1 /* 2 * Copyright (c) 1997, 1998, 1999, 2000 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD$ 33 */ 34 35 /* 36 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 37 * the SK-984x series adapters, both single port and dual port. 38 * References: 39 * The XaQti XMAC II datasheet, 40 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 41 * The SysKonnect GEnesis manual, http://www.syskonnect.com 42 * 43 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the 44 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 45 * convenience to others until Vitesse corrects this problem: 46 * 47 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 48 * 49 * Written by Bill Paul <wpaul@ee.columbia.edu> 50 * Department of Electrical Engineering 51 * Columbia University, New York City 52 */ 53 54 /* 55 * The SysKonnect gigabit ethernet adapters consist of two main 56 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 57 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 58 * components and a PHY while the GEnesis controller provides a PCI 59 * interface with DMA support. Each card may have between 512K and 60 * 2MB of SRAM on board depending on the configuration. 61 * 62 * The SysKonnect GEnesis controller can have either one or two XMAC 63 * chips connected to it, allowing single or dual port NIC configurations. 64 * SysKonnect has the distinction of being the only vendor on the market 65 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 66 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 67 * XMAC registers. This driver takes advantage of these features to allow 68 * both XMACs to operate as independent interfaces. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/sockio.h> 74 #include <sys/mbuf.h> 75 #include <sys/malloc.h> 76 #include <sys/kernel.h> 77 #include <sys/socket.h> 78 #include <sys/queue.h> 79 80 #include <net/if.h> 81 #include <net/if_arp.h> 82 #include <net/ethernet.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 86 #include <net/bpf.h> 87 88 #include <vm/vm.h> /* for vtophys */ 89 #include <vm/pmap.h> /* for vtophys */ 90 #include <machine/bus_pio.h> 91 #include <machine/bus_memio.h> 92 #include <machine/bus.h> 93 #include <machine/resource.h> 94 #include <sys/bus.h> 95 #include <sys/rman.h> 96 97 #include <dev/mii/mii.h> 98 #include <dev/mii/miivar.h> 99 #include <dev/mii/brgphyreg.h> 100 101 #include <pci/pcireg.h> 102 #include <pci/pcivar.h> 103 104 #define SK_USEIOSPACE 105 106 #include <pci/if_skreg.h> 107 #include <pci/xmaciireg.h> 108 109 MODULE_DEPEND(sk, miibus, 1, 1, 1); 110 111 /* "controller miibus0" required. See GENERIC if you get errors here. */ 112 #include "miibus_if.h" 113 114 #ifndef lint 115 static const char rcsid[] = 116 "$FreeBSD$"; 117 #endif 118 119 static struct sk_type sk_devs[] = { 120 { SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" }, 121 { 0, 0, NULL } 122 }; 123 124 static int sk_probe (device_t); 125 static int sk_attach (device_t); 126 static int sk_detach (device_t); 127 static int sk_detach_xmac (device_t); 128 static int sk_probe_xmac (device_t); 129 static int sk_attach_xmac (device_t); 130 static void sk_tick (void *); 131 static void sk_intr (void *); 132 static void sk_intr_xmac (struct sk_if_softc *); 133 static void sk_intr_bcom (struct sk_if_softc *); 134 static void sk_rxeof (struct sk_if_softc *); 135 static void sk_txeof (struct sk_if_softc *); 136 static int sk_encap (struct sk_if_softc *, struct mbuf *, 137 u_int32_t *); 138 static void sk_start (struct ifnet *); 139 static int sk_ioctl (struct ifnet *, u_long, caddr_t); 140 static void sk_init (void *); 141 static void sk_init_xmac (struct sk_if_softc *); 142 static void sk_stop (struct sk_if_softc *); 143 static void sk_watchdog (struct ifnet *); 144 static void sk_shutdown (device_t); 145 static int sk_ifmedia_upd (struct ifnet *); 146 static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *); 147 static void sk_reset (struct sk_softc *); 148 static int sk_newbuf (struct sk_if_softc *, 149 struct sk_chain *, struct mbuf *); 150 static int sk_alloc_jumbo_mem (struct sk_if_softc *); 151 static void *sk_jalloc (struct sk_if_softc *); 152 static void sk_jfree (void *, void *); 153 static int sk_init_rx_ring (struct sk_if_softc *); 154 static void sk_init_tx_ring (struct sk_if_softc *); 155 static u_int32_t sk_win_read_4 (struct sk_softc *, int); 156 static u_int16_t sk_win_read_2 (struct sk_softc *, int); 157 static u_int8_t sk_win_read_1 (struct sk_softc *, int); 158 static void sk_win_write_4 (struct sk_softc *, int, u_int32_t); 159 static void sk_win_write_2 (struct sk_softc *, int, u_int32_t); 160 static void sk_win_write_1 (struct sk_softc *, int, u_int32_t); 161 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int); 162 static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int); 163 static void sk_vpd_read (struct sk_softc *); 164 165 static int sk_miibus_readreg (device_t, int, int); 166 static int sk_miibus_writereg (device_t, int, int, int); 167 static void sk_miibus_statchg (device_t); 168 169 static u_int32_t sk_calchash (caddr_t); 170 static void sk_setfilt (struct sk_if_softc *, caddr_t, int); 171 static void sk_setmulti (struct sk_if_softc *); 172 173 #ifdef SK_USEIOSPACE 174 #define SK_RES SYS_RES_IOPORT 175 #define SK_RID SK_PCI_LOIO 176 #else 177 #define SK_RES SYS_RES_MEMORY 178 #define SK_RID SK_PCI_LOMEM 179 #endif 180 181 /* 182 * Note that we have newbus methods for both the GEnesis controller 183 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 184 * the miibus code is a child of the XMACs. We need to do it this way 185 * so that the miibus drivers can access the PHY registers on the 186 * right PHY. It's not quite what I had in mind, but it's the only 187 * design that achieves the desired effect. 188 */ 189 static device_method_t skc_methods[] = { 190 /* Device interface */ 191 DEVMETHOD(device_probe, sk_probe), 192 DEVMETHOD(device_attach, sk_attach), 193 DEVMETHOD(device_detach, sk_detach), 194 DEVMETHOD(device_shutdown, sk_shutdown), 195 196 /* bus interface */ 197 DEVMETHOD(bus_print_child, bus_generic_print_child), 198 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 199 200 { 0, 0 } 201 }; 202 203 static driver_t skc_driver = { 204 "skc", 205 skc_methods, 206 sizeof(struct sk_softc) 207 }; 208 209 static devclass_t skc_devclass; 210 211 static device_method_t sk_methods[] = { 212 /* Device interface */ 213 DEVMETHOD(device_probe, sk_probe_xmac), 214 DEVMETHOD(device_attach, sk_attach_xmac), 215 DEVMETHOD(device_detach, sk_detach_xmac), 216 DEVMETHOD(device_shutdown, bus_generic_shutdown), 217 218 /* bus interface */ 219 DEVMETHOD(bus_print_child, bus_generic_print_child), 220 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 221 222 /* MII interface */ 223 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 224 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 225 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 226 227 { 0, 0 } 228 }; 229 230 static driver_t sk_driver = { 231 "sk", 232 sk_methods, 233 sizeof(struct sk_if_softc) 234 }; 235 236 static devclass_t sk_devclass; 237 238 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0); 239 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 240 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 241 242 #define SK_SETBIT(sc, reg, x) \ 243 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 244 245 #define SK_CLRBIT(sc, reg, x) \ 246 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 247 248 #define SK_WIN_SETBIT_4(sc, reg, x) \ 249 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 250 251 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 252 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 253 254 #define SK_WIN_SETBIT_2(sc, reg, x) \ 255 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 256 257 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 258 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 259 260 static u_int32_t 261 sk_win_read_4(sc, reg) 262 struct sk_softc *sc; 263 int reg; 264 { 265 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 266 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 267 } 268 269 static u_int16_t 270 sk_win_read_2(sc, reg) 271 struct sk_softc *sc; 272 int reg; 273 { 274 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 275 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 276 } 277 278 static u_int8_t 279 sk_win_read_1(sc, reg) 280 struct sk_softc *sc; 281 int reg; 282 { 283 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 284 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 285 } 286 287 static void 288 sk_win_write_4(sc, reg, val) 289 struct sk_softc *sc; 290 int reg; 291 u_int32_t val; 292 { 293 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 294 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 295 return; 296 } 297 298 static void 299 sk_win_write_2(sc, reg, val) 300 struct sk_softc *sc; 301 int reg; 302 u_int32_t val; 303 { 304 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 305 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val); 306 return; 307 } 308 309 static void 310 sk_win_write_1(sc, reg, val) 311 struct sk_softc *sc; 312 int reg; 313 u_int32_t val; 314 { 315 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 316 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 317 return; 318 } 319 320 /* 321 * The VPD EEPROM contains Vital Product Data, as suggested in 322 * the PCI 2.1 specification. The VPD data is separared into areas 323 * denoted by resource IDs. The SysKonnect VPD contains an ID string 324 * resource (the name of the adapter), a read-only area resource 325 * containing various key/data fields and a read/write area which 326 * can be used to store asset management information or log messages. 327 * We read the ID string and read-only into buffers attached to 328 * the controller softc structure for later use. At the moment, 329 * we only use the ID string during sk_attach(). 330 */ 331 static u_int8_t 332 sk_vpd_readbyte(sc, addr) 333 struct sk_softc *sc; 334 int addr; 335 { 336 int i; 337 338 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 339 for (i = 0; i < SK_TIMEOUT; i++) { 340 DELAY(1); 341 if (sk_win_read_2(sc, 342 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 343 break; 344 } 345 346 if (i == SK_TIMEOUT) 347 return(0); 348 349 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); 350 } 351 352 static void 353 sk_vpd_read_res(sc, res, addr) 354 struct sk_softc *sc; 355 struct vpd_res *res; 356 int addr; 357 { 358 int i; 359 u_int8_t *ptr; 360 361 ptr = (u_int8_t *)res; 362 for (i = 0; i < sizeof(struct vpd_res); i++) 363 ptr[i] = sk_vpd_readbyte(sc, i + addr); 364 365 return; 366 } 367 368 static void 369 sk_vpd_read(sc) 370 struct sk_softc *sc; 371 { 372 int pos = 0, i; 373 struct vpd_res res; 374 375 if (sc->sk_vpd_prodname != NULL) 376 free(sc->sk_vpd_prodname, M_DEVBUF); 377 if (sc->sk_vpd_readonly != NULL) 378 free(sc->sk_vpd_readonly, M_DEVBUF); 379 sc->sk_vpd_prodname = NULL; 380 sc->sk_vpd_readonly = NULL; 381 382 sk_vpd_read_res(sc, &res, pos); 383 384 if (res.vr_id != VPD_RES_ID) { 385 printf("skc%d: bad VPD resource id: expected %x got %x\n", 386 sc->sk_unit, VPD_RES_ID, res.vr_id); 387 return; 388 } 389 390 pos += sizeof(res); 391 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 392 for (i = 0; i < res.vr_len; i++) 393 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 394 sc->sk_vpd_prodname[i] = '\0'; 395 pos += i; 396 397 sk_vpd_read_res(sc, &res, pos); 398 399 if (res.vr_id != VPD_RES_READ) { 400 printf("skc%d: bad VPD resource id: expected %x got %x\n", 401 sc->sk_unit, VPD_RES_READ, res.vr_id); 402 return; 403 } 404 405 pos += sizeof(res); 406 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 407 for (i = 0; i < res.vr_len + 1; i++) 408 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 409 410 return; 411 } 412 413 static int 414 sk_miibus_readreg(dev, phy, reg) 415 device_t dev; 416 int phy, reg; 417 { 418 struct sk_if_softc *sc_if; 419 int i; 420 421 sc_if = device_get_softc(dev); 422 423 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 424 return(0); 425 426 SK_IF_LOCK(sc_if); 427 428 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 429 SK_XM_READ_2(sc_if, XM_PHY_DATA); 430 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 431 for (i = 0; i < SK_TIMEOUT; i++) { 432 DELAY(1); 433 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 434 XM_MMUCMD_PHYDATARDY) 435 break; 436 } 437 438 if (i == SK_TIMEOUT) { 439 printf("sk%d: phy failed to come ready\n", 440 sc_if->sk_unit); 441 return(0); 442 } 443 } 444 DELAY(1); 445 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 446 SK_IF_UNLOCK(sc_if); 447 return(i); 448 } 449 450 static int 451 sk_miibus_writereg(dev, phy, reg, val) 452 device_t dev; 453 int phy, reg, val; 454 { 455 struct sk_if_softc *sc_if; 456 int i; 457 458 sc_if = device_get_softc(dev); 459 SK_IF_LOCK(sc_if); 460 461 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 462 for (i = 0; i < SK_TIMEOUT; i++) { 463 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 464 break; 465 } 466 467 if (i == SK_TIMEOUT) { 468 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); 469 return(ETIMEDOUT); 470 } 471 472 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 473 for (i = 0; i < SK_TIMEOUT; i++) { 474 DELAY(1); 475 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 476 break; 477 } 478 479 SK_IF_UNLOCK(sc_if); 480 481 if (i == SK_TIMEOUT) 482 printf("sk%d: phy write timed out\n", sc_if->sk_unit); 483 484 return(0); 485 } 486 487 static void 488 sk_miibus_statchg(dev) 489 device_t dev; 490 { 491 struct sk_if_softc *sc_if; 492 struct mii_data *mii; 493 494 sc_if = device_get_softc(dev); 495 mii = device_get_softc(sc_if->sk_miibus); 496 SK_IF_LOCK(sc_if); 497 /* 498 * If this is a GMII PHY, manually set the XMAC's 499 * duplex mode accordingly. 500 */ 501 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 502 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 503 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 504 } else { 505 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 506 } 507 } 508 SK_IF_UNLOCK(sc_if); 509 510 return; 511 } 512 513 #define SK_POLY 0xEDB88320 514 #define SK_BITS 6 515 516 static u_int32_t 517 sk_calchash(addr) 518 caddr_t addr; 519 { 520 u_int32_t idx, bit, data, crc; 521 522 /* Compute CRC for the address value. */ 523 crc = 0xFFFFFFFF; /* initial value */ 524 525 for (idx = 0; idx < 6; idx++) { 526 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 527 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0); 528 } 529 530 return (~crc & ((1 << SK_BITS) - 1)); 531 } 532 533 static void 534 sk_setfilt(sc_if, addr, slot) 535 struct sk_if_softc *sc_if; 536 caddr_t addr; 537 int slot; 538 { 539 int base; 540 541 base = XM_RXFILT_ENTRY(slot); 542 543 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); 544 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); 545 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); 546 547 return; 548 } 549 550 static void 551 sk_setmulti(sc_if) 552 struct sk_if_softc *sc_if; 553 { 554 struct ifnet *ifp; 555 u_int32_t hashes[2] = { 0, 0 }; 556 int h, i; 557 struct ifmultiaddr *ifma; 558 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; 559 560 ifp = &sc_if->arpcom.ac_if; 561 562 /* First, zot all the existing filters. */ 563 for (i = 1; i < XM_RXFILT_MAX; i++) 564 sk_setfilt(sc_if, (caddr_t)&dummy, i); 565 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 566 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 567 568 /* Now program new ones. */ 569 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 570 hashes[0] = 0xFFFFFFFF; 571 hashes[1] = 0xFFFFFFFF; 572 } else { 573 i = 1; 574 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { 575 if (ifma->ifma_addr->sa_family != AF_LINK) 576 continue; 577 /* 578 * Program the first XM_RXFILT_MAX multicast groups 579 * into the perfect filter. For all others, 580 * use the hash table. 581 */ 582 if (i < XM_RXFILT_MAX) { 583 sk_setfilt(sc_if, 584 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); 585 i++; 586 continue; 587 } 588 589 h = sk_calchash( 590 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 591 if (h < 32) 592 hashes[0] |= (1 << h); 593 else 594 hashes[1] |= (1 << (h - 32)); 595 } 596 } 597 598 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 599 XM_MODE_RX_USE_PERFECT); 600 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 601 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 602 603 return; 604 } 605 606 static int 607 sk_init_rx_ring(sc_if) 608 struct sk_if_softc *sc_if; 609 { 610 struct sk_chain_data *cd; 611 struct sk_ring_data *rd; 612 int i; 613 614 cd = &sc_if->sk_cdata; 615 rd = sc_if->sk_rdata; 616 617 bzero((char *)rd->sk_rx_ring, 618 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 619 620 for (i = 0; i < SK_RX_RING_CNT; i++) { 621 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 622 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) 623 return(ENOBUFS); 624 if (i == (SK_RX_RING_CNT - 1)) { 625 cd->sk_rx_chain[i].sk_next = 626 &cd->sk_rx_chain[0]; 627 rd->sk_rx_ring[i].sk_next = 628 vtophys(&rd->sk_rx_ring[0]); 629 } else { 630 cd->sk_rx_chain[i].sk_next = 631 &cd->sk_rx_chain[i + 1]; 632 rd->sk_rx_ring[i].sk_next = 633 vtophys(&rd->sk_rx_ring[i + 1]); 634 } 635 } 636 637 sc_if->sk_cdata.sk_rx_prod = 0; 638 sc_if->sk_cdata.sk_rx_cons = 0; 639 640 return(0); 641 } 642 643 static void 644 sk_init_tx_ring(sc_if) 645 struct sk_if_softc *sc_if; 646 { 647 struct sk_chain_data *cd; 648 struct sk_ring_data *rd; 649 int i; 650 651 cd = &sc_if->sk_cdata; 652 rd = sc_if->sk_rdata; 653 654 bzero((char *)sc_if->sk_rdata->sk_tx_ring, 655 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 656 657 for (i = 0; i < SK_TX_RING_CNT; i++) { 658 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 659 if (i == (SK_TX_RING_CNT - 1)) { 660 cd->sk_tx_chain[i].sk_next = 661 &cd->sk_tx_chain[0]; 662 rd->sk_tx_ring[i].sk_next = 663 vtophys(&rd->sk_tx_ring[0]); 664 } else { 665 cd->sk_tx_chain[i].sk_next = 666 &cd->sk_tx_chain[i + 1]; 667 rd->sk_tx_ring[i].sk_next = 668 vtophys(&rd->sk_tx_ring[i + 1]); 669 } 670 } 671 672 sc_if->sk_cdata.sk_tx_prod = 0; 673 sc_if->sk_cdata.sk_tx_cons = 0; 674 sc_if->sk_cdata.sk_tx_cnt = 0; 675 676 return; 677 } 678 679 static int 680 sk_newbuf(sc_if, c, m) 681 struct sk_if_softc *sc_if; 682 struct sk_chain *c; 683 struct mbuf *m; 684 { 685 struct mbuf *m_new = NULL; 686 struct sk_rx_desc *r; 687 688 if (m == NULL) { 689 caddr_t *buf = NULL; 690 691 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 692 if (m_new == NULL) 693 return(ENOBUFS); 694 695 /* Allocate the jumbo buffer */ 696 buf = sk_jalloc(sc_if); 697 if (buf == NULL) { 698 m_freem(m_new); 699 #ifdef SK_VERBOSE 700 printf("sk%d: jumbo allocation failed " 701 "-- packet dropped!\n", sc_if->sk_unit); 702 #endif 703 return(ENOBUFS); 704 } 705 706 /* Attach the buffer to the mbuf */ 707 MEXTADD(m_new, buf, SK_JLEN, sk_jfree, 708 (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV); 709 m_new->m_data = (void *)buf; 710 m_new->m_pkthdr.len = m_new->m_len = SK_JLEN; 711 } else { 712 /* 713 * We're re-using a previously allocated mbuf; 714 * be sure to re-init pointers and lengths to 715 * default values. 716 */ 717 m_new = m; 718 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 719 m_new->m_data = m_new->m_ext.ext_buf; 720 } 721 722 /* 723 * Adjust alignment so packet payload begins on a 724 * longword boundary. Mandatory for Alpha, useful on 725 * x86 too. 726 */ 727 m_adj(m_new, ETHER_ALIGN); 728 729 r = c->sk_desc; 730 c->sk_mbuf = m_new; 731 r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); 732 r->sk_ctl = m_new->m_len | SK_RXSTAT; 733 734 return(0); 735 } 736 737 /* 738 * Allocate jumbo buffer storage. The SysKonnect adapters support 739 * "jumbograms" (9K frames), although SysKonnect doesn't currently 740 * use them in their drivers. In order for us to use them, we need 741 * large 9K receive buffers, however standard mbuf clusters are only 742 * 2048 bytes in size. Consequently, we need to allocate and manage 743 * our own jumbo buffer pool. Fortunately, this does not require an 744 * excessive amount of additional code. 745 */ 746 static int 747 sk_alloc_jumbo_mem(sc_if) 748 struct sk_if_softc *sc_if; 749 { 750 caddr_t ptr; 751 register int i; 752 struct sk_jpool_entry *entry; 753 754 /* Grab a big chunk o' storage. */ 755 sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, 756 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 757 758 if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { 759 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); 760 return(ENOBUFS); 761 } 762 763 SLIST_INIT(&sc_if->sk_jfree_listhead); 764 SLIST_INIT(&sc_if->sk_jinuse_listhead); 765 766 /* 767 * Now divide it up into 9K pieces and save the addresses 768 * in an array. 769 */ 770 ptr = sc_if->sk_cdata.sk_jumbo_buf; 771 for (i = 0; i < SK_JSLOTS; i++) { 772 sc_if->sk_cdata.sk_jslots[i] = ptr; 773 ptr += SK_JLEN; 774 entry = malloc(sizeof(struct sk_jpool_entry), 775 M_DEVBUF, M_NOWAIT); 776 if (entry == NULL) { 777 free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); 778 sc_if->sk_cdata.sk_jumbo_buf = NULL; 779 printf("sk%d: no memory for jumbo " 780 "buffer queue!\n", sc_if->sk_unit); 781 return(ENOBUFS); 782 } 783 entry->slot = i; 784 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 785 entry, jpool_entries); 786 } 787 788 return(0); 789 } 790 791 /* 792 * Allocate a jumbo buffer. 793 */ 794 static void * 795 sk_jalloc(sc_if) 796 struct sk_if_softc *sc_if; 797 { 798 struct sk_jpool_entry *entry; 799 800 entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); 801 802 if (entry == NULL) { 803 #ifdef SK_VERBOSE 804 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); 805 #endif 806 return(NULL); 807 } 808 809 SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); 810 SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 811 return(sc_if->sk_cdata.sk_jslots[entry->slot]); 812 } 813 814 /* 815 * Release a jumbo buffer. 816 */ 817 static void 818 sk_jfree(buf, args) 819 void *buf; 820 void *args; 821 { 822 struct sk_if_softc *sc_if; 823 int i; 824 struct sk_jpool_entry *entry; 825 826 /* Extract the softc struct pointer. */ 827 sc_if = (struct sk_if_softc *)args; 828 829 if (sc_if == NULL) 830 panic("sk_jfree: didn't get softc pointer!"); 831 832 /* calculate the slot this buffer belongs to */ 833 i = ((vm_offset_t)buf 834 - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; 835 836 if ((i < 0) || (i >= SK_JSLOTS)) 837 panic("sk_jfree: asked to free buffer that we don't manage!"); 838 839 entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); 840 if (entry == NULL) 841 panic("sk_jfree: buffer not in use!"); 842 entry->slot = i; 843 SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); 844 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); 845 846 return; 847 } 848 849 /* 850 * Set media options. 851 */ 852 static int 853 sk_ifmedia_upd(ifp) 854 struct ifnet *ifp; 855 { 856 struct sk_if_softc *sc_if; 857 struct mii_data *mii; 858 859 sc_if = ifp->if_softc; 860 mii = device_get_softc(sc_if->sk_miibus); 861 sk_init(sc_if); 862 mii_mediachg(mii); 863 864 return(0); 865 } 866 867 /* 868 * Report current media status. 869 */ 870 static void 871 sk_ifmedia_sts(ifp, ifmr) 872 struct ifnet *ifp; 873 struct ifmediareq *ifmr; 874 { 875 struct sk_if_softc *sc_if; 876 struct mii_data *mii; 877 878 sc_if = ifp->if_softc; 879 mii = device_get_softc(sc_if->sk_miibus); 880 881 mii_pollstat(mii); 882 ifmr->ifm_active = mii->mii_media_active; 883 ifmr->ifm_status = mii->mii_media_status; 884 885 return; 886 } 887 888 static int 889 sk_ioctl(ifp, command, data) 890 struct ifnet *ifp; 891 u_long command; 892 caddr_t data; 893 { 894 struct sk_if_softc *sc_if = ifp->if_softc; 895 struct ifreq *ifr = (struct ifreq *) data; 896 int error = 0; 897 struct mii_data *mii; 898 899 SK_IF_LOCK(sc_if); 900 901 switch(command) { 902 case SIOCSIFMTU: 903 if (ifr->ifr_mtu > SK_JUMBO_MTU) 904 error = EINVAL; 905 else { 906 ifp->if_mtu = ifr->ifr_mtu; 907 sk_init(sc_if); 908 } 909 break; 910 case SIOCSIFFLAGS: 911 if (ifp->if_flags & IFF_UP) { 912 if (ifp->if_flags & IFF_RUNNING && 913 ifp->if_flags & IFF_PROMISC && 914 !(sc_if->sk_if_flags & IFF_PROMISC)) { 915 SK_XM_SETBIT_4(sc_if, XM_MODE, 916 XM_MODE_RX_PROMISC); 917 sk_setmulti(sc_if); 918 } else if (ifp->if_flags & IFF_RUNNING && 919 !(ifp->if_flags & IFF_PROMISC) && 920 sc_if->sk_if_flags & IFF_PROMISC) { 921 SK_XM_CLRBIT_4(sc_if, XM_MODE, 922 XM_MODE_RX_PROMISC); 923 sk_setmulti(sc_if); 924 } else 925 sk_init(sc_if); 926 } else { 927 if (ifp->if_flags & IFF_RUNNING) 928 sk_stop(sc_if); 929 } 930 sc_if->sk_if_flags = ifp->if_flags; 931 error = 0; 932 break; 933 case SIOCADDMULTI: 934 case SIOCDELMULTI: 935 sk_setmulti(sc_if); 936 error = 0; 937 break; 938 case SIOCGIFMEDIA: 939 case SIOCSIFMEDIA: 940 mii = device_get_softc(sc_if->sk_miibus); 941 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 942 break; 943 default: 944 error = ether_ioctl(ifp, command, data); 945 break; 946 } 947 948 SK_IF_UNLOCK(sc_if); 949 950 return(error); 951 } 952 953 /* 954 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 955 * IDs against our list and return a device name if we find a match. 956 */ 957 static int 958 sk_probe(dev) 959 device_t dev; 960 { 961 struct sk_type *t; 962 963 t = sk_devs; 964 965 while(t->sk_name != NULL) { 966 if ((pci_get_vendor(dev) == t->sk_vid) && 967 (pci_get_device(dev) == t->sk_did)) { 968 device_set_desc(dev, t->sk_name); 969 return(0); 970 } 971 t++; 972 } 973 974 return(ENXIO); 975 } 976 977 /* 978 * Force the GEnesis into reset, then bring it out of reset. 979 */ 980 static void 981 sk_reset(sc) 982 struct sk_softc *sc; 983 { 984 CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET); 985 CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET); 986 DELAY(1000); 987 CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET); 988 CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 989 990 /* Configure packet arbiter */ 991 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 992 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 993 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 994 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 995 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 996 997 /* Enable RAM interface */ 998 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 999 1000 /* 1001 * Configure interrupt moderation. The moderation timer 1002 * defers interrupts specified in the interrupt moderation 1003 * timer mask based on the timeout specified in the interrupt 1004 * moderation timer init register. Each bit in the timer 1005 * register represents 18.825ns, so to specify a timeout in 1006 * microseconds, we have to multiply by 54. 1007 */ 1008 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); 1009 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1010 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1011 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1012 1013 return; 1014 } 1015 1016 static int 1017 sk_probe_xmac(dev) 1018 device_t dev; 1019 { 1020 /* 1021 * Not much to do here. We always know there will be 1022 * at least one XMAC present, and if there are two, 1023 * sk_attach() will create a second device instance 1024 * for us. 1025 */ 1026 device_set_desc(dev, "XaQti Corp. XMAC II"); 1027 1028 return(0); 1029 } 1030 1031 /* 1032 * Each XMAC chip is attached as a separate logical IP interface. 1033 * Single port cards will have only one logical interface of course. 1034 */ 1035 static int 1036 sk_attach_xmac(dev) 1037 device_t dev; 1038 { 1039 struct sk_softc *sc; 1040 struct sk_if_softc *sc_if; 1041 struct ifnet *ifp; 1042 int i, port; 1043 1044 if (dev == NULL) 1045 return(EINVAL); 1046 1047 sc_if = device_get_softc(dev); 1048 sc = device_get_softc(device_get_parent(dev)); 1049 SK_LOCK(sc); 1050 port = *(int *)device_get_ivars(dev); 1051 free(device_get_ivars(dev), M_DEVBUF); 1052 device_set_ivars(dev, NULL); 1053 sc_if->sk_dev = dev; 1054 1055 bzero((char *)sc_if, sizeof(struct sk_if_softc)); 1056 1057 sc_if->sk_dev = dev; 1058 sc_if->sk_unit = device_get_unit(dev); 1059 sc_if->sk_port = port; 1060 sc_if->sk_softc = sc; 1061 sc->sk_if[port] = sc_if; 1062 if (port == SK_PORT_A) 1063 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1064 if (port == SK_PORT_B) 1065 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1066 1067 /* 1068 * Get station address for this interface. Note that 1069 * dual port cards actually come with three station 1070 * addresses: one for each port, plus an extra. The 1071 * extra one is used by the SysKonnect driver software 1072 * as a 'virtual' station address for when both ports 1073 * are operating in failover mode. Currently we don't 1074 * use this extra address. 1075 */ 1076 for (i = 0; i < ETHER_ADDR_LEN; i++) 1077 sc_if->arpcom.ac_enaddr[i] = 1078 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1079 1080 printf("sk%d: Ethernet address: %6D\n", 1081 sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":"); 1082 1083 /* 1084 * Set up RAM buffer addresses. The NIC will have a certain 1085 * amount of SRAM on it, somewhere between 512K and 2MB. We 1086 * need to divide this up a) between the transmitter and 1087 * receiver and b) between the two XMACs, if this is a 1088 * dual port NIC. Our algotithm is to divide up the memory 1089 * evenly so that everyone gets a fair share. 1090 */ 1091 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1092 u_int32_t chunk, val; 1093 1094 chunk = sc->sk_ramsize / 2; 1095 val = sc->sk_rboff / sizeof(u_int64_t); 1096 sc_if->sk_rx_ramstart = val; 1097 val += (chunk / sizeof(u_int64_t)); 1098 sc_if->sk_rx_ramend = val - 1; 1099 sc_if->sk_tx_ramstart = val; 1100 val += (chunk / sizeof(u_int64_t)); 1101 sc_if->sk_tx_ramend = val - 1; 1102 } else { 1103 u_int32_t chunk, val; 1104 1105 chunk = sc->sk_ramsize / 4; 1106 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1107 sizeof(u_int64_t); 1108 sc_if->sk_rx_ramstart = val; 1109 val += (chunk / sizeof(u_int64_t)); 1110 sc_if->sk_rx_ramend = val - 1; 1111 sc_if->sk_tx_ramstart = val; 1112 val += (chunk / sizeof(u_int64_t)); 1113 sc_if->sk_tx_ramend = val - 1; 1114 } 1115 1116 /* Read and save PHY type and set PHY address */ 1117 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1118 switch(sc_if->sk_phytype) { 1119 case SK_PHYTYPE_XMAC: 1120 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1121 break; 1122 case SK_PHYTYPE_BCOM: 1123 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1124 break; 1125 default: 1126 printf("skc%d: unsupported PHY type: %d\n", 1127 sc->sk_unit, sc_if->sk_phytype); 1128 SK_UNLOCK(sc); 1129 return(ENODEV); 1130 } 1131 1132 /* Allocate the descriptor queues. */ 1133 sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, 1134 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1135 1136 if (sc_if->sk_rdata == NULL) { 1137 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); 1138 sc->sk_if[port] = NULL; 1139 SK_UNLOCK(sc); 1140 return(ENOMEM); 1141 } 1142 1143 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); 1144 1145 /* Try to allocate memory for jumbo buffers. */ 1146 if (sk_alloc_jumbo_mem(sc_if)) { 1147 printf("sk%d: jumbo buffer allocation failed\n", 1148 sc_if->sk_unit); 1149 contigfree(sc_if->sk_rdata, 1150 sizeof(struct sk_ring_data), M_DEVBUF); 1151 sc->sk_if[port] = NULL; 1152 SK_UNLOCK(sc); 1153 return(ENOMEM); 1154 } 1155 1156 ifp = &sc_if->arpcom.ac_if; 1157 ifp->if_softc = sc_if; 1158 ifp->if_unit = sc_if->sk_unit; 1159 ifp->if_name = "sk"; 1160 ifp->if_mtu = ETHERMTU; 1161 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1162 ifp->if_ioctl = sk_ioctl; 1163 ifp->if_output = ether_output; 1164 ifp->if_start = sk_start; 1165 ifp->if_watchdog = sk_watchdog; 1166 ifp->if_init = sk_init; 1167 ifp->if_baudrate = 1000000000; 1168 ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; 1169 1170 /* 1171 * Call MI attach routine. 1172 */ 1173 ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); 1174 callout_handle_init(&sc_if->sk_tick_ch); 1175 1176 /* 1177 * Do miibus setup. 1178 */ 1179 sk_init_xmac(sc_if); 1180 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1181 sk_ifmedia_upd, sk_ifmedia_sts)) { 1182 printf("skc%d: no PHY found!\n", sc_if->sk_unit); 1183 contigfree(sc_if->sk_rdata, 1184 sizeof(struct sk_ring_data), M_DEVBUF); 1185 ether_ifdetach(ifp); 1186 SK_UNLOCK(sc); 1187 return(ENXIO); 1188 } 1189 1190 SK_UNLOCK(sc); 1191 1192 return(0); 1193 } 1194 1195 /* 1196 * Attach the interface. Allocate softc structures, do ifmedia 1197 * setup and ethernet/BPF attach. 1198 */ 1199 static int 1200 sk_attach(dev) 1201 device_t dev; 1202 { 1203 u_int32_t command; 1204 struct sk_softc *sc; 1205 int unit, error = 0, rid, *port; 1206 1207 sc = device_get_softc(dev); 1208 unit = device_get_unit(dev); 1209 bzero(sc, sizeof(struct sk_softc)); 1210 1211 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1212 MTX_DEF | MTX_RECURSE); 1213 SK_LOCK(sc); 1214 1215 /* 1216 * Handle power management nonsense. 1217 */ 1218 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 1219 u_int32_t iobase, membase, irq; 1220 1221 /* Save important PCI config data. */ 1222 iobase = pci_read_config(dev, SK_PCI_LOIO, 4); 1223 membase = pci_read_config(dev, SK_PCI_LOMEM, 4); 1224 irq = pci_read_config(dev, SK_PCI_INTLINE, 4); 1225 1226 /* Reset the power state. */ 1227 printf("skc%d: chip is in D%d power mode " 1228 "-- setting to D0\n", unit, 1229 pci_get_powerstate(dev)); 1230 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 1231 1232 /* Restore PCI config data. */ 1233 pci_write_config(dev, SK_PCI_LOIO, iobase, 4); 1234 pci_write_config(dev, SK_PCI_LOMEM, membase, 4); 1235 pci_write_config(dev, SK_PCI_INTLINE, irq, 4); 1236 } 1237 1238 /* 1239 * Map control/status registers. 1240 */ 1241 pci_enable_busmaster(dev); 1242 pci_enable_io(dev, SYS_RES_IOPORT); 1243 pci_enable_io(dev, SYS_RES_MEMORY); 1244 command = pci_read_config(dev, PCIR_COMMAND, 4); 1245 1246 #ifdef SK_USEIOSPACE 1247 if (!(command & PCIM_CMD_PORTEN)) { 1248 printf("skc%d: failed to enable I/O ports!\n", unit); 1249 error = ENXIO; 1250 goto fail; 1251 } 1252 #else 1253 if (!(command & PCIM_CMD_MEMEN)) { 1254 printf("skc%d: failed to enable memory mapping!\n", unit); 1255 error = ENXIO; 1256 goto fail; 1257 } 1258 #endif 1259 1260 rid = SK_RID; 1261 sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid, 1262 0, ~0, 1, RF_ACTIVE); 1263 1264 if (sc->sk_res == NULL) { 1265 printf("sk%d: couldn't map ports/memory\n", unit); 1266 error = ENXIO; 1267 goto fail; 1268 } 1269 1270 sc->sk_btag = rman_get_bustag(sc->sk_res); 1271 sc->sk_bhandle = rman_get_bushandle(sc->sk_res); 1272 1273 /* Allocate interrupt */ 1274 rid = 0; 1275 sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1276 RF_SHAREABLE | RF_ACTIVE); 1277 1278 if (sc->sk_irq == NULL) { 1279 printf("skc%d: couldn't map interrupt\n", unit); 1280 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1281 error = ENXIO; 1282 goto fail; 1283 } 1284 1285 error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET, 1286 sk_intr, sc, &sc->sk_intrhand); 1287 1288 if (error) { 1289 printf("skc%d: couldn't set up irq\n", unit); 1290 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1291 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1292 goto fail; 1293 } 1294 1295 /* Reset the adapter. */ 1296 sk_reset(sc); 1297 1298 sc->sk_unit = unit; 1299 1300 /* Read and save vital product data from EEPROM. */ 1301 sk_vpd_read(sc); 1302 1303 /* Read and save RAM size and RAMbuffer offset */ 1304 switch(sk_win_read_1(sc, SK_EPROM0)) { 1305 case SK_RAMSIZE_512K_64: 1306 sc->sk_ramsize = 0x80000; 1307 sc->sk_rboff = SK_RBOFF_0; 1308 break; 1309 case SK_RAMSIZE_1024K_64: 1310 sc->sk_ramsize = 0x100000; 1311 sc->sk_rboff = SK_RBOFF_80000; 1312 break; 1313 case SK_RAMSIZE_1024K_128: 1314 sc->sk_ramsize = 0x100000; 1315 sc->sk_rboff = SK_RBOFF_0; 1316 break; 1317 case SK_RAMSIZE_2048K_128: 1318 sc->sk_ramsize = 0x200000; 1319 sc->sk_rboff = SK_RBOFF_0; 1320 break; 1321 default: 1322 printf("skc%d: unknown ram size: %d\n", 1323 sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); 1324 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1325 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1326 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1327 error = ENXIO; 1328 goto fail; 1329 break; 1330 } 1331 1332 /* Read and save physical media type */ 1333 switch(sk_win_read_1(sc, SK_PMDTYPE)) { 1334 case SK_PMD_1000BASESX: 1335 sc->sk_pmd = IFM_1000_SX; 1336 break; 1337 case SK_PMD_1000BASELX: 1338 sc->sk_pmd = IFM_1000_LX; 1339 break; 1340 case SK_PMD_1000BASECX: 1341 sc->sk_pmd = IFM_1000_CX; 1342 break; 1343 case SK_PMD_1000BASETX: 1344 sc->sk_pmd = IFM_1000_T; 1345 break; 1346 default: 1347 printf("skc%d: unknown media type: 0x%x\n", 1348 sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); 1349 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1350 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1351 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1352 error = ENXIO; 1353 goto fail; 1354 } 1355 1356 /* Announce the product name. */ 1357 printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); 1358 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1359 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1360 *port = SK_PORT_A; 1361 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1362 1363 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1364 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1365 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1366 *port = SK_PORT_B; 1367 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1368 } 1369 1370 /* Turn on the 'driver is loaded' LED. */ 1371 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1372 1373 bus_generic_attach(dev); 1374 SK_UNLOCK(sc); 1375 return(0); 1376 1377 fail: 1378 SK_UNLOCK(sc); 1379 mtx_destroy(&sc->sk_mtx); 1380 return(error); 1381 } 1382 1383 static int 1384 sk_detach_xmac(dev) 1385 device_t dev; 1386 { 1387 struct sk_softc *sc; 1388 struct sk_if_softc *sc_if; 1389 struct ifnet *ifp; 1390 1391 sc = device_get_softc(device_get_parent(dev)); 1392 sc_if = device_get_softc(dev); 1393 SK_IF_LOCK(sc_if); 1394 1395 ifp = &sc_if->arpcom.ac_if; 1396 sk_stop(sc_if); 1397 ether_ifdetach(ifp); 1398 bus_generic_detach(dev); 1399 if (sc_if->sk_miibus != NULL) 1400 device_delete_child(dev, sc_if->sk_miibus); 1401 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); 1402 contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF); 1403 SK_IF_UNLOCK(sc_if); 1404 1405 return(0); 1406 } 1407 1408 static int 1409 sk_detach(dev) 1410 device_t dev; 1411 { 1412 struct sk_softc *sc; 1413 1414 sc = device_get_softc(dev); 1415 SK_LOCK(sc); 1416 1417 bus_generic_detach(dev); 1418 if (sc->sk_devs[SK_PORT_A] != NULL) 1419 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1420 if (sc->sk_devs[SK_PORT_B] != NULL) 1421 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1422 1423 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1424 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1425 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1426 1427 SK_UNLOCK(sc); 1428 mtx_destroy(&sc->sk_mtx); 1429 1430 return(0); 1431 } 1432 1433 static int 1434 sk_encap(sc_if, m_head, txidx) 1435 struct sk_if_softc *sc_if; 1436 struct mbuf *m_head; 1437 u_int32_t *txidx; 1438 { 1439 struct sk_tx_desc *f = NULL; 1440 struct mbuf *m; 1441 u_int32_t frag, cur, cnt = 0; 1442 1443 m = m_head; 1444 cur = frag = *txidx; 1445 1446 /* 1447 * Start packing the mbufs in this chain into 1448 * the fragment pointers. Stop when we run out 1449 * of fragments or hit the end of the mbuf chain. 1450 */ 1451 for (m = m_head; m != NULL; m = m->m_next) { 1452 if (m->m_len != 0) { 1453 if ((SK_TX_RING_CNT - 1454 (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) 1455 return(ENOBUFS); 1456 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1457 f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); 1458 f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; 1459 if (cnt == 0) 1460 f->sk_ctl |= SK_TXCTL_FIRSTFRAG; 1461 else 1462 f->sk_ctl |= SK_TXCTL_OWN; 1463 cur = frag; 1464 SK_INC(frag, SK_TX_RING_CNT); 1465 cnt++; 1466 } 1467 } 1468 1469 if (m != NULL) 1470 return(ENOBUFS); 1471 1472 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1473 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; 1474 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1475 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; 1476 sc_if->sk_cdata.sk_tx_cnt += cnt; 1477 1478 *txidx = frag; 1479 1480 return(0); 1481 } 1482 1483 static void 1484 sk_start(ifp) 1485 struct ifnet *ifp; 1486 { 1487 struct sk_softc *sc; 1488 struct sk_if_softc *sc_if; 1489 struct mbuf *m_head = NULL; 1490 u_int32_t idx; 1491 1492 sc_if = ifp->if_softc; 1493 sc = sc_if->sk_softc; 1494 1495 SK_IF_LOCK(sc_if); 1496 1497 idx = sc_if->sk_cdata.sk_tx_prod; 1498 1499 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1500 IF_DEQUEUE(&ifp->if_snd, m_head); 1501 if (m_head == NULL) 1502 break; 1503 1504 /* 1505 * Pack the data into the transmit ring. If we 1506 * don't have room, set the OACTIVE flag and wait 1507 * for the NIC to drain the ring. 1508 */ 1509 if (sk_encap(sc_if, m_head, &idx)) { 1510 IF_PREPEND(&ifp->if_snd, m_head); 1511 ifp->if_flags |= IFF_OACTIVE; 1512 break; 1513 } 1514 1515 /* 1516 * If there's a BPF listener, bounce a copy of this frame 1517 * to him. 1518 */ 1519 BPF_MTAP(ifp, m_head); 1520 } 1521 1522 /* Transmit */ 1523 sc_if->sk_cdata.sk_tx_prod = idx; 1524 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1525 1526 /* Set a timeout in case the chip goes out to lunch. */ 1527 ifp->if_timer = 5; 1528 SK_IF_UNLOCK(sc_if); 1529 1530 return; 1531 } 1532 1533 1534 static void 1535 sk_watchdog(ifp) 1536 struct ifnet *ifp; 1537 { 1538 struct sk_if_softc *sc_if; 1539 1540 sc_if = ifp->if_softc; 1541 1542 printf("sk%d: watchdog timeout\n", sc_if->sk_unit); 1543 sk_init(sc_if); 1544 1545 return; 1546 } 1547 1548 static void 1549 sk_shutdown(dev) 1550 device_t dev; 1551 { 1552 struct sk_softc *sc; 1553 1554 sc = device_get_softc(dev); 1555 SK_LOCK(sc); 1556 1557 /* Turn off the 'driver is loaded' LED. */ 1558 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 1559 1560 /* 1561 * Reset the GEnesis controller. Doing this should also 1562 * assert the resets on the attached XMAC(s). 1563 */ 1564 sk_reset(sc); 1565 SK_UNLOCK(sc); 1566 1567 return; 1568 } 1569 1570 static void 1571 sk_rxeof(sc_if) 1572 struct sk_if_softc *sc_if; 1573 { 1574 struct mbuf *m; 1575 struct ifnet *ifp; 1576 struct sk_chain *cur_rx; 1577 int total_len = 0; 1578 int i; 1579 u_int32_t rxstat; 1580 1581 ifp = &sc_if->arpcom.ac_if; 1582 i = sc_if->sk_cdata.sk_rx_prod; 1583 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1584 1585 while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { 1586 1587 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1588 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; 1589 m = cur_rx->sk_mbuf; 1590 cur_rx->sk_mbuf = NULL; 1591 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); 1592 SK_INC(i, SK_RX_RING_CNT); 1593 1594 if (rxstat & XM_RXSTAT_ERRFRAME) { 1595 ifp->if_ierrors++; 1596 sk_newbuf(sc_if, cur_rx, m); 1597 continue; 1598 } 1599 1600 /* 1601 * Try to allocate a new jumbo buffer. If that 1602 * fails, copy the packet to mbufs and put the 1603 * jumbo buffer back in the ring so it can be 1604 * re-used. If allocating mbufs fails, then we 1605 * have to drop the packet. 1606 */ 1607 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { 1608 struct mbuf *m0; 1609 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 1610 ifp, NULL); 1611 sk_newbuf(sc_if, cur_rx, m); 1612 if (m0 == NULL) { 1613 printf("sk%d: no receive buffers " 1614 "available -- packet dropped!\n", 1615 sc_if->sk_unit); 1616 ifp->if_ierrors++; 1617 continue; 1618 } 1619 m = m0; 1620 } else { 1621 m->m_pkthdr.rcvif = ifp; 1622 m->m_pkthdr.len = m->m_len = total_len; 1623 } 1624 1625 ifp->if_ipackets++; 1626 (*ifp->if_input)(ifp, m); 1627 } 1628 1629 sc_if->sk_cdata.sk_rx_prod = i; 1630 1631 return; 1632 } 1633 1634 static void 1635 sk_txeof(sc_if) 1636 struct sk_if_softc *sc_if; 1637 { 1638 struct sk_tx_desc *cur_tx = NULL; 1639 struct ifnet *ifp; 1640 u_int32_t idx; 1641 1642 ifp = &sc_if->arpcom.ac_if; 1643 1644 /* 1645 * Go through our tx ring and free mbufs for those 1646 * frames that have been sent. 1647 */ 1648 idx = sc_if->sk_cdata.sk_tx_cons; 1649 while(idx != sc_if->sk_cdata.sk_tx_prod) { 1650 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 1651 if (cur_tx->sk_ctl & SK_TXCTL_OWN) 1652 break; 1653 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) 1654 ifp->if_opackets++; 1655 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 1656 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 1657 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 1658 } 1659 sc_if->sk_cdata.sk_tx_cnt--; 1660 SK_INC(idx, SK_TX_RING_CNT); 1661 ifp->if_timer = 0; 1662 } 1663 1664 sc_if->sk_cdata.sk_tx_cons = idx; 1665 1666 if (cur_tx != NULL) 1667 ifp->if_flags &= ~IFF_OACTIVE; 1668 1669 return; 1670 } 1671 1672 static void 1673 sk_tick(xsc_if) 1674 void *xsc_if; 1675 { 1676 struct sk_if_softc *sc_if; 1677 struct mii_data *mii; 1678 struct ifnet *ifp; 1679 int i; 1680 1681 sc_if = xsc_if; 1682 SK_IF_LOCK(sc_if); 1683 ifp = &sc_if->arpcom.ac_if; 1684 mii = device_get_softc(sc_if->sk_miibus); 1685 1686 if (!(ifp->if_flags & IFF_UP)) { 1687 SK_IF_UNLOCK(sc_if); 1688 return; 1689 } 1690 1691 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 1692 sk_intr_bcom(sc_if); 1693 SK_IF_UNLOCK(sc_if); 1694 return; 1695 } 1696 1697 /* 1698 * According to SysKonnect, the correct way to verify that 1699 * the link has come back up is to poll bit 0 of the GPIO 1700 * register three times. This pin has the signal from the 1701 * link_sync pin connected to it; if we read the same link 1702 * state 3 times in a row, we know the link is up. 1703 */ 1704 for (i = 0; i < 3; i++) { 1705 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 1706 break; 1707 } 1708 1709 if (i != 3) { 1710 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1711 SK_IF_UNLOCK(sc_if); 1712 return; 1713 } 1714 1715 /* Turn the GP0 interrupt back on. */ 1716 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 1717 SK_XM_READ_2(sc_if, XM_ISR); 1718 mii_tick(mii); 1719 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 1720 1721 SK_IF_UNLOCK(sc_if); 1722 return; 1723 } 1724 1725 static void 1726 sk_intr_bcom(sc_if) 1727 struct sk_if_softc *sc_if; 1728 { 1729 struct sk_softc *sc; 1730 struct mii_data *mii; 1731 struct ifnet *ifp; 1732 int status; 1733 1734 sc = sc_if->sk_softc; 1735 mii = device_get_softc(sc_if->sk_miibus); 1736 ifp = &sc_if->arpcom.ac_if; 1737 1738 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 1739 1740 /* 1741 * Read the PHY interrupt register to make sure 1742 * we clear any pending interrupts. 1743 */ 1744 status = sk_miibus_readreg(sc_if->sk_dev, 1745 SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 1746 1747 if (!(ifp->if_flags & IFF_RUNNING)) { 1748 sk_init_xmac(sc_if); 1749 return; 1750 } 1751 1752 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 1753 int lstat; 1754 lstat = sk_miibus_readreg(sc_if->sk_dev, 1755 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); 1756 1757 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 1758 mii_mediachg(mii); 1759 /* Turn off the link LED. */ 1760 SK_IF_WRITE_1(sc_if, 0, 1761 SK_LINKLED1_CTL, SK_LINKLED_OFF); 1762 sc_if->sk_link = 0; 1763 } else if (status & BRGPHY_ISR_LNK_CHG) { 1764 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1765 BRGPHY_MII_IMR, 0xFF00); 1766 mii_tick(mii); 1767 sc_if->sk_link = 1; 1768 /* Turn on the link LED. */ 1769 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 1770 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 1771 SK_LINKLED_BLINK_OFF); 1772 } else { 1773 mii_tick(mii); 1774 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1775 } 1776 } 1777 1778 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 1779 1780 return; 1781 } 1782 1783 static void 1784 sk_intr_xmac(sc_if) 1785 struct sk_if_softc *sc_if; 1786 { 1787 struct sk_softc *sc; 1788 u_int16_t status; 1789 struct mii_data *mii; 1790 1791 sc = sc_if->sk_softc; 1792 mii = device_get_softc(sc_if->sk_miibus); 1793 status = SK_XM_READ_2(sc_if, XM_ISR); 1794 1795 /* 1796 * Link has gone down. Start MII tick timeout to 1797 * watch for link resync. 1798 */ 1799 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 1800 if (status & XM_ISR_GP0_SET) { 1801 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 1802 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1803 } 1804 1805 if (status & XM_ISR_AUTONEG_DONE) { 1806 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1807 } 1808 } 1809 1810 if (status & XM_IMR_TX_UNDERRUN) 1811 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 1812 1813 if (status & XM_IMR_RX_OVERRUN) 1814 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 1815 1816 status = SK_XM_READ_2(sc_if, XM_ISR); 1817 1818 return; 1819 } 1820 1821 static void 1822 sk_intr(xsc) 1823 void *xsc; 1824 { 1825 struct sk_softc *sc = xsc; 1826 struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; 1827 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 1828 u_int32_t status; 1829 1830 SK_LOCK(sc); 1831 1832 sc_if0 = sc->sk_if[SK_PORT_A]; 1833 sc_if1 = sc->sk_if[SK_PORT_B]; 1834 1835 if (sc_if0 != NULL) 1836 ifp0 = &sc_if0->arpcom.ac_if; 1837 if (sc_if1 != NULL) 1838 ifp1 = &sc_if1->arpcom.ac_if; 1839 1840 for (;;) { 1841 status = CSR_READ_4(sc, SK_ISSR); 1842 if (!(status & sc->sk_intrmask)) 1843 break; 1844 1845 /* Handle receive interrupts first. */ 1846 if (status & SK_ISR_RX1_EOF) { 1847 sk_rxeof(sc_if0); 1848 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 1849 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 1850 } 1851 if (status & SK_ISR_RX2_EOF) { 1852 sk_rxeof(sc_if1); 1853 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 1854 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 1855 } 1856 1857 /* Then transmit interrupts. */ 1858 if (status & SK_ISR_TX1_S_EOF) { 1859 sk_txeof(sc_if0); 1860 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 1861 SK_TXBMU_CLR_IRQ_EOF); 1862 } 1863 if (status & SK_ISR_TX2_S_EOF) { 1864 sk_txeof(sc_if1); 1865 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 1866 SK_TXBMU_CLR_IRQ_EOF); 1867 } 1868 1869 /* Then MAC interrupts. */ 1870 if (status & SK_ISR_MAC1 && 1871 ifp0->if_flags & IFF_RUNNING) 1872 sk_intr_xmac(sc_if0); 1873 1874 if (status & SK_ISR_MAC2 && 1875 ifp1->if_flags & IFF_RUNNING) 1876 sk_intr_xmac(sc_if1); 1877 1878 if (status & SK_ISR_EXTERNAL_REG) { 1879 if (ifp0 != NULL) 1880 sk_intr_bcom(sc_if0); 1881 if (ifp1 != NULL) 1882 sk_intr_bcom(sc_if1); 1883 } 1884 } 1885 1886 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 1887 1888 if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) 1889 sk_start(ifp0); 1890 if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) 1891 sk_start(ifp1); 1892 1893 SK_UNLOCK(sc); 1894 1895 return; 1896 } 1897 1898 static void 1899 sk_init_xmac(sc_if) 1900 struct sk_if_softc *sc_if; 1901 { 1902 struct sk_softc *sc; 1903 struct ifnet *ifp; 1904 struct sk_bcom_hack bhack[] = { 1905 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 1906 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 1907 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1908 { 0, 0 } }; 1909 1910 sc = sc_if->sk_softc; 1911 ifp = &sc_if->arpcom.ac_if; 1912 1913 /* Unreset the XMAC. */ 1914 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 1915 DELAY(1000); 1916 1917 /* Reset the XMAC's internal state. */ 1918 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 1919 1920 /* Save the XMAC II revision */ 1921 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 1922 1923 /* 1924 * Perform additional initialization for external PHYs, 1925 * namely for the 1000baseTX cards that use the XMAC's 1926 * GMII mode. 1927 */ 1928 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 1929 int i = 0; 1930 u_int32_t val; 1931 1932 /* Take PHY out of reset. */ 1933 val = sk_win_read_4(sc, SK_GPIO); 1934 if (sc_if->sk_port == SK_PORT_A) 1935 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 1936 else 1937 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 1938 sk_win_write_4(sc, SK_GPIO, val); 1939 1940 /* Enable GMII mode on the XMAC. */ 1941 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 1942 1943 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1944 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 1945 DELAY(10000); 1946 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1947 BRGPHY_MII_IMR, 0xFFF0); 1948 1949 /* 1950 * Early versions of the BCM5400 apparently have 1951 * a bug that requires them to have their reserved 1952 * registers initialized to some magic values. I don't 1953 * know what the numbers do, I'm just the messenger. 1954 */ 1955 if (sk_miibus_readreg(sc_if->sk_dev, 1956 SK_PHYADDR_BCOM, 0x03) == 0x6041) { 1957 while(bhack[i].reg) { 1958 sk_miibus_writereg(sc_if->sk_dev, 1959 SK_PHYADDR_BCOM, bhack[i].reg, 1960 bhack[i].val); 1961 i++; 1962 } 1963 } 1964 } 1965 1966 /* Set station address */ 1967 SK_XM_WRITE_2(sc_if, XM_PAR0, 1968 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); 1969 SK_XM_WRITE_2(sc_if, XM_PAR1, 1970 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); 1971 SK_XM_WRITE_2(sc_if, XM_PAR2, 1972 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); 1973 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 1974 1975 if (ifp->if_flags & IFF_PROMISC) { 1976 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1977 } else { 1978 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1979 } 1980 1981 if (ifp->if_flags & IFF_BROADCAST) { 1982 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 1983 } else { 1984 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 1985 } 1986 1987 /* We don't need the FCS appended to the packet. */ 1988 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 1989 1990 /* We want short frames padded to 60 bytes. */ 1991 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 1992 1993 /* 1994 * Enable the reception of all error frames. This is is 1995 * a necessary evil due to the design of the XMAC. The 1996 * XMAC's receive FIFO is only 8K in size, however jumbo 1997 * frames can be up to 9000 bytes in length. When bad 1998 * frame filtering is enabled, the XMAC's RX FIFO operates 1999 * in 'store and forward' mode. For this to work, the 2000 * entire frame has to fit into the FIFO, but that means 2001 * that jumbo frames larger than 8192 bytes will be 2002 * truncated. Disabling all bad frame filtering causes 2003 * the RX FIFO to operate in streaming mode, in which 2004 * case the XMAC will start transfering frames out of the 2005 * RX FIFO as soon as the FIFO threshold is reached. 2006 */ 2007 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 2008 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 2009 XM_MODE_RX_INRANGELEN); 2010 2011 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2012 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2013 else 2014 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2015 2016 /* 2017 * Bump up the transmit threshold. This helps hold off transmit 2018 * underruns when we're blasting traffic from both ports at once. 2019 */ 2020 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2021 2022 /* Set multicast filter */ 2023 sk_setmulti(sc_if); 2024 2025 /* Clear and enable interrupts */ 2026 SK_XM_READ_2(sc_if, XM_ISR); 2027 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2028 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2029 else 2030 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2031 2032 /* Configure MAC arbiter */ 2033 switch(sc_if->sk_xmac_rev) { 2034 case XM_XMAC_REV_B2: 2035 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2036 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2037 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2038 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2039 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2040 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2041 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2042 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2043 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2044 break; 2045 case XM_XMAC_REV_C1: 2046 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2047 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2048 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2049 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2050 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2051 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2052 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2053 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2054 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2055 break; 2056 default: 2057 break; 2058 } 2059 sk_win_write_2(sc, SK_MACARB_CTL, 2060 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 2061 2062 sc_if->sk_link = 1; 2063 2064 return; 2065 } 2066 2067 /* 2068 * Note that to properly initialize any part of the GEnesis chip, 2069 * you first have to take it out of reset mode. 2070 */ 2071 static void 2072 sk_init(xsc) 2073 void *xsc; 2074 { 2075 struct sk_if_softc *sc_if = xsc; 2076 struct sk_softc *sc; 2077 struct ifnet *ifp; 2078 struct mii_data *mii; 2079 2080 SK_IF_LOCK(sc_if); 2081 2082 ifp = &sc_if->arpcom.ac_if; 2083 sc = sc_if->sk_softc; 2084 mii = device_get_softc(sc_if->sk_miibus); 2085 2086 /* Cancel pending I/O and free all RX/TX buffers. */ 2087 sk_stop(sc_if); 2088 2089 /* Configure LINK_SYNC LED */ 2090 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2091 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); 2092 2093 /* Configure RX LED */ 2094 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); 2095 2096 /* Configure TX LED */ 2097 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); 2098 2099 /* Configure I2C registers */ 2100 2101 /* Configure XMAC(s) */ 2102 sk_init_xmac(sc_if); 2103 mii_mediachg(mii); 2104 2105 /* Configure MAC FIFOs */ 2106 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2107 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2108 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2109 2110 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2111 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2112 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2113 2114 /* Configure transmit arbiter(s) */ 2115 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2116 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 2117 2118 /* Configure RAMbuffers */ 2119 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2120 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2121 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2122 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2123 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2124 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2125 2126 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2127 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2128 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2129 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2130 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2131 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2132 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2133 2134 /* Configure BMUs */ 2135 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2136 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2137 vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); 2138 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2139 2140 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2141 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2142 vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); 2143 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2144 2145 /* Init descriptors */ 2146 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2147 printf("sk%d: initialization failed: no " 2148 "memory for rx buffers\n", sc_if->sk_unit); 2149 sk_stop(sc_if); 2150 SK_IF_UNLOCK(sc_if); 2151 return; 2152 } 2153 sk_init_tx_ring(sc_if); 2154 2155 /* Configure interrupt handling */ 2156 CSR_READ_4(sc, SK_ISSR); 2157 if (sc_if->sk_port == SK_PORT_A) 2158 sc->sk_intrmask |= SK_INTRS1; 2159 else 2160 sc->sk_intrmask |= SK_INTRS2; 2161 2162 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2163 2164 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2165 2166 /* Start BMUs. */ 2167 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2168 2169 /* Enable XMACs TX and RX state machines */ 2170 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2171 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2172 2173 ifp->if_flags |= IFF_RUNNING; 2174 ifp->if_flags &= ~IFF_OACTIVE; 2175 2176 SK_IF_UNLOCK(sc_if); 2177 2178 return; 2179 } 2180 2181 static void 2182 sk_stop(sc_if) 2183 struct sk_if_softc *sc_if; 2184 { 2185 int i; 2186 struct sk_softc *sc; 2187 struct ifnet *ifp; 2188 2189 SK_IF_LOCK(sc_if); 2190 sc = sc_if->sk_softc; 2191 ifp = &sc_if->arpcom.ac_if; 2192 2193 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 2194 2195 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2196 u_int32_t val; 2197 2198 /* Put PHY back into reset. */ 2199 val = sk_win_read_4(sc, SK_GPIO); 2200 if (sc_if->sk_port == SK_PORT_A) { 2201 val |= SK_GPIO_DIR0; 2202 val &= ~SK_GPIO_DAT0; 2203 } else { 2204 val |= SK_GPIO_DIR2; 2205 val &= ~SK_GPIO_DAT2; 2206 } 2207 sk_win_write_4(sc, SK_GPIO, val); 2208 } 2209 2210 /* Turn off various components of this interface. */ 2211 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2212 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 2213 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2214 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2215 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2216 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2217 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2218 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2219 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2220 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2221 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2222 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2223 2224 /* Disable interrupts */ 2225 if (sc_if->sk_port == SK_PORT_A) 2226 sc->sk_intrmask &= ~SK_INTRS1; 2227 else 2228 sc->sk_intrmask &= ~SK_INTRS2; 2229 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2230 2231 SK_XM_READ_2(sc_if, XM_ISR); 2232 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2233 2234 /* Free RX and TX mbufs still in the queues. */ 2235 for (i = 0; i < SK_RX_RING_CNT; i++) { 2236 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2237 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2238 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2239 } 2240 } 2241 2242 for (i = 0; i < SK_TX_RING_CNT; i++) { 2243 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2244 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2245 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2246 } 2247 } 2248 2249 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 2250 SK_IF_UNLOCK(sc_if); 2251 return; 2252 } 2253