1 /* 2 * Copyright (c) 1997, 1998, 1999, 2000 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 35 * the SK-984x series adapters, both single port and dual port. 36 * References: 37 * The XaQti XMAC II datasheet, 38 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 39 * The SysKonnect GEnesis manual, http://www.syskonnect.com 40 * 41 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the 42 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 43 * convenience to others until Vitesse corrects this problem: 44 * 45 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 46 * 47 * Written by Bill Paul <wpaul@ee.columbia.edu> 48 * Department of Electrical Engineering 49 * Columbia University, New York City 50 */ 51 52 /* 53 * The SysKonnect gigabit ethernet adapters consist of two main 54 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 55 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 56 * components and a PHY while the GEnesis controller provides a PCI 57 * interface with DMA support. Each card may have between 512K and 58 * 2MB of SRAM on board depending on the configuration. 59 * 60 * The SysKonnect GEnesis controller can have either one or two XMAC 61 * chips connected to it, allowing single or dual port NIC configurations. 62 * SysKonnect has the distinction of being the only vendor on the market 63 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 64 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 65 * XMAC registers. This driver takes advantage of these features to allow 66 * both XMACs to operate as independent interfaces. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/sockio.h> 75 #include <sys/mbuf.h> 76 #include <sys/malloc.h> 77 #include <sys/kernel.h> 78 #include <sys/socket.h> 79 #include <sys/queue.h> 80 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 87 #include <net/bpf.h> 88 89 #include <vm/vm.h> /* for vtophys */ 90 #include <vm/pmap.h> /* for vtophys */ 91 #include <machine/bus_pio.h> 92 #include <machine/bus_memio.h> 93 #include <machine/bus.h> 94 #include <machine/resource.h> 95 #include <sys/bus.h> 96 #include <sys/rman.h> 97 98 #include <dev/mii/mii.h> 99 #include <dev/mii/miivar.h> 100 #include <dev/mii/brgphyreg.h> 101 102 #include <pci/pcireg.h> 103 #include <pci/pcivar.h> 104 105 #define SK_USEIOSPACE 106 107 #include <pci/if_skreg.h> 108 #include <pci/xmaciireg.h> 109 110 MODULE_DEPEND(sk, pci, 1, 1, 1); 111 MODULE_DEPEND(sk, ether, 1, 1, 1); 112 MODULE_DEPEND(sk, miibus, 1, 1, 1); 113 114 /* "controller miibus0" required. See GENERIC if you get errors here. */ 115 #include "miibus_if.h" 116 117 #ifndef lint 118 static const char rcsid[] = 119 "$FreeBSD$"; 120 #endif 121 122 static struct sk_type sk_devs[] = { 123 { SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" }, 124 { 0, 0, NULL } 125 }; 126 127 static int sk_probe (device_t); 128 static int sk_attach (device_t); 129 static int sk_detach (device_t); 130 static int sk_detach_xmac (device_t); 131 static int sk_probe_xmac (device_t); 132 static int sk_attach_xmac (device_t); 133 static void sk_tick (void *); 134 static void sk_intr (void *); 135 static void sk_intr_xmac (struct sk_if_softc *); 136 static void sk_intr_bcom (struct sk_if_softc *); 137 static void sk_rxeof (struct sk_if_softc *); 138 static void sk_txeof (struct sk_if_softc *); 139 static int sk_encap (struct sk_if_softc *, struct mbuf *, 140 u_int32_t *); 141 static void sk_start (struct ifnet *); 142 static int sk_ioctl (struct ifnet *, u_long, caddr_t); 143 static void sk_init (void *); 144 static void sk_init_xmac (struct sk_if_softc *); 145 static void sk_stop (struct sk_if_softc *); 146 static void sk_watchdog (struct ifnet *); 147 static void sk_shutdown (device_t); 148 static int sk_ifmedia_upd (struct ifnet *); 149 static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *); 150 static void sk_reset (struct sk_softc *); 151 static int sk_newbuf (struct sk_if_softc *, 152 struct sk_chain *, struct mbuf *); 153 static int sk_alloc_jumbo_mem (struct sk_if_softc *); 154 static void *sk_jalloc (struct sk_if_softc *); 155 static void sk_jfree (void *, void *); 156 static int sk_init_rx_ring (struct sk_if_softc *); 157 static void sk_init_tx_ring (struct sk_if_softc *); 158 static u_int32_t sk_win_read_4 (struct sk_softc *, int); 159 static u_int16_t sk_win_read_2 (struct sk_softc *, int); 160 static u_int8_t sk_win_read_1 (struct sk_softc *, int); 161 static void sk_win_write_4 (struct sk_softc *, int, u_int32_t); 162 static void sk_win_write_2 (struct sk_softc *, int, u_int32_t); 163 static void sk_win_write_1 (struct sk_softc *, int, u_int32_t); 164 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int); 165 static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int); 166 static void sk_vpd_read (struct sk_softc *); 167 168 static int sk_miibus_readreg (device_t, int, int); 169 static int sk_miibus_writereg (device_t, int, int, int); 170 static void sk_miibus_statchg (device_t); 171 172 static u_int32_t sk_calchash (caddr_t); 173 static void sk_setfilt (struct sk_if_softc *, caddr_t, int); 174 static void sk_setmulti (struct sk_if_softc *); 175 176 #ifdef SK_USEIOSPACE 177 #define SK_RES SYS_RES_IOPORT 178 #define SK_RID SK_PCI_LOIO 179 #else 180 #define SK_RES SYS_RES_MEMORY 181 #define SK_RID SK_PCI_LOMEM 182 #endif 183 184 /* 185 * Note that we have newbus methods for both the GEnesis controller 186 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 187 * the miibus code is a child of the XMACs. We need to do it this way 188 * so that the miibus drivers can access the PHY registers on the 189 * right PHY. It's not quite what I had in mind, but it's the only 190 * design that achieves the desired effect. 191 */ 192 static device_method_t skc_methods[] = { 193 /* Device interface */ 194 DEVMETHOD(device_probe, sk_probe), 195 DEVMETHOD(device_attach, sk_attach), 196 DEVMETHOD(device_detach, sk_detach), 197 DEVMETHOD(device_shutdown, sk_shutdown), 198 199 /* bus interface */ 200 DEVMETHOD(bus_print_child, bus_generic_print_child), 201 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 202 203 { 0, 0 } 204 }; 205 206 static driver_t skc_driver = { 207 "skc", 208 skc_methods, 209 sizeof(struct sk_softc) 210 }; 211 212 static devclass_t skc_devclass; 213 214 static device_method_t sk_methods[] = { 215 /* Device interface */ 216 DEVMETHOD(device_probe, sk_probe_xmac), 217 DEVMETHOD(device_attach, sk_attach_xmac), 218 DEVMETHOD(device_detach, sk_detach_xmac), 219 DEVMETHOD(device_shutdown, bus_generic_shutdown), 220 221 /* bus interface */ 222 DEVMETHOD(bus_print_child, bus_generic_print_child), 223 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 224 225 /* MII interface */ 226 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 227 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 228 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 229 230 { 0, 0 } 231 }; 232 233 static driver_t sk_driver = { 234 "sk", 235 sk_methods, 236 sizeof(struct sk_if_softc) 237 }; 238 239 static devclass_t sk_devclass; 240 241 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0); 242 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 243 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 244 245 #define SK_SETBIT(sc, reg, x) \ 246 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 247 248 #define SK_CLRBIT(sc, reg, x) \ 249 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 250 251 #define SK_WIN_SETBIT_4(sc, reg, x) \ 252 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 253 254 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 255 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 256 257 #define SK_WIN_SETBIT_2(sc, reg, x) \ 258 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 259 260 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 261 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 262 263 static u_int32_t 264 sk_win_read_4(sc, reg) 265 struct sk_softc *sc; 266 int reg; 267 { 268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 269 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 270 } 271 272 static u_int16_t 273 sk_win_read_2(sc, reg) 274 struct sk_softc *sc; 275 int reg; 276 { 277 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 278 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 279 } 280 281 static u_int8_t 282 sk_win_read_1(sc, reg) 283 struct sk_softc *sc; 284 int reg; 285 { 286 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 287 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 288 } 289 290 static void 291 sk_win_write_4(sc, reg, val) 292 struct sk_softc *sc; 293 int reg; 294 u_int32_t val; 295 { 296 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 297 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 298 return; 299 } 300 301 static void 302 sk_win_write_2(sc, reg, val) 303 struct sk_softc *sc; 304 int reg; 305 u_int32_t val; 306 { 307 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 308 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val); 309 return; 310 } 311 312 static void 313 sk_win_write_1(sc, reg, val) 314 struct sk_softc *sc; 315 int reg; 316 u_int32_t val; 317 { 318 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 319 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 320 return; 321 } 322 323 /* 324 * The VPD EEPROM contains Vital Product Data, as suggested in 325 * the PCI 2.1 specification. The VPD data is separared into areas 326 * denoted by resource IDs. The SysKonnect VPD contains an ID string 327 * resource (the name of the adapter), a read-only area resource 328 * containing various key/data fields and a read/write area which 329 * can be used to store asset management information or log messages. 330 * We read the ID string and read-only into buffers attached to 331 * the controller softc structure for later use. At the moment, 332 * we only use the ID string during sk_attach(). 333 */ 334 static u_int8_t 335 sk_vpd_readbyte(sc, addr) 336 struct sk_softc *sc; 337 int addr; 338 { 339 int i; 340 341 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 342 for (i = 0; i < SK_TIMEOUT; i++) { 343 DELAY(1); 344 if (sk_win_read_2(sc, 345 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 346 break; 347 } 348 349 if (i == SK_TIMEOUT) 350 return(0); 351 352 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); 353 } 354 355 static void 356 sk_vpd_read_res(sc, res, addr) 357 struct sk_softc *sc; 358 struct vpd_res *res; 359 int addr; 360 { 361 int i; 362 u_int8_t *ptr; 363 364 ptr = (u_int8_t *)res; 365 for (i = 0; i < sizeof(struct vpd_res); i++) 366 ptr[i] = sk_vpd_readbyte(sc, i + addr); 367 368 return; 369 } 370 371 static void 372 sk_vpd_read(sc) 373 struct sk_softc *sc; 374 { 375 int pos = 0, i; 376 struct vpd_res res; 377 378 if (sc->sk_vpd_prodname != NULL) 379 free(sc->sk_vpd_prodname, M_DEVBUF); 380 if (sc->sk_vpd_readonly != NULL) 381 free(sc->sk_vpd_readonly, M_DEVBUF); 382 sc->sk_vpd_prodname = NULL; 383 sc->sk_vpd_readonly = NULL; 384 385 sk_vpd_read_res(sc, &res, pos); 386 387 if (res.vr_id != VPD_RES_ID) { 388 printf("skc%d: bad VPD resource id: expected %x got %x\n", 389 sc->sk_unit, VPD_RES_ID, res.vr_id); 390 return; 391 } 392 393 pos += sizeof(res); 394 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 395 for (i = 0; i < res.vr_len; i++) 396 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 397 sc->sk_vpd_prodname[i] = '\0'; 398 pos += i; 399 400 sk_vpd_read_res(sc, &res, pos); 401 402 if (res.vr_id != VPD_RES_READ) { 403 printf("skc%d: bad VPD resource id: expected %x got %x\n", 404 sc->sk_unit, VPD_RES_READ, res.vr_id); 405 return; 406 } 407 408 pos += sizeof(res); 409 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 410 for (i = 0; i < res.vr_len + 1; i++) 411 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 412 413 return; 414 } 415 416 static int 417 sk_miibus_readreg(dev, phy, reg) 418 device_t dev; 419 int phy, reg; 420 { 421 struct sk_if_softc *sc_if; 422 int i; 423 424 sc_if = device_get_softc(dev); 425 426 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 427 return(0); 428 429 SK_IF_LOCK(sc_if); 430 431 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 432 SK_XM_READ_2(sc_if, XM_PHY_DATA); 433 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 434 for (i = 0; i < SK_TIMEOUT; i++) { 435 DELAY(1); 436 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 437 XM_MMUCMD_PHYDATARDY) 438 break; 439 } 440 441 if (i == SK_TIMEOUT) { 442 printf("sk%d: phy failed to come ready\n", 443 sc_if->sk_unit); 444 return(0); 445 } 446 } 447 DELAY(1); 448 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 449 SK_IF_UNLOCK(sc_if); 450 return(i); 451 } 452 453 static int 454 sk_miibus_writereg(dev, phy, reg, val) 455 device_t dev; 456 int phy, reg, val; 457 { 458 struct sk_if_softc *sc_if; 459 int i; 460 461 sc_if = device_get_softc(dev); 462 SK_IF_LOCK(sc_if); 463 464 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 465 for (i = 0; i < SK_TIMEOUT; i++) { 466 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 467 break; 468 } 469 470 if (i == SK_TIMEOUT) { 471 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); 472 return(ETIMEDOUT); 473 } 474 475 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 476 for (i = 0; i < SK_TIMEOUT; i++) { 477 DELAY(1); 478 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 479 break; 480 } 481 482 SK_IF_UNLOCK(sc_if); 483 484 if (i == SK_TIMEOUT) 485 printf("sk%d: phy write timed out\n", sc_if->sk_unit); 486 487 return(0); 488 } 489 490 static void 491 sk_miibus_statchg(dev) 492 device_t dev; 493 { 494 struct sk_if_softc *sc_if; 495 struct mii_data *mii; 496 497 sc_if = device_get_softc(dev); 498 mii = device_get_softc(sc_if->sk_miibus); 499 SK_IF_LOCK(sc_if); 500 /* 501 * If this is a GMII PHY, manually set the XMAC's 502 * duplex mode accordingly. 503 */ 504 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 505 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 506 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 507 } else { 508 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 509 } 510 } 511 SK_IF_UNLOCK(sc_if); 512 513 return; 514 } 515 516 #define SK_POLY 0xEDB88320 517 #define SK_BITS 6 518 519 static u_int32_t 520 sk_calchash(addr) 521 caddr_t addr; 522 { 523 u_int32_t idx, bit, data, crc; 524 525 /* Compute CRC for the address value. */ 526 crc = 0xFFFFFFFF; /* initial value */ 527 528 for (idx = 0; idx < 6; idx++) { 529 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 530 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0); 531 } 532 533 return (~crc & ((1 << SK_BITS) - 1)); 534 } 535 536 static void 537 sk_setfilt(sc_if, addr, slot) 538 struct sk_if_softc *sc_if; 539 caddr_t addr; 540 int slot; 541 { 542 int base; 543 544 base = XM_RXFILT_ENTRY(slot); 545 546 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); 547 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); 548 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); 549 550 return; 551 } 552 553 static void 554 sk_setmulti(sc_if) 555 struct sk_if_softc *sc_if; 556 { 557 struct ifnet *ifp; 558 u_int32_t hashes[2] = { 0, 0 }; 559 int h, i; 560 struct ifmultiaddr *ifma; 561 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; 562 563 ifp = &sc_if->arpcom.ac_if; 564 565 /* First, zot all the existing filters. */ 566 for (i = 1; i < XM_RXFILT_MAX; i++) 567 sk_setfilt(sc_if, (caddr_t)&dummy, i); 568 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 569 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 570 571 /* Now program new ones. */ 572 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 573 hashes[0] = 0xFFFFFFFF; 574 hashes[1] = 0xFFFFFFFF; 575 } else { 576 i = 1; 577 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { 578 if (ifma->ifma_addr->sa_family != AF_LINK) 579 continue; 580 /* 581 * Program the first XM_RXFILT_MAX multicast groups 582 * into the perfect filter. For all others, 583 * use the hash table. 584 */ 585 if (i < XM_RXFILT_MAX) { 586 sk_setfilt(sc_if, 587 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); 588 i++; 589 continue; 590 } 591 592 h = sk_calchash( 593 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 594 if (h < 32) 595 hashes[0] |= (1 << h); 596 else 597 hashes[1] |= (1 << (h - 32)); 598 } 599 } 600 601 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 602 XM_MODE_RX_USE_PERFECT); 603 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 604 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 605 606 return; 607 } 608 609 static int 610 sk_init_rx_ring(sc_if) 611 struct sk_if_softc *sc_if; 612 { 613 struct sk_chain_data *cd; 614 struct sk_ring_data *rd; 615 int i; 616 617 cd = &sc_if->sk_cdata; 618 rd = sc_if->sk_rdata; 619 620 bzero((char *)rd->sk_rx_ring, 621 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 622 623 for (i = 0; i < SK_RX_RING_CNT; i++) { 624 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 625 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) 626 return(ENOBUFS); 627 if (i == (SK_RX_RING_CNT - 1)) { 628 cd->sk_rx_chain[i].sk_next = 629 &cd->sk_rx_chain[0]; 630 rd->sk_rx_ring[i].sk_next = 631 vtophys(&rd->sk_rx_ring[0]); 632 } else { 633 cd->sk_rx_chain[i].sk_next = 634 &cd->sk_rx_chain[i + 1]; 635 rd->sk_rx_ring[i].sk_next = 636 vtophys(&rd->sk_rx_ring[i + 1]); 637 } 638 } 639 640 sc_if->sk_cdata.sk_rx_prod = 0; 641 sc_if->sk_cdata.sk_rx_cons = 0; 642 643 return(0); 644 } 645 646 static void 647 sk_init_tx_ring(sc_if) 648 struct sk_if_softc *sc_if; 649 { 650 struct sk_chain_data *cd; 651 struct sk_ring_data *rd; 652 int i; 653 654 cd = &sc_if->sk_cdata; 655 rd = sc_if->sk_rdata; 656 657 bzero((char *)sc_if->sk_rdata->sk_tx_ring, 658 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 659 660 for (i = 0; i < SK_TX_RING_CNT; i++) { 661 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 662 if (i == (SK_TX_RING_CNT - 1)) { 663 cd->sk_tx_chain[i].sk_next = 664 &cd->sk_tx_chain[0]; 665 rd->sk_tx_ring[i].sk_next = 666 vtophys(&rd->sk_tx_ring[0]); 667 } else { 668 cd->sk_tx_chain[i].sk_next = 669 &cd->sk_tx_chain[i + 1]; 670 rd->sk_tx_ring[i].sk_next = 671 vtophys(&rd->sk_tx_ring[i + 1]); 672 } 673 } 674 675 sc_if->sk_cdata.sk_tx_prod = 0; 676 sc_if->sk_cdata.sk_tx_cons = 0; 677 sc_if->sk_cdata.sk_tx_cnt = 0; 678 679 return; 680 } 681 682 static int 683 sk_newbuf(sc_if, c, m) 684 struct sk_if_softc *sc_if; 685 struct sk_chain *c; 686 struct mbuf *m; 687 { 688 struct mbuf *m_new = NULL; 689 struct sk_rx_desc *r; 690 691 if (m == NULL) { 692 caddr_t *buf = NULL; 693 694 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 695 if (m_new == NULL) 696 return(ENOBUFS); 697 698 /* Allocate the jumbo buffer */ 699 buf = sk_jalloc(sc_if); 700 if (buf == NULL) { 701 m_freem(m_new); 702 #ifdef SK_VERBOSE 703 printf("sk%d: jumbo allocation failed " 704 "-- packet dropped!\n", sc_if->sk_unit); 705 #endif 706 return(ENOBUFS); 707 } 708 709 /* Attach the buffer to the mbuf */ 710 MEXTADD(m_new, buf, SK_JLEN, sk_jfree, 711 (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV); 712 m_new->m_data = (void *)buf; 713 m_new->m_pkthdr.len = m_new->m_len = SK_JLEN; 714 } else { 715 /* 716 * We're re-using a previously allocated mbuf; 717 * be sure to re-init pointers and lengths to 718 * default values. 719 */ 720 m_new = m; 721 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 722 m_new->m_data = m_new->m_ext.ext_buf; 723 } 724 725 /* 726 * Adjust alignment so packet payload begins on a 727 * longword boundary. Mandatory for Alpha, useful on 728 * x86 too. 729 */ 730 m_adj(m_new, ETHER_ALIGN); 731 732 r = c->sk_desc; 733 c->sk_mbuf = m_new; 734 r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); 735 r->sk_ctl = m_new->m_len | SK_RXSTAT; 736 737 return(0); 738 } 739 740 /* 741 * Allocate jumbo buffer storage. The SysKonnect adapters support 742 * "jumbograms" (9K frames), although SysKonnect doesn't currently 743 * use them in their drivers. In order for us to use them, we need 744 * large 9K receive buffers, however standard mbuf clusters are only 745 * 2048 bytes in size. Consequently, we need to allocate and manage 746 * our own jumbo buffer pool. Fortunately, this does not require an 747 * excessive amount of additional code. 748 */ 749 static int 750 sk_alloc_jumbo_mem(sc_if) 751 struct sk_if_softc *sc_if; 752 { 753 caddr_t ptr; 754 register int i; 755 struct sk_jpool_entry *entry; 756 757 /* Grab a big chunk o' storage. */ 758 sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, 759 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 760 761 if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { 762 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); 763 return(ENOBUFS); 764 } 765 766 SLIST_INIT(&sc_if->sk_jfree_listhead); 767 SLIST_INIT(&sc_if->sk_jinuse_listhead); 768 769 /* 770 * Now divide it up into 9K pieces and save the addresses 771 * in an array. 772 */ 773 ptr = sc_if->sk_cdata.sk_jumbo_buf; 774 for (i = 0; i < SK_JSLOTS; i++) { 775 sc_if->sk_cdata.sk_jslots[i] = ptr; 776 ptr += SK_JLEN; 777 entry = malloc(sizeof(struct sk_jpool_entry), 778 M_DEVBUF, M_NOWAIT); 779 if (entry == NULL) { 780 free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); 781 sc_if->sk_cdata.sk_jumbo_buf = NULL; 782 printf("sk%d: no memory for jumbo " 783 "buffer queue!\n", sc_if->sk_unit); 784 return(ENOBUFS); 785 } 786 entry->slot = i; 787 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 788 entry, jpool_entries); 789 } 790 791 return(0); 792 } 793 794 /* 795 * Allocate a jumbo buffer. 796 */ 797 static void * 798 sk_jalloc(sc_if) 799 struct sk_if_softc *sc_if; 800 { 801 struct sk_jpool_entry *entry; 802 803 entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); 804 805 if (entry == NULL) { 806 #ifdef SK_VERBOSE 807 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); 808 #endif 809 return(NULL); 810 } 811 812 SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); 813 SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 814 return(sc_if->sk_cdata.sk_jslots[entry->slot]); 815 } 816 817 /* 818 * Release a jumbo buffer. 819 */ 820 static void 821 sk_jfree(buf, args) 822 void *buf; 823 void *args; 824 { 825 struct sk_if_softc *sc_if; 826 int i; 827 struct sk_jpool_entry *entry; 828 829 /* Extract the softc struct pointer. */ 830 sc_if = (struct sk_if_softc *)args; 831 832 if (sc_if == NULL) 833 panic("sk_jfree: didn't get softc pointer!"); 834 835 /* calculate the slot this buffer belongs to */ 836 i = ((vm_offset_t)buf 837 - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; 838 839 if ((i < 0) || (i >= SK_JSLOTS)) 840 panic("sk_jfree: asked to free buffer that we don't manage!"); 841 842 entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); 843 if (entry == NULL) 844 panic("sk_jfree: buffer not in use!"); 845 entry->slot = i; 846 SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); 847 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); 848 849 return; 850 } 851 852 /* 853 * Set media options. 854 */ 855 static int 856 sk_ifmedia_upd(ifp) 857 struct ifnet *ifp; 858 { 859 struct sk_if_softc *sc_if; 860 struct mii_data *mii; 861 862 sc_if = ifp->if_softc; 863 mii = device_get_softc(sc_if->sk_miibus); 864 sk_init(sc_if); 865 mii_mediachg(mii); 866 867 return(0); 868 } 869 870 /* 871 * Report current media status. 872 */ 873 static void 874 sk_ifmedia_sts(ifp, ifmr) 875 struct ifnet *ifp; 876 struct ifmediareq *ifmr; 877 { 878 struct sk_if_softc *sc_if; 879 struct mii_data *mii; 880 881 sc_if = ifp->if_softc; 882 mii = device_get_softc(sc_if->sk_miibus); 883 884 mii_pollstat(mii); 885 ifmr->ifm_active = mii->mii_media_active; 886 ifmr->ifm_status = mii->mii_media_status; 887 888 return; 889 } 890 891 static int 892 sk_ioctl(ifp, command, data) 893 struct ifnet *ifp; 894 u_long command; 895 caddr_t data; 896 { 897 struct sk_if_softc *sc_if = ifp->if_softc; 898 struct ifreq *ifr = (struct ifreq *) data; 899 int error = 0; 900 struct mii_data *mii; 901 902 SK_IF_LOCK(sc_if); 903 904 switch(command) { 905 case SIOCSIFMTU: 906 if (ifr->ifr_mtu > SK_JUMBO_MTU) 907 error = EINVAL; 908 else { 909 ifp->if_mtu = ifr->ifr_mtu; 910 sk_init(sc_if); 911 } 912 break; 913 case SIOCSIFFLAGS: 914 if (ifp->if_flags & IFF_UP) { 915 if (ifp->if_flags & IFF_RUNNING && 916 ifp->if_flags & IFF_PROMISC && 917 !(sc_if->sk_if_flags & IFF_PROMISC)) { 918 SK_XM_SETBIT_4(sc_if, XM_MODE, 919 XM_MODE_RX_PROMISC); 920 sk_setmulti(sc_if); 921 } else if (ifp->if_flags & IFF_RUNNING && 922 !(ifp->if_flags & IFF_PROMISC) && 923 sc_if->sk_if_flags & IFF_PROMISC) { 924 SK_XM_CLRBIT_4(sc_if, XM_MODE, 925 XM_MODE_RX_PROMISC); 926 sk_setmulti(sc_if); 927 } else 928 sk_init(sc_if); 929 } else { 930 if (ifp->if_flags & IFF_RUNNING) 931 sk_stop(sc_if); 932 } 933 sc_if->sk_if_flags = ifp->if_flags; 934 error = 0; 935 break; 936 case SIOCADDMULTI: 937 case SIOCDELMULTI: 938 sk_setmulti(sc_if); 939 error = 0; 940 break; 941 case SIOCGIFMEDIA: 942 case SIOCSIFMEDIA: 943 mii = device_get_softc(sc_if->sk_miibus); 944 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 945 break; 946 default: 947 error = ether_ioctl(ifp, command, data); 948 break; 949 } 950 951 SK_IF_UNLOCK(sc_if); 952 953 return(error); 954 } 955 956 /* 957 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 958 * IDs against our list and return a device name if we find a match. 959 */ 960 static int 961 sk_probe(dev) 962 device_t dev; 963 { 964 struct sk_type *t; 965 966 t = sk_devs; 967 968 while(t->sk_name != NULL) { 969 if ((pci_get_vendor(dev) == t->sk_vid) && 970 (pci_get_device(dev) == t->sk_did)) { 971 device_set_desc(dev, t->sk_name); 972 return(0); 973 } 974 t++; 975 } 976 977 return(ENXIO); 978 } 979 980 /* 981 * Force the GEnesis into reset, then bring it out of reset. 982 */ 983 static void 984 sk_reset(sc) 985 struct sk_softc *sc; 986 { 987 CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET); 988 CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET); 989 DELAY(1000); 990 CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET); 991 CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 992 993 /* Configure packet arbiter */ 994 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 995 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 996 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 997 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 998 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 999 1000 /* Enable RAM interface */ 1001 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1002 1003 /* 1004 * Configure interrupt moderation. The moderation timer 1005 * defers interrupts specified in the interrupt moderation 1006 * timer mask based on the timeout specified in the interrupt 1007 * moderation timer init register. Each bit in the timer 1008 * register represents 18.825ns, so to specify a timeout in 1009 * microseconds, we have to multiply by 54. 1010 */ 1011 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); 1012 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1013 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1014 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1015 1016 return; 1017 } 1018 1019 static int 1020 sk_probe_xmac(dev) 1021 device_t dev; 1022 { 1023 /* 1024 * Not much to do here. We always know there will be 1025 * at least one XMAC present, and if there are two, 1026 * sk_attach() will create a second device instance 1027 * for us. 1028 */ 1029 device_set_desc(dev, "XaQti Corp. XMAC II"); 1030 1031 return(0); 1032 } 1033 1034 /* 1035 * Each XMAC chip is attached as a separate logical IP interface. 1036 * Single port cards will have only one logical interface of course. 1037 */ 1038 static int 1039 sk_attach_xmac(dev) 1040 device_t dev; 1041 { 1042 struct sk_softc *sc; 1043 struct sk_if_softc *sc_if; 1044 struct ifnet *ifp; 1045 int i, port, error; 1046 1047 if (dev == NULL) 1048 return(EINVAL); 1049 1050 error = 0; 1051 sc_if = device_get_softc(dev); 1052 sc = device_get_softc(device_get_parent(dev)); 1053 SK_LOCK(sc); 1054 port = *(int *)device_get_ivars(dev); 1055 free(device_get_ivars(dev), M_DEVBUF); 1056 device_set_ivars(dev, NULL); 1057 1058 sc_if->sk_dev = dev; 1059 sc_if->sk_unit = device_get_unit(dev); 1060 sc_if->sk_port = port; 1061 sc_if->sk_softc = sc; 1062 sc->sk_if[port] = sc_if; 1063 if (port == SK_PORT_A) 1064 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1065 if (port == SK_PORT_B) 1066 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1067 1068 /* 1069 * Get station address for this interface. Note that 1070 * dual port cards actually come with three station 1071 * addresses: one for each port, plus an extra. The 1072 * extra one is used by the SysKonnect driver software 1073 * as a 'virtual' station address for when both ports 1074 * are operating in failover mode. Currently we don't 1075 * use this extra address. 1076 */ 1077 for (i = 0; i < ETHER_ADDR_LEN; i++) 1078 sc_if->arpcom.ac_enaddr[i] = 1079 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1080 1081 printf("sk%d: Ethernet address: %6D\n", 1082 sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":"); 1083 1084 /* 1085 * Set up RAM buffer addresses. The NIC will have a certain 1086 * amount of SRAM on it, somewhere between 512K and 2MB. We 1087 * need to divide this up a) between the transmitter and 1088 * receiver and b) between the two XMACs, if this is a 1089 * dual port NIC. Our algotithm is to divide up the memory 1090 * evenly so that everyone gets a fair share. 1091 */ 1092 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1093 u_int32_t chunk, val; 1094 1095 chunk = sc->sk_ramsize / 2; 1096 val = sc->sk_rboff / sizeof(u_int64_t); 1097 sc_if->sk_rx_ramstart = val; 1098 val += (chunk / sizeof(u_int64_t)); 1099 sc_if->sk_rx_ramend = val - 1; 1100 sc_if->sk_tx_ramstart = val; 1101 val += (chunk / sizeof(u_int64_t)); 1102 sc_if->sk_tx_ramend = val - 1; 1103 } else { 1104 u_int32_t chunk, val; 1105 1106 chunk = sc->sk_ramsize / 4; 1107 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1108 sizeof(u_int64_t); 1109 sc_if->sk_rx_ramstart = val; 1110 val += (chunk / sizeof(u_int64_t)); 1111 sc_if->sk_rx_ramend = val - 1; 1112 sc_if->sk_tx_ramstart = val; 1113 val += (chunk / sizeof(u_int64_t)); 1114 sc_if->sk_tx_ramend = val - 1; 1115 } 1116 1117 /* Read and save PHY type and set PHY address */ 1118 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1119 switch(sc_if->sk_phytype) { 1120 case SK_PHYTYPE_XMAC: 1121 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1122 break; 1123 case SK_PHYTYPE_BCOM: 1124 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1125 break; 1126 default: 1127 printf("skc%d: unsupported PHY type: %d\n", 1128 sc->sk_unit, sc_if->sk_phytype); 1129 error = ENODEV; 1130 goto fail_xmac; 1131 } 1132 1133 /* Allocate the descriptor queues. */ 1134 sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, 1135 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1136 1137 if (sc_if->sk_rdata == NULL) { 1138 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); 1139 error = ENOMEM; 1140 goto fail_xmac; 1141 } 1142 1143 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); 1144 1145 /* Try to allocate memory for jumbo buffers. */ 1146 if (sk_alloc_jumbo_mem(sc_if)) { 1147 printf("sk%d: jumbo buffer allocation failed\n", 1148 sc_if->sk_unit); 1149 error = ENOMEM; 1150 goto fail_xmac; 1151 } 1152 1153 ifp = &sc_if->arpcom.ac_if; 1154 ifp->if_softc = sc_if; 1155 ifp->if_unit = sc_if->sk_unit; 1156 ifp->if_name = "sk"; 1157 ifp->if_mtu = ETHERMTU; 1158 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1159 ifp->if_ioctl = sk_ioctl; 1160 ifp->if_output = ether_output; 1161 ifp->if_start = sk_start; 1162 ifp->if_watchdog = sk_watchdog; 1163 ifp->if_init = sk_init; 1164 ifp->if_baudrate = 1000000000; 1165 ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; 1166 1167 callout_handle_init(&sc_if->sk_tick_ch); 1168 1169 /* 1170 * Call MI attach routine. 1171 */ 1172 ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); 1173 1174 /* 1175 * Do miibus setup. 1176 */ 1177 sk_init_xmac(sc_if); 1178 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1179 sk_ifmedia_upd, sk_ifmedia_sts)) { 1180 printf("skc%d: no PHY found!\n", sc_if->sk_unit); 1181 ether_ifdetach(ifp); 1182 error = ENXIO; 1183 goto fail_xmac; 1184 } 1185 1186 fail_xmac: 1187 SK_UNLOCK(sc); 1188 if (error) { 1189 /* Access should be ok even though lock has been dropped */ 1190 sc->sk_if[port] = NULL; 1191 sk_detach_xmac(dev); 1192 } 1193 1194 return(error); 1195 } 1196 1197 /* 1198 * Attach the interface. Allocate softc structures, do ifmedia 1199 * setup and ethernet/BPF attach. 1200 */ 1201 static int 1202 sk_attach(dev) 1203 device_t dev; 1204 { 1205 struct sk_softc *sc; 1206 int unit, error = 0, rid, *port; 1207 1208 sc = device_get_softc(dev); 1209 unit = device_get_unit(dev); 1210 1211 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1212 MTX_DEF | MTX_RECURSE); 1213 1214 /* 1215 * Handle power management nonsense. 1216 */ 1217 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 1218 u_int32_t iobase, membase, irq; 1219 1220 /* Save important PCI config data. */ 1221 iobase = pci_read_config(dev, SK_PCI_LOIO, 4); 1222 membase = pci_read_config(dev, SK_PCI_LOMEM, 4); 1223 irq = pci_read_config(dev, SK_PCI_INTLINE, 4); 1224 1225 /* Reset the power state. */ 1226 printf("skc%d: chip is in D%d power mode " 1227 "-- setting to D0\n", unit, 1228 pci_get_powerstate(dev)); 1229 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 1230 1231 /* Restore PCI config data. */ 1232 pci_write_config(dev, SK_PCI_LOIO, iobase, 4); 1233 pci_write_config(dev, SK_PCI_LOMEM, membase, 4); 1234 pci_write_config(dev, SK_PCI_INTLINE, irq, 4); 1235 } 1236 1237 /* 1238 * Map control/status registers. 1239 */ 1240 pci_enable_busmaster(dev); 1241 1242 rid = SK_RID; 1243 sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid, 1244 0, ~0, 1, RF_ACTIVE); 1245 1246 if (sc->sk_res == NULL) { 1247 printf("sk%d: couldn't map ports/memory\n", unit); 1248 error = ENXIO; 1249 goto fail; 1250 } 1251 1252 sc->sk_btag = rman_get_bustag(sc->sk_res); 1253 sc->sk_bhandle = rman_get_bushandle(sc->sk_res); 1254 1255 /* Allocate interrupt */ 1256 rid = 0; 1257 sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1258 RF_SHAREABLE | RF_ACTIVE); 1259 1260 if (sc->sk_irq == NULL) { 1261 printf("skc%d: couldn't map interrupt\n", unit); 1262 error = ENXIO; 1263 goto fail; 1264 } 1265 1266 /* Reset the adapter. */ 1267 sk_reset(sc); 1268 1269 sc->sk_unit = unit; 1270 1271 /* Read and save vital product data from EEPROM. */ 1272 sk_vpd_read(sc); 1273 1274 /* Read and save RAM size and RAMbuffer offset */ 1275 switch(sk_win_read_1(sc, SK_EPROM0)) { 1276 case SK_RAMSIZE_512K_64: 1277 sc->sk_ramsize = 0x80000; 1278 sc->sk_rboff = SK_RBOFF_0; 1279 break; 1280 case SK_RAMSIZE_1024K_64: 1281 sc->sk_ramsize = 0x100000; 1282 sc->sk_rboff = SK_RBOFF_80000; 1283 break; 1284 case SK_RAMSIZE_1024K_128: 1285 sc->sk_ramsize = 0x100000; 1286 sc->sk_rboff = SK_RBOFF_0; 1287 break; 1288 case SK_RAMSIZE_2048K_128: 1289 sc->sk_ramsize = 0x200000; 1290 sc->sk_rboff = SK_RBOFF_0; 1291 break; 1292 default: 1293 printf("skc%d: unknown ram size: %d\n", 1294 sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); 1295 error = ENXIO; 1296 goto fail; 1297 } 1298 1299 /* Read and save physical media type */ 1300 switch(sk_win_read_1(sc, SK_PMDTYPE)) { 1301 case SK_PMD_1000BASESX: 1302 sc->sk_pmd = IFM_1000_SX; 1303 break; 1304 case SK_PMD_1000BASELX: 1305 sc->sk_pmd = IFM_1000_LX; 1306 break; 1307 case SK_PMD_1000BASECX: 1308 sc->sk_pmd = IFM_1000_CX; 1309 break; 1310 case SK_PMD_1000BASETX: 1311 sc->sk_pmd = IFM_1000_T; 1312 break; 1313 default: 1314 printf("skc%d: unknown media type: 0x%x\n", 1315 sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); 1316 error = ENXIO; 1317 goto fail; 1318 } 1319 1320 /* Announce the product name. */ 1321 printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); 1322 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1323 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1324 *port = SK_PORT_A; 1325 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1326 1327 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1328 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1329 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1330 *port = SK_PORT_B; 1331 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1332 } 1333 1334 /* Turn on the 'driver is loaded' LED. */ 1335 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1336 1337 bus_generic_attach(dev); 1338 1339 /* Hook interrupt last to avoid having to lock softc */ 1340 error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET, 1341 sk_intr, sc, &sc->sk_intrhand); 1342 1343 if (error) { 1344 printf("skc%d: couldn't set up irq\n", unit); 1345 goto fail; 1346 } 1347 1348 fail: 1349 if (error) 1350 sk_detach(dev); 1351 1352 return(error); 1353 } 1354 1355 /* 1356 * Shutdown hardware and free up resources. This can be called any 1357 * time after the mutex has been initialized. It is called in both 1358 * the error case in attach and the normal detach case so it needs 1359 * to be careful about only freeing resources that have actually been 1360 * allocated. 1361 */ 1362 static int 1363 sk_detach_xmac(dev) 1364 device_t dev; 1365 { 1366 struct sk_softc *sc; 1367 struct sk_if_softc *sc_if; 1368 struct ifnet *ifp; 1369 1370 sc = device_get_softc(device_get_parent(dev)); 1371 sc_if = device_get_softc(dev); 1372 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1373 ("sk mutex not initialized in sk_detach_xmac")); 1374 SK_IF_LOCK(sc_if); 1375 1376 ifp = &sc_if->arpcom.ac_if; 1377 /* These should only be active if attach_xmac succeeded */ 1378 if (device_is_attached(dev)) { 1379 sk_stop(sc_if); 1380 ether_ifdetach(ifp); 1381 } 1382 if (sc_if->sk_miibus) 1383 device_delete_child(dev, sc_if->sk_miibus); 1384 bus_generic_detach(dev); 1385 if (sc_if->sk_cdata.sk_jumbo_buf) 1386 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); 1387 if (sc_if->sk_rdata) { 1388 contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), 1389 M_DEVBUF); 1390 } 1391 SK_IF_UNLOCK(sc_if); 1392 1393 return(0); 1394 } 1395 1396 static int 1397 sk_detach(dev) 1398 device_t dev; 1399 { 1400 struct sk_softc *sc; 1401 1402 sc = device_get_softc(dev); 1403 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1404 SK_LOCK(sc); 1405 1406 if (device_is_alive(dev)) { 1407 if (sc->sk_devs[SK_PORT_A] != NULL) 1408 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1409 if (sc->sk_devs[SK_PORT_B] != NULL) 1410 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1411 bus_generic_detach(dev); 1412 } 1413 1414 if (sc->sk_intrhand) 1415 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1416 if (sc->sk_irq) 1417 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1418 if (sc->sk_res) 1419 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1420 1421 SK_UNLOCK(sc); 1422 mtx_destroy(&sc->sk_mtx); 1423 1424 return(0); 1425 } 1426 1427 static int 1428 sk_encap(sc_if, m_head, txidx) 1429 struct sk_if_softc *sc_if; 1430 struct mbuf *m_head; 1431 u_int32_t *txidx; 1432 { 1433 struct sk_tx_desc *f = NULL; 1434 struct mbuf *m; 1435 u_int32_t frag, cur, cnt = 0; 1436 1437 m = m_head; 1438 cur = frag = *txidx; 1439 1440 /* 1441 * Start packing the mbufs in this chain into 1442 * the fragment pointers. Stop when we run out 1443 * of fragments or hit the end of the mbuf chain. 1444 */ 1445 for (m = m_head; m != NULL; m = m->m_next) { 1446 if (m->m_len != 0) { 1447 if ((SK_TX_RING_CNT - 1448 (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) 1449 return(ENOBUFS); 1450 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1451 f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); 1452 f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; 1453 if (cnt == 0) 1454 f->sk_ctl |= SK_TXCTL_FIRSTFRAG; 1455 else 1456 f->sk_ctl |= SK_TXCTL_OWN; 1457 cur = frag; 1458 SK_INC(frag, SK_TX_RING_CNT); 1459 cnt++; 1460 } 1461 } 1462 1463 if (m != NULL) 1464 return(ENOBUFS); 1465 1466 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1467 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; 1468 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1469 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; 1470 sc_if->sk_cdata.sk_tx_cnt += cnt; 1471 1472 *txidx = frag; 1473 1474 return(0); 1475 } 1476 1477 static void 1478 sk_start(ifp) 1479 struct ifnet *ifp; 1480 { 1481 struct sk_softc *sc; 1482 struct sk_if_softc *sc_if; 1483 struct mbuf *m_head = NULL; 1484 u_int32_t idx; 1485 1486 sc_if = ifp->if_softc; 1487 sc = sc_if->sk_softc; 1488 1489 SK_IF_LOCK(sc_if); 1490 1491 idx = sc_if->sk_cdata.sk_tx_prod; 1492 1493 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1494 IF_DEQUEUE(&ifp->if_snd, m_head); 1495 if (m_head == NULL) 1496 break; 1497 1498 /* 1499 * Pack the data into the transmit ring. If we 1500 * don't have room, set the OACTIVE flag and wait 1501 * for the NIC to drain the ring. 1502 */ 1503 if (sk_encap(sc_if, m_head, &idx)) { 1504 IF_PREPEND(&ifp->if_snd, m_head); 1505 ifp->if_flags |= IFF_OACTIVE; 1506 break; 1507 } 1508 1509 /* 1510 * If there's a BPF listener, bounce a copy of this frame 1511 * to him. 1512 */ 1513 BPF_MTAP(ifp, m_head); 1514 } 1515 1516 /* Transmit */ 1517 sc_if->sk_cdata.sk_tx_prod = idx; 1518 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1519 1520 /* Set a timeout in case the chip goes out to lunch. */ 1521 ifp->if_timer = 5; 1522 SK_IF_UNLOCK(sc_if); 1523 1524 return; 1525 } 1526 1527 1528 static void 1529 sk_watchdog(ifp) 1530 struct ifnet *ifp; 1531 { 1532 struct sk_if_softc *sc_if; 1533 1534 sc_if = ifp->if_softc; 1535 1536 printf("sk%d: watchdog timeout\n", sc_if->sk_unit); 1537 sk_init(sc_if); 1538 1539 return; 1540 } 1541 1542 static void 1543 sk_shutdown(dev) 1544 device_t dev; 1545 { 1546 struct sk_softc *sc; 1547 1548 sc = device_get_softc(dev); 1549 SK_LOCK(sc); 1550 1551 /* Turn off the 'driver is loaded' LED. */ 1552 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 1553 1554 /* 1555 * Reset the GEnesis controller. Doing this should also 1556 * assert the resets on the attached XMAC(s). 1557 */ 1558 sk_reset(sc); 1559 SK_UNLOCK(sc); 1560 1561 return; 1562 } 1563 1564 static void 1565 sk_rxeof(sc_if) 1566 struct sk_if_softc *sc_if; 1567 { 1568 struct mbuf *m; 1569 struct ifnet *ifp; 1570 struct sk_chain *cur_rx; 1571 int total_len = 0; 1572 int i; 1573 u_int32_t rxstat; 1574 1575 ifp = &sc_if->arpcom.ac_if; 1576 i = sc_if->sk_cdata.sk_rx_prod; 1577 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1578 1579 while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { 1580 1581 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1582 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; 1583 m = cur_rx->sk_mbuf; 1584 cur_rx->sk_mbuf = NULL; 1585 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); 1586 SK_INC(i, SK_RX_RING_CNT); 1587 1588 if (rxstat & XM_RXSTAT_ERRFRAME) { 1589 ifp->if_ierrors++; 1590 sk_newbuf(sc_if, cur_rx, m); 1591 continue; 1592 } 1593 1594 /* 1595 * Try to allocate a new jumbo buffer. If that 1596 * fails, copy the packet to mbufs and put the 1597 * jumbo buffer back in the ring so it can be 1598 * re-used. If allocating mbufs fails, then we 1599 * have to drop the packet. 1600 */ 1601 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { 1602 struct mbuf *m0; 1603 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 1604 ifp, NULL); 1605 sk_newbuf(sc_if, cur_rx, m); 1606 if (m0 == NULL) { 1607 printf("sk%d: no receive buffers " 1608 "available -- packet dropped!\n", 1609 sc_if->sk_unit); 1610 ifp->if_ierrors++; 1611 continue; 1612 } 1613 m = m0; 1614 } else { 1615 m->m_pkthdr.rcvif = ifp; 1616 m->m_pkthdr.len = m->m_len = total_len; 1617 } 1618 1619 ifp->if_ipackets++; 1620 (*ifp->if_input)(ifp, m); 1621 } 1622 1623 sc_if->sk_cdata.sk_rx_prod = i; 1624 1625 return; 1626 } 1627 1628 static void 1629 sk_txeof(sc_if) 1630 struct sk_if_softc *sc_if; 1631 { 1632 struct sk_tx_desc *cur_tx = NULL; 1633 struct ifnet *ifp; 1634 u_int32_t idx; 1635 1636 ifp = &sc_if->arpcom.ac_if; 1637 1638 /* 1639 * Go through our tx ring and free mbufs for those 1640 * frames that have been sent. 1641 */ 1642 idx = sc_if->sk_cdata.sk_tx_cons; 1643 while(idx != sc_if->sk_cdata.sk_tx_prod) { 1644 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 1645 if (cur_tx->sk_ctl & SK_TXCTL_OWN) 1646 break; 1647 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) 1648 ifp->if_opackets++; 1649 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 1650 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 1651 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 1652 } 1653 sc_if->sk_cdata.sk_tx_cnt--; 1654 SK_INC(idx, SK_TX_RING_CNT); 1655 ifp->if_timer = 0; 1656 } 1657 1658 sc_if->sk_cdata.sk_tx_cons = idx; 1659 1660 if (cur_tx != NULL) 1661 ifp->if_flags &= ~IFF_OACTIVE; 1662 1663 return; 1664 } 1665 1666 static void 1667 sk_tick(xsc_if) 1668 void *xsc_if; 1669 { 1670 struct sk_if_softc *sc_if; 1671 struct mii_data *mii; 1672 struct ifnet *ifp; 1673 int i; 1674 1675 sc_if = xsc_if; 1676 SK_IF_LOCK(sc_if); 1677 ifp = &sc_if->arpcom.ac_if; 1678 mii = device_get_softc(sc_if->sk_miibus); 1679 1680 if (!(ifp->if_flags & IFF_UP)) { 1681 SK_IF_UNLOCK(sc_if); 1682 return; 1683 } 1684 1685 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 1686 sk_intr_bcom(sc_if); 1687 SK_IF_UNLOCK(sc_if); 1688 return; 1689 } 1690 1691 /* 1692 * According to SysKonnect, the correct way to verify that 1693 * the link has come back up is to poll bit 0 of the GPIO 1694 * register three times. This pin has the signal from the 1695 * link_sync pin connected to it; if we read the same link 1696 * state 3 times in a row, we know the link is up. 1697 */ 1698 for (i = 0; i < 3; i++) { 1699 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 1700 break; 1701 } 1702 1703 if (i != 3) { 1704 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1705 SK_IF_UNLOCK(sc_if); 1706 return; 1707 } 1708 1709 /* Turn the GP0 interrupt back on. */ 1710 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 1711 SK_XM_READ_2(sc_if, XM_ISR); 1712 mii_tick(mii); 1713 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 1714 1715 SK_IF_UNLOCK(sc_if); 1716 return; 1717 } 1718 1719 static void 1720 sk_intr_bcom(sc_if) 1721 struct sk_if_softc *sc_if; 1722 { 1723 struct sk_softc *sc; 1724 struct mii_data *mii; 1725 struct ifnet *ifp; 1726 int status; 1727 1728 sc = sc_if->sk_softc; 1729 mii = device_get_softc(sc_if->sk_miibus); 1730 ifp = &sc_if->arpcom.ac_if; 1731 1732 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 1733 1734 /* 1735 * Read the PHY interrupt register to make sure 1736 * we clear any pending interrupts. 1737 */ 1738 status = sk_miibus_readreg(sc_if->sk_dev, 1739 SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 1740 1741 if (!(ifp->if_flags & IFF_RUNNING)) { 1742 sk_init_xmac(sc_if); 1743 return; 1744 } 1745 1746 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 1747 int lstat; 1748 lstat = sk_miibus_readreg(sc_if->sk_dev, 1749 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); 1750 1751 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 1752 mii_mediachg(mii); 1753 /* Turn off the link LED. */ 1754 SK_IF_WRITE_1(sc_if, 0, 1755 SK_LINKLED1_CTL, SK_LINKLED_OFF); 1756 sc_if->sk_link = 0; 1757 } else if (status & BRGPHY_ISR_LNK_CHG) { 1758 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1759 BRGPHY_MII_IMR, 0xFF00); 1760 mii_tick(mii); 1761 sc_if->sk_link = 1; 1762 /* Turn on the link LED. */ 1763 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 1764 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 1765 SK_LINKLED_BLINK_OFF); 1766 } else { 1767 mii_tick(mii); 1768 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1769 } 1770 } 1771 1772 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 1773 1774 return; 1775 } 1776 1777 static void 1778 sk_intr_xmac(sc_if) 1779 struct sk_if_softc *sc_if; 1780 { 1781 struct sk_softc *sc; 1782 u_int16_t status; 1783 struct mii_data *mii; 1784 1785 sc = sc_if->sk_softc; 1786 mii = device_get_softc(sc_if->sk_miibus); 1787 status = SK_XM_READ_2(sc_if, XM_ISR); 1788 1789 /* 1790 * Link has gone down. Start MII tick timeout to 1791 * watch for link resync. 1792 */ 1793 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 1794 if (status & XM_ISR_GP0_SET) { 1795 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 1796 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1797 } 1798 1799 if (status & XM_ISR_AUTONEG_DONE) { 1800 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 1801 } 1802 } 1803 1804 if (status & XM_IMR_TX_UNDERRUN) 1805 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 1806 1807 if (status & XM_IMR_RX_OVERRUN) 1808 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 1809 1810 status = SK_XM_READ_2(sc_if, XM_ISR); 1811 1812 return; 1813 } 1814 1815 static void 1816 sk_intr(xsc) 1817 void *xsc; 1818 { 1819 struct sk_softc *sc = xsc; 1820 struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; 1821 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 1822 u_int32_t status; 1823 1824 SK_LOCK(sc); 1825 1826 sc_if0 = sc->sk_if[SK_PORT_A]; 1827 sc_if1 = sc->sk_if[SK_PORT_B]; 1828 1829 if (sc_if0 != NULL) 1830 ifp0 = &sc_if0->arpcom.ac_if; 1831 if (sc_if1 != NULL) 1832 ifp1 = &sc_if1->arpcom.ac_if; 1833 1834 for (;;) { 1835 status = CSR_READ_4(sc, SK_ISSR); 1836 if (!(status & sc->sk_intrmask)) 1837 break; 1838 1839 /* Handle receive interrupts first. */ 1840 if (status & SK_ISR_RX1_EOF) { 1841 sk_rxeof(sc_if0); 1842 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 1843 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 1844 } 1845 if (status & SK_ISR_RX2_EOF) { 1846 sk_rxeof(sc_if1); 1847 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 1848 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 1849 } 1850 1851 /* Then transmit interrupts. */ 1852 if (status & SK_ISR_TX1_S_EOF) { 1853 sk_txeof(sc_if0); 1854 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 1855 SK_TXBMU_CLR_IRQ_EOF); 1856 } 1857 if (status & SK_ISR_TX2_S_EOF) { 1858 sk_txeof(sc_if1); 1859 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 1860 SK_TXBMU_CLR_IRQ_EOF); 1861 } 1862 1863 /* Then MAC interrupts. */ 1864 if (status & SK_ISR_MAC1 && 1865 ifp0->if_flags & IFF_RUNNING) 1866 sk_intr_xmac(sc_if0); 1867 1868 if (status & SK_ISR_MAC2 && 1869 ifp1->if_flags & IFF_RUNNING) 1870 sk_intr_xmac(sc_if1); 1871 1872 if (status & SK_ISR_EXTERNAL_REG) { 1873 if (ifp0 != NULL) 1874 sk_intr_bcom(sc_if0); 1875 if (ifp1 != NULL) 1876 sk_intr_bcom(sc_if1); 1877 } 1878 } 1879 1880 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 1881 1882 if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) 1883 sk_start(ifp0); 1884 if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) 1885 sk_start(ifp1); 1886 1887 SK_UNLOCK(sc); 1888 1889 return; 1890 } 1891 1892 static void 1893 sk_init_xmac(sc_if) 1894 struct sk_if_softc *sc_if; 1895 { 1896 struct sk_softc *sc; 1897 struct ifnet *ifp; 1898 struct sk_bcom_hack bhack[] = { 1899 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 1900 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 1901 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1902 { 0, 0 } }; 1903 1904 sc = sc_if->sk_softc; 1905 ifp = &sc_if->arpcom.ac_if; 1906 1907 /* Unreset the XMAC. */ 1908 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 1909 DELAY(1000); 1910 1911 /* Reset the XMAC's internal state. */ 1912 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 1913 1914 /* Save the XMAC II revision */ 1915 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 1916 1917 /* 1918 * Perform additional initialization for external PHYs, 1919 * namely for the 1000baseTX cards that use the XMAC's 1920 * GMII mode. 1921 */ 1922 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 1923 int i = 0; 1924 u_int32_t val; 1925 1926 /* Take PHY out of reset. */ 1927 val = sk_win_read_4(sc, SK_GPIO); 1928 if (sc_if->sk_port == SK_PORT_A) 1929 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 1930 else 1931 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 1932 sk_win_write_4(sc, SK_GPIO, val); 1933 1934 /* Enable GMII mode on the XMAC. */ 1935 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 1936 1937 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1938 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 1939 DELAY(10000); 1940 sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM, 1941 BRGPHY_MII_IMR, 0xFFF0); 1942 1943 /* 1944 * Early versions of the BCM5400 apparently have 1945 * a bug that requires them to have their reserved 1946 * registers initialized to some magic values. I don't 1947 * know what the numbers do, I'm just the messenger. 1948 */ 1949 if (sk_miibus_readreg(sc_if->sk_dev, 1950 SK_PHYADDR_BCOM, 0x03) == 0x6041) { 1951 while(bhack[i].reg) { 1952 sk_miibus_writereg(sc_if->sk_dev, 1953 SK_PHYADDR_BCOM, bhack[i].reg, 1954 bhack[i].val); 1955 i++; 1956 } 1957 } 1958 } 1959 1960 /* Set station address */ 1961 SK_XM_WRITE_2(sc_if, XM_PAR0, 1962 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); 1963 SK_XM_WRITE_2(sc_if, XM_PAR1, 1964 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); 1965 SK_XM_WRITE_2(sc_if, XM_PAR2, 1966 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); 1967 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 1968 1969 if (ifp->if_flags & IFF_PROMISC) { 1970 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1971 } else { 1972 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1973 } 1974 1975 if (ifp->if_flags & IFF_BROADCAST) { 1976 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 1977 } else { 1978 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 1979 } 1980 1981 /* We don't need the FCS appended to the packet. */ 1982 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 1983 1984 /* We want short frames padded to 60 bytes. */ 1985 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 1986 1987 /* 1988 * Enable the reception of all error frames. This is is 1989 * a necessary evil due to the design of the XMAC. The 1990 * XMAC's receive FIFO is only 8K in size, however jumbo 1991 * frames can be up to 9000 bytes in length. When bad 1992 * frame filtering is enabled, the XMAC's RX FIFO operates 1993 * in 'store and forward' mode. For this to work, the 1994 * entire frame has to fit into the FIFO, but that means 1995 * that jumbo frames larger than 8192 bytes will be 1996 * truncated. Disabling all bad frame filtering causes 1997 * the RX FIFO to operate in streaming mode, in which 1998 * case the XMAC will start transfering frames out of the 1999 * RX FIFO as soon as the FIFO threshold is reached. 2000 */ 2001 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 2002 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 2003 XM_MODE_RX_INRANGELEN); 2004 2005 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2006 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2007 else 2008 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2009 2010 /* 2011 * Bump up the transmit threshold. This helps hold off transmit 2012 * underruns when we're blasting traffic from both ports at once. 2013 */ 2014 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2015 2016 /* Set multicast filter */ 2017 sk_setmulti(sc_if); 2018 2019 /* Clear and enable interrupts */ 2020 SK_XM_READ_2(sc_if, XM_ISR); 2021 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2022 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2023 else 2024 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2025 2026 /* Configure MAC arbiter */ 2027 switch(sc_if->sk_xmac_rev) { 2028 case XM_XMAC_REV_B2: 2029 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2030 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2031 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2032 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2033 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2034 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2035 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2036 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2037 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2038 break; 2039 case XM_XMAC_REV_C1: 2040 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2041 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2042 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2043 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2044 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2045 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2046 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2047 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2048 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2049 break; 2050 default: 2051 break; 2052 } 2053 sk_win_write_2(sc, SK_MACARB_CTL, 2054 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 2055 2056 sc_if->sk_link = 1; 2057 2058 return; 2059 } 2060 2061 /* 2062 * Note that to properly initialize any part of the GEnesis chip, 2063 * you first have to take it out of reset mode. 2064 */ 2065 static void 2066 sk_init(xsc) 2067 void *xsc; 2068 { 2069 struct sk_if_softc *sc_if = xsc; 2070 struct sk_softc *sc; 2071 struct ifnet *ifp; 2072 struct mii_data *mii; 2073 2074 SK_IF_LOCK(sc_if); 2075 2076 ifp = &sc_if->arpcom.ac_if; 2077 sc = sc_if->sk_softc; 2078 mii = device_get_softc(sc_if->sk_miibus); 2079 2080 /* Cancel pending I/O and free all RX/TX buffers. */ 2081 sk_stop(sc_if); 2082 2083 /* Configure LINK_SYNC LED */ 2084 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2085 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); 2086 2087 /* Configure RX LED */ 2088 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); 2089 2090 /* Configure TX LED */ 2091 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); 2092 2093 /* Configure I2C registers */ 2094 2095 /* Configure XMAC(s) */ 2096 sk_init_xmac(sc_if); 2097 mii_mediachg(mii); 2098 2099 /* Configure MAC FIFOs */ 2100 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2101 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2102 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2103 2104 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2105 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2106 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2107 2108 /* Configure transmit arbiter(s) */ 2109 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2110 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 2111 2112 /* Configure RAMbuffers */ 2113 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2114 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2115 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2116 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2117 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2118 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2119 2120 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2121 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2122 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2123 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2124 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2125 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2126 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2127 2128 /* Configure BMUs */ 2129 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2130 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2131 vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); 2132 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2133 2134 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2135 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2136 vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); 2137 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2138 2139 /* Init descriptors */ 2140 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2141 printf("sk%d: initialization failed: no " 2142 "memory for rx buffers\n", sc_if->sk_unit); 2143 sk_stop(sc_if); 2144 SK_IF_UNLOCK(sc_if); 2145 return; 2146 } 2147 sk_init_tx_ring(sc_if); 2148 2149 /* Configure interrupt handling */ 2150 CSR_READ_4(sc, SK_ISSR); 2151 if (sc_if->sk_port == SK_PORT_A) 2152 sc->sk_intrmask |= SK_INTRS1; 2153 else 2154 sc->sk_intrmask |= SK_INTRS2; 2155 2156 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2157 2158 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2159 2160 /* Start BMUs. */ 2161 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2162 2163 /* Enable XMACs TX and RX state machines */ 2164 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2165 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2166 2167 ifp->if_flags |= IFF_RUNNING; 2168 ifp->if_flags &= ~IFF_OACTIVE; 2169 2170 SK_IF_UNLOCK(sc_if); 2171 2172 return; 2173 } 2174 2175 static void 2176 sk_stop(sc_if) 2177 struct sk_if_softc *sc_if; 2178 { 2179 int i; 2180 struct sk_softc *sc; 2181 struct ifnet *ifp; 2182 2183 SK_IF_LOCK(sc_if); 2184 sc = sc_if->sk_softc; 2185 ifp = &sc_if->arpcom.ac_if; 2186 2187 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 2188 2189 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2190 u_int32_t val; 2191 2192 /* Put PHY back into reset. */ 2193 val = sk_win_read_4(sc, SK_GPIO); 2194 if (sc_if->sk_port == SK_PORT_A) { 2195 val |= SK_GPIO_DIR0; 2196 val &= ~SK_GPIO_DAT0; 2197 } else { 2198 val |= SK_GPIO_DIR2; 2199 val &= ~SK_GPIO_DAT2; 2200 } 2201 sk_win_write_4(sc, SK_GPIO, val); 2202 } 2203 2204 /* Turn off various components of this interface. */ 2205 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2206 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 2207 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2208 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2209 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2210 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2211 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2212 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2213 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2214 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2215 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2216 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2217 2218 /* Disable interrupts */ 2219 if (sc_if->sk_port == SK_PORT_A) 2220 sc->sk_intrmask &= ~SK_INTRS1; 2221 else 2222 sc->sk_intrmask &= ~SK_INTRS2; 2223 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2224 2225 SK_XM_READ_2(sc_if, XM_ISR); 2226 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2227 2228 /* Free RX and TX mbufs still in the queues. */ 2229 for (i = 0; i < SK_RX_RING_CNT; i++) { 2230 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2231 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2232 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2233 } 2234 } 2235 2236 for (i = 0; i < SK_TX_RING_CNT; i++) { 2237 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2238 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2239 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2240 } 2241 } 2242 2243 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 2244 SK_IF_UNLOCK(sc_if); 2245 return; 2246 } 2247