFF;
826 		hashes[1] = 0xFFFFFFFF;
827 	} else {
828 		i = 1;
829 		IF_ADDR_LOCK(ifp);
830 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
831 			if (ifma->ifma_addr->sa_family != AF_LINK)
832 				continue;
833 			/*
834 			 * Program the first XM_RXFILT_MAX multicast groups
835 			 * into the perfect filter. For all others,
836 			 * use the hash table.
837 			 */
838 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
839 				sk_setfilt(sc_if,
840 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
841 				i++;
842 				continue;
843 			}
844 
845 			switch(sc->sk_type) {
846 			case SK_GENESIS:
847 				h = sk_xmchash(
848 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
849 				break;
850 			case SK_YUKON:
851 			case SK_YUKON_LITE:
852 			case SK_YUKON_LP:
853 				h = sk_gmchash(
854 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
855 				break;
856 			}
857 			if (h < 32)
858 				hashes[0] |= (1 << h);
859 			else
860 				hashes[1] |= (1 << (h - 32));
861 		}
862 		IF_ADDR_UNLOCK(ifp);
863 	}
864 
865 	switch(sc->sk_type) {
866 	case SK_GENESIS:
867 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
868 			       XM_MODE_RX_USE_PERFECT);
869 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
870 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
871 		break;
872 	case SK_YUKON:
873 	case SK_YUKON_LITE:
874 	case SK_YUKON_LP:
875 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
876 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
877 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
878 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
879 		break;
880 	}
881 
882 	return;
883 }
884 
885 static void
886 sk_setpromisc(sc_if)
887 	struct sk_if_softc	*sc_if;
888 {
889 	struct sk_softc		*sc = sc_if->sk_softc;
890 	struct ifnet		*ifp = sc_if->sk_ifp;
891 
892 	SK_IF_LOCK_ASSERT(sc_if);
893 
894 	switch(sc->sk_type) {
895 	case SK_GENESIS:
896 		if (ifp->if_flags & IFF_PROMISC) {
897 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
898 		} else {
899 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
900 		}
901 		break;
902 	case SK_YUKON:
903 	case SK_YUKON_LITE:
904 	case SK_YUKON_LP:
905 		if (ifp->if_flags & IFF_PROMISC) {
906 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
907 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
908 		} else {
909 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
910 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
911 		}
912 		break;
913 	}
914 
915 	return;
916 }
917 
918 static int
919 sk_init_rx_ring(sc_if)
920 	struct sk_if_softc	*sc_if;
921 {
922 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
923 	struct sk_ring_data	*rd = sc_if->sk_rdata;
924 	int			i;
925 
926 	bzero((char *)rd->sk_rx_ring,
927 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
928 
929 	for (i = 0; i < SK_RX_RING_CNT; i++) {
930 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
931 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
932 			return(ENOBUFS);
933 		if (i == (SK_RX_RING_CNT - 1)) {
934 			cd->sk_rx_chain[i].sk_next =
935 			    &cd->sk_rx_chain[0];
936 			rd->sk_rx_ring[i].sk_next =
937 			    vtophys(&rd->sk_rx_ring[0]);
938 		} else {
939 			cd->sk_rx_chain[i].sk_next =
940 			    &cd->sk_rx_chain[i + 1];
941 			rd->sk_rx_ring[i].sk_next =
942 			    vtophys(&rd->sk_rx_ring[i + 1]);
943 		}
944 	}
945 
946 	sc_if->sk_cdata.sk_rx_prod = 0;
947 	sc_if->sk_cdata.sk_rx_cons = 0;
948 
949 	return(0);
950 }
951 
952 static void
953 sk_init_tx_ring(sc_if)
954 	struct sk_if_softc	*sc_if;
955 {
956 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
957 	struct sk_ring_data	*rd = sc_if->sk_rdata;
958 	int			i;
959 
960 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
961 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
962 
963 	for (i = 0; i < SK_TX_RING_CNT; i++) {
964 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
965 		if (i == (SK_TX_RING_CNT - 1)) {
966 			cd->sk_tx_chain[i].sk_next =
967 			    &cd->sk_tx_chain[0];
968 			rd->sk_tx_ring[i].sk_next =
969 			    vtophys(&rd->sk_tx_ring[0]);
970 		} else {
971 			cd->sk_tx_chain[i].sk_next =
972 			    &cd->sk_tx_chain[i + 1];
973 			rd->sk_tx_ring[i].sk_next =
974 			    vtophys(&rd->sk_tx_ring[i + 1]);
975 		}
976 	}
977 
978 	sc_if->sk_cdata.sk_tx_prod = 0;
979 	sc_if->sk_cdata.sk_tx_cons = 0;
980 	sc_if->sk_cdata.sk_tx_cnt = 0;
981 
982 	return;
983 }
984 
985 static int
986 sk_newbuf(sc_if, c, m)
987 	struct sk_if_softc	*sc_if;
988 	struct sk_chain		*c;
989 	struct mbuf		*m;
990 {
991 	struct mbuf		*m_new = NULL;
992 	struct sk_rx_desc	*r;
993 
994 	if (m == NULL) {
995 		caddr_t			*buf = NULL;
996 
997 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
998 		if (m_new == NULL)
999 			return(ENOBUFS);
1000 
1001 		/* Allocate the jumbo buffer */
1002 		buf = sk_jalloc(sc_if);
1003 		if (buf == NULL) {
1004 			m_freem(m_new);
1005 #ifdef SK_VERBOSE
1006 			printf("sk%d: jumbo allocation failed "
1007 			    "-- packet dropped!\n", sc_if->sk_unit);
1008 #endif
1009 			return(ENOBUFS);
1010 		}
1011 
1012 		/* Attach the buffer to the mbuf */
1013 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
1014 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
1015 		m_new->m_data = (void *)buf;
1016 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
1017 	} else {
1018 		/*
1019 	 	 * We're re-using a previously allocated mbuf;
1020 		 * be sure to re-init pointers and lengths to
1021 		 * default values.
1022 		 */
1023 		m_new = m;
1024 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
1025 		m_new->m_data = m_new->m_ext.ext_buf;
1026 	}
1027 
1028 	/*
1029 	 * Adjust alignment so packet payload begins on a
1030 	 * longword boundary. Mandatory for Alpha, useful on
1031 	 * x86 too.
1032 	 */
1033 	m_adj(m_new, ETHER_ALIGN);
1034 
1035 	r = c->sk_desc;
1036 	c->sk_mbuf = m_new;
1037 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1038 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1039 
1040 	return(0);
1041 }
1042 
1043 /*
1044  * Allocate jumbo buffer storage. The SysKonnect adapters support
1045  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1046  * use them in their drivers. In order for us to use them, we need
1047  * large 9K receive buffers, however standard mbuf clusters are only
1048  * 2048 bytes in size. Consequently, we need to allocate and manage
1049  * our own jumbo buffer pool. Fortunately, this does not require an
1050  * excessive amount of additional code.
1051  */
1052 static int
1053 sk_alloc_jumbo_mem(sc_if)
1054 	struct sk_if_softc	*sc_if;
1055 {
1056 	caddr_t			ptr;
1057 	register int		i;
1058 	struct sk_jpool_entry   *entry;
1059 
1060 	/* Grab a big chunk o' storage. */
1061 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1062 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1063 
1064 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1065 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1066 		return(ENOBUFS);
1067 	}
1068 
1069 	mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF);
1070 
1071 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1072 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1073 
1074 	/*
1075 	 * Now divide it up into 9K pieces and save the addresses
1076 	 * in an array.
1077 	 */
1078 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1079 	for (i = 0; i < SK_JSLOTS; i++) {
1080 		sc_if->sk_cdata.sk_jslots[i] = ptr;
1081 		ptr += SK_JLEN;
1082 		entry = malloc(sizeof(struct sk_jpool_entry),
1083 		    M_DEVBUF, M_NOWAIT);
1084 		if (entry == NULL) {
1085 			sk_free_jumbo_mem(sc_if);
1086 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1087 			printf("sk%d: no memory for jumbo "
1088 			    "buffer queue!\n", sc_if->sk_unit);
1089 			return(ENOBUFS);
1090 		}
1091 		entry->slot = i;
1092 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1093 		    entry, jpool_entries);
1094 	}
1095 
1096 	return(0);
1097 }
1098 
1099 static void
1100 sk_free_jumbo_mem(sc_if)
1101 	struct sk_if_softc	*sc_if;
1102 {
1103 	struct sk_jpool_entry	*entry;
1104 
1105 	SK_JLIST_LOCK(sc_if);
1106 
1107 	/* We cannot release external mbuf storage while in use. */
1108 	if (!SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) {
1109 		printf("sk%d: will leak jumbo buffer memory!\n", sc_if->sk_unit);
1110 		SK_JLIST_UNLOCK(sc_if);
1111 		return;
1112 	}
1113 
1114 	while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) {
1115 		entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1116 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1117 		free(entry, M_DEVBUF);
1118 	}
1119 
1120 	SK_JLIST_UNLOCK(sc_if);
1121 
1122 	mtx_destroy(&sc_if->sk_jlist_mtx);
1123 
1124 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1125 
1126 	return;
1127 }
1128 
1129 /*
1130  * Allocate a jumbo buffer.
1131  */
1132 static void *
1133 sk_jalloc(sc_if)
1134 	struct sk_if_softc	*sc_if;
1135 {
1136 	struct sk_jpool_entry   *entry;
1137 
1138 	SK_JLIST_LOCK(sc_if);
1139 
1140 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1141 
1142 	if (entry == NULL) {
1143 #ifdef SK_VERBOSE
1144 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1145 #endif
1146 		SK_JLIST_UNLOCK(sc_if);
1147 		return(NULL);
1148 	}
1149 
1150 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1151 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1152 
1153 	SK_JLIST_UNLOCK(sc_if);
1154 
1155 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1156 }
1157 
1158 /*
1159  * Release a jumbo buffer.
1160  */
1161 static void
1162 sk_jfree(buf, args)
1163 	void			*buf;
1164 	void			*args;
1165 {
1166 	struct sk_if_softc	*sc_if;
1167 	int		        i;
1168 	struct sk_jpool_entry   *entry;
1169 
1170 	/* Extract the softc struct pointer. */
1171 	sc_if = (struct sk_if_softc *)args;
1172 	if (sc_if == NULL)
1173 		panic("sk_jfree: didn't get softc pointer!");
1174 
1175 	SK_JLIST_LOCK(sc_if);
1176 
1177 	/* calculate the slot this buffer belongs to */
1178 	i = ((vm_offset_t)buf
1179 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1180 
1181 	if ((i < 0) || (i >= SK_JSLOTS))
1182 		panic("sk_jfree: asked to free buffer that we don't manage!");
1183 
1184 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1185 	if (entry == NULL)
1186 		panic("sk_jfree: buffer not in use!");
1187 	entry->slot = i;
1188 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1189 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1190 	if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead))
1191 		wakeup(sc_if);
1192 
1193 	SK_JLIST_UNLOCK(sc_if);
1194 	return;
1195 }
1196 
1197 /*
1198  * Set media options.
1199  */
1200 static int
1201 sk_ifmedia_upd(ifp)
1202 	struct ifnet		*ifp;
1203 {
1204 	struct sk_if_softc	*sc_if = ifp->if_softc;
1205 	struct mii_data		*mii;
1206 
1207 	mii = device_get_softc(sc_if->sk_miibus);
1208 	sk_init(sc_if);
1209 	mii_mediachg(mii);
1210 
1211 	return(0);
1212 }
1213 
1214 /*
1215  * Report current media status.
1216  */
1217 static void
1218 sk_ifmedia_sts(ifp, ifmr)
1219 	struct ifnet		*ifp;
1220 	struct ifmediareq	*ifmr;
1221 {
1222 	struct sk_if_softc	*sc_if;
1223 	struct mii_data		*mii;
1224 
1225 	sc_if = ifp->if_softc;
1226 	mii = device_get_softc(sc_if->sk_miibus);
1227 
1228 	mii_pollstat(mii);
1229 	ifmr->ifm_active = mii->mii_media_active;
1230 	ifmr->ifm_status = mii->mii_media_status;
1231 
1232 	return;
1233 }
1234 
1235 static int
1236 sk_ioctl(ifp, command, data)
1237 	struct ifnet		*ifp;
1238 	u_long			command;
1239 	caddr_t			data;
1240 {
1241 	struct sk_if_softc	*sc_if = ifp->if_softc;
1242 	struct ifreq		*ifr = (struct ifreq *) data;
1243 	int			error = 0;
1244 	struct mii_data		*mii;
1245 
1246 	switch(command) {
1247 	case SIOCSIFMTU:
1248 		SK_IF_LOCK(sc_if);
1249 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1250 			error = EINVAL;
1251 		else {
1252 			ifp->if_mtu = ifr->ifr_mtu;
1253 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1254 			sk_init_locked(sc_if);
1255 		}
1256 		SK_IF_UNLOCK(sc_if);
1257 		break;
1258 	case SIOCSIFFLAGS:
1259 		SK_IF_LOCK(sc_if);
1260 		if (ifp->if_flags & IFF_UP) {
1261 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1262 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1263 				    & IFF_PROMISC) {
1264 					sk_setpromisc(sc_if);
1265 					sk_setmulti(sc_if);
1266 				}
1267 			} else
1268 				sk_init_locked(sc_if);
1269 		} else {
1270 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1271 				sk_stop(sc_if);
1272 		}
1273 		sc_if->sk_if_flags = ifp->if_flags;
1274 		SK_IF_UNLOCK(sc_if);
1275 		error = 0;
1276 		break;
1277 	case SIOCADDMULTI:
1278 	case SIOCDELMULTI:
1279 		SK_IF_LOCK(sc_if);
1280 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1281 			sk_setmulti(sc_if);
1282 			error = 0;
1283 		}
1284 		SK_IF_UNLOCK(sc_if);
1285 		break;
1286 	case SIOCGIFMEDIA:
1287 	case SIOCSIFMEDIA:
1288 		mii = device_get_softc(sc_if->sk_miibus);
1289 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1290 		break;
1291 	default:
1292 		error = ether_ioctl(ifp, command, data);
1293 		break;
1294 	}
1295 
1296 	return(error);
1297 }
1298 
1299 /*
1300  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1301  * IDs against our list and return a device name if we find a match.
1302  */
1303 static int
1304 skc_probe(dev)
1305 	device_t		dev;
1306 {
1307 	struct sk_type		*t = sk_devs;
1308 
1309 	while(t->sk_name != NULL) {
1310 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1311 		    (pci_get_device(dev) == t->sk_did)) {
1312 			/*
1313 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1314 			 * Rev. 3 is supported by re(4).
1315 			 */
1316 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1317 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1318 				(pci_get_subdevice(dev) !=
1319 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1320 				t++;
1321 				continue;
1322 			}
1323 			device_set_desc(dev, t->sk_name);
1324 			return (BUS_PROBE_DEFAULT);
1325 		}
1326 		t++;
1327 	}
1328 
1329 	return(ENXIO);
1330 }
1331 
1332 /*
1333  * Force the GEnesis into reset, then bring it out of reset.
1334  */
1335 static void
1336 sk_reset(sc)
1337 	struct sk_softc		*sc;
1338 {
1339 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1340 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1341 	if (SK_YUKON_FAMILY(sc->sk_type))
1342 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1343 
1344 	DELAY(1000);
1345 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1346 	DELAY(2);
1347 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1348 	if (SK_YUKON_FAMILY(sc->sk_type))
1349 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1350 
1351 	if (sc->sk_type == SK_GENESIS) {
1352 		/* Configure packet arbiter */
1353 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1354 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1355 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1356 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1357 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1358 	}
1359 
1360 	/* Enable RAM interface */
1361 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1362 
1363 	/*
1364          * Configure interrupt moderation. The moderation timer
1365 	 * defers interrupts specified in the interrupt moderation
1366 	 * timer mask based on the timeout specified in the interrupt
1367 	 * moderation timer init register. Each bit in the timer
1368 	 * register represents one tick, so to specify a timeout in
1369 	 * microseconds, we have to multiply by the correct number of
1370 	 * ticks-per-microsecond.
1371 	 */
1372 	switch (sc->sk_type) {
1373 	case SK_GENESIS:
1374 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1375 		break;
1376 	default:
1377 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1378 		break;
1379 	}
1380 	if (bootverbose)
1381 		printf("skc%d: interrupt moderation is %d us\n",
1382 		    sc->sk_unit, sc->sk_int_mod);
1383 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1384 	    sc->sk_int_ticks));
1385 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1386 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1387 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1388 
1389 	return;
1390 }
1391 
1392 static int
1393 sk_probe(dev)
1394 	device_t		dev;
1395 {
1396 	struct sk_softc		*sc;
1397 
1398 	sc = device_get_softc(device_get_parent(dev));
1399 
1400 	/*
1401 	 * Not much to do here. We always know there will be
1402 	 * at least one XMAC present, and if there are two,
1403 	 * skc_attach() will create a second device instance
1404 	 * for us.
1405 	 */
1406 	switch (sc->sk_type) {
1407 	case SK_GENESIS:
1408 		device_set_desc(dev, "XaQti Corp. XMAC II");
1409 		break;
1410 	case SK_YUKON:
1411 	case SK_YUKON_LITE:
1412 	case SK_YUKON_LP:
1413 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1414 		break;
1415 	}
1416 
1417 	return (BUS_PROBE_DEFAULT);
1418 }
1419 
1420 /*
1421  * Each XMAC chip is attached as a separate logical IP interface.
1422  * Single port cards will have only one logical interface of course.
1423  */
1424 static int
1425 sk_attach(dev)
1426 	device_t		dev;
1427 {
1428 	struct sk_softc		*sc;
1429 	struct sk_if_softc	*sc_if;
1430 	struct ifnet		*ifp;
1431 	int			i, port, error;
1432 	u_char			eaddr[6];
1433 
1434 	if (dev == NULL)
1435 		return(EINVAL);
1436 
1437 	error = 0;
1438 	sc_if = device_get_softc(dev);
1439 	sc = device_get_softc(device_get_parent(dev));
1440 	port = *(int *)device_get_ivars(dev);
1441 
1442 	sc_if->sk_dev = dev;
1443 	sc_if->sk_unit = device_get_unit(dev);
1444 	sc_if->sk_port = port;
1445 	sc_if->sk_softc = sc;
1446 	sc->sk_if[port] = sc_if;
1447 	if (port == SK_PORT_A)
1448 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1449 	if (port == SK_PORT_B)
1450 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1451 
1452 	/* Allocate the descriptor queues. */
1453 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1454 	    M_NOWAIT, M_ZERO, 0xffffffff, PAGE_SIZE, 0);
1455 
1456 	if (sc_if->sk_rdata == NULL) {
1457 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1458 		error = ENOMEM;
1459 		goto fail;
1460 	}
1461 
1462 	/* Try to allocate memory for jumbo buffers. */
1463 	if (sk_alloc_jumbo_mem(sc_if)) {
1464 		printf("sk%d: jumbo buffer allocation failed\n",
1465 		    sc_if->sk_unit);
1466 		error = ENOMEM;
1467 		goto fail;
1468 	}
1469 
1470 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1471 	if (ifp == NULL) {
1472 		printf("sk%d: can not if_alloc()\n", sc_if->sk_unit);
1473 		error = ENOSPC;
1474 		goto fail;
1475 	}
1476 	ifp->if_softc = sc_if;
1477 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1478 	ifp->if_mtu = ETHERMTU;
1479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1480 	/*
1481 	 * The hardware should be ready for VLAN_MTU by default:
1482 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1483 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1484 	 */
1485 	ifp->if_capabilities = ifp->if_capenable = IFCAP_VLAN_MTU;
1486 	ifp->if_ioctl = sk_ioctl;
1487 	ifp->if_start = sk_start;
1488 	ifp->if_watchdog = sk_watchdog;
1489 	ifp->if_init = sk_init;
1490 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1491 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1492 	IFQ_SET_READY(&ifp->if_snd);
1493 
1494 	callout_handle_init(&sc_if->sk_tick_ch);
1495 
1496 	/*
1497 	 * Get station address for this interface. Note that
1498 	 * dual port cards actually come with three station
1499 	 * addresses: one for each port, plus an extra. The
1500 	 * extra one is used by the SysKonnect driver software
1501 	 * as a 'virtual' station address for when both ports
1502 	 * are operating in failover mode. Currently we don't
1503 	 * use this extra address.
1504 	 */
1505 	SK_LOCK(sc);
1506 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1507 		eaddr[i] =
1508 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1509 
1510 	/*
1511 	 * Set up RAM buffer addresses. The NIC will have a certain
1512 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1513 	 * need to divide this up a) between the transmitter and
1514  	 * receiver and b) between the two XMACs, if this is a
1515 	 * dual port NIC. Our algotithm is to divide up the memory
1516 	 * evenly so that everyone gets a fair share.
1517 	 */
1518 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1519 		u_int32_t		chunk, val;
1520 
1521 		chunk = sc->sk_ramsize / 2;
1522 		val = sc->sk_rboff / sizeof(u_int64_t);
1523 		sc_if->sk_rx_ramstart = val;
1524 		val += (chunk / sizeof(u_int64_t));
1525 		sc_if->sk_rx_ramend = val - 1;
1526 		sc_if->sk_tx_ramstart = val;
1527 		val += (chunk / sizeof(u_int64_t));
1528 		sc_if->sk_tx_ramend = val - 1;
1529 	} else {
1530 		u_int32_t		chunk, val;
1531 
1532 		chunk = sc->sk_ramsize / 4;
1533 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1534 		    sizeof(u_int64_t);
1535 		sc_if->sk_rx_ramstart = val;
1536 		val += (chunk / sizeof(u_int64_t));
1537 		sc_if->sk_rx_ramend = val - 1;
1538 		sc_if->sk_tx_ramstart = val;
1539 		val += (chunk / sizeof(u_int64_t));
1540 		sc_if->sk_tx_ramend = val - 1;
1541 	}
1542 
1543 	/* Read and save PHY type and set PHY address */
1544 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1545 	switch(sc_if->sk_phytype) {
1546 	case SK_PHYTYPE_XMAC:
1547 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1548 		break;
1549 	case SK_PHYTYPE_BCOM:
1550 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1551 		break;
1552 	case SK_PHYTYPE_MARV_COPPER:
1553 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1554 		break;
1555 	default:
1556 		printf("skc%d: unsupported PHY type: %d\n",
1557 		    sc->sk_unit, sc_if->sk_phytype);
1558 		error = ENODEV;
1559 		SK_UNLOCK(sc);
1560 		goto fail;
1561 	}
1562 
1563 
1564 	/*
1565 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1566 	 */
1567 	SK_UNLOCK(sc);
1568 	ether_ifattach(ifp, eaddr);
1569 	SK_LOCK(sc);
1570 
1571 	/*
1572 	 * Do miibus setup.
1573 	 */
1574 	switch (sc->sk_type) {
1575 	case SK_GENESIS:
1576 		sk_init_xmac(sc_if);
1577 		break;
1578 	case SK_YUKON:
1579 	case SK_YUKON_LITE:
1580 	case SK_YUKON_LP:
1581 		sk_init_yukon(sc_if);
1582 		break;
1583 	}
1584 
1585 	SK_UNLOCK(sc);
1586 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1587 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1588 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1589 		ether_ifdetach(ifp);
1590 		error = ENXIO;
1591 		goto fail;
1592 	}
1593 
1594 fail:
1595 	if (error) {
1596 		/* Access should be ok even though lock has been dropped */
1597 		sc->sk_if[port] = NULL;
1598 		sk_detach(dev);
1599 	}
1600 
1601 	return(error);
1602 }
1603 
1604 /*
1605  * Attach the interface. Allocate softc structures, do ifmedia
1606  * setup and ethernet/BPF attach.
1607  */
1608 static int
1609 skc_attach(dev)
1610 	device_t		dev;
1611 {
1612 	struct sk_softc		*sc;
1613 	int			unit, error = 0, rid, *port;
1614 	uint8_t			skrs;
1615 	char			*pname, *revstr;
1616 
1617 	sc = device_get_softc(dev);
1618 	unit = device_get_unit(dev);
1619 
1620 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1621 	    MTX_DEF | MTX_RECURSE);
1622 	/*
1623 	 * Map control/status registers.
1624 	 */
1625 	pci_enable_busmaster(dev);
1626 
1627 	rid = SK_RID;
1628 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1629 
1630 	if (sc->sk_res == NULL) {
1631 		printf("sk%d: couldn't map ports/memory\n", unit);
1632 		error = ENXIO;
1633 		goto fail;
1634 	}
1635 
1636 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1637 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1638 
1639 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1640 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1641 
1642 	/* Bail out if chip is not recognized. */
1643 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1644 		printf("skc%d: unknown device: chipver=%02x, rev=%x\n",
1645 			unit, sc->sk_type, sc->sk_rev);
1646 		error = ENXIO;
1647 		goto fail;
1648 	}
1649 
1650 	/* Allocate interrupt */
1651 	rid = 0;
1652 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1653 	    RF_SHAREABLE | RF_ACTIVE);
1654 
1655 	if (sc->sk_irq == NULL) {
1656 		printf("skc%d: couldn't map interrupt\n", unit);
1657 		error = ENXIO;
1658 		goto fail;
1659 	}
1660 
1661 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1662 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1663 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1664 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1665 		"SK interrupt moderation");
1666 
1667 	/* Pull in device tunables. */
1668 	sc->sk_int_mod = SK_IM_DEFAULT;
1669 	error = resource_int_value(device_get_name(dev), unit,
1670 		"int_mod", &sc->sk_int_mod);
1671 	if (error == 0) {
1672 		if (sc->sk_int_mod < SK_IM_MIN ||
1673 		    sc->sk_int_mod > SK_IM_MAX) {
1674 			printf("skc%d: int_mod value out of range; "
1675 			    "using default: %d\n", unit, SK_IM_DEFAULT);
1676 			sc->sk_int_mod = SK_IM_DEFAULT;
1677 		}
1678 	}
1679 
1680 	/* Reset the adapter. */
1681 	sk_reset(sc);
1682 
1683 	sc->sk_unit = unit;
1684 
1685 	/* Read and save vital product data from EEPROM. */
1686 	sk_vpd_read(sc);
1687 
1688 	skrs = sk_win_read_1(sc, SK_EPROM0);
1689 	if (sc->sk_type == SK_GENESIS) {
1690 		/* Read and save RAM size and RAMbuffer offset */
1691 		switch(skrs) {
1692 		case SK_RAMSIZE_512K_64:
1693 			sc->sk_ramsize = 0x80000;
1694 			sc->sk_rboff = SK_RBOFF_0;
1695 			break;
1696 		case SK_RAMSIZE_1024K_64:
1697 			sc->sk_ramsize = 0x100000;
1698 			sc->sk_rboff = SK_RBOFF_80000;
1699 			break;
1700 		case SK_RAMSIZE_1024K_128:
1701 			sc->sk_ramsize = 0x100000;
1702 			sc->sk_rboff = SK_RBOFF_0;
1703 			break;
1704 		case SK_RAMSIZE_2048K_128:
1705 			sc->sk_ramsize = 0x200000;
1706 			sc->sk_rboff = SK_RBOFF_0;
1707 			break;
1708 		default:
1709 			printf("skc%d: unknown ram size: %d\n",
1710 			    sc->sk_unit, skrs);
1711 			error = ENXIO;
1712 			goto fail;
1713 		}
1714 	} else { /* SK_YUKON_FAMILY */
1715 		if (skrs == 0x00)
1716 			sc->sk_ramsize = 0x20000;
1717 		else
1718 			sc->sk_ramsize = skrs * (1<<12);
1719 		sc->sk_rboff = SK_RBOFF_0;
1720 	}
1721 
1722 	/* Read and save physical media type */
1723 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1724 	case SK_PMD_1000BASESX:
1725 		sc->sk_pmd = IFM_1000_SX;
1726 		break;
1727 	case SK_PMD_1000BASELX:
1728 		sc->sk_pmd = IFM_1000_LX;
1729 		break;
1730 	case SK_PMD_1000BASECX:
1731 		sc->sk_pmd = IFM_1000_CX;
1732 		break;
1733 	case SK_PMD_1000BASETX:
1734 		sc->sk_pmd = IFM_1000_T;
1735 		break;
1736 	default:
1737 		printf("skc%d: unknown media type: 0x%x\n",
1738 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1739 		error = ENXIO;
1740 		goto fail;
1741 	}
1742 
1743 	/* Determine whether to name it with VPD PN or just make it up.
1744 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1745 	switch (pci_get_device(dev)) {
1746 	case DEVICEID_SK_V1:
1747 	case DEVICEID_BELKIN_5005:
1748 	case DEVICEID_3COM_3C940:
1749 	case DEVICEID_LINKSYS_EG1032:
1750 	case DEVICEID_DLINK_DGE530T:
1751 		/* Stay with VPD PN. */
1752 		pname = sc->sk_vpd_prodname;
1753 		break;
1754 	case DEVICEID_SK_V2:
1755 		/* YUKON VPD PN might bear no resemblance to reality. */
1756 		switch (sc->sk_type) {
1757 		case SK_GENESIS:
1758 			/* Stay with VPD PN. */
1759 			pname = sc->sk_vpd_prodname;
1760 			break;
1761 		case SK_YUKON:
1762 			pname = "Marvell Yukon Gigabit Ethernet";
1763 			break;
1764 		case SK_YUKON_LITE:
1765 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1766 			break;
1767 		case SK_YUKON_LP:
1768 			pname = "Marvell Yukon LP Gigabit Ethernet";
1769 			break;
1770 		default:
1771 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1772 			break;
1773 		}
1774 
1775 		/* Yukon Lite Rev. A0 needs special test. */
1776 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1777 			u_int32_t far;
1778 			u_int8_t testbyte;
1779 
1780 			/* Save flash address register before testing. */
1781 			far = sk_win_read_4(sc, SK_EP_ADDR);
1782 
1783 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1784 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1785 
1786 			if (testbyte != 0x00) {
1787 				/* Yukon Lite Rev. A0 detected. */
1788 				sc->sk_type = SK_YUKON_LITE;
1789 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1790 				/* Restore flash address register. */
1791 				sk_win_write_4(sc, SK_EP_ADDR, far);
1792 			}
1793 		}
1794 		break;
1795 	default:
1796 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1797 			"chipver=%02x, rev=%x\n",
1798 			pci_get_vendor(dev), pci_get_device(dev),
1799 			sc->sk_type, sc->sk_rev);
1800 		error = ENXIO;
1801 		goto fail;
1802 	}
1803 
1804 	if (sc->sk_type == SK_YUKON_LITE) {
1805 		switch (sc->sk_rev) {
1806 		case SK_YUKON_LITE_REV_A0:
1807 			revstr = "A0";
1808 			break;
1809 		case SK_YUKON_LITE_REV_A1:
1810 			revstr = "A1";
1811 			break;
1812 		case SK_YUKON_LITE_REV_A3:
1813 			revstr = "A3";
1814 			break;
1815 		default:
1816 			revstr = "";
1817 			break;
1818 		}
1819 	} else {
1820 		revstr = "";
1821 	}
1822 
1823 	/* Announce the product name and more VPD data if there. */
1824 	device_printf(dev, "%s rev. %s(0x%x)\n",
1825 		pname != NULL ? pname : "<unknown>", revstr, sc->sk_rev);
1826 
1827 	if (bootverbose) {
1828 		if (sc->sk_vpd_readonly != NULL &&
1829 		    sc->sk_vpd_readonly_len != 0) {
1830 			char buf[256];
1831 			char *dp = sc->sk_vpd_readonly;
1832 			uint16_t l, len = sc->sk_vpd_readonly_len;
1833 
1834 			while (len >= 3) {
1835 				if ((*dp == 'P' && *(dp+1) == 'N') ||
1836 				    (*dp == 'E' && *(dp+1) == 'C') ||
1837 				    (*dp == 'M' && *(dp+1) == 'N') ||
1838 				    (*dp == 'S' && *(dp+1) == 'N')) {
1839 					l = 0;
1840 					while (l < *(dp+2)) {
1841 						buf[l] = *(dp+3+l);
1842 						++l;
1843 					}
1844 					buf[l] = '\0';
1845 					device_printf(dev, "%c%c: %s\n",
1846 					    *dp, *(dp+1), buf);
1847 					len -= (3 + l);
1848 					dp += (3 + l);
1849 				} else {
1850 					len -= (3 + *(dp+2));
1851 					dp += (3 + *(dp+2));
1852 				}
1853 			}
1854 		}
1855 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1856 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1857 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1858 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1859 	}
1860 
1861 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1862 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1863 		device_printf(dev, "failed to add child for PORT_A\n");
1864 		error = ENXIO;
1865 		goto fail;
1866 	}
1867 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1868 	if (port == NULL) {
1869 		device_printf(dev, "failed to allocate memory for "
1870 		    "ivars of PORT_A\n");
1871 		error = ENXIO;
1872 		goto fail;
1873 	}
1874 	*port = SK_PORT_A;
1875 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1876 
1877 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1878 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1879 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1880 			device_printf(dev, "failed to add child for PORT_B\n");
1881 			error = ENXIO;
1882 			goto fail;
1883 		}
1884 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1885 		if (port == NULL) {
1886 			device_printf(dev, "failed to allocate memory for "
1887 			    "ivars of PORT_B\n");
1888 			error = ENXIO;
1889 			goto fail;
1890 		}
1891 		*port = SK_PORT_B;
1892 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1893 	}
1894 
1895 	/* Turn on the 'driver is loaded' LED. */
1896 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1897 
1898 	error = bus_generic_attach(dev);
1899 	if (error) {
1900 		device_printf(dev, "failed to attach port(s)\n");
1901 		goto fail;
1902 	}
1903 
1904 	/* Hook interrupt last to avoid having to lock softc */
1905 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1906 	    sk_intr, sc, &sc->sk_intrhand);
1907 
1908 	if (error) {
1909 		printf("skc%d: couldn't set up irq\n", unit);
1910 		goto fail;
1911 	}
1912 
1913 fail:
1914 	if (error)
1915 		skc_detach(dev);
1916 
1917 	return(error);
1918 }
1919 
1920 /*
1921  * Shutdown hardware and free up resources. This can be called any
1922  * time after the mutex has been initialized. It is called in both
1923  * the error case in attach and the normal detach case so it needs
1924  * to be careful about only freeing resources that have actually been
1925  * allocated.
1926  */
1927 static int
1928 sk_detach(dev)
1929 	device_t		dev;
1930 {
1931 	struct sk_if_softc	*sc_if;
1932 	struct ifnet		*ifp;
1933 
1934 	sc_if = device_get_softc(dev);
1935 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1936 	    ("sk mutex not initialized in sk_detach"));
1937 	SK_IF_LOCK(sc_if);
1938 
1939 	ifp = sc_if->sk_ifp;
1940 	/* These should only be active if attach_xmac succeeded */
1941 	if (device_is_attached(dev)) {
1942 		sk_stop(sc_if);
1943 		/* Can't hold locks while calling detach */
1944 		SK_IF_UNLOCK(sc_if);
1945 		ether_ifdetach(ifp);
1946 		SK_IF_LOCK(sc_if);
1947 	}
1948 	if (ifp)
1949 		if_free(ifp);
1950 	/*
1951 	 * We're generally called from skc_detach() which is using
1952 	 * device_delete_child() to get to here. It's already trashed
1953 	 * miibus for us, so don't do it here or we'll panic.
1954 	 */
1955 	/*
1956 	if (sc_if->sk_miibus != NULL)
1957 		device_delete_child(dev, sc_if->sk_miibus);
1958 	*/
1959 	bus_generic_detach(dev);
1960 	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1961 		sk_free_jumbo_mem(sc_if);
1962 	if (sc_if->sk_rdata != NULL) {
1963 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1964 		    M_DEVBUF);
1965 	}
1966 	SK_IF_UNLOCK(sc_if);
1967 
1968 	return(0);
1969 }
1970 
1971 static int
1972 skc_detach(dev)
1973 	device_t		dev;
1974 {
1975 	struct sk_softc		*sc;
1976 
1977 	sc = device_get_softc(dev);
1978 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1979 
1980 	if (device_is_alive(dev)) {
1981 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1982 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1983 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1984 		}
1985 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1986 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1987 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1988 		}
1989 		bus_generic_detach(dev);
1990 	}
1991 
1992 	if (sc->sk_vpd_prodname != NULL)
1993 		free(sc->sk_vpd_prodname, M_DEVBUF);
1994 	if (sc->sk_vpd_readonly != NULL)
1995 		free(sc->sk_vpd_readonly, M_DEVBUF);
1996 
1997 	if (sc->sk_intrhand)
1998 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1999 	if (sc->sk_irq)
2000 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
2001 	if (sc->sk_res)
2002 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
2003 
2004 	mtx_destroy(&sc->sk_mtx);
2005 
2006 	return(0);
2007 }
2008 
2009 static int
2010 sk_encap(sc_if, m_head, txidx)
2011         struct sk_if_softc	*sc_if;
2012         struct mbuf		*m_head;
2013         u_int32_t		*txidx;
2014 {
2015 	struct sk_tx_desc	*f = NULL;
2016 	struct mbuf		*m;
2017 	u_int32_t		frag, cur, cnt = 0;
2018 
2019 	SK_IF_LOCK_ASSERT(sc_if);
2020 
2021 	m = m_head;
2022 	cur = frag = *txidx;
2023 
2024 	/*
2025 	 * Start packing the mbufs in this chain into
2026 	 * the fragment pointers. Stop when we run out
2027 	 * of fragments or hit the end of the mbuf chain.
2028 	 */
2029 	for (m = m_head; m != NULL; m = m->m_next) {
2030 		if (m->m_len != 0) {
2031 			if ((SK_TX_RING_CNT -
2032 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
2033 				return(ENOBUFS);
2034 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
2035 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
2036 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
2037 			if (cnt == 0)
2038 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
2039 			else
2040 				f->sk_ctl |= SK_TXCTL_OWN;
2041 			cur = frag;
2042 			SK_INC(frag, SK_TX_RING_CNT);
2043 			cnt++;
2044 		}
2045 	}
2046 
2047 	if (m != NULL)
2048 		return(ENOBUFS);
2049 
2050 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
2051 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
2052 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
2053 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
2054 	sc_if->sk_cdata.sk_tx_cnt += cnt;
2055 
2056 	*txidx = frag;
2057 
2058 	return(0);
2059 }
2060 
2061 static void
2062 sk_start(ifp)
2063 	struct ifnet		*ifp;
2064 {
2065 	struct sk_if_softc *sc_if;
2066 
2067 	sc_if = ifp->if_softc;
2068 
2069 	SK_IF_LOCK(sc_if);
2070 	sk_start_locked(ifp);
2071 	SK_IF_UNLOCK(sc_if);
2072 
2073 	return;
2074 }
2075 
2076 static void
2077 sk_start_locked(ifp)
2078 	struct ifnet		*ifp;
2079 {
2080         struct sk_softc		*sc;
2081         struct sk_if_softc	*sc_if;
2082         struct mbuf		*m_head = NULL;
2083         u_int32_t		idx;
2084 
2085 	sc_if = ifp->if_softc;
2086 	sc = sc_if->sk_softc;
2087 
2088 	SK_IF_LOCK_ASSERT(sc_if);
2089 
2090 	idx = sc_if->sk_cdata.sk_tx_prod;
2091 
2092 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2093 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2094 		if (m_head == NULL)
2095 			break;
2096 
2097 		/*
2098 		 * Pack the data into the transmit ring. If we
2099 		 * don't have room, set the OACTIVE flag and wait
2100 		 * for the NIC to drain the ring.
2101 		 */
2102 		if (sk_encap(sc_if, m_head, &idx)) {
2103 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2104 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2105 			break;
2106 		}
2107 
2108 		/*
2109 		 * If there's a BPF listener, bounce a copy of this frame
2110 		 * to him.
2111 		 */
2112 		BPF_MTAP(ifp, m_head);
2113 	}
2114 
2115 	/* Transmit */
2116 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2117 		sc_if->sk_cdata.sk_tx_prod = idx;
2118 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2119 
2120 		/* Set a timeout in case the chip goes out to lunch. */
2121 		ifp->if_timer = 5;
2122 	}
2123 
2124 	return;
2125 }
2126 
2127 
2128 static void
2129 sk_watchdog(ifp)
2130 	struct ifnet		*ifp;
2131 {
2132 	struct sk_if_softc	*sc_if;
2133 
2134 	sc_if = ifp->if_softc;
2135 
2136 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
2137 	SK_IF_LOCK(sc_if);
2138 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2139 	sk_init_locked(sc_if);
2140 	SK_IF_UNLOCK(sc_if);
2141 
2142 	return;
2143 }
2144 
2145 static void
2146 skc_shutdown(dev)
2147 	device_t		dev;
2148 {
2149 	struct sk_softc		*sc;
2150 
2151 	sc = device_get_softc(dev);
2152 	SK_LOCK(sc);
2153 
2154 	/* Turn off the 'driver is loaded' LED. */
2155 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2156 
2157 	/*
2158 	 * Reset the GEnesis controller. Doing this should also
2159 	 * assert the resets on the attached XMAC(s).
2160 	 */
2161 	sk_reset(sc);
2162 	SK_UNLOCK(sc);
2163 
2164 	return;
2165 }
2166 
2167 static void
2168 sk_rxeof(sc_if)
2169 	struct sk_if_softc	*sc_if;
2170 {
2171 	struct sk_softc		*sc;
2172 	struct mbuf		*m;
2173 	struct ifnet		*ifp;
2174 	struct sk_chain		*cur_rx;
2175 	int			total_len = 0;
2176 	int			i;
2177 	u_int32_t		rxstat;
2178 
2179 	sc = sc_if->sk_softc;
2180 	ifp = sc_if->sk_ifp;
2181 	i = sc_if->sk_cdata.sk_rx_prod;
2182 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2183 
2184 	SK_LOCK_ASSERT(sc);
2185 
2186 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
2187 
2188 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2189 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
2190 		m = cur_rx->sk_mbuf;
2191 		cur_rx->sk_mbuf = NULL;
2192 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
2193 		SK_INC(i, SK_RX_RING_CNT);
2194 
2195 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2196 			ifp->if_ierrors++;
2197 			sk_newbuf(sc_if, cur_rx, m);
2198 			continue;
2199 		}
2200 
2201 		/*
2202 		 * Try to allocate a new jumbo buffer. If that
2203 		 * fails, copy the packet to mbufs and put the
2204 		 * jumbo buffer back in the ring so it can be
2205 		 * re-used. If allocating mbufs fails, then we
2206 		 * have to drop the packet.
2207 		 */
2208 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
2209 			struct mbuf		*m0;
2210 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
2211 			    ifp, NULL);
2212 			sk_newbuf(sc_if, cur_rx, m);
2213 			if (m0 == NULL) {
2214 				printf("sk%d: no receive buffers "
2215 				    "available -- packet dropped!\n",
2216 				    sc_if->sk_unit);
2217 				ifp->if_ierrors++;
2218 				continue;
2219 			}
2220 			m = m0;
2221 		} else {
2222 			m->m_pkthdr.rcvif = ifp;
2223 			m->m_pkthdr.len = m->m_len = total_len;
2224 		}
2225 
2226 		ifp->if_ipackets++;
2227 		SK_UNLOCK(sc);
2228 		(*ifp->if_input)(ifp, m);
2229 		SK_LOCK(sc);
2230 	}
2231 
2232 	sc_if->sk_cdata.sk_rx_prod = i;
2233 
2234 	return;
2235 }
2236 
2237 static void
2238 sk_txeof(sc_if)
2239 	struct sk_if_softc	*sc_if;
2240 {
2241 	struct sk_softc		*sc;
2242 	struct sk_tx_desc	*cur_tx;
2243 	struct ifnet		*ifp;
2244 	u_int32_t		idx;
2245 
2246 	sc = sc_if->sk_softc;
2247 	ifp = sc_if->sk_ifp;
2248 
2249 	/*
2250 	 * Go through our tx ring and free mbufs for those
2251 	 * frames that have been sent.
2252 	 */
2253 	idx = sc_if->sk_cdata.sk_tx_cons;
2254 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2255 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2256 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2257 			break;
2258 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2259 			ifp->if_opackets++;
2260 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2261 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2262 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2263 		}
2264 		sc_if->sk_cdata.sk_tx_cnt--;
2265 		SK_INC(idx, SK_TX_RING_CNT);
2266 	}
2267 
2268 	if (sc_if->sk_cdata.sk_tx_cnt == 0) {
2269 		ifp->if_timer = 0;
2270 	} else /* nudge chip to keep tx ring moving */
2271 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2272 
2273 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2274 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2275 
2276 	sc_if->sk_cdata.sk_tx_cons = idx;
2277 }
2278 
2279 static void
2280 sk_tick(xsc_if)
2281 	void			*xsc_if;
2282 {
2283 	struct sk_if_softc	*sc_if;
2284 	struct mii_data		*mii;
2285 	struct ifnet		*ifp;
2286 	int			i;
2287 
2288 	sc_if = xsc_if;
2289 	SK_IF_LOCK(sc_if);
2290 	ifp = sc_if->sk_ifp;
2291 	mii = device_get_softc(sc_if->sk_miibus);
2292 
2293 	if (!(ifp->if_flags & IFF_UP)) {
2294 		SK_IF_UNLOCK(sc_if);
2295 		return;
2296 	}
2297 
2298 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2299 		sk_intr_bcom(sc_if);
2300 		SK_IF_UNLOCK(sc_if);
2301 		return;
2302 	}
2303 
2304 	/*
2305 	 * According to SysKonnect, the correct way to verify that
2306 	 * the link has come back up is to poll bit 0 of the GPIO
2307 	 * register three times. This pin has the signal from the
2308 	 * link_sync pin connected to it; if we read the same link
2309 	 * state 3 times in a row, we know the link is up.
2310 	 */
2311 	for (i = 0; i < 3; i++) {
2312 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2313 			break;
2314 	}
2315 
2316 	if (i != 3) {
2317 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2318 		SK_IF_UNLOCK(sc_if);
2319 		return;
2320 	}
2321 
2322 	/* Turn the GP0 interrupt back on. */
2323 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2324 	SK_XM_READ_2(sc_if, XM_ISR);
2325 	mii_tick(mii);
2326 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2327 
2328 	SK_IF_UNLOCK(sc_if);
2329 	return;
2330 }
2331 
2332 static void
2333 sk_intr_bcom(sc_if)
2334 	struct sk_if_softc	*sc_if;
2335 {
2336 	struct mii_data		*mii;
2337 	struct ifnet		*ifp;
2338 	int			status;
2339 	mii = device_get_softc(sc_if->sk_miibus);
2340 	ifp = sc_if->sk_ifp;
2341 
2342 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2343 
2344 	/*
2345 	 * Read the PHY interrupt register to make sure
2346 	 * we clear any pending interrupts.
2347 	 */
2348 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2349 
2350 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2351 		sk_init_xmac(sc_if);
2352 		return;
2353 	}
2354 
2355 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2356 		int			lstat;
2357 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2358 		    BRGPHY_MII_AUXSTS);
2359 
2360 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2361 			mii_mediachg(mii);
2362 			/* Turn off the link LED. */
2363 			SK_IF_WRITE_1(sc_if, 0,
2364 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2365 			sc_if->sk_link = 0;
2366 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2367 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2368 	    		    BRGPHY_MII_IMR, 0xFF00);
2369 			mii_tick(mii);
2370 			sc_if->sk_link = 1;
2371 			/* Turn on the link LED. */
2372 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2373 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2374 			    SK_LINKLED_BLINK_OFF);
2375 		} else {
2376 			mii_tick(mii);
2377 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2378 		}
2379 	}
2380 
2381 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2382 
2383 	return;
2384 }
2385 
2386 static void
2387 sk_intr_xmac(sc_if)
2388 	struct sk_if_softc	*sc_if;
2389 {
2390 	struct sk_softc		*sc;
2391 	u_int16_t		status;
2392 
2393 	sc = sc_if->sk_softc;
2394 	status = SK_XM_READ_2(sc_if, XM_ISR);
2395 
2396 	/*
2397 	 * Link has gone down. Start MII tick timeout to
2398 	 * watch for link resync.
2399 	 */
2400 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2401 		if (status & XM_ISR_GP0_SET) {
2402 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2403 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2404 		}
2405 
2406 		if (status & XM_ISR_AUTONEG_DONE) {
2407 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2408 		}
2409 	}
2410 
2411 	if (status & XM_IMR_TX_UNDERRUN)
2412 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2413 
2414 	if (status & XM_IMR_RX_OVERRUN)
2415 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2416 
2417 	status = SK_XM_READ_2(sc_if, XM_ISR);
2418 
2419 	return;
2420 }
2421 
2422 static void
2423 sk_intr_yukon(sc_if)
2424 	struct sk_if_softc	*sc_if;
2425 {
2426 	int status;
2427 
2428 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2429 
2430 	return;
2431 }
2432 
2433 static void
2434 sk_intr(xsc)
2435 	void			*xsc;
2436 {
2437 	struct sk_softc		*sc = xsc;
2438 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2439 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2440 	u_int32_t		status;
2441 
2442 	SK_LOCK(sc);
2443 
2444 	sc_if0 = sc->sk_if[SK_PORT_A];
2445 	sc_if1 = sc->sk_if[SK_PORT_B];
2446 
2447 	if (sc_if0 != NULL)
2448 		ifp0 = sc_if0->sk_ifp;
2449 	if (sc_if1 != NULL)
2450 		ifp1 = sc_if1->sk_ifp;
2451 
2452 	for (;;) {
2453 		status = CSR_READ_4(sc, SK_ISSR);
2454 		if (!(status & sc->sk_intrmask))
2455 			break;
2456 
2457 		/* Handle receive interrupts first. */
2458 		if (status & SK_ISR_RX1_EOF) {
2459 			sk_rxeof(sc_if0);
2460 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2461 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2462 		}
2463 		if (status & SK_ISR_RX2_EOF) {
2464 			sk_rxeof(sc_if1);
2465 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2466 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2467 		}
2468 
2469 		/* Then transmit interrupts. */
2470 		if (status & SK_ISR_TX1_S_EOF) {
2471 			sk_txeof(sc_if0);
2472 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2473 			    SK_TXBMU_CLR_IRQ_EOF);
2474 		}
2475 		if (status & SK_ISR_TX2_S_EOF) {
2476 			sk_txeof(sc_if1);
2477 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2478 			    SK_TXBMU_CLR_IRQ_EOF);
2479 		}
2480 
2481 		/* Then MAC interrupts. */
2482 		if (status & SK_ISR_MAC1 &&
2483 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
2484 			if (sc->sk_type == SK_GENESIS)
2485 				sk_intr_xmac(sc_if0);
2486 			else
2487 				sk_intr_yukon(sc_if0);
2488 		}
2489 
2490 		if (status & SK_ISR_MAC2 &&
2491 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
2492 			if (sc->sk_type == SK_GENESIS)
2493 				sk_intr_xmac(sc_if1);
2494 			else
2495 				sk_intr_yukon(sc_if1);
2496 		}
2497 
2498 		if (status & SK_ISR_EXTERNAL_REG) {
2499 			if (ifp0 != NULL &&
2500 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2501 				sk_intr_bcom(sc_if0);
2502 			if (ifp1 != NULL &&
2503 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2504 				sk_intr_bcom(sc_if1);
2505 		}
2506 	}
2507 
2508 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2509 
2510 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
2511 		sk_start_locked(ifp0);
2512 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
2513 		sk_start_locked(ifp1);
2514 
2515 	SK_UNLOCK(sc);
2516 
2517 	return;
2518 }
2519 
2520 static void
2521 sk_init_xmac(sc_if)
2522 	struct sk_if_softc	*sc_if;
2523 {
2524 	struct sk_softc		*sc;
2525 	struct ifnet		*ifp;
2526 	struct sk_bcom_hack	bhack[] = {
2527 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2528 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2529 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2530 	{ 0, 0 } };
2531 
2532 	sc = sc_if->sk_softc;
2533 	ifp = sc_if->sk_ifp;
2534 
2535 	/* Unreset the XMAC. */
2536 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2537 	DELAY(1000);
2538 
2539 	/* Reset the XMAC's internal state. */
2540 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2541 
2542 	/* Save the XMAC II revision */
2543 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2544 
2545 	/*
2546 	 * Perform additional initialization for external PHYs,
2547 	 * namely for the 1000baseTX cards that use the XMAC's
2548 	 * GMII mode.
2549 	 */
2550 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2551 		int			i = 0;
2552 		u_int32_t		val;
2553 
2554 		/* Take PHY out of reset. */
2555 		val = sk_win_read_4(sc, SK_GPIO);
2556 		if (sc_if->sk_port == SK_PORT_A)
2557 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2558 		else
2559 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2560 		sk_win_write_4(sc, SK_GPIO, val);
2561 
2562 		/* Enable GMII mode on the XMAC. */
2563 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2564 
2565 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2566 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2567 		DELAY(10000);
2568 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2569 		    BRGPHY_MII_IMR, 0xFFF0);
2570 
2571 		/*
2572 		 * Early versions of the BCM5400 apparently have
2573 		 * a bug that requires them to have their reserved
2574 		 * registers initialized to some magic values. I don't
2575 		 * know what the numbers do, I'm just the messenger.
2576 		 */
2577 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2578 		    == 0x6041) {
2579 			while(bhack[i].reg) {
2580 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2581 				    bhack[i].reg, bhack[i].val);
2582 				i++;
2583 			}
2584 		}
2585 	}
2586 
2587 	/* Set station address */
2588 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2589 	    *(u_int16_t *)(&IF_LLADDR(sc_if->sk_ifp)[0]));
2590 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2591 	    *(u_int16_t *)(&IF_LLADDR(sc_if->sk_ifp)[2]));
2592 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2593 	    *(u_int16_t *)(&IF_LLADDR(sc_if->sk_ifp)[4]));
2594 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2595 
2596 	if (ifp->if_flags & IFF_BROADCAST) {
2597 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2598 	} else {
2599 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2600 	}
2601 
2602 	/* We don't need the FCS appended to the packet. */
2603 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2604 
2605 	/* We want short frames padded to 60 bytes. */
2606 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2607 
2608 	/*
2609 	 * Enable the reception of all error frames. This is is
2610 	 * a necessary evil due to the design of the XMAC. The
2611 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2612 	 * frames can be up to 9000 bytes in length. When bad
2613 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2614 	 * in 'store and forward' mode. For this to work, the
2615 	 * entire frame has to fit into the FIFO, but that means
2616 	 * that jumbo frames larger than 8192 bytes will be
2617 	 * truncated. Disabling all bad frame filtering causes
2618 	 * the RX FIFO to operate in streaming mode, in which
2619 	 * case the XMAC will start transfering frames out of the
2620 	 * RX FIFO as soon as the FIFO threshold is reached.
2621 	 */
2622 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2623 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2624 	    XM_MODE_RX_INRANGELEN);
2625 
2626 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2627 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2628 	else
2629 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2630 
2631 	/*
2632 	 * Bump up the transmit threshold. This helps hold off transmit
2633 	 * underruns when we're blasting traffic from both ports at once.
2634 	 */
2635 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2636 
2637 	/* Set promiscuous mode */
2638 	sk_setpromisc(sc_if);
2639 
2640 	/* Set multicast filter */
2641 	sk_setmulti(sc_if);
2642 
2643 	/* Clear and enable interrupts */
2644 	SK_XM_READ_2(sc_if, XM_ISR);
2645 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2646 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2647 	else
2648 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2649 
2650 	/* Configure MAC arbiter */
2651 	switch(sc_if->sk_xmac_rev) {
2652 	case XM_XMAC_REV_B2:
2653 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2654 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2655 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2656 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2657 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2658 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2659 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2660 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2661 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2662 		break;
2663 	case XM_XMAC_REV_C1:
2664 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2665 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2666 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2667 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2668 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2669 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2670 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2671 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2672 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2673 		break;
2674 	default:
2675 		break;
2676 	}
2677 	sk_win_write_2(sc, SK_MACARB_CTL,
2678 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2679 
2680 	sc_if->sk_link = 1;
2681 
2682 	return;
2683 }
2684 
2685 static void
2686 sk_init_yukon(sc_if)
2687 	struct sk_if_softc	*sc_if;
2688 {
2689 	u_int32_t		phy;
2690 	u_int16_t		reg;
2691 	struct sk_softc		*sc;
2692 	struct ifnet		*ifp;
2693 	int			i;
2694 
2695 	sc = sc_if->sk_softc;
2696 	ifp = sc_if->sk_ifp;
2697 
2698 	if (sc->sk_type == SK_YUKON_LITE &&
2699 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2700 		/* Take PHY out of reset. */
2701 		sk_win_write_4(sc, SK_GPIO,
2702 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2703 	}
2704 
2705 	/* GMAC and GPHY Reset */
2706 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2707 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2708 	DELAY(1000);
2709 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2710 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2711 	DELAY(1000);
2712 
2713 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2714 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2715 
2716 	switch(sc_if->sk_softc->sk_pmd) {
2717 	case IFM_1000_SX:
2718 	case IFM_1000_LX:
2719 		phy |= SK_GPHY_FIBER;
2720 		break;
2721 
2722 	case IFM_1000_CX:
2723 	case IFM_1000_T:
2724 		phy |= SK_GPHY_COPPER;
2725 		break;
2726 	}
2727 
2728 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2729 	DELAY(1000);
2730 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2731 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2732 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2733 
2734 	/* unused read of the interrupt source register */
2735 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2736 
2737 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2738 
2739 	/* MIB Counter Clear Mode set */
2740 	reg |= YU_PAR_MIB_CLR;
2741 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2742 
2743 	/* MIB Counter Clear Mode clear */
2744 	reg &= ~YU_PAR_MIB_CLR;
2745 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2746 
2747 	/* receive control reg */
2748 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2749 
2750 	/* transmit parameter register */
2751 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2752 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2753 
2754 	/* serial mode register */
2755 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2756 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2757 		reg |= YU_SMR_MFL_JUMBO;
2758 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2759 
2760 	/* Setup Yukon's address */
2761 	for (i = 0; i < 3; i++) {
2762 		/* Write Source Address 1 (unicast filter) */
2763 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2764 			      IF_LLADDR(sc_if->sk_ifp)[i * 2] |
2765 			      IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
2766 	}
2767 
2768 	for (i = 0; i < 3; i++) {
2769 		reg = sk_win_read_2(sc_if->sk_softc,
2770 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2771 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2772 	}
2773 
2774 	/* Set promiscuous mode */
2775 	sk_setpromisc(sc_if);
2776 
2777 	/* Set multicast filter */
2778 	sk_setmulti(sc_if);
2779 
2780 	/* enable interrupt mask for counter overflows */
2781 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2782 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2783 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2784 
2785 	/* Configure RX MAC FIFO */
2786 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2788 
2789 	/* Configure TX MAC FIFO */
2790 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2791 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2792 }
2793 
2794 /*
2795  * Note that to properly initialize any part of the GEnesis chip,
2796  * you first have to take it out of reset mode.
2797  */
2798 static void
2799 sk_init(xsc)
2800 	void			*xsc;
2801 {
2802 	struct sk_if_softc	*sc_if = xsc;
2803 
2804 	SK_IF_LOCK(sc_if);
2805 	sk_init_locked(sc_if);
2806 	SK_IF_UNLOCK(sc_if);
2807 
2808 	return;
2809 }
2810 
2811 static void
2812 sk_init_locked(sc_if)
2813 	struct sk_if_softc	*sc_if;
2814 {
2815 	struct sk_softc		*sc;
2816 	struct ifnet		*ifp;
2817 	struct mii_data		*mii;
2818 	u_int16_t		reg;
2819 	u_int32_t		imr;
2820 
2821 	SK_IF_LOCK_ASSERT(sc_if);
2822 
2823 	ifp = sc_if->sk_ifp;
2824 	sc = sc_if->sk_softc;
2825 	mii = device_get_softc(sc_if->sk_miibus);
2826 
2827 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2828 		return;
2829 
2830 	/* Cancel pending I/O and free all RX/TX buffers. */
2831 	sk_stop(sc_if);
2832 
2833 	if (sc->sk_type == SK_GENESIS) {
2834 		/* Configure LINK_SYNC LED */
2835 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2836 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2837 			SK_LINKLED_LINKSYNC_ON);
2838 
2839 		/* Configure RX LED */
2840 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2841 			SK_RXLEDCTL_COUNTER_START);
2842 
2843 		/* Configure TX LED */
2844 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2845 			SK_TXLEDCTL_COUNTER_START);
2846 	}
2847 
2848 	/* Configure I2C registers */
2849 
2850 	/* Configure XMAC(s) */
2851 	switch (sc->sk_type) {
2852 	case SK_GENESIS:
2853 		sk_init_xmac(sc_if);
2854 		break;
2855 	case SK_YUKON:
2856 	case SK_YUKON_LITE:
2857 	case SK_YUKON_LP:
2858 		sk_init_yukon(sc_if);
2859 		break;
2860 	}
2861 	mii_mediachg(mii);
2862 
2863 	if (sc->sk_type == SK_GENESIS) {
2864 		/* Configure MAC FIFOs */
2865 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2866 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2867 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2868 
2869 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2870 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2871 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2872 	}
2873 
2874 	/* Configure transmit arbiter(s) */
2875 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2876 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2877 
2878 	/* Configure RAMbuffers */
2879 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2880 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2881 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2882 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2883 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2884 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2885 
2886 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2887 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2888 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2889 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2890 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2891 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2892 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2893 
2894 	/* Configure BMUs */
2895 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2896 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2897 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2898 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2899 
2900 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2901 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2902 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2903 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2904 
2905 	/* Init descriptors */
2906 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2907 		printf("sk%d: initialization failed: no "
2908 		    "memory for rx buffers\n", sc_if->sk_unit);
2909 		sk_stop(sc_if);
2910 		return;
2911 	}
2912 	sk_init_tx_ring(sc_if);
2913 
2914 	/* Set interrupt moderation if changed via sysctl. */
2915 	/* SK_LOCK(sc); */
2916 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2917 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
2918 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
2919 		    sc->sk_int_ticks));
2920 		if (bootverbose)
2921 			printf("skc%d: interrupt moderation is %d us\n",
2922 			    sc->sk_unit, sc->sk_int_mod);
2923 	}
2924 	/* SK_UNLOCK(sc); */
2925 
2926 	/* Configure interrupt handling */
2927 	CSR_READ_4(sc, SK_ISSR);
2928 	if (sc_if->sk_port == SK_PORT_A)
2929 		sc->sk_intrmask |= SK_INTRS1;
2930 	else
2931 		sc->sk_intrmask |= SK_INTRS2;
2932 
2933 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2934 
2935 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2936 
2937 	/* Start BMUs. */
2938 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2939 
2940 	switch(sc->sk_type) {
2941 	case SK_GENESIS:
2942 		/* Enable XMACs TX and RX state machines */
2943 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2944 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2945 		break;
2946 	case SK_YUKON:
2947 	case SK_YUKON_LITE:
2948 	case SK_YUKON_LP:
2949 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2950 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2951 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2952 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2953 	}
2954 
2955 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2956 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2957 
2958 	return;
2959 }
2960 
2961 static void
2962 sk_stop(sc_if)
2963 	struct sk_if_softc	*sc_if;
2964 {
2965 	int			i;
2966 	struct sk_softc		*sc;
2967 	struct ifnet		*ifp;
2968 
2969 	SK_IF_LOCK_ASSERT(sc_if);
2970 	sc = sc_if->sk_softc;
2971 	ifp = sc_if->sk_ifp;
2972 
2973 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2974 
2975 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2976 		u_int32_t		val;
2977 
2978 		/* Put PHY back into reset. */
2979 		val = sk_win_read_4(sc, SK_GPIO);
2980 		if (sc_if->sk_port == SK_PORT_A) {
2981 			val |= SK_GPIO_DIR0;
2982 			val &= ~SK_GPIO_DAT0;
2983 		} else {
2984 			val |= SK_GPIO_DIR2;
2985 			val &= ~SK_GPIO_DAT2;
2986 		}
2987 		sk_win_write_4(sc, SK_GPIO, val);
2988 	}
2989 
2990 	/* Turn off various components of this interface. */
2991 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2992 	switch (sc->sk_type) {
2993 	case SK_GENESIS:
2994 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2995 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2996 		break;
2997 	case SK_YUKON:
2998 	case SK_YUKON_LITE:
2999 	case SK_YUKON_LP:
3000 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3001 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3002 		break;
3003 	}
3004 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3005 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3006 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3007 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3008 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3009 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3010 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3011 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3012 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3013 
3014 	/* Disable interrupts */
3015 	if (sc_if->sk_port == SK_PORT_A)
3016 		sc->sk_intrmask &= ~SK_INTRS1;
3017 	else
3018 		sc->sk_intrmask &= ~SK_INTRS2;
3019 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3020 
3021 	SK_XM_READ_2(sc_if, XM_ISR);
3022 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3023 
3024 	/* Free RX and TX mbufs still in the queues. */
3025 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3026 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
3027 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
3028 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
3029 		}
3030 	}
3031 
3032 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3033 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
3034 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
3035 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
3036 		}
3037 	}
3038 
3039 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3040 
3041 	return;
3042 }
3043 
3044 static int
3045 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3046 {
3047 	int error, value;
3048 
3049 	if (!arg1)
3050 		return (EINVAL);
3051 	value = *(int *)arg1;
3052 	error = sysctl_handle_int(oidp, &value, 0, req);
3053 	if (error || !req->newptr)
3054 		return (error);
3055 	if (value < low || value > high)
3056 		return (EINVAL);
3057 	*(int *)arg1 = value;
3058 	return (0);
3059 }
3060 
3061 static int
3062 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3063 {
3064 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3065 }
3066