xref: /freebsd/sys/dev/sk/if_sk.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
35  * the SK-984x series adapters, both single port and dual port.
36  * References:
37  * 	The XaQti XMAC II datasheet,
38  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
39  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
40  *
41  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
42  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
43  * convenience to others until Vitesse corrects this problem:
44  *
45  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
46  *
47  * Written by Bill Paul <wpaul@ee.columbia.edu>
48  * Department of Electrical Engineering
49  * Columbia University, New York City
50  */
51 
52 /*
53  * The SysKonnect gigabit ethernet adapters consist of two main
54  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
55  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
56  * components and a PHY while the GEnesis controller provides a PCI
57  * interface with DMA support. Each card may have between 512K and
58  * 2MB of SRAM on board depending on the configuration.
59  *
60  * The SysKonnect GEnesis controller can have either one or two XMAC
61  * chips connected to it, allowing single or dual port NIC configurations.
62  * SysKonnect has the distinction of being the only vendor on the market
63  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
64  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
65  * XMAC registers. This driver takes advantage of these features to allow
66  * both XMACs to operate as independent interfaces.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/queue.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 
87 #include <net/bpf.h>
88 
89 #include <vm/vm.h>              /* for vtophys */
90 #include <vm/pmap.h>            /* for vtophys */
91 #include <machine/bus_pio.h>
92 #include <machine/bus_memio.h>
93 #include <machine/bus.h>
94 #include <machine/resource.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100 #include <dev/mii/brgphyreg.h>
101 
102 #include <dev/pci/pcireg.h>
103 #include <dev/pci/pcivar.h>
104 
105 #define SK_USEIOSPACE
106 
107 #include <pci/if_skreg.h>
108 #include <pci/xmaciireg.h>
109 
110 MODULE_DEPEND(sk, pci, 1, 1, 1);
111 MODULE_DEPEND(sk, ether, 1, 1, 1);
112 MODULE_DEPEND(sk, miibus, 1, 1, 1);
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 #ifndef lint
118 static const char rcsid[] =
119   "$FreeBSD$";
120 #endif
121 
122 static struct sk_type sk_devs[] = {
123 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
124 	{ 0, 0, NULL }
125 };
126 
127 static int sk_probe		(device_t);
128 static int sk_attach		(device_t);
129 static int sk_detach		(device_t);
130 static int sk_detach_xmac	(device_t);
131 static int sk_probe_xmac	(device_t);
132 static int sk_attach_xmac	(device_t);
133 static void sk_tick		(void *);
134 static void sk_intr		(void *);
135 static void sk_intr_xmac	(struct sk_if_softc *);
136 static void sk_intr_bcom	(struct sk_if_softc *);
137 static void sk_rxeof		(struct sk_if_softc *);
138 static void sk_txeof		(struct sk_if_softc *);
139 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
140 					u_int32_t *);
141 static void sk_start		(struct ifnet *);
142 static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
143 static void sk_init		(void *);
144 static void sk_init_xmac	(struct sk_if_softc *);
145 static void sk_stop		(struct sk_if_softc *);
146 static void sk_watchdog		(struct ifnet *);
147 static void sk_shutdown		(device_t);
148 static int sk_ifmedia_upd	(struct ifnet *);
149 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
150 static void sk_reset		(struct sk_softc *);
151 static int sk_newbuf		(struct sk_if_softc *,
152 					struct sk_chain *, struct mbuf *);
153 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
154 static void *sk_jalloc		(struct sk_if_softc *);
155 static void sk_jfree		(void *, void *);
156 static int sk_init_rx_ring	(struct sk_if_softc *);
157 static void sk_init_tx_ring	(struct sk_if_softc *);
158 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
159 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
160 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
161 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
162 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
163 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
164 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
165 static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
166 static void sk_vpd_read		(struct sk_softc *);
167 
168 static int sk_miibus_readreg	(device_t, int, int);
169 static int sk_miibus_writereg	(device_t, int, int, int);
170 static void sk_miibus_statchg	(device_t);
171 
172 static u_int32_t sk_calchash	(caddr_t);
173 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
174 static void sk_setmulti		(struct sk_if_softc *);
175 
176 #ifdef SK_USEIOSPACE
177 #define SK_RES		SYS_RES_IOPORT
178 #define SK_RID		SK_PCI_LOIO
179 #else
180 #define SK_RES		SYS_RES_MEMORY
181 #define SK_RID		SK_PCI_LOMEM
182 #endif
183 
184 /*
185  * Note that we have newbus methods for both the GEnesis controller
186  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
187  * the miibus code is a child of the XMACs. We need to do it this way
188  * so that the miibus drivers can access the PHY registers on the
189  * right PHY. It's not quite what I had in mind, but it's the only
190  * design that achieves the desired effect.
191  */
192 static device_method_t skc_methods[] = {
193 	/* Device interface */
194 	DEVMETHOD(device_probe,		sk_probe),
195 	DEVMETHOD(device_attach,	sk_attach),
196 	DEVMETHOD(device_detach,	sk_detach),
197 	DEVMETHOD(device_shutdown,	sk_shutdown),
198 
199 	/* bus interface */
200 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
201 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
202 
203 	{ 0, 0 }
204 };
205 
206 static driver_t skc_driver = {
207 	"skc",
208 	skc_methods,
209 	sizeof(struct sk_softc)
210 };
211 
212 static devclass_t skc_devclass;
213 
214 static device_method_t sk_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		sk_probe_xmac),
217 	DEVMETHOD(device_attach,	sk_attach_xmac),
218 	DEVMETHOD(device_detach,	sk_detach_xmac),
219 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
220 
221 	/* bus interface */
222 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
223 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
224 
225 	/* MII interface */
226 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
227 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
228 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
229 
230 	{ 0, 0 }
231 };
232 
233 static driver_t sk_driver = {
234 	"sk",
235 	sk_methods,
236 	sizeof(struct sk_if_softc)
237 };
238 
239 static devclass_t sk_devclass;
240 
241 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
242 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
243 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
244 
245 #define SK_SETBIT(sc, reg, x)		\
246 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
247 
248 #define SK_CLRBIT(sc, reg, x)		\
249 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
250 
251 #define SK_WIN_SETBIT_4(sc, reg, x)	\
252 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
253 
254 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
255 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
256 
257 #define SK_WIN_SETBIT_2(sc, reg, x)	\
258 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
259 
260 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
261 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
262 
263 static u_int32_t
264 sk_win_read_4(sc, reg)
265 	struct sk_softc		*sc;
266 	int			reg;
267 {
268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
270 }
271 
272 static u_int16_t
273 sk_win_read_2(sc, reg)
274 	struct sk_softc		*sc;
275 	int			reg;
276 {
277 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
278 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
279 }
280 
281 static u_int8_t
282 sk_win_read_1(sc, reg)
283 	struct sk_softc		*sc;
284 	int			reg;
285 {
286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
288 }
289 
290 static void
291 sk_win_write_4(sc, reg, val)
292 	struct sk_softc		*sc;
293 	int			reg;
294 	u_int32_t		val;
295 {
296 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
298 	return;
299 }
300 
301 static void
302 sk_win_write_2(sc, reg, val)
303 	struct sk_softc		*sc;
304 	int			reg;
305 	u_int32_t		val;
306 {
307 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
309 	return;
310 }
311 
312 static void
313 sk_win_write_1(sc, reg, val)
314 	struct sk_softc		*sc;
315 	int			reg;
316 	u_int32_t		val;
317 {
318 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
319 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
320 	return;
321 }
322 
323 /*
324  * The VPD EEPROM contains Vital Product Data, as suggested in
325  * the PCI 2.1 specification. The VPD data is separared into areas
326  * denoted by resource IDs. The SysKonnect VPD contains an ID string
327  * resource (the name of the adapter), a read-only area resource
328  * containing various key/data fields and a read/write area which
329  * can be used to store asset management information or log messages.
330  * We read the ID string and read-only into buffers attached to
331  * the controller softc structure for later use. At the moment,
332  * we only use the ID string during sk_attach().
333  */
334 static u_int8_t
335 sk_vpd_readbyte(sc, addr)
336 	struct sk_softc		*sc;
337 	int			addr;
338 {
339 	int			i;
340 
341 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
342 	for (i = 0; i < SK_TIMEOUT; i++) {
343 		DELAY(1);
344 		if (sk_win_read_2(sc,
345 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
346 			break;
347 	}
348 
349 	if (i == SK_TIMEOUT)
350 		return(0);
351 
352 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
353 }
354 
355 static void
356 sk_vpd_read_res(sc, res, addr)
357 	struct sk_softc		*sc;
358 	struct vpd_res		*res;
359 	int			addr;
360 {
361 	int			i;
362 	u_int8_t		*ptr;
363 
364 	ptr = (u_int8_t *)res;
365 	for (i = 0; i < sizeof(struct vpd_res); i++)
366 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
367 
368 	return;
369 }
370 
371 static void
372 sk_vpd_read(sc)
373 	struct sk_softc		*sc;
374 {
375 	int			pos = 0, i;
376 	struct vpd_res		res;
377 
378 	if (sc->sk_vpd_prodname != NULL)
379 		free(sc->sk_vpd_prodname, M_DEVBUF);
380 	if (sc->sk_vpd_readonly != NULL)
381 		free(sc->sk_vpd_readonly, M_DEVBUF);
382 	sc->sk_vpd_prodname = NULL;
383 	sc->sk_vpd_readonly = NULL;
384 
385 	sk_vpd_read_res(sc, &res, pos);
386 
387 	if (res.vr_id != VPD_RES_ID) {
388 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
389 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
390 		return;
391 	}
392 
393 	pos += sizeof(res);
394 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
395 	for (i = 0; i < res.vr_len; i++)
396 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
397 	sc->sk_vpd_prodname[i] = '\0';
398 	pos += i;
399 
400 	sk_vpd_read_res(sc, &res, pos);
401 
402 	if (res.vr_id != VPD_RES_READ) {
403 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
404 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
405 		return;
406 	}
407 
408 	pos += sizeof(res);
409 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
410 	for (i = 0; i < res.vr_len + 1; i++)
411 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
412 
413 	return;
414 }
415 
416 static int
417 sk_miibus_readreg(dev, phy, reg)
418 	device_t		dev;
419 	int			phy, reg;
420 {
421 	struct sk_if_softc	*sc_if;
422 	int			i;
423 
424 	sc_if = device_get_softc(dev);
425 
426 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
427 		return(0);
428 
429 	SK_IF_LOCK(sc_if);
430 
431 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
432 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
434 		for (i = 0; i < SK_TIMEOUT; i++) {
435 			DELAY(1);
436 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
437 			    XM_MMUCMD_PHYDATARDY)
438 				break;
439 		}
440 
441 		if (i == SK_TIMEOUT) {
442 			printf("sk%d: phy failed to come ready\n",
443 			    sc_if->sk_unit);
444 			return(0);
445 		}
446 	}
447 	DELAY(1);
448 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
449 	SK_IF_UNLOCK(sc_if);
450 	return(i);
451 }
452 
453 static int
454 sk_miibus_writereg(dev, phy, reg, val)
455 	device_t		dev;
456 	int			phy, reg, val;
457 {
458 	struct sk_if_softc	*sc_if;
459 	int			i;
460 
461 	sc_if = device_get_softc(dev);
462 	SK_IF_LOCK(sc_if);
463 
464 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
465 	for (i = 0; i < SK_TIMEOUT; i++) {
466 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
467 			break;
468 	}
469 
470 	if (i == SK_TIMEOUT) {
471 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
472 		return(ETIMEDOUT);
473 	}
474 
475 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
476 	for (i = 0; i < SK_TIMEOUT; i++) {
477 		DELAY(1);
478 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
479 			break;
480 	}
481 
482 	SK_IF_UNLOCK(sc_if);
483 
484 	if (i == SK_TIMEOUT)
485 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
486 
487 	return(0);
488 }
489 
490 static void
491 sk_miibus_statchg(dev)
492 	device_t		dev;
493 {
494 	struct sk_if_softc	*sc_if;
495 	struct mii_data		*mii;
496 
497 	sc_if = device_get_softc(dev);
498 	mii = device_get_softc(sc_if->sk_miibus);
499 	SK_IF_LOCK(sc_if);
500 	/*
501 	 * If this is a GMII PHY, manually set the XMAC's
502 	 * duplex mode accordingly.
503 	 */
504 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
505 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
506 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
507 		} else {
508 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
509 		}
510 	}
511 	SK_IF_UNLOCK(sc_if);
512 
513 	return;
514 }
515 
516 #define SK_POLY		0xEDB88320
517 #define SK_BITS		6
518 
519 static u_int32_t
520 sk_calchash(addr)
521 	caddr_t			addr;
522 {
523 	u_int32_t		idx, bit, data, crc;
524 
525 	/* Compute CRC for the address value. */
526 	crc = 0xFFFFFFFF; /* initial value */
527 
528 	for (idx = 0; idx < 6; idx++) {
529 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
530 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
531 	}
532 
533 	return (~crc & ((1 << SK_BITS) - 1));
534 }
535 
536 static void
537 sk_setfilt(sc_if, addr, slot)
538 	struct sk_if_softc	*sc_if;
539 	caddr_t			addr;
540 	int			slot;
541 {
542 	int			base;
543 
544 	base = XM_RXFILT_ENTRY(slot);
545 
546 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
547 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
548 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
549 
550 	return;
551 }
552 
553 static void
554 sk_setmulti(sc_if)
555 	struct sk_if_softc	*sc_if;
556 {
557 	struct ifnet		*ifp;
558 	u_int32_t		hashes[2] = { 0, 0 };
559 	int			h, i;
560 	struct ifmultiaddr	*ifma;
561 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
562 
563 	ifp = &sc_if->arpcom.ac_if;
564 
565 	/* First, zot all the existing filters. */
566 	for (i = 1; i < XM_RXFILT_MAX; i++)
567 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
568 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
569 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
570 
571 	/* Now program new ones. */
572 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
573 		hashes[0] = 0xFFFFFFFF;
574 		hashes[1] = 0xFFFFFFFF;
575 	} else {
576 		i = 1;
577 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
578 			if (ifma->ifma_addr->sa_family != AF_LINK)
579 				continue;
580 			/*
581 			 * Program the first XM_RXFILT_MAX multicast groups
582 			 * into the perfect filter. For all others,
583 			 * use the hash table.
584 			 */
585 			if (i < XM_RXFILT_MAX) {
586 				sk_setfilt(sc_if,
587 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
588 				i++;
589 				continue;
590 			}
591 
592 			h = sk_calchash(
593 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
594 			if (h < 32)
595 				hashes[0] |= (1 << h);
596 			else
597 				hashes[1] |= (1 << (h - 32));
598 		}
599 	}
600 
601 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
602 	    XM_MODE_RX_USE_PERFECT);
603 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
604 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
605 
606 	return;
607 }
608 
609 static int
610 sk_init_rx_ring(sc_if)
611 	struct sk_if_softc	*sc_if;
612 {
613 	struct sk_chain_data	*cd;
614 	struct sk_ring_data	*rd;
615 	int			i;
616 
617 	cd = &sc_if->sk_cdata;
618 	rd = sc_if->sk_rdata;
619 
620 	bzero((char *)rd->sk_rx_ring,
621 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
622 
623 	for (i = 0; i < SK_RX_RING_CNT; i++) {
624 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
625 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
626 			return(ENOBUFS);
627 		if (i == (SK_RX_RING_CNT - 1)) {
628 			cd->sk_rx_chain[i].sk_next =
629 			    &cd->sk_rx_chain[0];
630 			rd->sk_rx_ring[i].sk_next =
631 			    vtophys(&rd->sk_rx_ring[0]);
632 		} else {
633 			cd->sk_rx_chain[i].sk_next =
634 			    &cd->sk_rx_chain[i + 1];
635 			rd->sk_rx_ring[i].sk_next =
636 			    vtophys(&rd->sk_rx_ring[i + 1]);
637 		}
638 	}
639 
640 	sc_if->sk_cdata.sk_rx_prod = 0;
641 	sc_if->sk_cdata.sk_rx_cons = 0;
642 
643 	return(0);
644 }
645 
646 static void
647 sk_init_tx_ring(sc_if)
648 	struct sk_if_softc	*sc_if;
649 {
650 	struct sk_chain_data	*cd;
651 	struct sk_ring_data	*rd;
652 	int			i;
653 
654 	cd = &sc_if->sk_cdata;
655 	rd = sc_if->sk_rdata;
656 
657 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
658 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
659 
660 	for (i = 0; i < SK_TX_RING_CNT; i++) {
661 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
662 		if (i == (SK_TX_RING_CNT - 1)) {
663 			cd->sk_tx_chain[i].sk_next =
664 			    &cd->sk_tx_chain[0];
665 			rd->sk_tx_ring[i].sk_next =
666 			    vtophys(&rd->sk_tx_ring[0]);
667 		} else {
668 			cd->sk_tx_chain[i].sk_next =
669 			    &cd->sk_tx_chain[i + 1];
670 			rd->sk_tx_ring[i].sk_next =
671 			    vtophys(&rd->sk_tx_ring[i + 1]);
672 		}
673 	}
674 
675 	sc_if->sk_cdata.sk_tx_prod = 0;
676 	sc_if->sk_cdata.sk_tx_cons = 0;
677 	sc_if->sk_cdata.sk_tx_cnt = 0;
678 
679 	return;
680 }
681 
682 static int
683 sk_newbuf(sc_if, c, m)
684 	struct sk_if_softc	*sc_if;
685 	struct sk_chain		*c;
686 	struct mbuf		*m;
687 {
688 	struct mbuf		*m_new = NULL;
689 	struct sk_rx_desc	*r;
690 
691 	if (m == NULL) {
692 		caddr_t			*buf = NULL;
693 
694 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
695 		if (m_new == NULL)
696 			return(ENOBUFS);
697 
698 		/* Allocate the jumbo buffer */
699 		buf = sk_jalloc(sc_if);
700 		if (buf == NULL) {
701 			m_freem(m_new);
702 #ifdef SK_VERBOSE
703 			printf("sk%d: jumbo allocation failed "
704 			    "-- packet dropped!\n", sc_if->sk_unit);
705 #endif
706 			return(ENOBUFS);
707 		}
708 
709 		/* Attach the buffer to the mbuf */
710 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
711 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
712 		m_new->m_data = (void *)buf;
713 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
714 	} else {
715 		/*
716 	 	 * We're re-using a previously allocated mbuf;
717 		 * be sure to re-init pointers and lengths to
718 		 * default values.
719 		 */
720 		m_new = m;
721 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
722 		m_new->m_data = m_new->m_ext.ext_buf;
723 	}
724 
725 	/*
726 	 * Adjust alignment so packet payload begins on a
727 	 * longword boundary. Mandatory for Alpha, useful on
728 	 * x86 too.
729 	 */
730 	m_adj(m_new, ETHER_ALIGN);
731 
732 	r = c->sk_desc;
733 	c->sk_mbuf = m_new;
734 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
735 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
736 
737 	return(0);
738 }
739 
740 /*
741  * Allocate jumbo buffer storage. The SysKonnect adapters support
742  * "jumbograms" (9K frames), although SysKonnect doesn't currently
743  * use them in their drivers. In order for us to use them, we need
744  * large 9K receive buffers, however standard mbuf clusters are only
745  * 2048 bytes in size. Consequently, we need to allocate and manage
746  * our own jumbo buffer pool. Fortunately, this does not require an
747  * excessive amount of additional code.
748  */
749 static int
750 sk_alloc_jumbo_mem(sc_if)
751 	struct sk_if_softc	*sc_if;
752 {
753 	caddr_t			ptr;
754 	register int		i;
755 	struct sk_jpool_entry   *entry;
756 
757 	/* Grab a big chunk o' storage. */
758 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
759 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
760 
761 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
762 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
763 		return(ENOBUFS);
764 	}
765 
766 	SLIST_INIT(&sc_if->sk_jfree_listhead);
767 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
768 
769 	/*
770 	 * Now divide it up into 9K pieces and save the addresses
771 	 * in an array.
772 	 */
773 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
774 	for (i = 0; i < SK_JSLOTS; i++) {
775 		sc_if->sk_cdata.sk_jslots[i] = ptr;
776 		ptr += SK_JLEN;
777 		entry = malloc(sizeof(struct sk_jpool_entry),
778 		    M_DEVBUF, M_NOWAIT);
779 		if (entry == NULL) {
780 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
781 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
782 			printf("sk%d: no memory for jumbo "
783 			    "buffer queue!\n", sc_if->sk_unit);
784 			return(ENOBUFS);
785 		}
786 		entry->slot = i;
787 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
788 		    entry, jpool_entries);
789 	}
790 
791 	return(0);
792 }
793 
794 /*
795  * Allocate a jumbo buffer.
796  */
797 static void *
798 sk_jalloc(sc_if)
799 	struct sk_if_softc	*sc_if;
800 {
801 	struct sk_jpool_entry   *entry;
802 
803 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
804 
805 	if (entry == NULL) {
806 #ifdef SK_VERBOSE
807 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
808 #endif
809 		return(NULL);
810 	}
811 
812 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
813 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
814 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
815 }
816 
817 /*
818  * Release a jumbo buffer.
819  */
820 static void
821 sk_jfree(buf, args)
822 	void			*buf;
823 	void			*args;
824 {
825 	struct sk_if_softc	*sc_if;
826 	int		        i;
827 	struct sk_jpool_entry   *entry;
828 
829 	/* Extract the softc struct pointer. */
830 	sc_if = (struct sk_if_softc *)args;
831 
832 	if (sc_if == NULL)
833 		panic("sk_jfree: didn't get softc pointer!");
834 
835 	/* calculate the slot this buffer belongs to */
836 	i = ((vm_offset_t)buf
837 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
838 
839 	if ((i < 0) || (i >= SK_JSLOTS))
840 		panic("sk_jfree: asked to free buffer that we don't manage!");
841 
842 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
843 	if (entry == NULL)
844 		panic("sk_jfree: buffer not in use!");
845 	entry->slot = i;
846 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
847 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
848 
849 	return;
850 }
851 
852 /*
853  * Set media options.
854  */
855 static int
856 sk_ifmedia_upd(ifp)
857 	struct ifnet		*ifp;
858 {
859 	struct sk_if_softc	*sc_if;
860 	struct mii_data		*mii;
861 
862 	sc_if = ifp->if_softc;
863 	mii = device_get_softc(sc_if->sk_miibus);
864 	sk_init(sc_if);
865 	mii_mediachg(mii);
866 
867 	return(0);
868 }
869 
870 /*
871  * Report current media status.
872  */
873 static void
874 sk_ifmedia_sts(ifp, ifmr)
875 	struct ifnet		*ifp;
876 	struct ifmediareq	*ifmr;
877 {
878 	struct sk_if_softc	*sc_if;
879 	struct mii_data		*mii;
880 
881 	sc_if = ifp->if_softc;
882 	mii = device_get_softc(sc_if->sk_miibus);
883 
884 	mii_pollstat(mii);
885 	ifmr->ifm_active = mii->mii_media_active;
886 	ifmr->ifm_status = mii->mii_media_status;
887 
888 	return;
889 }
890 
891 static int
892 sk_ioctl(ifp, command, data)
893 	struct ifnet		*ifp;
894 	u_long			command;
895 	caddr_t			data;
896 {
897 	struct sk_if_softc	*sc_if = ifp->if_softc;
898 	struct ifreq		*ifr = (struct ifreq *) data;
899 	int			error = 0;
900 	struct mii_data		*mii;
901 
902 	SK_IF_LOCK(sc_if);
903 
904 	switch(command) {
905 	case SIOCSIFMTU:
906 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
907 			error = EINVAL;
908 		else {
909 			ifp->if_mtu = ifr->ifr_mtu;
910 			sk_init(sc_if);
911 		}
912 		break;
913 	case SIOCSIFFLAGS:
914 		if (ifp->if_flags & IFF_UP) {
915 			if (ifp->if_flags & IFF_RUNNING &&
916 			    ifp->if_flags & IFF_PROMISC &&
917 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
918 				SK_XM_SETBIT_4(sc_if, XM_MODE,
919 				    XM_MODE_RX_PROMISC);
920 				sk_setmulti(sc_if);
921 			} else if (ifp->if_flags & IFF_RUNNING &&
922 			    !(ifp->if_flags & IFF_PROMISC) &&
923 			    sc_if->sk_if_flags & IFF_PROMISC) {
924 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
925 				    XM_MODE_RX_PROMISC);
926 				sk_setmulti(sc_if);
927 			} else
928 				sk_init(sc_if);
929 		} else {
930 			if (ifp->if_flags & IFF_RUNNING)
931 				sk_stop(sc_if);
932 		}
933 		sc_if->sk_if_flags = ifp->if_flags;
934 		error = 0;
935 		break;
936 	case SIOCADDMULTI:
937 	case SIOCDELMULTI:
938 		sk_setmulti(sc_if);
939 		error = 0;
940 		break;
941 	case SIOCGIFMEDIA:
942 	case SIOCSIFMEDIA:
943 		mii = device_get_softc(sc_if->sk_miibus);
944 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
945 		break;
946 	default:
947 		error = ether_ioctl(ifp, command, data);
948 		break;
949 	}
950 
951 	SK_IF_UNLOCK(sc_if);
952 
953 	return(error);
954 }
955 
956 /*
957  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
958  * IDs against our list and return a device name if we find a match.
959  */
960 static int
961 sk_probe(dev)
962 	device_t		dev;
963 {
964 	struct sk_type		*t;
965 
966 	t = sk_devs;
967 
968 	while(t->sk_name != NULL) {
969 		if ((pci_get_vendor(dev) == t->sk_vid) &&
970 		    (pci_get_device(dev) == t->sk_did)) {
971 			device_set_desc(dev, t->sk_name);
972 			return(0);
973 		}
974 		t++;
975 	}
976 
977 	return(ENXIO);
978 }
979 
980 /*
981  * Force the GEnesis into reset, then bring it out of reset.
982  */
983 static void
984 sk_reset(sc)
985 	struct sk_softc		*sc;
986 {
987 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
988 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
989 	DELAY(1000);
990 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
991 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
992 
993 	/* Configure packet arbiter */
994 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
995 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
996 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
997 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
998 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
999 
1000 	/* Enable RAM interface */
1001 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1002 
1003 	/*
1004          * Configure interrupt moderation. The moderation timer
1005 	 * defers interrupts specified in the interrupt moderation
1006 	 * timer mask based on the timeout specified in the interrupt
1007 	 * moderation timer init register. Each bit in the timer
1008 	 * register represents 18.825ns, so to specify a timeout in
1009 	 * microseconds, we have to multiply by 54.
1010 	 */
1011 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1012 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1013 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1014 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1015 
1016 	return;
1017 }
1018 
1019 static int
1020 sk_probe_xmac(dev)
1021 	device_t		dev;
1022 {
1023 	/*
1024 	 * Not much to do here. We always know there will be
1025 	 * at least one XMAC present, and if there are two,
1026 	 * sk_attach() will create a second device instance
1027 	 * for us.
1028 	 */
1029 	device_set_desc(dev, "XaQti Corp. XMAC II");
1030 
1031 	return(0);
1032 }
1033 
1034 /*
1035  * Each XMAC chip is attached as a separate logical IP interface.
1036  * Single port cards will have only one logical interface of course.
1037  */
1038 static int
1039 sk_attach_xmac(dev)
1040 	device_t		dev;
1041 {
1042 	struct sk_softc		*sc;
1043 	struct sk_if_softc	*sc_if;
1044 	struct ifnet		*ifp;
1045 	int			i, port, error;
1046 
1047 	if (dev == NULL)
1048 		return(EINVAL);
1049 
1050 	error = 0;
1051 	sc_if = device_get_softc(dev);
1052 	sc = device_get_softc(device_get_parent(dev));
1053 	SK_LOCK(sc);
1054 	port = *(int *)device_get_ivars(dev);
1055 	free(device_get_ivars(dev), M_DEVBUF);
1056 	device_set_ivars(dev, NULL);
1057 
1058 	sc_if->sk_dev = dev;
1059 	sc_if->sk_unit = device_get_unit(dev);
1060 	sc_if->sk_port = port;
1061 	sc_if->sk_softc = sc;
1062 	sc->sk_if[port] = sc_if;
1063 	if (port == SK_PORT_A)
1064 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1065 	if (port == SK_PORT_B)
1066 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1067 
1068 	/*
1069 	 * Get station address for this interface. Note that
1070 	 * dual port cards actually come with three station
1071 	 * addresses: one for each port, plus an extra. The
1072 	 * extra one is used by the SysKonnect driver software
1073 	 * as a 'virtual' station address for when both ports
1074 	 * are operating in failover mode. Currently we don't
1075 	 * use this extra address.
1076 	 */
1077 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1078 		sc_if->arpcom.ac_enaddr[i] =
1079 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1080 
1081 	printf("sk%d: Ethernet address: %6D\n",
1082 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1083 
1084 	/*
1085 	 * Set up RAM buffer addresses. The NIC will have a certain
1086 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1087 	 * need to divide this up a) between the transmitter and
1088  	 * receiver and b) between the two XMACs, if this is a
1089 	 * dual port NIC. Our algotithm is to divide up the memory
1090 	 * evenly so that everyone gets a fair share.
1091 	 */
1092 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1093 		u_int32_t		chunk, val;
1094 
1095 		chunk = sc->sk_ramsize / 2;
1096 		val = sc->sk_rboff / sizeof(u_int64_t);
1097 		sc_if->sk_rx_ramstart = val;
1098 		val += (chunk / sizeof(u_int64_t));
1099 		sc_if->sk_rx_ramend = val - 1;
1100 		sc_if->sk_tx_ramstart = val;
1101 		val += (chunk / sizeof(u_int64_t));
1102 		sc_if->sk_tx_ramend = val - 1;
1103 	} else {
1104 		u_int32_t		chunk, val;
1105 
1106 		chunk = sc->sk_ramsize / 4;
1107 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1108 		    sizeof(u_int64_t);
1109 		sc_if->sk_rx_ramstart = val;
1110 		val += (chunk / sizeof(u_int64_t));
1111 		sc_if->sk_rx_ramend = val - 1;
1112 		sc_if->sk_tx_ramstart = val;
1113 		val += (chunk / sizeof(u_int64_t));
1114 		sc_if->sk_tx_ramend = val - 1;
1115 	}
1116 
1117 	/* Read and save PHY type and set PHY address */
1118 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1119 	switch(sc_if->sk_phytype) {
1120 	case SK_PHYTYPE_XMAC:
1121 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1122 		break;
1123 	case SK_PHYTYPE_BCOM:
1124 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1125 		break;
1126 	default:
1127 		printf("skc%d: unsupported PHY type: %d\n",
1128 		    sc->sk_unit, sc_if->sk_phytype);
1129 		error = ENODEV;
1130 		goto fail_xmac;
1131 	}
1132 
1133 	/* Allocate the descriptor queues. */
1134 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1135 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1136 
1137 	if (sc_if->sk_rdata == NULL) {
1138 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1139 		error = ENOMEM;
1140 		goto fail_xmac;
1141 	}
1142 
1143 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1144 
1145 	/* Try to allocate memory for jumbo buffers. */
1146 	if (sk_alloc_jumbo_mem(sc_if)) {
1147 		printf("sk%d: jumbo buffer allocation failed\n",
1148 		    sc_if->sk_unit);
1149 		error = ENOMEM;
1150 		goto fail_xmac;
1151 	}
1152 
1153 	ifp = &sc_if->arpcom.ac_if;
1154 	ifp->if_softc = sc_if;
1155 	ifp->if_unit = sc_if->sk_unit;
1156 	ifp->if_name = "sk";
1157 	ifp->if_mtu = ETHERMTU;
1158 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1159 	ifp->if_ioctl = sk_ioctl;
1160 	ifp->if_output = ether_output;
1161 	ifp->if_start = sk_start;
1162 	ifp->if_watchdog = sk_watchdog;
1163 	ifp->if_init = sk_init;
1164 	ifp->if_baudrate = 1000000000;
1165 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1166 
1167 	callout_handle_init(&sc_if->sk_tick_ch);
1168 
1169 	/*
1170 	 * Call MI attach routine.
1171 	 */
1172 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1173 
1174 	/*
1175 	 * Do miibus setup.
1176 	 */
1177 	sk_init_xmac(sc_if);
1178 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1179 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1180 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1181 		ether_ifdetach(ifp);
1182 		error = ENXIO;
1183 		goto fail_xmac;
1184 	}
1185 
1186 fail_xmac:
1187 	SK_UNLOCK(sc);
1188 	if (error) {
1189 		/* Access should be ok even though lock has been dropped */
1190 		sc->sk_if[port] = NULL;
1191 		sk_detach_xmac(dev);
1192 	}
1193 
1194 	return(error);
1195 }
1196 
1197 /*
1198  * Attach the interface. Allocate softc structures, do ifmedia
1199  * setup and ethernet/BPF attach.
1200  */
1201 static int
1202 sk_attach(dev)
1203 	device_t		dev;
1204 {
1205 	struct sk_softc		*sc;
1206 	int			unit, error = 0, rid, *port;
1207 
1208 	sc = device_get_softc(dev);
1209 	unit = device_get_unit(dev);
1210 
1211 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1212 	    MTX_DEF | MTX_RECURSE);
1213 #ifndef BURN_BRIDGES
1214 	/*
1215 	 * Handle power management nonsense.
1216 	 */
1217 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1218 		u_int32_t		iobase, membase, irq;
1219 
1220 		/* Save important PCI config data. */
1221 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1222 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1223 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1224 
1225 		/* Reset the power state. */
1226 		printf("skc%d: chip is in D%d power mode "
1227 		    "-- setting to D0\n", unit,
1228 		    pci_get_powerstate(dev));
1229 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1230 
1231 		/* Restore PCI config data. */
1232 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1233 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1234 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1235 	}
1236 #endif
1237 	/*
1238 	 * Map control/status registers.
1239 	 */
1240 	pci_enable_busmaster(dev);
1241 
1242 	rid = SK_RID;
1243 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1244 	    0, ~0, 1, RF_ACTIVE);
1245 
1246 	if (sc->sk_res == NULL) {
1247 		printf("sk%d: couldn't map ports/memory\n", unit);
1248 		error = ENXIO;
1249 		goto fail;
1250 	}
1251 
1252 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1253 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1254 
1255 	/* Allocate interrupt */
1256 	rid = 0;
1257 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1258 	    RF_SHAREABLE | RF_ACTIVE);
1259 
1260 	if (sc->sk_irq == NULL) {
1261 		printf("skc%d: couldn't map interrupt\n", unit);
1262 		error = ENXIO;
1263 		goto fail;
1264 	}
1265 
1266 	/* Reset the adapter. */
1267 	sk_reset(sc);
1268 
1269 	sc->sk_unit = unit;
1270 
1271 	/* Read and save vital product data from EEPROM. */
1272 	sk_vpd_read(sc);
1273 
1274 	/* Read and save RAM size and RAMbuffer offset */
1275 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1276 	case SK_RAMSIZE_512K_64:
1277 		sc->sk_ramsize = 0x80000;
1278 		sc->sk_rboff = SK_RBOFF_0;
1279 		break;
1280 	case SK_RAMSIZE_1024K_64:
1281 		sc->sk_ramsize = 0x100000;
1282 		sc->sk_rboff = SK_RBOFF_80000;
1283 		break;
1284 	case SK_RAMSIZE_1024K_128:
1285 		sc->sk_ramsize = 0x100000;
1286 		sc->sk_rboff = SK_RBOFF_0;
1287 		break;
1288 	case SK_RAMSIZE_2048K_128:
1289 		sc->sk_ramsize = 0x200000;
1290 		sc->sk_rboff = SK_RBOFF_0;
1291 		break;
1292 	default:
1293 		printf("skc%d: unknown ram size: %d\n",
1294 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1295 		error = ENXIO;
1296 		goto fail;
1297 	}
1298 
1299 	/* Read and save physical media type */
1300 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1301 	case SK_PMD_1000BASESX:
1302 		sc->sk_pmd = IFM_1000_SX;
1303 		break;
1304 	case SK_PMD_1000BASELX:
1305 		sc->sk_pmd = IFM_1000_LX;
1306 		break;
1307 	case SK_PMD_1000BASECX:
1308 		sc->sk_pmd = IFM_1000_CX;
1309 		break;
1310 	case SK_PMD_1000BASETX:
1311 		sc->sk_pmd = IFM_1000_T;
1312 		break;
1313 	default:
1314 		printf("skc%d: unknown media type: 0x%x\n",
1315 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1316 		error = ENXIO;
1317 		goto fail;
1318 	}
1319 
1320 	/* Announce the product name. */
1321 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1322 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1323 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1324 	*port = SK_PORT_A;
1325 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1326 
1327 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1328 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1329 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1330 		*port = SK_PORT_B;
1331 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1332 	}
1333 
1334 	/* Turn on the 'driver is loaded' LED. */
1335 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1336 
1337 	bus_generic_attach(dev);
1338 
1339 	/* Hook interrupt last to avoid having to lock softc */
1340 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1341 	    sk_intr, sc, &sc->sk_intrhand);
1342 
1343 	if (error) {
1344 		printf("skc%d: couldn't set up irq\n", unit);
1345 		goto fail;
1346 	}
1347 
1348 fail:
1349 	if (error)
1350 		sk_detach(dev);
1351 
1352 	return(error);
1353 }
1354 
1355 /*
1356  * Shutdown hardware and free up resources. This can be called any
1357  * time after the mutex has been initialized. It is called in both
1358  * the error case in attach and the normal detach case so it needs
1359  * to be careful about only freeing resources that have actually been
1360  * allocated.
1361  */
1362 static int
1363 sk_detach_xmac(dev)
1364 	device_t		dev;
1365 {
1366 	struct sk_if_softc	*sc_if;
1367 	struct ifnet		*ifp;
1368 
1369 	sc_if = device_get_softc(dev);
1370 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1371 	    ("sk mutex not initialized in sk_detach_xmac"));
1372 	SK_IF_LOCK(sc_if);
1373 
1374 	ifp = &sc_if->arpcom.ac_if;
1375 	/* These should only be active if attach_xmac succeeded */
1376 	if (device_is_attached(dev)) {
1377 		sk_stop(sc_if);
1378 		ether_ifdetach(ifp);
1379 	}
1380 	if (sc_if->sk_miibus)
1381 		device_delete_child(dev, sc_if->sk_miibus);
1382 	bus_generic_detach(dev);
1383 	if (sc_if->sk_cdata.sk_jumbo_buf)
1384 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1385 	if (sc_if->sk_rdata) {
1386 		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1387 		    M_DEVBUF);
1388 	}
1389 	SK_IF_UNLOCK(sc_if);
1390 
1391 	return(0);
1392 }
1393 
1394 static int
1395 sk_detach(dev)
1396 	device_t		dev;
1397 {
1398 	struct sk_softc		*sc;
1399 
1400 	sc = device_get_softc(dev);
1401 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1402 	SK_LOCK(sc);
1403 
1404 	if (device_is_alive(dev)) {
1405 		if (sc->sk_devs[SK_PORT_A] != NULL)
1406 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1407 		if (sc->sk_devs[SK_PORT_B] != NULL)
1408 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1409 		bus_generic_detach(dev);
1410 	}
1411 
1412 	if (sc->sk_intrhand)
1413 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1414 	if (sc->sk_irq)
1415 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1416 	if (sc->sk_res)
1417 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1418 
1419 	SK_UNLOCK(sc);
1420 	mtx_destroy(&sc->sk_mtx);
1421 
1422 	return(0);
1423 }
1424 
1425 static int
1426 sk_encap(sc_if, m_head, txidx)
1427         struct sk_if_softc	*sc_if;
1428         struct mbuf		*m_head;
1429         u_int32_t		*txidx;
1430 {
1431 	struct sk_tx_desc	*f = NULL;
1432 	struct mbuf		*m;
1433 	u_int32_t		frag, cur, cnt = 0;
1434 
1435 	m = m_head;
1436 	cur = frag = *txidx;
1437 
1438 	/*
1439 	 * Start packing the mbufs in this chain into
1440 	 * the fragment pointers. Stop when we run out
1441 	 * of fragments or hit the end of the mbuf chain.
1442 	 */
1443 	for (m = m_head; m != NULL; m = m->m_next) {
1444 		if (m->m_len != 0) {
1445 			if ((SK_TX_RING_CNT -
1446 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1447 				return(ENOBUFS);
1448 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1449 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1450 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1451 			if (cnt == 0)
1452 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1453 			else
1454 				f->sk_ctl |= SK_TXCTL_OWN;
1455 			cur = frag;
1456 			SK_INC(frag, SK_TX_RING_CNT);
1457 			cnt++;
1458 		}
1459 	}
1460 
1461 	if (m != NULL)
1462 		return(ENOBUFS);
1463 
1464 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1465 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1466 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1467 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1468 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1469 
1470 	*txidx = frag;
1471 
1472 	return(0);
1473 }
1474 
1475 static void
1476 sk_start(ifp)
1477 	struct ifnet		*ifp;
1478 {
1479         struct sk_softc		*sc;
1480         struct sk_if_softc	*sc_if;
1481         struct mbuf		*m_head = NULL;
1482         u_int32_t		idx;
1483 
1484 	sc_if = ifp->if_softc;
1485 	sc = sc_if->sk_softc;
1486 
1487 	SK_IF_LOCK(sc_if);
1488 
1489 	idx = sc_if->sk_cdata.sk_tx_prod;
1490 
1491 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1492 		IF_DEQUEUE(&ifp->if_snd, m_head);
1493 		if (m_head == NULL)
1494 			break;
1495 
1496 		/*
1497 		 * Pack the data into the transmit ring. If we
1498 		 * don't have room, set the OACTIVE flag and wait
1499 		 * for the NIC to drain the ring.
1500 		 */
1501 		if (sk_encap(sc_if, m_head, &idx)) {
1502 			IF_PREPEND(&ifp->if_snd, m_head);
1503 			ifp->if_flags |= IFF_OACTIVE;
1504 			break;
1505 		}
1506 
1507 		/*
1508 		 * If there's a BPF listener, bounce a copy of this frame
1509 		 * to him.
1510 		 */
1511 		BPF_MTAP(ifp, m_head);
1512 	}
1513 
1514 	/* Transmit */
1515 	sc_if->sk_cdata.sk_tx_prod = idx;
1516 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1517 
1518 	/* Set a timeout in case the chip goes out to lunch. */
1519 	ifp->if_timer = 5;
1520 	SK_IF_UNLOCK(sc_if);
1521 
1522 	return;
1523 }
1524 
1525 
1526 static void
1527 sk_watchdog(ifp)
1528 	struct ifnet		*ifp;
1529 {
1530 	struct sk_if_softc	*sc_if;
1531 
1532 	sc_if = ifp->if_softc;
1533 
1534 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1535 	sk_init(sc_if);
1536 
1537 	return;
1538 }
1539 
1540 static void
1541 sk_shutdown(dev)
1542 	device_t		dev;
1543 {
1544 	struct sk_softc		*sc;
1545 
1546 	sc = device_get_softc(dev);
1547 	SK_LOCK(sc);
1548 
1549 	/* Turn off the 'driver is loaded' LED. */
1550 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1551 
1552 	/*
1553 	 * Reset the GEnesis controller. Doing this should also
1554 	 * assert the resets on the attached XMAC(s).
1555 	 */
1556 	sk_reset(sc);
1557 	SK_UNLOCK(sc);
1558 
1559 	return;
1560 }
1561 
1562 static void
1563 sk_rxeof(sc_if)
1564 	struct sk_if_softc	*sc_if;
1565 {
1566 	struct mbuf		*m;
1567 	struct ifnet		*ifp;
1568 	struct sk_chain		*cur_rx;
1569 	int			total_len = 0;
1570 	int			i;
1571 	u_int32_t		rxstat;
1572 
1573 	ifp = &sc_if->arpcom.ac_if;
1574 	i = sc_if->sk_cdata.sk_rx_prod;
1575 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1576 
1577 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1578 
1579 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1580 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1581 		m = cur_rx->sk_mbuf;
1582 		cur_rx->sk_mbuf = NULL;
1583 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1584 		SK_INC(i, SK_RX_RING_CNT);
1585 
1586 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1587 			ifp->if_ierrors++;
1588 			sk_newbuf(sc_if, cur_rx, m);
1589 			continue;
1590 		}
1591 
1592 		/*
1593 		 * Try to allocate a new jumbo buffer. If that
1594 		 * fails, copy the packet to mbufs and put the
1595 		 * jumbo buffer back in the ring so it can be
1596 		 * re-used. If allocating mbufs fails, then we
1597 		 * have to drop the packet.
1598 		 */
1599 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1600 			struct mbuf		*m0;
1601 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1602 			    ifp, NULL);
1603 			sk_newbuf(sc_if, cur_rx, m);
1604 			if (m0 == NULL) {
1605 				printf("sk%d: no receive buffers "
1606 				    "available -- packet dropped!\n",
1607 				    sc_if->sk_unit);
1608 				ifp->if_ierrors++;
1609 				continue;
1610 			}
1611 			m = m0;
1612 		} else {
1613 			m->m_pkthdr.rcvif = ifp;
1614 			m->m_pkthdr.len = m->m_len = total_len;
1615 		}
1616 
1617 		ifp->if_ipackets++;
1618 		(*ifp->if_input)(ifp, m);
1619 	}
1620 
1621 	sc_if->sk_cdata.sk_rx_prod = i;
1622 
1623 	return;
1624 }
1625 
1626 static void
1627 sk_txeof(sc_if)
1628 	struct sk_if_softc	*sc_if;
1629 {
1630 	struct sk_tx_desc	*cur_tx = NULL;
1631 	struct ifnet		*ifp;
1632 	u_int32_t		idx;
1633 
1634 	ifp = &sc_if->arpcom.ac_if;
1635 
1636 	/*
1637 	 * Go through our tx ring and free mbufs for those
1638 	 * frames that have been sent.
1639 	 */
1640 	idx = sc_if->sk_cdata.sk_tx_cons;
1641 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1642 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1643 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1644 			break;
1645 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1646 			ifp->if_opackets++;
1647 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1648 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1649 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1650 		}
1651 		sc_if->sk_cdata.sk_tx_cnt--;
1652 		SK_INC(idx, SK_TX_RING_CNT);
1653 		ifp->if_timer = 0;
1654 	}
1655 
1656 	sc_if->sk_cdata.sk_tx_cons = idx;
1657 
1658 	if (cur_tx != NULL)
1659 		ifp->if_flags &= ~IFF_OACTIVE;
1660 
1661 	return;
1662 }
1663 
1664 static void
1665 sk_tick(xsc_if)
1666 	void			*xsc_if;
1667 {
1668 	struct sk_if_softc	*sc_if;
1669 	struct mii_data		*mii;
1670 	struct ifnet		*ifp;
1671 	int			i;
1672 
1673 	sc_if = xsc_if;
1674 	SK_IF_LOCK(sc_if);
1675 	ifp = &sc_if->arpcom.ac_if;
1676 	mii = device_get_softc(sc_if->sk_miibus);
1677 
1678 	if (!(ifp->if_flags & IFF_UP)) {
1679 		SK_IF_UNLOCK(sc_if);
1680 		return;
1681 	}
1682 
1683 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1684 		sk_intr_bcom(sc_if);
1685 		SK_IF_UNLOCK(sc_if);
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * According to SysKonnect, the correct way to verify that
1691 	 * the link has come back up is to poll bit 0 of the GPIO
1692 	 * register three times. This pin has the signal from the
1693 	 * link_sync pin connected to it; if we read the same link
1694 	 * state 3 times in a row, we know the link is up.
1695 	 */
1696 	for (i = 0; i < 3; i++) {
1697 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1698 			break;
1699 	}
1700 
1701 	if (i != 3) {
1702 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1703 		SK_IF_UNLOCK(sc_if);
1704 		return;
1705 	}
1706 
1707 	/* Turn the GP0 interrupt back on. */
1708 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1709 	SK_XM_READ_2(sc_if, XM_ISR);
1710 	mii_tick(mii);
1711 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1712 
1713 	SK_IF_UNLOCK(sc_if);
1714 	return;
1715 }
1716 
1717 static void
1718 sk_intr_bcom(sc_if)
1719 	struct sk_if_softc	*sc_if;
1720 {
1721 	struct mii_data		*mii;
1722 	struct ifnet		*ifp;
1723 	int			status;
1724 	mii = device_get_softc(sc_if->sk_miibus);
1725 	ifp = &sc_if->arpcom.ac_if;
1726 
1727 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1728 
1729 	/*
1730 	 * Read the PHY interrupt register to make sure
1731 	 * we clear any pending interrupts.
1732 	 */
1733 	status = sk_miibus_readreg(sc_if->sk_dev,
1734 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1735 
1736 	if (!(ifp->if_flags & IFF_RUNNING)) {
1737 		sk_init_xmac(sc_if);
1738 		return;
1739 	}
1740 
1741 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1742 		int			lstat;
1743 		lstat = sk_miibus_readreg(sc_if->sk_dev,
1744 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1745 
1746 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1747 			mii_mediachg(mii);
1748 			/* Turn off the link LED. */
1749 			SK_IF_WRITE_1(sc_if, 0,
1750 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1751 			sc_if->sk_link = 0;
1752 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1753 			sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1754 	    		    BRGPHY_MII_IMR, 0xFF00);
1755 			mii_tick(mii);
1756 			sc_if->sk_link = 1;
1757 			/* Turn on the link LED. */
1758 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1759 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1760 			    SK_LINKLED_BLINK_OFF);
1761 		} else {
1762 			mii_tick(mii);
1763 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1764 		}
1765 	}
1766 
1767 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1768 
1769 	return;
1770 }
1771 
1772 static void
1773 sk_intr_xmac(sc_if)
1774 	struct sk_if_softc	*sc_if;
1775 {
1776 	struct sk_softc		*sc;
1777 	u_int16_t		status;
1778 
1779 	sc = sc_if->sk_softc;
1780 	status = SK_XM_READ_2(sc_if, XM_ISR);
1781 
1782 	/*
1783 	 * Link has gone down. Start MII tick timeout to
1784 	 * watch for link resync.
1785 	 */
1786 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1787 		if (status & XM_ISR_GP0_SET) {
1788 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1789 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1790 		}
1791 
1792 		if (status & XM_ISR_AUTONEG_DONE) {
1793 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1794 		}
1795 	}
1796 
1797 	if (status & XM_IMR_TX_UNDERRUN)
1798 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1799 
1800 	if (status & XM_IMR_RX_OVERRUN)
1801 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1802 
1803 	status = SK_XM_READ_2(sc_if, XM_ISR);
1804 
1805 	return;
1806 }
1807 
1808 static void
1809 sk_intr(xsc)
1810 	void			*xsc;
1811 {
1812 	struct sk_softc		*sc = xsc;
1813 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1814 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1815 	u_int32_t		status;
1816 
1817 	SK_LOCK(sc);
1818 
1819 	sc_if0 = sc->sk_if[SK_PORT_A];
1820 	sc_if1 = sc->sk_if[SK_PORT_B];
1821 
1822 	if (sc_if0 != NULL)
1823 		ifp0 = &sc_if0->arpcom.ac_if;
1824 	if (sc_if1 != NULL)
1825 		ifp1 = &sc_if1->arpcom.ac_if;
1826 
1827 	for (;;) {
1828 		status = CSR_READ_4(sc, SK_ISSR);
1829 		if (!(status & sc->sk_intrmask))
1830 			break;
1831 
1832 		/* Handle receive interrupts first. */
1833 		if (status & SK_ISR_RX1_EOF) {
1834 			sk_rxeof(sc_if0);
1835 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1836 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1837 		}
1838 		if (status & SK_ISR_RX2_EOF) {
1839 			sk_rxeof(sc_if1);
1840 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1841 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1842 		}
1843 
1844 		/* Then transmit interrupts. */
1845 		if (status & SK_ISR_TX1_S_EOF) {
1846 			sk_txeof(sc_if0);
1847 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1848 			    SK_TXBMU_CLR_IRQ_EOF);
1849 		}
1850 		if (status & SK_ISR_TX2_S_EOF) {
1851 			sk_txeof(sc_if1);
1852 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1853 			    SK_TXBMU_CLR_IRQ_EOF);
1854 		}
1855 
1856 		/* Then MAC interrupts. */
1857 		if (status & SK_ISR_MAC1 &&
1858 		    ifp0->if_flags & IFF_RUNNING)
1859 			sk_intr_xmac(sc_if0);
1860 
1861 		if (status & SK_ISR_MAC2 &&
1862 		    ifp1->if_flags & IFF_RUNNING)
1863 			sk_intr_xmac(sc_if1);
1864 
1865 		if (status & SK_ISR_EXTERNAL_REG) {
1866 			if (ifp0 != NULL)
1867 				sk_intr_bcom(sc_if0);
1868 			if (ifp1 != NULL)
1869 				sk_intr_bcom(sc_if1);
1870 		}
1871 	}
1872 
1873 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1874 
1875 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1876 		sk_start(ifp0);
1877 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1878 		sk_start(ifp1);
1879 
1880 	SK_UNLOCK(sc);
1881 
1882 	return;
1883 }
1884 
1885 static void
1886 sk_init_xmac(sc_if)
1887 	struct sk_if_softc	*sc_if;
1888 {
1889 	struct sk_softc		*sc;
1890 	struct ifnet		*ifp;
1891 	struct sk_bcom_hack	bhack[] = {
1892 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1893 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1894 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1895 	{ 0, 0 } };
1896 
1897 	sc = sc_if->sk_softc;
1898 	ifp = &sc_if->arpcom.ac_if;
1899 
1900 	/* Unreset the XMAC. */
1901 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1902 	DELAY(1000);
1903 
1904 	/* Reset the XMAC's internal state. */
1905 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1906 
1907 	/* Save the XMAC II revision */
1908 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1909 
1910 	/*
1911 	 * Perform additional initialization for external PHYs,
1912 	 * namely for the 1000baseTX cards that use the XMAC's
1913 	 * GMII mode.
1914 	 */
1915 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1916 		int			i = 0;
1917 		u_int32_t		val;
1918 
1919 		/* Take PHY out of reset. */
1920 		val = sk_win_read_4(sc, SK_GPIO);
1921 		if (sc_if->sk_port == SK_PORT_A)
1922 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1923 		else
1924 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1925 		sk_win_write_4(sc, SK_GPIO, val);
1926 
1927 		/* Enable GMII mode on the XMAC. */
1928 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1929 
1930 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1931 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1932 		DELAY(10000);
1933 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1934 		    BRGPHY_MII_IMR, 0xFFF0);
1935 
1936 		/*
1937 		 * Early versions of the BCM5400 apparently have
1938 		 * a bug that requires them to have their reserved
1939 		 * registers initialized to some magic values. I don't
1940 		 * know what the numbers do, I'm just the messenger.
1941 		 */
1942 		if (sk_miibus_readreg(sc_if->sk_dev,
1943 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1944 			while(bhack[i].reg) {
1945 				sk_miibus_writereg(sc_if->sk_dev,
1946 				    SK_PHYADDR_BCOM, bhack[i].reg,
1947 				    bhack[i].val);
1948 				i++;
1949 			}
1950 		}
1951 	}
1952 
1953 	/* Set station address */
1954 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1955 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1956 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1957 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1958 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1959 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1960 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1961 
1962 	if (ifp->if_flags & IFF_PROMISC) {
1963 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1964 	} else {
1965 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1966 	}
1967 
1968 	if (ifp->if_flags & IFF_BROADCAST) {
1969 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1970 	} else {
1971 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1972 	}
1973 
1974 	/* We don't need the FCS appended to the packet. */
1975 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
1976 
1977 	/* We want short frames padded to 60 bytes. */
1978 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
1979 
1980 	/*
1981 	 * Enable the reception of all error frames. This is is
1982 	 * a necessary evil due to the design of the XMAC. The
1983 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1984 	 * frames can be up to 9000 bytes in length. When bad
1985 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1986 	 * in 'store and forward' mode. For this to work, the
1987 	 * entire frame has to fit into the FIFO, but that means
1988 	 * that jumbo frames larger than 8192 bytes will be
1989 	 * truncated. Disabling all bad frame filtering causes
1990 	 * the RX FIFO to operate in streaming mode, in which
1991 	 * case the XMAC will start transfering frames out of the
1992 	 * RX FIFO as soon as the FIFO threshold is reached.
1993 	 */
1994 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
1995 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
1996 	    XM_MODE_RX_INRANGELEN);
1997 
1998 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1999 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2000 	else
2001 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2002 
2003 	/*
2004 	 * Bump up the transmit threshold. This helps hold off transmit
2005 	 * underruns when we're blasting traffic from both ports at once.
2006 	 */
2007 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2008 
2009 	/* Set multicast filter */
2010 	sk_setmulti(sc_if);
2011 
2012 	/* Clear and enable interrupts */
2013 	SK_XM_READ_2(sc_if, XM_ISR);
2014 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2015 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2016 	else
2017 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2018 
2019 	/* Configure MAC arbiter */
2020 	switch(sc_if->sk_xmac_rev) {
2021 	case XM_XMAC_REV_B2:
2022 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2023 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2024 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2025 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2026 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2027 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2028 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2029 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2030 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2031 		break;
2032 	case XM_XMAC_REV_C1:
2033 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2034 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2035 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2036 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2037 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2038 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2039 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2040 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2041 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 	sk_win_write_2(sc, SK_MACARB_CTL,
2047 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2048 
2049 	sc_if->sk_link = 1;
2050 
2051 	return;
2052 }
2053 
2054 /*
2055  * Note that to properly initialize any part of the GEnesis chip,
2056  * you first have to take it out of reset mode.
2057  */
2058 static void
2059 sk_init(xsc)
2060 	void			*xsc;
2061 {
2062 	struct sk_if_softc	*sc_if = xsc;
2063 	struct sk_softc		*sc;
2064 	struct ifnet		*ifp;
2065 	struct mii_data		*mii;
2066 
2067 	SK_IF_LOCK(sc_if);
2068 
2069 	ifp = &sc_if->arpcom.ac_if;
2070 	sc = sc_if->sk_softc;
2071 	mii = device_get_softc(sc_if->sk_miibus);
2072 
2073 	/* Cancel pending I/O and free all RX/TX buffers. */
2074 	sk_stop(sc_if);
2075 
2076 	/* Configure LINK_SYNC LED */
2077 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2078 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
2079 
2080 	/* Configure RX LED */
2081 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
2082 
2083 	/* Configure TX LED */
2084 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
2085 
2086 	/* Configure I2C registers */
2087 
2088 	/* Configure XMAC(s) */
2089 	sk_init_xmac(sc_if);
2090 	mii_mediachg(mii);
2091 
2092 	/* Configure MAC FIFOs */
2093 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2094 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2095 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2096 
2097 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2098 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2099 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2100 
2101 	/* Configure transmit arbiter(s) */
2102 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2103 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2104 
2105 	/* Configure RAMbuffers */
2106 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2107 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2108 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2109 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2110 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2111 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2112 
2113 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2114 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2115 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2116 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2117 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2118 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2119 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2120 
2121 	/* Configure BMUs */
2122 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2123 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2124 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2125 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2126 
2127 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2128 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2129 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2130 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2131 
2132 	/* Init descriptors */
2133 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2134 		printf("sk%d: initialization failed: no "
2135 		    "memory for rx buffers\n", sc_if->sk_unit);
2136 		sk_stop(sc_if);
2137 		SK_IF_UNLOCK(sc_if);
2138 		return;
2139 	}
2140 	sk_init_tx_ring(sc_if);
2141 
2142 	/* Configure interrupt handling */
2143 	CSR_READ_4(sc, SK_ISSR);
2144 	if (sc_if->sk_port == SK_PORT_A)
2145 		sc->sk_intrmask |= SK_INTRS1;
2146 	else
2147 		sc->sk_intrmask |= SK_INTRS2;
2148 
2149 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2150 
2151 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2152 
2153 	/* Start BMUs. */
2154 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2155 
2156 	/* Enable XMACs TX and RX state machines */
2157 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2158 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2159 
2160 	ifp->if_flags |= IFF_RUNNING;
2161 	ifp->if_flags &= ~IFF_OACTIVE;
2162 
2163 	SK_IF_UNLOCK(sc_if);
2164 
2165 	return;
2166 }
2167 
2168 static void
2169 sk_stop(sc_if)
2170 	struct sk_if_softc	*sc_if;
2171 {
2172 	int			i;
2173 	struct sk_softc		*sc;
2174 	struct ifnet		*ifp;
2175 
2176 	SK_IF_LOCK(sc_if);
2177 	sc = sc_if->sk_softc;
2178 	ifp = &sc_if->arpcom.ac_if;
2179 
2180 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2181 
2182 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2183 		u_int32_t		val;
2184 
2185 		/* Put PHY back into reset. */
2186 		val = sk_win_read_4(sc, SK_GPIO);
2187 		if (sc_if->sk_port == SK_PORT_A) {
2188 			val |= SK_GPIO_DIR0;
2189 			val &= ~SK_GPIO_DAT0;
2190 		} else {
2191 			val |= SK_GPIO_DIR2;
2192 			val &= ~SK_GPIO_DAT2;
2193 		}
2194 		sk_win_write_4(sc, SK_GPIO, val);
2195 	}
2196 
2197 	/* Turn off various components of this interface. */
2198 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2199 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2200 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2201 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2202 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2203 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2204 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2205 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2206 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2207 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2208 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2209 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2210 
2211 	/* Disable interrupts */
2212 	if (sc_if->sk_port == SK_PORT_A)
2213 		sc->sk_intrmask &= ~SK_INTRS1;
2214 	else
2215 		sc->sk_intrmask &= ~SK_INTRS2;
2216 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2217 
2218 	SK_XM_READ_2(sc_if, XM_ISR);
2219 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2220 
2221 	/* Free RX and TX mbufs still in the queues. */
2222 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2223 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2224 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2225 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2226 		}
2227 	}
2228 
2229 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2230 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2231 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2232 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2233 		}
2234 	}
2235 
2236 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2237 	SK_IF_UNLOCK(sc_if);
2238 	return;
2239 }
2240