xref: /freebsd/sys/dev/sk/if_sk.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/module.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/sysctl.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/brgphyreg.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #if 0
122 #define SK_USEIOSPACE
123 #endif
124 
125 #include <pci/if_skreg.h>
126 #include <pci/xmaciireg.h>
127 #include <pci/yukonreg.h>
128 
129 MODULE_DEPEND(sk, pci, 1, 1, 1);
130 MODULE_DEPEND(sk, ether, 1, 1, 1);
131 MODULE_DEPEND(sk, miibus, 1, 1, 1);
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 #ifndef lint
137 static const char rcsid[] =
138   "$FreeBSD$";
139 #endif
140 
141 static struct sk_type sk_devs[] = {
142 	{
143 		VENDORID_SK,
144 		DEVICEID_SK_V1,
145 		"SysKonnect Gigabit Ethernet (V1.0)"
146 	},
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V2,
150 		"SysKonnect Gigabit Ethernet (V2.0)"
151 	},
152 	{
153 		VENDORID_MARVELL,
154 		DEVICEID_SK_V2,
155 		"Marvell Gigabit Ethernet"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_BELKIN_5005,
160 		"Belkin F5D5005 Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_3COM,
164 		DEVICEID_3COM_3C940,
165 		"3Com 3C940 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_LINKSYS,
169 		DEVICEID_LINKSYS_EG1032,
170 		"Linksys EG1032 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_DLINK,
174 		DEVICEID_DLINK_DGE530T,
175 		"D-Link DGE-530T Gigabit Ethernet"
176 	},
177 	{ 0, 0, NULL }
178 };
179 
180 static int skc_probe(device_t);
181 static int skc_attach(device_t);
182 static int skc_detach(device_t);
183 static void skc_shutdown(device_t);
184 static int sk_detach(device_t);
185 static int sk_probe(device_t);
186 static int sk_attach(device_t);
187 static void sk_tick(void *);
188 static void sk_intr(void *);
189 static void sk_intr_xmac(struct sk_if_softc *);
190 static void sk_intr_bcom(struct sk_if_softc *);
191 static void sk_intr_yukon(struct sk_if_softc *);
192 static void sk_rxeof(struct sk_if_softc *);
193 static void sk_txeof(struct sk_if_softc *);
194 static int sk_encap(struct sk_if_softc *, struct mbuf *,
195 					u_int32_t *);
196 static void sk_start(struct ifnet *);
197 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
198 static void sk_init(void *);
199 static void sk_init_xmac(struct sk_if_softc *);
200 static void sk_init_yukon(struct sk_if_softc *);
201 static void sk_stop(struct sk_if_softc *);
202 static void sk_watchdog(struct ifnet *);
203 static int sk_ifmedia_upd(struct ifnet *);
204 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
205 static void sk_reset(struct sk_softc *);
206 static int sk_newbuf(struct sk_if_softc *,
207 					struct sk_chain *, struct mbuf *);
208 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
209 static void sk_free_jumbo_mem(struct sk_if_softc *);
210 static void *sk_jalloc(struct sk_if_softc *);
211 static void sk_jfree(void *, void *);
212 static int sk_init_rx_ring(struct sk_if_softc *);
213 static void sk_init_tx_ring(struct sk_if_softc *);
214 static u_int32_t sk_win_read_4(struct sk_softc *, int);
215 static u_int16_t sk_win_read_2(struct sk_softc *, int);
216 static u_int8_t sk_win_read_1(struct sk_softc *, int);
217 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
218 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
219 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
220 static u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
221 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
222 static void sk_vpd_read(struct sk_softc *);
223 
224 static int sk_miibus_readreg(device_t, int, int);
225 static int sk_miibus_writereg(device_t, int, int, int);
226 static void sk_miibus_statchg(device_t);
227 
228 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
229 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
230 						int);
231 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
232 
233 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
234 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
235 						int);
236 static void sk_marv_miibus_statchg(struct sk_if_softc *);
237 
238 static uint32_t sk_xmchash(const uint8_t *);
239 static uint32_t sk_gmchash(const uint8_t *);
240 static void sk_setfilt(struct sk_if_softc *, caddr_t, int);
241 static void sk_setmulti(struct sk_if_softc *);
242 static void sk_setpromisc(struct sk_if_softc *);
243 
244 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
245 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
246 
247 #ifdef SK_USEIOSPACE
248 #define SK_RES		SYS_RES_IOPORT
249 #define SK_RID		SK_PCI_LOIO
250 #else
251 #define SK_RES		SYS_RES_MEMORY
252 #define SK_RID		SK_PCI_LOMEM
253 #endif
254 
255 /*
256  * Note that we have newbus methods for both the GEnesis controller
257  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
258  * the miibus code is a child of the XMACs. We need to do it this way
259  * so that the miibus drivers can access the PHY registers on the
260  * right PHY. It's not quite what I had in mind, but it's the only
261  * design that achieves the desired effect.
262  */
263 static device_method_t skc_methods[] = {
264 	/* Device interface */
265 	DEVMETHOD(device_probe,		skc_probe),
266 	DEVMETHOD(device_attach,	skc_attach),
267 	DEVMETHOD(device_detach,	skc_detach),
268 	DEVMETHOD(device_shutdown,	skc_shutdown),
269 
270 	/* bus interface */
271 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
272 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
273 
274 	{ 0, 0 }
275 };
276 
277 static driver_t skc_driver = {
278 	"skc",
279 	skc_methods,
280 	sizeof(struct sk_softc)
281 };
282 
283 static devclass_t skc_devclass;
284 
285 static device_method_t sk_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		sk_probe),
288 	DEVMETHOD(device_attach,	sk_attach),
289 	DEVMETHOD(device_detach,	sk_detach),
290 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
291 
292 	/* bus interface */
293 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
294 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
295 
296 	/* MII interface */
297 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
298 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
299 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
300 
301 	{ 0, 0 }
302 };
303 
304 static driver_t sk_driver = {
305 	"sk",
306 	sk_methods,
307 	sizeof(struct sk_if_softc)
308 };
309 
310 static devclass_t sk_devclass;
311 
312 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
313 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
314 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
315 
316 #define SK_SETBIT(sc, reg, x)		\
317 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
318 
319 #define SK_CLRBIT(sc, reg, x)		\
320 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
321 
322 #define SK_WIN_SETBIT_4(sc, reg, x)	\
323 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
324 
325 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
326 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
327 
328 #define SK_WIN_SETBIT_2(sc, reg, x)	\
329 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
330 
331 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
332 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
333 
334 static u_int32_t
335 sk_win_read_4(sc, reg)
336 	struct sk_softc		*sc;
337 	int			reg;
338 {
339 #ifdef SK_USEIOSPACE
340 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
341 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
342 #else
343 	return(CSR_READ_4(sc, reg));
344 #endif
345 }
346 
347 static u_int16_t
348 sk_win_read_2(sc, reg)
349 	struct sk_softc		*sc;
350 	int			reg;
351 {
352 #ifdef SK_USEIOSPACE
353 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
354 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
355 #else
356 	return(CSR_READ_2(sc, reg));
357 #endif
358 }
359 
360 static u_int8_t
361 sk_win_read_1(sc, reg)
362 	struct sk_softc		*sc;
363 	int			reg;
364 {
365 #ifdef SK_USEIOSPACE
366 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
367 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
368 #else
369 	return(CSR_READ_1(sc, reg));
370 #endif
371 }
372 
373 static void
374 sk_win_write_4(sc, reg, val)
375 	struct sk_softc		*sc;
376 	int			reg;
377 	u_int32_t		val;
378 {
379 #ifdef SK_USEIOSPACE
380 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
381 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
382 #else
383 	CSR_WRITE_4(sc, reg, val);
384 #endif
385 	return;
386 }
387 
388 static void
389 sk_win_write_2(sc, reg, val)
390 	struct sk_softc		*sc;
391 	int			reg;
392 	u_int32_t		val;
393 {
394 #ifdef SK_USEIOSPACE
395 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
396 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
397 #else
398 	CSR_WRITE_2(sc, reg, val);
399 #endif
400 	return;
401 }
402 
403 static void
404 sk_win_write_1(sc, reg, val)
405 	struct sk_softc		*sc;
406 	int			reg;
407 	u_int32_t		val;
408 {
409 #ifdef SK_USEIOSPACE
410 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
411 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
412 #else
413 	CSR_WRITE_1(sc, reg, val);
414 #endif
415 	return;
416 }
417 
418 /*
419  * The VPD EEPROM contains Vital Product Data, as suggested in
420  * the PCI 2.1 specification. The VPD data is separared into areas
421  * denoted by resource IDs. The SysKonnect VPD contains an ID string
422  * resource (the name of the adapter), a read-only area resource
423  * containing various key/data fields and a read/write area which
424  * can be used to store asset management information or log messages.
425  * We read the ID string and read-only into buffers attached to
426  * the controller softc structure for later use. At the moment,
427  * we only use the ID string during skc_attach().
428  */
429 static u_int8_t
430 sk_vpd_readbyte(sc, addr)
431 	struct sk_softc		*sc;
432 	int			addr;
433 {
434 	int			i;
435 
436 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
437 	for (i = 0; i < SK_TIMEOUT; i++) {
438 		DELAY(1);
439 		if (sk_win_read_2(sc,
440 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
441 			break;
442 	}
443 
444 	if (i == SK_TIMEOUT)
445 		return(0);
446 
447 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
448 }
449 
450 static void
451 sk_vpd_read_res(sc, res, addr)
452 	struct sk_softc		*sc;
453 	struct vpd_res		*res;
454 	int			addr;
455 {
456 	int			i;
457 	u_int8_t		*ptr;
458 
459 	ptr = (u_int8_t *)res;
460 	for (i = 0; i < sizeof(struct vpd_res); i++)
461 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
462 
463 	return;
464 }
465 
466 static void
467 sk_vpd_read(sc)
468 	struct sk_softc		*sc;
469 {
470 	int			pos = 0, i;
471 	struct vpd_res		res;
472 
473 	if (sc->sk_vpd_prodname != NULL)
474 		free(sc->sk_vpd_prodname, M_DEVBUF);
475 	if (sc->sk_vpd_readonly != NULL)
476 		free(sc->sk_vpd_readonly, M_DEVBUF);
477 	sc->sk_vpd_prodname = NULL;
478 	sc->sk_vpd_readonly = NULL;
479 	sc->sk_vpd_readonly_len = 0;
480 
481 	sk_vpd_read_res(sc, &res, pos);
482 
483 	/*
484 	 * Bail out quietly if the eeprom appears to be missing or empty.
485 	 */
486 	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
487 		return;
488 
489 	if (res.vr_id != VPD_RES_ID) {
490 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
491 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
492 		return;
493 	}
494 
495 	pos += sizeof(res);
496 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
497 	if (sc->sk_vpd_prodname != NULL) {
498 		for (i = 0; i < res.vr_len; i++)
499 			sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
500 		sc->sk_vpd_prodname[i] = '\0';
501 	}
502 	pos += res.vr_len;
503 
504 	sk_vpd_read_res(sc, &res, pos);
505 
506 	if (res.vr_id != VPD_RES_READ) {
507 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
508 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
509 		return;
510 	}
511 
512 	pos += sizeof(res);
513 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
514 	for (i = 0; i < res.vr_len; i++)
515 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
516 	sc->sk_vpd_readonly_len = res.vr_len;
517 
518 	return;
519 }
520 
521 static int
522 sk_miibus_readreg(dev, phy, reg)
523 	device_t		dev;
524 	int			phy, reg;
525 {
526 	struct sk_if_softc	*sc_if;
527 
528 	sc_if = device_get_softc(dev);
529 
530 	switch(sc_if->sk_softc->sk_type) {
531 	case SK_GENESIS:
532 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
533 	case SK_YUKON:
534 	case SK_YUKON_LITE:
535 	case SK_YUKON_LP:
536 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
537 	}
538 
539 	return(0);
540 }
541 
542 static int
543 sk_miibus_writereg(dev, phy, reg, val)
544 	device_t		dev;
545 	int			phy, reg, val;
546 {
547 	struct sk_if_softc	*sc_if;
548 
549 	sc_if = device_get_softc(dev);
550 
551 	switch(sc_if->sk_softc->sk_type) {
552 	case SK_GENESIS:
553 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
554 	case SK_YUKON:
555 	case SK_YUKON_LITE:
556 	case SK_YUKON_LP:
557 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
558 	}
559 
560 	return(0);
561 }
562 
563 static void
564 sk_miibus_statchg(dev)
565 	device_t		dev;
566 {
567 	struct sk_if_softc	*sc_if;
568 
569 	sc_if = device_get_softc(dev);
570 
571 	switch(sc_if->sk_softc->sk_type) {
572 	case SK_GENESIS:
573 		sk_xmac_miibus_statchg(sc_if);
574 		break;
575 	case SK_YUKON:
576 	case SK_YUKON_LITE:
577 	case SK_YUKON_LP:
578 		sk_marv_miibus_statchg(sc_if);
579 		break;
580 	}
581 
582 	return;
583 }
584 
585 static int
586 sk_xmac_miibus_readreg(sc_if, phy, reg)
587 	struct sk_if_softc	*sc_if;
588 	int			phy, reg;
589 {
590 	int			i;
591 
592 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
593 		return(0);
594 
595 	SK_IF_LOCK(sc_if);
596 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
597 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
598 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
599 		for (i = 0; i < SK_TIMEOUT; i++) {
600 			DELAY(1);
601 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
602 			    XM_MMUCMD_PHYDATARDY)
603 				break;
604 		}
605 
606 		if (i == SK_TIMEOUT) {
607 			printf("sk%d: phy failed to come ready\n",
608 			    sc_if->sk_unit);
609 			SK_IF_UNLOCK(sc_if);
610 			return(0);
611 		}
612 	}
613 	DELAY(1);
614 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
615 	SK_IF_UNLOCK(sc_if);
616 	return(i);
617 }
618 
619 static int
620 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
621 	struct sk_if_softc	*sc_if;
622 	int			phy, reg, val;
623 {
624 	int			i;
625 
626 	SK_IF_LOCK(sc_if);
627 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
628 	for (i = 0; i < SK_TIMEOUT; i++) {
629 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
630 			break;
631 	}
632 
633 	if (i == SK_TIMEOUT) {
634 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
635 		SK_IF_UNLOCK(sc_if);
636 		return(ETIMEDOUT);
637 	}
638 
639 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
640 	for (i = 0; i < SK_TIMEOUT; i++) {
641 		DELAY(1);
642 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
643 			break;
644 	}
645 	SK_IF_UNLOCK(sc_if);
646 	if (i == SK_TIMEOUT)
647 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
648 
649 	return(0);
650 }
651 
652 static void
653 sk_xmac_miibus_statchg(sc_if)
654 	struct sk_if_softc	*sc_if;
655 {
656 	struct mii_data		*mii;
657 
658 	mii = device_get_softc(sc_if->sk_miibus);
659 
660 	SK_IF_LOCK(sc_if);
661 	/*
662 	 * If this is a GMII PHY, manually set the XMAC's
663 	 * duplex mode accordingly.
664 	 */
665 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
666 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
667 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
668 		} else {
669 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
670 		}
671 	}
672 	SK_IF_UNLOCK(sc_if);
673 
674 	return;
675 }
676 
677 static int
678 sk_marv_miibus_readreg(sc_if, phy, reg)
679 	struct sk_if_softc	*sc_if;
680 	int			phy, reg;
681 {
682 	u_int16_t		val;
683 	int			i;
684 
685 	if (phy != 0 ||
686 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
687 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
688 		return(0);
689 	}
690 
691 	SK_IF_LOCK(sc_if);
692         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
693 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
694 
695 	for (i = 0; i < SK_TIMEOUT; i++) {
696 		DELAY(1);
697 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
698 		if (val & YU_SMICR_READ_VALID)
699 			break;
700 	}
701 
702 	if (i == SK_TIMEOUT) {
703 		printf("sk%d: phy failed to come ready\n",
704 		    sc_if->sk_unit);
705 		SK_IF_UNLOCK(sc_if);
706 		return(0);
707 	}
708 
709 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
710 	SK_IF_UNLOCK(sc_if);
711 
712 	return(val);
713 }
714 
715 static int
716 sk_marv_miibus_writereg(sc_if, phy, reg, val)
717 	struct sk_if_softc	*sc_if;
718 	int			phy, reg, val;
719 {
720 	int			i;
721 
722 	SK_IF_LOCK(sc_if);
723 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
724 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
725 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
726 
727 	for (i = 0; i < SK_TIMEOUT; i++) {
728 		DELAY(1);
729 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
730 			break;
731 	}
732 	SK_IF_UNLOCK(sc_if);
733 
734 	return(0);
735 }
736 
737 static void
738 sk_marv_miibus_statchg(sc_if)
739 	struct sk_if_softc	*sc_if;
740 {
741 	return;
742 }
743 
744 #define HASH_BITS		6
745 
746 static u_int32_t
747 sk_xmchash(addr)
748 	const uint8_t *addr;
749 {
750 	uint32_t crc;
751 
752 	/* Compute CRC for the address value. */
753 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
754 
755 	return (~crc & ((1 << HASH_BITS) - 1));
756 }
757 
758 /* gmchash is just a big endian crc */
759 static u_int32_t
760 sk_gmchash(addr)
761 	const uint8_t *addr;
762 {
763 	uint32_t crc;
764 
765 	/* Compute CRC for the address value. */
766 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
767 
768 	return (crc & ((1 << HASH_BITS) - 1));
769 }
770 
771 static void
772 sk_setfilt(sc_if, addr, slot)
773 	struct sk_if_softc	*sc_if;
774 	caddr_t			addr;
775 	int			slot;
776 {
777 	int			base;
778 
779 	base = XM_RXFILT_ENTRY(slot);
780 
781 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
782 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
783 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
784 
785 	return;
786 }
787 
788 static void
789 sk_setmulti(sc_if)
790 	struct sk_if_softc	*sc_if;
791 {
792 	struct sk_softc		*sc = sc_if->sk_softc;
793 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
794 	u_int32_t		hashes[2] = { 0, 0 };
795 	int			h = 0, i;
796 	struct ifmultiaddr	*ifma;
797 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
798 
799 
800 	/* First, zot all the existing filters. */
801 	switch(sc->sk_type) {
802 	case SK_GENESIS:
803 		for (i = 1; i < XM_RXFILT_MAX; i++)
804 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
805 
806 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
807 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
808 		break;
809 	case SK_YUKON:
810 	case SK_YUKON_LITE:
811 	case SK_YUKON_LP:
812 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
813 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
814 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
815 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
816 		break;
817 	}
818 
819 	/* Now program new ones. */
820 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
821 		hashes[0] = 0xFFFFFFFF;
822 		hashes[1] = 0xFFFFFFFF;
823 	} else {
824 		i = 1;
825 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
826 			if (ifma->ifma_addr->sa_family != AF_LINK)
827 				continue;
828 			/*
829 			 * Program the first XM_RXFILT_MAX multicast groups
830 			 * into the perfect filter. For all others,
831 			 * use the hash table.
832 			 */
833 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
834 				sk_setfilt(sc_if,
835 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
836 				i++;
837 				continue;
838 			}
839 
840 			switch(sc->sk_type) {
841 			case SK_GENESIS:
842 				h = sk_xmchash(
843 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
844 				break;
845 			case SK_YUKON:
846 			case SK_YUKON_LITE:
847 			case SK_YUKON_LP:
848 				h = sk_gmchash(
849 					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
850 				break;
851 			}
852 			if (h < 32)
853 				hashes[0] |= (1 << h);
854 			else
855 				hashes[1] |= (1 << (h - 32));
856 		}
857 	}
858 
859 	switch(sc->sk_type) {
860 	case SK_GENESIS:
861 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
862 			       XM_MODE_RX_USE_PERFECT);
863 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
864 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
865 		break;
866 	case SK_YUKON:
867 	case SK_YUKON_LITE:
868 	case SK_YUKON_LP:
869 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
870 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
871 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
872 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
873 		break;
874 	}
875 
876 	return;
877 }
878 
879 static void
880 sk_setpromisc(sc_if)
881 	struct sk_if_softc	*sc_if;
882 {
883 	struct sk_softc		*sc = sc_if->sk_softc;
884 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
885 
886 	switch(sc->sk_type) {
887 	case SK_GENESIS:
888 		if (ifp->if_flags & IFF_PROMISC) {
889 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
890 		} else {
891 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
892 		}
893 		break;
894 	case SK_YUKON:
895 	case SK_YUKON_LITE:
896 	case SK_YUKON_LP:
897 		if (ifp->if_flags & IFF_PROMISC) {
898 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
899 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
900 		} else {
901 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
902 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
903 		}
904 		break;
905 	}
906 
907 	return;
908 }
909 
910 static int
911 sk_init_rx_ring(sc_if)
912 	struct sk_if_softc	*sc_if;
913 {
914 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
915 	struct sk_ring_data	*rd = sc_if->sk_rdata;
916 	int			i;
917 
918 	bzero((char *)rd->sk_rx_ring,
919 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
920 
921 	for (i = 0; i < SK_RX_RING_CNT; i++) {
922 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
923 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
924 			return(ENOBUFS);
925 		if (i == (SK_RX_RING_CNT - 1)) {
926 			cd->sk_rx_chain[i].sk_next =
927 			    &cd->sk_rx_chain[0];
928 			rd->sk_rx_ring[i].sk_next =
929 			    vtophys(&rd->sk_rx_ring[0]);
930 		} else {
931 			cd->sk_rx_chain[i].sk_next =
932 			    &cd->sk_rx_chain[i + 1];
933 			rd->sk_rx_ring[i].sk_next =
934 			    vtophys(&rd->sk_rx_ring[i + 1]);
935 		}
936 	}
937 
938 	sc_if->sk_cdata.sk_rx_prod = 0;
939 	sc_if->sk_cdata.sk_rx_cons = 0;
940 
941 	return(0);
942 }
943 
944 static void
945 sk_init_tx_ring(sc_if)
946 	struct sk_if_softc	*sc_if;
947 {
948 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
949 	struct sk_ring_data	*rd = sc_if->sk_rdata;
950 	int			i;
951 
952 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
953 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
954 
955 	for (i = 0; i < SK_TX_RING_CNT; i++) {
956 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
957 		if (i == (SK_TX_RING_CNT - 1)) {
958 			cd->sk_tx_chain[i].sk_next =
959 			    &cd->sk_tx_chain[0];
960 			rd->sk_tx_ring[i].sk_next =
961 			    vtophys(&rd->sk_tx_ring[0]);
962 		} else {
963 			cd->sk_tx_chain[i].sk_next =
964 			    &cd->sk_tx_chain[i + 1];
965 			rd->sk_tx_ring[i].sk_next =
966 			    vtophys(&rd->sk_tx_ring[i + 1]);
967 		}
968 	}
969 
970 	sc_if->sk_cdata.sk_tx_prod = 0;
971 	sc_if->sk_cdata.sk_tx_cons = 0;
972 	sc_if->sk_cdata.sk_tx_cnt = 0;
973 
974 	return;
975 }
976 
977 static int
978 sk_newbuf(sc_if, c, m)
979 	struct sk_if_softc	*sc_if;
980 	struct sk_chain		*c;
981 	struct mbuf		*m;
982 {
983 	struct mbuf		*m_new = NULL;
984 	struct sk_rx_desc	*r;
985 
986 	if (m == NULL) {
987 		caddr_t			*buf = NULL;
988 
989 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
990 		if (m_new == NULL)
991 			return(ENOBUFS);
992 
993 		/* Allocate the jumbo buffer */
994 		buf = sk_jalloc(sc_if);
995 		if (buf == NULL) {
996 			m_freem(m_new);
997 #ifdef SK_VERBOSE
998 			printf("sk%d: jumbo allocation failed "
999 			    "-- packet dropped!\n", sc_if->sk_unit);
1000 #endif
1001 			return(ENOBUFS);
1002 		}
1003 
1004 		/* Attach the buffer to the mbuf */
1005 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
1006 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
1007 		m_new->m_data = (void *)buf;
1008 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
1009 	} else {
1010 		/*
1011 	 	 * We're re-using a previously allocated mbuf;
1012 		 * be sure to re-init pointers and lengths to
1013 		 * default values.
1014 		 */
1015 		m_new = m;
1016 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
1017 		m_new->m_data = m_new->m_ext.ext_buf;
1018 	}
1019 
1020 	/*
1021 	 * Adjust alignment so packet payload begins on a
1022 	 * longword boundary. Mandatory for Alpha, useful on
1023 	 * x86 too.
1024 	 */
1025 	m_adj(m_new, ETHER_ALIGN);
1026 
1027 	r = c->sk_desc;
1028 	c->sk_mbuf = m_new;
1029 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1030 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1031 
1032 	return(0);
1033 }
1034 
1035 /*
1036  * Allocate jumbo buffer storage. The SysKonnect adapters support
1037  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1038  * use them in their drivers. In order for us to use them, we need
1039  * large 9K receive buffers, however standard mbuf clusters are only
1040  * 2048 bytes in size. Consequently, we need to allocate and manage
1041  * our own jumbo buffer pool. Fortunately, this does not require an
1042  * excessive amount of additional code.
1043  */
1044 static int
1045 sk_alloc_jumbo_mem(sc_if)
1046 	struct sk_if_softc	*sc_if;
1047 {
1048 	caddr_t			ptr;
1049 	register int		i;
1050 	struct sk_jpool_entry   *entry;
1051 
1052 	/* Grab a big chunk o' storage. */
1053 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1054 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1055 
1056 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1057 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1058 		return(ENOBUFS);
1059 	}
1060 
1061 	mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF);
1062 
1063 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1064 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1065 
1066 	/*
1067 	 * Now divide it up into 9K pieces and save the addresses
1068 	 * in an array.
1069 	 */
1070 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1071 	for (i = 0; i < SK_JSLOTS; i++) {
1072 		sc_if->sk_cdata.sk_jslots[i] = ptr;
1073 		ptr += SK_JLEN;
1074 		entry = malloc(sizeof(struct sk_jpool_entry),
1075 		    M_DEVBUF, M_NOWAIT);
1076 		if (entry == NULL) {
1077 			sk_free_jumbo_mem(sc_if);
1078 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1079 			printf("sk%d: no memory for jumbo "
1080 			    "buffer queue!\n", sc_if->sk_unit);
1081 			return(ENOBUFS);
1082 		}
1083 		entry->slot = i;
1084 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1085 		    entry, jpool_entries);
1086 	}
1087 
1088 	return(0);
1089 }
1090 
1091 static void
1092 sk_free_jumbo_mem(sc_if)
1093 	struct sk_if_softc	*sc_if;
1094 {
1095 	struct sk_jpool_entry	*entry;
1096 
1097 	SK_JLIST_LOCK(sc_if);
1098 
1099 	/* We cannot release external mbuf storage while in use. */
1100 	if (!SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) {
1101 		printf("sk%d: will leak jumbo buffer memory!\n", sc_if->sk_unit);
1102 		SK_JLIST_UNLOCK(sc_if);
1103 		return;
1104 	}
1105 
1106 	while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) {
1107 		entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1108 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1109 		free(entry, M_DEVBUF);
1110 	}
1111 
1112 	SK_JLIST_UNLOCK(sc_if);
1113 
1114 	mtx_destroy(&sc_if->sk_jlist_mtx);
1115 
1116 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1117 
1118 	return;
1119 }
1120 
1121 /*
1122  * Allocate a jumbo buffer.
1123  */
1124 static void *
1125 sk_jalloc(sc_if)
1126 	struct sk_if_softc	*sc_if;
1127 {
1128 	struct sk_jpool_entry   *entry;
1129 
1130 	SK_JLIST_LOCK(sc_if);
1131 
1132 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1133 
1134 	if (entry == NULL) {
1135 #ifdef SK_VERBOSE
1136 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1137 #endif
1138 		SK_JLIST_UNLOCK(sc_if);
1139 		return(NULL);
1140 	}
1141 
1142 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1143 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1144 
1145 	SK_JLIST_UNLOCK(sc_if);
1146 
1147 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1148 }
1149 
1150 /*
1151  * Release a jumbo buffer.
1152  */
1153 static void
1154 sk_jfree(buf, args)
1155 	void			*buf;
1156 	void			*args;
1157 {
1158 	struct sk_if_softc	*sc_if;
1159 	int		        i;
1160 	struct sk_jpool_entry   *entry;
1161 
1162 	/* Extract the softc struct pointer. */
1163 	sc_if = (struct sk_if_softc *)args;
1164 	if (sc_if == NULL)
1165 		panic("sk_jfree: didn't get softc pointer!");
1166 
1167 	SK_JLIST_LOCK(sc_if);
1168 
1169 	/* calculate the slot this buffer belongs to */
1170 	i = ((vm_offset_t)buf
1171 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1172 
1173 	if ((i < 0) || (i >= SK_JSLOTS))
1174 		panic("sk_jfree: asked to free buffer that we don't manage!");
1175 
1176 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1177 	if (entry == NULL)
1178 		panic("sk_jfree: buffer not in use!");
1179 	entry->slot = i;
1180 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1181 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1182 	if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead))
1183 		wakeup(sc_if);
1184 
1185 	SK_JLIST_UNLOCK(sc_if);
1186 	return;
1187 }
1188 
1189 /*
1190  * Set media options.
1191  */
1192 static int
1193 sk_ifmedia_upd(ifp)
1194 	struct ifnet		*ifp;
1195 {
1196 	struct sk_if_softc	*sc_if = ifp->if_softc;
1197 	struct mii_data		*mii;
1198 
1199 	mii = device_get_softc(sc_if->sk_miibus);
1200 	sk_init(sc_if);
1201 	mii_mediachg(mii);
1202 
1203 	return(0);
1204 }
1205 
1206 /*
1207  * Report current media status.
1208  */
1209 static void
1210 sk_ifmedia_sts(ifp, ifmr)
1211 	struct ifnet		*ifp;
1212 	struct ifmediareq	*ifmr;
1213 {
1214 	struct sk_if_softc	*sc_if;
1215 	struct mii_data		*mii;
1216 
1217 	sc_if = ifp->if_softc;
1218 	mii = device_get_softc(sc_if->sk_miibus);
1219 
1220 	mii_pollstat(mii);
1221 	ifmr->ifm_active = mii->mii_media_active;
1222 	ifmr->ifm_status = mii->mii_media_status;
1223 
1224 	return;
1225 }
1226 
1227 static int
1228 sk_ioctl(ifp, command, data)
1229 	struct ifnet		*ifp;
1230 	u_long			command;
1231 	caddr_t			data;
1232 {
1233 	struct sk_if_softc	*sc_if = ifp->if_softc;
1234 	struct ifreq		*ifr = (struct ifreq *) data;
1235 	int			error = 0;
1236 	struct mii_data		*mii;
1237 
1238 	switch(command) {
1239 	case SIOCSIFMTU:
1240 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1241 			error = EINVAL;
1242 		else {
1243 			ifp->if_mtu = ifr->ifr_mtu;
1244 			ifp->if_flags &= ~IFF_RUNNING;
1245 			sk_init(sc_if);
1246 		}
1247 		break;
1248 	case SIOCSIFFLAGS:
1249 		SK_IF_LOCK(sc_if);
1250 		if (ifp->if_flags & IFF_UP) {
1251 			if (ifp->if_flags & IFF_RUNNING) {
1252 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1253 				    & IFF_PROMISC) {
1254 					sk_setpromisc(sc_if);
1255 					sk_setmulti(sc_if);
1256 				}
1257 			} else
1258 				sk_init(sc_if);
1259 		} else {
1260 			if (ifp->if_flags & IFF_RUNNING)
1261 				sk_stop(sc_if);
1262 		}
1263 		sc_if->sk_if_flags = ifp->if_flags;
1264 		SK_IF_UNLOCK(sc_if);
1265 		error = 0;
1266 		break;
1267 	case SIOCADDMULTI:
1268 	case SIOCDELMULTI:
1269 		if (ifp->if_flags & IFF_RUNNING) {
1270 			SK_IF_LOCK(sc_if);
1271 			sk_setmulti(sc_if);
1272 			SK_IF_UNLOCK(sc_if);
1273 			error = 0;
1274 		}
1275 		break;
1276 	case SIOCGIFMEDIA:
1277 	case SIOCSIFMEDIA:
1278 		mii = device_get_softc(sc_if->sk_miibus);
1279 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1280 		break;
1281 	default:
1282 		error = ether_ioctl(ifp, command, data);
1283 		break;
1284 	}
1285 
1286 	return(error);
1287 }
1288 
1289 /*
1290  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1291  * IDs against our list and return a device name if we find a match.
1292  */
1293 static int
1294 skc_probe(dev)
1295 	device_t		dev;
1296 {
1297 	struct sk_softc		*sc;
1298 	struct sk_type		*t = sk_devs;
1299 
1300 	sc = device_get_softc(dev);
1301 
1302 	while(t->sk_name != NULL) {
1303 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1304 		    (pci_get_device(dev) == t->sk_did)) {
1305 			device_set_desc(dev, t->sk_name);
1306 			return (BUS_PROBE_DEFAULT);
1307 		}
1308 		t++;
1309 	}
1310 
1311 	return(ENXIO);
1312 }
1313 
1314 /*
1315  * Force the GEnesis into reset, then bring it out of reset.
1316  */
1317 static void
1318 sk_reset(sc)
1319 	struct sk_softc		*sc;
1320 {
1321 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1322 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1323 	if (SK_YUKON_FAMILY(sc->sk_type))
1324 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1325 
1326 	DELAY(1000);
1327 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1328 	DELAY(2);
1329 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1330 	if (SK_YUKON_FAMILY(sc->sk_type))
1331 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1332 
1333 	if (sc->sk_type == SK_GENESIS) {
1334 		/* Configure packet arbiter */
1335 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1336 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1337 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1338 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1339 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1340 	}
1341 
1342 	/* Enable RAM interface */
1343 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1344 
1345 	/*
1346          * Configure interrupt moderation. The moderation timer
1347 	 * defers interrupts specified in the interrupt moderation
1348 	 * timer mask based on the timeout specified in the interrupt
1349 	 * moderation timer init register. Each bit in the timer
1350 	 * register represents 18.825ns, so to specify a timeout in
1351 	 * microseconds, we have to multiply by 54.
1352 	 */
1353 	printf("skc%d: interrupt moderation is %d us\n",
1354 	    sc->sk_unit, sc->sk_int_mod);
1355 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1356 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1357 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1358 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1359 
1360 	return;
1361 }
1362 
1363 static int
1364 sk_probe(dev)
1365 	device_t		dev;
1366 {
1367 	struct sk_softc		*sc;
1368 
1369 	sc = device_get_softc(device_get_parent(dev));
1370 
1371 	/*
1372 	 * Not much to do here. We always know there will be
1373 	 * at least one XMAC present, and if there are two,
1374 	 * skc_attach() will create a second device instance
1375 	 * for us.
1376 	 */
1377 	switch (sc->sk_type) {
1378 	case SK_GENESIS:
1379 		device_set_desc(dev, "XaQti Corp. XMAC II");
1380 		break;
1381 	case SK_YUKON:
1382 	case SK_YUKON_LITE:
1383 	case SK_YUKON_LP:
1384 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1385 		break;
1386 	}
1387 
1388 	return (BUS_PROBE_DEFAULT);
1389 }
1390 
1391 /*
1392  * Each XMAC chip is attached as a separate logical IP interface.
1393  * Single port cards will have only one logical interface of course.
1394  */
1395 static int
1396 sk_attach(dev)
1397 	device_t		dev;
1398 {
1399 	struct sk_softc		*sc;
1400 	struct sk_if_softc	*sc_if;
1401 	struct ifnet		*ifp;
1402 	int			i, port, error;
1403 
1404 	if (dev == NULL)
1405 		return(EINVAL);
1406 
1407 	error = 0;
1408 	sc_if = device_get_softc(dev);
1409 	sc = device_get_softc(device_get_parent(dev));
1410 	port = *(int *)device_get_ivars(dev);
1411 
1412 	sc_if->sk_dev = dev;
1413 	sc_if->sk_unit = device_get_unit(dev);
1414 	sc_if->sk_port = port;
1415 	sc_if->sk_softc = sc;
1416 	sc->sk_if[port] = sc_if;
1417 	if (port == SK_PORT_A)
1418 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1419 	if (port == SK_PORT_B)
1420 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1421 
1422 	/* Allocate the descriptor queues. */
1423 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1424 	    M_NOWAIT, M_ZERO, 0xffffffff, PAGE_SIZE, 0);
1425 
1426 	if (sc_if->sk_rdata == NULL) {
1427 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1428 		error = ENOMEM;
1429 		goto fail;
1430 	}
1431 
1432 	/* Try to allocate memory for jumbo buffers. */
1433 	if (sk_alloc_jumbo_mem(sc_if)) {
1434 		printf("sk%d: jumbo buffer allocation failed\n",
1435 		    sc_if->sk_unit);
1436 		error = ENOMEM;
1437 		goto fail;
1438 	}
1439 
1440 	ifp = &sc_if->arpcom.ac_if;
1441 	ifp->if_softc = sc_if;
1442 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1443 	ifp->if_mtu = ETHERMTU;
1444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1445 	ifp->if_ioctl = sk_ioctl;
1446 	ifp->if_start = sk_start;
1447 	ifp->if_watchdog = sk_watchdog;
1448 	ifp->if_init = sk_init;
1449 	ifp->if_baudrate = 1000000000;
1450 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1451 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1452 	IFQ_SET_READY(&ifp->if_snd);
1453 
1454 	callout_handle_init(&sc_if->sk_tick_ch);
1455 
1456 	/*
1457 	 * Get station address for this interface. Note that
1458 	 * dual port cards actually come with three station
1459 	 * addresses: one for each port, plus an extra. The
1460 	 * extra one is used by the SysKonnect driver software
1461 	 * as a 'virtual' station address for when both ports
1462 	 * are operating in failover mode. Currently we don't
1463 	 * use this extra address.
1464 	 */
1465 	SK_LOCK(sc);
1466 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1467 		sc_if->arpcom.ac_enaddr[i] =
1468 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1469 
1470 	/*
1471 	 * Set up RAM buffer addresses. The NIC will have a certain
1472 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1473 	 * need to divide this up a) between the transmitter and
1474  	 * receiver and b) between the two XMACs, if this is a
1475 	 * dual port NIC. Our algotithm is to divide up the memory
1476 	 * evenly so that everyone gets a fair share.
1477 	 */
1478 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1479 		u_int32_t		chunk, val;
1480 
1481 		chunk = sc->sk_ramsize / 2;
1482 		val = sc->sk_rboff / sizeof(u_int64_t);
1483 		sc_if->sk_rx_ramstart = val;
1484 		val += (chunk / sizeof(u_int64_t));
1485 		sc_if->sk_rx_ramend = val - 1;
1486 		sc_if->sk_tx_ramstart = val;
1487 		val += (chunk / sizeof(u_int64_t));
1488 		sc_if->sk_tx_ramend = val - 1;
1489 	} else {
1490 		u_int32_t		chunk, val;
1491 
1492 		chunk = sc->sk_ramsize / 4;
1493 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1494 		    sizeof(u_int64_t);
1495 		sc_if->sk_rx_ramstart = val;
1496 		val += (chunk / sizeof(u_int64_t));
1497 		sc_if->sk_rx_ramend = val - 1;
1498 		sc_if->sk_tx_ramstart = val;
1499 		val += (chunk / sizeof(u_int64_t));
1500 		sc_if->sk_tx_ramend = val - 1;
1501 	}
1502 
1503 	/* Read and save PHY type and set PHY address */
1504 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1505 	switch(sc_if->sk_phytype) {
1506 	case SK_PHYTYPE_XMAC:
1507 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1508 		break;
1509 	case SK_PHYTYPE_BCOM:
1510 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1511 		break;
1512 	case SK_PHYTYPE_MARV_COPPER:
1513 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1514 		break;
1515 	default:
1516 		printf("skc%d: unsupported PHY type: %d\n",
1517 		    sc->sk_unit, sc_if->sk_phytype);
1518 		error = ENODEV;
1519 		SK_UNLOCK(sc);
1520 		goto fail;
1521 	}
1522 
1523 
1524 	/*
1525 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1526 	 */
1527 	SK_UNLOCK(sc);
1528 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1529 	SK_LOCK(sc);
1530 
1531 	/*
1532 	 * Do miibus setup.
1533 	 */
1534 	switch (sc->sk_type) {
1535 	case SK_GENESIS:
1536 		sk_init_xmac(sc_if);
1537 		break;
1538 	case SK_YUKON:
1539 	case SK_YUKON_LITE:
1540 	case SK_YUKON_LP:
1541 		sk_init_yukon(sc_if);
1542 		break;
1543 	}
1544 
1545 	SK_UNLOCK(sc);
1546 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1547 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1548 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1549 		ether_ifdetach(ifp);
1550 		error = ENXIO;
1551 		goto fail;
1552 	}
1553 
1554 fail:
1555 	if (error) {
1556 		/* Access should be ok even though lock has been dropped */
1557 		sc->sk_if[port] = NULL;
1558 		sk_detach(dev);
1559 	}
1560 
1561 	return(error);
1562 }
1563 
1564 /*
1565  * Attach the interface. Allocate softc structures, do ifmedia
1566  * setup and ethernet/BPF attach.
1567  */
1568 static int
1569 skc_attach(dev)
1570 	device_t		dev;
1571 {
1572 	struct sk_softc		*sc;
1573 	int			unit, error = 0, rid, *port;
1574 	uint8_t			skrs;
1575 	char			*pname, *revstr;
1576 
1577 	sc = device_get_softc(dev);
1578 	unit = device_get_unit(dev);
1579 
1580 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1581 	    MTX_DEF | MTX_RECURSE);
1582 	/*
1583 	 * Map control/status registers.
1584 	 */
1585 	pci_enable_busmaster(dev);
1586 
1587 	rid = SK_RID;
1588 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1589 
1590 	if (sc->sk_res == NULL) {
1591 		printf("sk%d: couldn't map ports/memory\n", unit);
1592 		error = ENXIO;
1593 		goto fail;
1594 	}
1595 
1596 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1597 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1598 
1599 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1600 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1601 
1602 	/* Bail out if chip is not recognized. */
1603 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1604 		printf("skc%d: unknown device: chipver=%02x, rev=%x\n",
1605 			unit, sc->sk_type, sc->sk_rev);
1606 		error = ENXIO;
1607 		goto fail;
1608 	}
1609 
1610 	/* Allocate interrupt */
1611 	rid = 0;
1612 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1613 	    RF_SHAREABLE | RF_ACTIVE);
1614 
1615 	if (sc->sk_irq == NULL) {
1616 		printf("skc%d: couldn't map interrupt\n", unit);
1617 		error = ENXIO;
1618 		goto fail;
1619 	}
1620 
1621 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1622 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1623 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1624 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1625 		"SK interrupt moderation");
1626 
1627 	/* Pull in device tunables. */
1628 	sc->sk_int_mod = SK_IM_DEFAULT;
1629 	error = resource_int_value(device_get_name(dev), unit,
1630 		"int_mod", &sc->sk_int_mod);
1631 	if (error == 0) {
1632 		if (sc->sk_int_mod < SK_IM_MIN ||
1633 		    sc->sk_int_mod > SK_IM_MAX) {
1634 			printf("skc%d: int_mod value out of range; "
1635 			    "using default: %d\n", unit, SK_IM_DEFAULT);
1636 			sc->sk_int_mod = SK_IM_DEFAULT;
1637 		}
1638 	}
1639 
1640 	/* Reset the adapter. */
1641 	sk_reset(sc);
1642 
1643 	sc->sk_unit = unit;
1644 
1645 	/* Read and save vital product data from EEPROM. */
1646 	sk_vpd_read(sc);
1647 
1648 	skrs = sk_win_read_1(sc, SK_EPROM0);
1649 	if (sc->sk_type == SK_GENESIS) {
1650 		/* Read and save RAM size and RAMbuffer offset */
1651 		switch(skrs) {
1652 		case SK_RAMSIZE_512K_64:
1653 			sc->sk_ramsize = 0x80000;
1654 			sc->sk_rboff = SK_RBOFF_0;
1655 			break;
1656 		case SK_RAMSIZE_1024K_64:
1657 			sc->sk_ramsize = 0x100000;
1658 			sc->sk_rboff = SK_RBOFF_80000;
1659 			break;
1660 		case SK_RAMSIZE_1024K_128:
1661 			sc->sk_ramsize = 0x100000;
1662 			sc->sk_rboff = SK_RBOFF_0;
1663 			break;
1664 		case SK_RAMSIZE_2048K_128:
1665 			sc->sk_ramsize = 0x200000;
1666 			sc->sk_rboff = SK_RBOFF_0;
1667 			break;
1668 		default:
1669 			printf("skc%d: unknown ram size: %d\n",
1670 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1671 			error = ENXIO;
1672 			goto fail;
1673 		}
1674 	} else { /* SK_YUKON_FAMILY */
1675 		if (skrs == 0x00)
1676 			sc->sk_ramsize = 0x20000;
1677 		else
1678 			sc->sk_ramsize = skrs * (1<<12);
1679 		sc->sk_rboff = SK_RBOFF_0;
1680 	}
1681 
1682 	/* Read and save physical media type */
1683 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1684 	case SK_PMD_1000BASESX:
1685 		sc->sk_pmd = IFM_1000_SX;
1686 		break;
1687 	case SK_PMD_1000BASELX:
1688 		sc->sk_pmd = IFM_1000_LX;
1689 		break;
1690 	case SK_PMD_1000BASECX:
1691 		sc->sk_pmd = IFM_1000_CX;
1692 		break;
1693 	case SK_PMD_1000BASETX:
1694 		sc->sk_pmd = IFM_1000_T;
1695 		break;
1696 	default:
1697 		printf("skc%d: unknown media type: 0x%x\n",
1698 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1699 		error = ENXIO;
1700 		goto fail;
1701 	}
1702 
1703 	/* Determine whether to name it with VPD PN or just make it up.
1704 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1705 	switch (pci_get_device(dev)) {
1706 	case DEVICEID_SK_V1:
1707 	case DEVICEID_BELKIN_5005:
1708 	case DEVICEID_3COM_3C940:
1709 	case DEVICEID_LINKSYS_EG1032:
1710 	case DEVICEID_DLINK_DGE530T:
1711 		/* Stay with VPD PN. */
1712 		pname = sc->sk_vpd_prodname;
1713 		break;
1714 	case DEVICEID_SK_V2:
1715 		/* YUKON VPD PN might bear no resemblance to reality. */
1716 		switch (sc->sk_type) {
1717 		case SK_GENESIS:
1718 			/* Stay with VPD PN. */
1719 			pname = sc->sk_vpd_prodname;
1720 			break;
1721 		case SK_YUKON:
1722 			pname = "Marvell Yukon Gigabit Ethernet";
1723 			break;
1724 		case SK_YUKON_LITE:
1725 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1726 			break;
1727 		case SK_YUKON_LP:
1728 			pname = "Marvell Yukon LP Gigabit Ethernet";
1729 			break;
1730 		default:
1731 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1732 			break;
1733 		}
1734 
1735 		/* Yukon Lite Rev. A0 needs special test. */
1736 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1737 			u_int32_t far;
1738 			u_int8_t testbyte;
1739 
1740 			/* Save flash address register before testing. */
1741 			far = sk_win_read_4(sc, SK_EP_ADDR);
1742 
1743 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1744 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1745 
1746 			if (testbyte != 0x00) {
1747 				/* Yukon Lite Rev. A0 detected. */
1748 				sc->sk_type = SK_YUKON_LITE;
1749 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1750 				/* Restore flash address register. */
1751 				sk_win_write_4(sc, SK_EP_ADDR, far);
1752 			}
1753 		}
1754 		break;
1755 	default:
1756 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1757 			"chipver=%02x, rev=%x\n",
1758 			pci_get_vendor(dev), pci_get_device(dev),
1759 			sc->sk_type, sc->sk_rev);
1760 		error = ENXIO;
1761 		goto fail;
1762 	}
1763 
1764 	if (sc->sk_type == SK_YUKON_LITE) {
1765 		switch (sc->sk_rev) {
1766 		case SK_YUKON_LITE_REV_A0:
1767 			revstr = "A0";
1768 			break;
1769 		case SK_YUKON_LITE_REV_A1:
1770 			revstr = "A1";
1771 			break;
1772 		case SK_YUKON_LITE_REV_A3:
1773 			revstr = "A3";
1774 			break;
1775 		default:
1776 			revstr = "";
1777 			break;
1778 		}
1779 	} else {
1780 		revstr = "";
1781 	}
1782 
1783 	/* Announce the product name and more VPD data if there. */
1784 	device_printf(dev, "%s rev. %s(0x%x)\n",
1785 		pname != NULL ? pname : "<unknown>", revstr, sc->sk_rev);
1786 
1787 	if (bootverbose) {
1788 		if (sc->sk_vpd_readonly != NULL &&
1789 		    sc->sk_vpd_readonly_len != 0) {
1790 			char buf[256];
1791 			char *dp = sc->sk_vpd_readonly;
1792 			uint16_t l, len = sc->sk_vpd_readonly_len;
1793 
1794 			while (len >= 3) {
1795 				if ((*dp == 'P' && *(dp+1) == 'N') ||
1796 				    (*dp == 'E' && *(dp+1) == 'C') ||
1797 				    (*dp == 'M' && *(dp+1) == 'N') ||
1798 				    (*dp == 'S' && *(dp+1) == 'N')) {
1799 					l = 0;
1800 					while (l < *(dp+2)) {
1801 						buf[l] = *(dp+3+l);
1802 						++l;
1803 					}
1804 					buf[l] = '\0';
1805 					device_printf(dev, "%c%c: %s\n",
1806 					    *dp, *(dp+1), buf);
1807 					len -= (3 + l);
1808 					dp += (3 + l);
1809 				} else {
1810 					len -= (3 + *(dp+2));
1811 					dp += (3 + *(dp+2));
1812 				}
1813 			}
1814 		}
1815 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1816 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1817 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1818 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1819 	}
1820 
1821 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1822 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1823 		device_printf(dev, "failed to add child for PORT_A\n");
1824 		error = ENXIO;
1825 		goto fail;
1826 	}
1827 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1828 	if (port == NULL) {
1829 		device_printf(dev, "failed to allocate memory for "
1830 		    "ivars of PORT_A\n");
1831 		error = ENXIO;
1832 		goto fail;
1833 	}
1834 	*port = SK_PORT_A;
1835 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1836 
1837 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1838 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1839 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1840 			device_printf(dev, "failed to add child for PORT_B\n");
1841 			error = ENXIO;
1842 			goto fail;
1843 		}
1844 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1845 		if (port == NULL) {
1846 			device_printf(dev, "failed to allocate memory for "
1847 			    "ivars of PORT_B\n");
1848 			error = ENXIO;
1849 			goto fail;
1850 		}
1851 		*port = SK_PORT_B;
1852 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1853 	}
1854 
1855 	/* Turn on the 'driver is loaded' LED. */
1856 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1857 
1858 	bus_generic_attach(dev);
1859 
1860 	/* Hook interrupt last to avoid having to lock softc */
1861 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1862 	    sk_intr, sc, &sc->sk_intrhand);
1863 
1864 	if (error) {
1865 		printf("skc%d: couldn't set up irq\n", unit);
1866 		goto fail;
1867 	}
1868 
1869 fail:
1870 	if (error)
1871 		skc_detach(dev);
1872 
1873 	return(error);
1874 }
1875 
1876 /*
1877  * Shutdown hardware and free up resources. This can be called any
1878  * time after the mutex has been initialized. It is called in both
1879  * the error case in attach and the normal detach case so it needs
1880  * to be careful about only freeing resources that have actually been
1881  * allocated.
1882  */
1883 static int
1884 sk_detach(dev)
1885 	device_t		dev;
1886 {
1887 	struct sk_if_softc	*sc_if;
1888 	struct ifnet		*ifp;
1889 
1890 	sc_if = device_get_softc(dev);
1891 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1892 	    ("sk mutex not initialized in sk_detach"));
1893 	SK_IF_LOCK(sc_if);
1894 
1895 	ifp = &sc_if->arpcom.ac_if;
1896 	/* These should only be active if attach_xmac succeeded */
1897 	if (device_is_attached(dev)) {
1898 		sk_stop(sc_if);
1899 		/* Can't hold locks while calling detach */
1900 		SK_IF_UNLOCK(sc_if);
1901 		ether_ifdetach(ifp);
1902 		SK_IF_LOCK(sc_if);
1903 	}
1904 	/*
1905 	 * We're generally called from skc_detach() which is using
1906 	 * device_delete_child() to get to here. It's already trashed
1907 	 * miibus for us, so don't do it here or we'll panic.
1908 	 */
1909 	/*
1910 	if (sc_if->sk_miibus != NULL)
1911 		device_delete_child(dev, sc_if->sk_miibus);
1912 	*/
1913 	bus_generic_detach(dev);
1914 	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1915 		sk_free_jumbo_mem(sc_if);
1916 	if (sc_if->sk_rdata != NULL) {
1917 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1918 		    M_DEVBUF);
1919 	}
1920 	SK_IF_UNLOCK(sc_if);
1921 
1922 	return(0);
1923 }
1924 
1925 static int
1926 skc_detach(dev)
1927 	device_t		dev;
1928 {
1929 	struct sk_softc		*sc;
1930 
1931 	sc = device_get_softc(dev);
1932 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1933 
1934 	if (device_is_alive(dev)) {
1935 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1936 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1937 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1938 		}
1939 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1940 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1941 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1942 		}
1943 		bus_generic_detach(dev);
1944 	}
1945 
1946 	if (sc->sk_vpd_prodname != NULL)
1947 		free(sc->sk_vpd_prodname, M_DEVBUF);
1948 	if (sc->sk_vpd_readonly != NULL)
1949 		free(sc->sk_vpd_readonly, M_DEVBUF);
1950 
1951 	if (sc->sk_intrhand)
1952 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1953 	if (sc->sk_irq)
1954 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1955 	if (sc->sk_res)
1956 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1957 
1958 	mtx_destroy(&sc->sk_mtx);
1959 
1960 	return(0);
1961 }
1962 
1963 static int
1964 sk_encap(sc_if, m_head, txidx)
1965         struct sk_if_softc	*sc_if;
1966         struct mbuf		*m_head;
1967         u_int32_t		*txidx;
1968 {
1969 	struct sk_tx_desc	*f = NULL;
1970 	struct mbuf		*m;
1971 	u_int32_t		frag, cur, cnt = 0;
1972 
1973 	SK_IF_LOCK_ASSERT(sc_if);
1974 
1975 	m = m_head;
1976 	cur = frag = *txidx;
1977 
1978 	/*
1979 	 * Start packing the mbufs in this chain into
1980 	 * the fragment pointers. Stop when we run out
1981 	 * of fragments or hit the end of the mbuf chain.
1982 	 */
1983 	for (m = m_head; m != NULL; m = m->m_next) {
1984 		if (m->m_len != 0) {
1985 			if ((SK_TX_RING_CNT -
1986 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1987 				return(ENOBUFS);
1988 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1989 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1990 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1991 			if (cnt == 0)
1992 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1993 			else
1994 				f->sk_ctl |= SK_TXCTL_OWN;
1995 			cur = frag;
1996 			SK_INC(frag, SK_TX_RING_CNT);
1997 			cnt++;
1998 		}
1999 	}
2000 
2001 	if (m != NULL)
2002 		return(ENOBUFS);
2003 
2004 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
2005 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
2006 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
2007 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
2008 	sc_if->sk_cdata.sk_tx_cnt += cnt;
2009 
2010 	*txidx = frag;
2011 
2012 	return(0);
2013 }
2014 
2015 static void
2016 sk_start(ifp)
2017 	struct ifnet		*ifp;
2018 {
2019         struct sk_softc		*sc;
2020         struct sk_if_softc	*sc_if;
2021         struct mbuf		*m_head = NULL;
2022         u_int32_t		idx;
2023 
2024 	sc_if = ifp->if_softc;
2025 	sc = sc_if->sk_softc;
2026 
2027 	SK_IF_LOCK(sc_if);
2028 
2029 	idx = sc_if->sk_cdata.sk_tx_prod;
2030 
2031 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2032 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2033 		if (m_head == NULL)
2034 			break;
2035 
2036 		/*
2037 		 * Pack the data into the transmit ring. If we
2038 		 * don't have room, set the OACTIVE flag and wait
2039 		 * for the NIC to drain the ring.
2040 		 */
2041 		if (sk_encap(sc_if, m_head, &idx)) {
2042 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2043 			ifp->if_flags |= IFF_OACTIVE;
2044 			break;
2045 		}
2046 
2047 		/*
2048 		 * If there's a BPF listener, bounce a copy of this frame
2049 		 * to him.
2050 		 */
2051 		BPF_MTAP(ifp, m_head);
2052 	}
2053 
2054 	/* Transmit */
2055 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2056 		sc_if->sk_cdata.sk_tx_prod = idx;
2057 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2058 
2059 		/* Set a timeout in case the chip goes out to lunch. */
2060 		ifp->if_timer = 5;
2061 	}
2062 	SK_IF_UNLOCK(sc_if);
2063 
2064 	return;
2065 }
2066 
2067 
2068 static void
2069 sk_watchdog(ifp)
2070 	struct ifnet		*ifp;
2071 {
2072 	struct sk_if_softc	*sc_if;
2073 
2074 	sc_if = ifp->if_softc;
2075 
2076 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
2077 	ifp->if_flags &= ~IFF_RUNNING;
2078 	sk_init(sc_if);
2079 
2080 	return;
2081 }
2082 
2083 static void
2084 skc_shutdown(dev)
2085 	device_t		dev;
2086 {
2087 	struct sk_softc		*sc;
2088 
2089 	sc = device_get_softc(dev);
2090 	SK_LOCK(sc);
2091 
2092 	/* Turn off the 'driver is loaded' LED. */
2093 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2094 
2095 	/*
2096 	 * Reset the GEnesis controller. Doing this should also
2097 	 * assert the resets on the attached XMAC(s).
2098 	 */
2099 	sk_reset(sc);
2100 	SK_UNLOCK(sc);
2101 
2102 	return;
2103 }
2104 
2105 static void
2106 sk_rxeof(sc_if)
2107 	struct sk_if_softc	*sc_if;
2108 {
2109 	struct sk_softc		*sc;
2110 	struct mbuf		*m;
2111 	struct ifnet		*ifp;
2112 	struct sk_chain		*cur_rx;
2113 	int			total_len = 0;
2114 	int			i;
2115 	u_int32_t		rxstat;
2116 
2117 	sc = sc_if->sk_softc;
2118 	ifp = &sc_if->arpcom.ac_if;
2119 	i = sc_if->sk_cdata.sk_rx_prod;
2120 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2121 
2122 	SK_LOCK_ASSERT(sc);
2123 
2124 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
2125 
2126 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
2127 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
2128 		m = cur_rx->sk_mbuf;
2129 		cur_rx->sk_mbuf = NULL;
2130 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
2131 		SK_INC(i, SK_RX_RING_CNT);
2132 
2133 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2134 			ifp->if_ierrors++;
2135 			sk_newbuf(sc_if, cur_rx, m);
2136 			continue;
2137 		}
2138 
2139 		/*
2140 		 * Try to allocate a new jumbo buffer. If that
2141 		 * fails, copy the packet to mbufs and put the
2142 		 * jumbo buffer back in the ring so it can be
2143 		 * re-used. If allocating mbufs fails, then we
2144 		 * have to drop the packet.
2145 		 */
2146 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
2147 			struct mbuf		*m0;
2148 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
2149 			    ifp, NULL);
2150 			sk_newbuf(sc_if, cur_rx, m);
2151 			if (m0 == NULL) {
2152 				printf("sk%d: no receive buffers "
2153 				    "available -- packet dropped!\n",
2154 				    sc_if->sk_unit);
2155 				ifp->if_ierrors++;
2156 				continue;
2157 			}
2158 			m = m0;
2159 		} else {
2160 			m->m_pkthdr.rcvif = ifp;
2161 			m->m_pkthdr.len = m->m_len = total_len;
2162 		}
2163 
2164 		ifp->if_ipackets++;
2165 		SK_UNLOCK(sc);
2166 		(*ifp->if_input)(ifp, m);
2167 		SK_LOCK(sc);
2168 	}
2169 
2170 	sc_if->sk_cdata.sk_rx_prod = i;
2171 
2172 	return;
2173 }
2174 
2175 static void
2176 sk_txeof(sc_if)
2177 	struct sk_if_softc	*sc_if;
2178 {
2179 	struct sk_softc		*sc;
2180 	struct sk_tx_desc	*cur_tx;
2181 	struct ifnet		*ifp;
2182 	u_int32_t		idx;
2183 
2184 	sc = sc_if->sk_softc;
2185 	ifp = &sc_if->arpcom.ac_if;
2186 
2187 	/*
2188 	 * Go through our tx ring and free mbufs for those
2189 	 * frames that have been sent.
2190 	 */
2191 	idx = sc_if->sk_cdata.sk_tx_cons;
2192 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2193 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2194 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2195 			break;
2196 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2197 			ifp->if_opackets++;
2198 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2199 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2200 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2201 		}
2202 		sc_if->sk_cdata.sk_tx_cnt--;
2203 		SK_INC(idx, SK_TX_RING_CNT);
2204 	}
2205 
2206 	if (sc_if->sk_cdata.sk_tx_cnt == 0) {
2207 		ifp->if_timer = 0;
2208 	} else /* nudge chip to keep tx ring moving */
2209 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2210 
2211 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2212 		ifp->if_flags &= ~IFF_OACTIVE;
2213 
2214 	sc_if->sk_cdata.sk_tx_cons = idx;
2215 }
2216 
2217 static void
2218 sk_tick(xsc_if)
2219 	void			*xsc_if;
2220 {
2221 	struct sk_if_softc	*sc_if;
2222 	struct mii_data		*mii;
2223 	struct ifnet		*ifp;
2224 	int			i;
2225 
2226 	sc_if = xsc_if;
2227 	SK_IF_LOCK(sc_if);
2228 	ifp = &sc_if->arpcom.ac_if;
2229 	mii = device_get_softc(sc_if->sk_miibus);
2230 
2231 	if (!(ifp->if_flags & IFF_UP)) {
2232 		SK_IF_UNLOCK(sc_if);
2233 		return;
2234 	}
2235 
2236 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2237 		sk_intr_bcom(sc_if);
2238 		SK_IF_UNLOCK(sc_if);
2239 		return;
2240 	}
2241 
2242 	/*
2243 	 * According to SysKonnect, the correct way to verify that
2244 	 * the link has come back up is to poll bit 0 of the GPIO
2245 	 * register three times. This pin has the signal from the
2246 	 * link_sync pin connected to it; if we read the same link
2247 	 * state 3 times in a row, we know the link is up.
2248 	 */
2249 	for (i = 0; i < 3; i++) {
2250 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2251 			break;
2252 	}
2253 
2254 	if (i != 3) {
2255 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2256 		SK_IF_UNLOCK(sc_if);
2257 		return;
2258 	}
2259 
2260 	/* Turn the GP0 interrupt back on. */
2261 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2262 	SK_XM_READ_2(sc_if, XM_ISR);
2263 	mii_tick(mii);
2264 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2265 
2266 	SK_IF_UNLOCK(sc_if);
2267 	return;
2268 }
2269 
2270 static void
2271 sk_intr_bcom(sc_if)
2272 	struct sk_if_softc	*sc_if;
2273 {
2274 	struct mii_data		*mii;
2275 	struct ifnet		*ifp;
2276 	int			status;
2277 	mii = device_get_softc(sc_if->sk_miibus);
2278 	ifp = &sc_if->arpcom.ac_if;
2279 
2280 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2281 
2282 	/*
2283 	 * Read the PHY interrupt register to make sure
2284 	 * we clear any pending interrupts.
2285 	 */
2286 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2287 
2288 	if (!(ifp->if_flags & IFF_RUNNING)) {
2289 		sk_init_xmac(sc_if);
2290 		return;
2291 	}
2292 
2293 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2294 		int			lstat;
2295 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2296 		    BRGPHY_MII_AUXSTS);
2297 
2298 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2299 			mii_mediachg(mii);
2300 			/* Turn off the link LED. */
2301 			SK_IF_WRITE_1(sc_if, 0,
2302 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2303 			sc_if->sk_link = 0;
2304 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2305 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2306 	    		    BRGPHY_MII_IMR, 0xFF00);
2307 			mii_tick(mii);
2308 			sc_if->sk_link = 1;
2309 			/* Turn on the link LED. */
2310 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2311 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2312 			    SK_LINKLED_BLINK_OFF);
2313 		} else {
2314 			mii_tick(mii);
2315 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2316 		}
2317 	}
2318 
2319 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2320 
2321 	return;
2322 }
2323 
2324 static void
2325 sk_intr_xmac(sc_if)
2326 	struct sk_if_softc	*sc_if;
2327 {
2328 	struct sk_softc		*sc;
2329 	u_int16_t		status;
2330 
2331 	sc = sc_if->sk_softc;
2332 	status = SK_XM_READ_2(sc_if, XM_ISR);
2333 
2334 	/*
2335 	 * Link has gone down. Start MII tick timeout to
2336 	 * watch for link resync.
2337 	 */
2338 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2339 		if (status & XM_ISR_GP0_SET) {
2340 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2341 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2342 		}
2343 
2344 		if (status & XM_ISR_AUTONEG_DONE) {
2345 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2346 		}
2347 	}
2348 
2349 	if (status & XM_IMR_TX_UNDERRUN)
2350 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2351 
2352 	if (status & XM_IMR_RX_OVERRUN)
2353 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2354 
2355 	status = SK_XM_READ_2(sc_if, XM_ISR);
2356 
2357 	return;
2358 }
2359 
2360 static void
2361 sk_intr_yukon(sc_if)
2362 	struct sk_if_softc	*sc_if;
2363 {
2364 	int status;
2365 
2366 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2367 
2368 	return;
2369 }
2370 
2371 static void
2372 sk_intr(xsc)
2373 	void			*xsc;
2374 {
2375 	struct sk_softc		*sc = xsc;
2376 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2377 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2378 	u_int32_t		status;
2379 
2380 	SK_LOCK(sc);
2381 
2382 	sc_if0 = sc->sk_if[SK_PORT_A];
2383 	sc_if1 = sc->sk_if[SK_PORT_B];
2384 
2385 	if (sc_if0 != NULL)
2386 		ifp0 = &sc_if0->arpcom.ac_if;
2387 	if (sc_if1 != NULL)
2388 		ifp1 = &sc_if1->arpcom.ac_if;
2389 
2390 	for (;;) {
2391 		status = CSR_READ_4(sc, SK_ISSR);
2392 		if (!(status & sc->sk_intrmask))
2393 			break;
2394 
2395 		/* Handle receive interrupts first. */
2396 		if (status & SK_ISR_RX1_EOF) {
2397 			sk_rxeof(sc_if0);
2398 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2399 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2400 		}
2401 		if (status & SK_ISR_RX2_EOF) {
2402 			sk_rxeof(sc_if1);
2403 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2404 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2405 		}
2406 
2407 		/* Then transmit interrupts. */
2408 		if (status & SK_ISR_TX1_S_EOF) {
2409 			sk_txeof(sc_if0);
2410 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2411 			    SK_TXBMU_CLR_IRQ_EOF);
2412 		}
2413 		if (status & SK_ISR_TX2_S_EOF) {
2414 			sk_txeof(sc_if1);
2415 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2416 			    SK_TXBMU_CLR_IRQ_EOF);
2417 		}
2418 
2419 		/* Then MAC interrupts. */
2420 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2421 			if (sc->sk_type == SK_GENESIS)
2422 				sk_intr_xmac(sc_if0);
2423 			else
2424 				sk_intr_yukon(sc_if0);
2425 		}
2426 
2427 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2428 			if (sc->sk_type == SK_GENESIS)
2429 				sk_intr_xmac(sc_if1);
2430 			else
2431 				sk_intr_yukon(sc_if1);
2432 		}
2433 
2434 		if (status & SK_ISR_EXTERNAL_REG) {
2435 			if (ifp0 != NULL &&
2436 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2437 				sk_intr_bcom(sc_if0);
2438 			if (ifp1 != NULL &&
2439 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2440 				sk_intr_bcom(sc_if1);
2441 		}
2442 	}
2443 
2444 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2445 
2446 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
2447 		sk_start(ifp0);
2448 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
2449 		sk_start(ifp1);
2450 
2451 	SK_UNLOCK(sc);
2452 
2453 	return;
2454 }
2455 
2456 static void
2457 sk_init_xmac(sc_if)
2458 	struct sk_if_softc	*sc_if;
2459 {
2460 	struct sk_softc		*sc;
2461 	struct ifnet		*ifp;
2462 	struct sk_bcom_hack	bhack[] = {
2463 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2464 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2465 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2466 	{ 0, 0 } };
2467 
2468 	sc = sc_if->sk_softc;
2469 	ifp = &sc_if->arpcom.ac_if;
2470 
2471 	/* Unreset the XMAC. */
2472 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2473 	DELAY(1000);
2474 
2475 	/* Reset the XMAC's internal state. */
2476 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2477 
2478 	/* Save the XMAC II revision */
2479 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2480 
2481 	/*
2482 	 * Perform additional initialization for external PHYs,
2483 	 * namely for the 1000baseTX cards that use the XMAC's
2484 	 * GMII mode.
2485 	 */
2486 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2487 		int			i = 0;
2488 		u_int32_t		val;
2489 
2490 		/* Take PHY out of reset. */
2491 		val = sk_win_read_4(sc, SK_GPIO);
2492 		if (sc_if->sk_port == SK_PORT_A)
2493 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2494 		else
2495 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2496 		sk_win_write_4(sc, SK_GPIO, val);
2497 
2498 		/* Enable GMII mode on the XMAC. */
2499 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2500 
2501 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2502 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2503 		DELAY(10000);
2504 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2505 		    BRGPHY_MII_IMR, 0xFFF0);
2506 
2507 		/*
2508 		 * Early versions of the BCM5400 apparently have
2509 		 * a bug that requires them to have their reserved
2510 		 * registers initialized to some magic values. I don't
2511 		 * know what the numbers do, I'm just the messenger.
2512 		 */
2513 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2514 		    == 0x6041) {
2515 			while(bhack[i].reg) {
2516 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2517 				    bhack[i].reg, bhack[i].val);
2518 				i++;
2519 			}
2520 		}
2521 	}
2522 
2523 	/* Set station address */
2524 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2525 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2526 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2527 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2528 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2529 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2530 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2531 
2532 	if (ifp->if_flags & IFF_BROADCAST) {
2533 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2534 	} else {
2535 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2536 	}
2537 
2538 	/* We don't need the FCS appended to the packet. */
2539 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2540 
2541 	/* We want short frames padded to 60 bytes. */
2542 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2543 
2544 	/*
2545 	 * Enable the reception of all error frames. This is is
2546 	 * a necessary evil due to the design of the XMAC. The
2547 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2548 	 * frames can be up to 9000 bytes in length. When bad
2549 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2550 	 * in 'store and forward' mode. For this to work, the
2551 	 * entire frame has to fit into the FIFO, but that means
2552 	 * that jumbo frames larger than 8192 bytes will be
2553 	 * truncated. Disabling all bad frame filtering causes
2554 	 * the RX FIFO to operate in streaming mode, in which
2555 	 * case the XMAC will start transfering frames out of the
2556 	 * RX FIFO as soon as the FIFO threshold is reached.
2557 	 */
2558 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2559 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2560 	    XM_MODE_RX_INRANGELEN);
2561 
2562 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2563 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2564 	else
2565 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2566 
2567 	/*
2568 	 * Bump up the transmit threshold. This helps hold off transmit
2569 	 * underruns when we're blasting traffic from both ports at once.
2570 	 */
2571 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2572 
2573 	/* Set promiscuous mode */
2574 	sk_setpromisc(sc_if);
2575 
2576 	/* Set multicast filter */
2577 	sk_setmulti(sc_if);
2578 
2579 	/* Clear and enable interrupts */
2580 	SK_XM_READ_2(sc_if, XM_ISR);
2581 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2582 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2583 	else
2584 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2585 
2586 	/* Configure MAC arbiter */
2587 	switch(sc_if->sk_xmac_rev) {
2588 	case XM_XMAC_REV_B2:
2589 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2590 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2591 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2592 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2593 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2594 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2595 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2596 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2597 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2598 		break;
2599 	case XM_XMAC_REV_C1:
2600 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2601 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2602 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2603 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2604 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2605 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2606 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2607 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2608 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2609 		break;
2610 	default:
2611 		break;
2612 	}
2613 	sk_win_write_2(sc, SK_MACARB_CTL,
2614 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2615 
2616 	sc_if->sk_link = 1;
2617 
2618 	return;
2619 }
2620 
2621 static void
2622 sk_init_yukon(sc_if)
2623 	struct sk_if_softc	*sc_if;
2624 {
2625 	u_int32_t		phy;
2626 	u_int16_t		reg;
2627 	struct sk_softc		*sc;
2628 	struct ifnet		*ifp;
2629 	int			i;
2630 
2631 	sc = sc_if->sk_softc;
2632 	ifp = &sc_if->arpcom.ac_if;
2633 
2634 	if (sc->sk_type == SK_YUKON_LITE &&
2635 	    sc->sk_rev == SK_YUKON_LITE_REV_A3) {
2636 		/* Take PHY out of reset. */
2637 		sk_win_write_4(sc, SK_GPIO,
2638 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2639 	}
2640 
2641 	/* GMAC and GPHY Reset */
2642 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2643 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2644 	DELAY(1000);
2645 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2646 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2647 	DELAY(1000);
2648 
2649 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2650 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2651 
2652 	switch(sc_if->sk_softc->sk_pmd) {
2653 	case IFM_1000_SX:
2654 	case IFM_1000_LX:
2655 		phy |= SK_GPHY_FIBER;
2656 		break;
2657 
2658 	case IFM_1000_CX:
2659 	case IFM_1000_T:
2660 		phy |= SK_GPHY_COPPER;
2661 		break;
2662 	}
2663 
2664 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2665 	DELAY(1000);
2666 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2667 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2668 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2669 
2670 	/* unused read of the interrupt source register */
2671 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2672 
2673 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2674 
2675 	/* MIB Counter Clear Mode set */
2676 	reg |= YU_PAR_MIB_CLR;
2677 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2678 
2679 	/* MIB Counter Clear Mode clear */
2680 	reg &= ~YU_PAR_MIB_CLR;
2681 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2682 
2683 	/* receive control reg */
2684 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2685 
2686 	/* transmit parameter register */
2687 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2688 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2689 
2690 	/* serial mode register */
2691 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2692 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2693 		reg |= YU_SMR_MFL_JUMBO;
2694 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2695 
2696 	/* Setup Yukon's address */
2697 	for (i = 0; i < 3; i++) {
2698 		/* Write Source Address 1 (unicast filter) */
2699 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2700 			      sc_if->arpcom.ac_enaddr[i * 2] |
2701 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2702 	}
2703 
2704 	for (i = 0; i < 3; i++) {
2705 		reg = sk_win_read_2(sc_if->sk_softc,
2706 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2707 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2708 	}
2709 
2710 	/* Set promiscuous mode */
2711 	sk_setpromisc(sc_if);
2712 
2713 	/* Set multicast filter */
2714 	sk_setmulti(sc_if);
2715 
2716 	/* enable interrupt mask for counter overflows */
2717 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2718 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2719 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2720 
2721 	/* Configure RX MAC FIFO */
2722 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2723 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2724 
2725 	/* Configure TX MAC FIFO */
2726 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2727 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2728 }
2729 
2730 /*
2731  * Note that to properly initialize any part of the GEnesis chip,
2732  * you first have to take it out of reset mode.
2733  */
2734 static void
2735 sk_init(xsc)
2736 	void			*xsc;
2737 {
2738 	struct sk_if_softc	*sc_if = xsc;
2739 	struct sk_softc		*sc;
2740 	struct ifnet		*ifp;
2741 	struct mii_data		*mii;
2742 	u_int16_t		reg;
2743 	u_int32_t		imr;
2744 
2745 	SK_IF_LOCK(sc_if);
2746 
2747 	ifp = &sc_if->arpcom.ac_if;
2748 	sc = sc_if->sk_softc;
2749 	mii = device_get_softc(sc_if->sk_miibus);
2750 
2751 	if (ifp->if_flags & IFF_RUNNING) {
2752 		SK_IF_UNLOCK(sc_if);
2753 		return;
2754 	}
2755 
2756 	/* Cancel pending I/O and free all RX/TX buffers. */
2757 	sk_stop(sc_if);
2758 
2759 	if (sc->sk_type == SK_GENESIS) {
2760 		/* Configure LINK_SYNC LED */
2761 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2762 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2763 			SK_LINKLED_LINKSYNC_ON);
2764 
2765 		/* Configure RX LED */
2766 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2767 			SK_RXLEDCTL_COUNTER_START);
2768 
2769 		/* Configure TX LED */
2770 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2771 			SK_TXLEDCTL_COUNTER_START);
2772 	}
2773 
2774 	/* Configure I2C registers */
2775 
2776 	/* Configure XMAC(s) */
2777 	switch (sc->sk_type) {
2778 	case SK_GENESIS:
2779 		sk_init_xmac(sc_if);
2780 		break;
2781 	case SK_YUKON:
2782 	case SK_YUKON_LITE:
2783 	case SK_YUKON_LP:
2784 		sk_init_yukon(sc_if);
2785 		break;
2786 	}
2787 	mii_mediachg(mii);
2788 
2789 	if (sc->sk_type == SK_GENESIS) {
2790 		/* Configure MAC FIFOs */
2791 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2792 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2793 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2794 
2795 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2796 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2797 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2798 	}
2799 
2800 	/* Configure transmit arbiter(s) */
2801 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2802 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2803 
2804 	/* Configure RAMbuffers */
2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2806 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2807 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2808 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2809 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2810 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2811 
2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2813 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2814 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2815 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2816 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2817 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2818 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2819 
2820 	/* Configure BMUs */
2821 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2822 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2823 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2824 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2825 
2826 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2827 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2828 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2829 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2830 
2831 	/* Init descriptors */
2832 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2833 		printf("sk%d: initialization failed: no "
2834 		    "memory for rx buffers\n", sc_if->sk_unit);
2835 		sk_stop(sc_if);
2836 		SK_IF_UNLOCK(sc_if);
2837 		return;
2838 	}
2839 	sk_init_tx_ring(sc_if);
2840 
2841 	/* Set interrupt moderation if changed via sysctl. */
2842 	/* SK_LOCK(sc); */
2843 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2844 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2845 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
2846 		printf("skc%d: interrupt moderation is %d us\n",
2847 		    sc->sk_unit, sc->sk_int_mod);
2848 	}
2849 	/* SK_UNLOCK(sc); */
2850 
2851 	/* Configure interrupt handling */
2852 	CSR_READ_4(sc, SK_ISSR);
2853 	if (sc_if->sk_port == SK_PORT_A)
2854 		sc->sk_intrmask |= SK_INTRS1;
2855 	else
2856 		sc->sk_intrmask |= SK_INTRS2;
2857 
2858 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2859 
2860 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2861 
2862 	/* Start BMUs. */
2863 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2864 
2865 	switch(sc->sk_type) {
2866 	case SK_GENESIS:
2867 		/* Enable XMACs TX and RX state machines */
2868 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2869 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2870 		break;
2871 	case SK_YUKON:
2872 	case SK_YUKON_LITE:
2873 	case SK_YUKON_LP:
2874 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2875 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2876 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2877 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2878 	}
2879 
2880 	ifp->if_flags |= IFF_RUNNING;
2881 	ifp->if_flags &= ~IFF_OACTIVE;
2882 
2883 	SK_IF_UNLOCK(sc_if);
2884 
2885 	return;
2886 }
2887 
2888 static void
2889 sk_stop(sc_if)
2890 	struct sk_if_softc	*sc_if;
2891 {
2892 	int			i;
2893 	struct sk_softc		*sc;
2894 	struct ifnet		*ifp;
2895 
2896 	SK_IF_LOCK(sc_if);
2897 	sc = sc_if->sk_softc;
2898 	ifp = &sc_if->arpcom.ac_if;
2899 
2900 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2901 
2902 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2903 		u_int32_t		val;
2904 
2905 		/* Put PHY back into reset. */
2906 		val = sk_win_read_4(sc, SK_GPIO);
2907 		if (sc_if->sk_port == SK_PORT_A) {
2908 			val |= SK_GPIO_DIR0;
2909 			val &= ~SK_GPIO_DAT0;
2910 		} else {
2911 			val |= SK_GPIO_DIR2;
2912 			val &= ~SK_GPIO_DAT2;
2913 		}
2914 		sk_win_write_4(sc, SK_GPIO, val);
2915 	}
2916 
2917 	/* Turn off various components of this interface. */
2918 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2919 	switch (sc->sk_type) {
2920 	case SK_GENESIS:
2921 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2922 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2923 		break;
2924 	case SK_YUKON:
2925 	case SK_YUKON_LITE:
2926 	case SK_YUKON_LP:
2927 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2928 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2929 		break;
2930 	}
2931 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2932 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2933 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2934 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2935 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2936 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2937 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2938 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2939 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2940 
2941 	/* Disable interrupts */
2942 	if (sc_if->sk_port == SK_PORT_A)
2943 		sc->sk_intrmask &= ~SK_INTRS1;
2944 	else
2945 		sc->sk_intrmask &= ~SK_INTRS2;
2946 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2947 
2948 	SK_XM_READ_2(sc_if, XM_ISR);
2949 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2950 
2951 	/* Free RX and TX mbufs still in the queues. */
2952 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2953 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2954 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2955 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2956 		}
2957 	}
2958 
2959 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2960 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2961 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2962 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2963 		}
2964 	}
2965 
2966 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2967 	SK_IF_UNLOCK(sc_if);
2968 	return;
2969 }
2970 
2971 static int
2972 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2973 {
2974 	int error, value;
2975 
2976 	if (!arg1)
2977 		return (EINVAL);
2978 	value = *(int *)arg1;
2979 	error = sysctl_handle_int(oidp, &value, 0, req);
2980 	if (error || !req->newptr)
2981 		return (error);
2982 	if (value < low || value > high)
2983 		return (EINVAL);
2984 	*(int *)arg1 = value;
2985 	return (0);
2986 }
2987 
2988 static int
2989 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
2990 {
2991 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
2992 }
2993