xref: /freebsd/sys/dev/sk/if_sk.c (revision 74ca7bf1d4c7173d5575ba168bc4b5f6d181ff5a)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 /*
56  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
57  * the SK-984x series adapters, both single port and dual port.
58  * References:
59  * 	The XaQti XMAC II datasheet,
60  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
61  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
62  *
63  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
64  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
65  * convenience to others until Vitesse corrects this problem:
66  *
67  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
68  *
69  * Written by Bill Paul <wpaul@ee.columbia.edu>
70  * Department of Electrical Engineering
71  * Columbia University, New York City
72  */
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/bus.h>
93 #include <sys/endian.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sockio.h>
100 #include <sys/queue.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 
117 #include <machine/bus.h>
118 #include <machine/in_cksum.h>
119 #include <machine/resource.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #if 0
130 #define SK_USEIOSPACE
131 #endif
132 
133 #include <dev/sk/if_skreg.h>
134 #include <dev/sk/xmaciireg.h>
135 #include <dev/sk/yukonreg.h>
136 
137 MODULE_DEPEND(sk, pci, 1, 1, 1);
138 MODULE_DEPEND(sk, ether, 1, 1, 1);
139 MODULE_DEPEND(sk, miibus, 1, 1, 1);
140 
141 /* "device miibus" required.  See GENERIC if you get errors here. */
142 #include "miibus_if.h"
143 
144 static const struct sk_type sk_devs[] = {
145 	{
146 		VENDORID_SK,
147 		DEVICEID_SK_V1,
148 		"SysKonnect Gigabit Ethernet (V1.0)"
149 	},
150 	{
151 		VENDORID_SK,
152 		DEVICEID_SK_V2,
153 		"SysKonnect Gigabit Ethernet (V2.0)"
154 	},
155 	{
156 		VENDORID_MARVELL,
157 		DEVICEID_SK_V2,
158 		"Marvell Gigabit Ethernet"
159 	},
160 	{
161 		VENDORID_MARVELL,
162 		DEVICEID_BELKIN_5005,
163 		"Belkin F5D5005 Gigabit Ethernet"
164 	},
165 	{
166 		VENDORID_3COM,
167 		DEVICEID_3COM_3C940,
168 		"3Com 3C940 Gigabit Ethernet"
169 	},
170 	{
171 		VENDORID_LINKSYS,
172 		DEVICEID_LINKSYS_EG1032,
173 		"Linksys EG1032 Gigabit Ethernet"
174 	},
175 	{
176 		VENDORID_DLINK,
177 		DEVICEID_DLINK_DGE530T_A1,
178 		"D-Link DGE-530T Gigabit Ethernet"
179 	},
180 	{
181 		VENDORID_DLINK,
182 		DEVICEID_DLINK_DGE530T_B1,
183 		"D-Link DGE-530T Gigabit Ethernet"
184 	},
185 	{ 0, 0, NULL }
186 };
187 
188 static int skc_probe(device_t);
189 static int skc_attach(device_t);
190 static int skc_detach(device_t);
191 static int skc_shutdown(device_t);
192 static int skc_suspend(device_t);
193 static int skc_resume(device_t);
194 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
195 static int sk_detach(device_t);
196 static int sk_probe(device_t);
197 static int sk_attach(device_t);
198 static void sk_tick(void *);
199 static void sk_yukon_tick(void *);
200 static void sk_intr(void *);
201 static void sk_intr_xmac(struct sk_if_softc *);
202 static void sk_intr_bcom(struct sk_if_softc *);
203 static void sk_intr_yukon(struct sk_if_softc *);
204 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
205 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
206 static void sk_rxeof(struct sk_if_softc *);
207 static void sk_jumbo_rxeof(struct sk_if_softc *);
208 static void sk_txeof(struct sk_if_softc *);
209 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
210 static int sk_encap(struct sk_if_softc *, struct mbuf **);
211 static void sk_start(struct ifnet *);
212 static void sk_start_locked(struct ifnet *);
213 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
214 static void sk_init(void *);
215 static void sk_init_locked(struct sk_if_softc *);
216 static void sk_init_xmac(struct sk_if_softc *);
217 static void sk_init_yukon(struct sk_if_softc *);
218 static void sk_stop(struct sk_if_softc *);
219 static void sk_watchdog(void *);
220 static int sk_ifmedia_upd(struct ifnet *);
221 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
222 static void sk_reset(struct sk_softc *);
223 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
224 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
225 static int sk_newbuf(struct sk_if_softc *, int);
226 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
227 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
228 static int sk_dma_alloc(struct sk_if_softc *);
229 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
230 static void sk_dma_free(struct sk_if_softc *);
231 static void sk_dma_jumbo_free(struct sk_if_softc *);
232 static int sk_init_rx_ring(struct sk_if_softc *);
233 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
234 static void sk_init_tx_ring(struct sk_if_softc *);
235 static u_int32_t sk_win_read_4(struct sk_softc *, int);
236 static u_int16_t sk_win_read_2(struct sk_softc *, int);
237 static u_int8_t sk_win_read_1(struct sk_softc *, int);
238 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
241 
242 static int sk_miibus_readreg(device_t, int, int);
243 static int sk_miibus_writereg(device_t, int, int, int);
244 static void sk_miibus_statchg(device_t);
245 
246 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
247 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
248 						int);
249 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
250 
251 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
252 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
253 						int);
254 static void sk_marv_miibus_statchg(struct sk_if_softc *);
255 
256 static uint32_t sk_xmchash(const uint8_t *);
257 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
258 static void sk_rxfilter(struct sk_if_softc *);
259 static void sk_rxfilter_genesis(struct sk_if_softc *);
260 static void sk_rxfilter_yukon(struct sk_if_softc *);
261 
262 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
263 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
264 
265 /* Tunables. */
266 static int jumbo_disable = 0;
267 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
268 
269 /*
270  * It seems that SK-NET GENESIS supports very simple checksum offload
271  * capability for Tx and I believe it can generate 0 checksum value for
272  * UDP packets in Tx as the hardware can't differenciate UDP packets from
273  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
274  * means sender didn't perforam checksum computation. For the safety I
275  * disabled UDP checksum offload capability at the moment. Alternatively
276  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
277  * offload routine.
278  */
279 #define SK_CSUM_FEATURES	(CSUM_TCP)
280 
281 /*
282  * Note that we have newbus methods for both the GEnesis controller
283  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
284  * the miibus code is a child of the XMACs. We need to do it this way
285  * so that the miibus drivers can access the PHY registers on the
286  * right PHY. It's not quite what I had in mind, but it's the only
287  * design that achieves the desired effect.
288  */
289 static device_method_t skc_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		skc_probe),
292 	DEVMETHOD(device_attach,	skc_attach),
293 	DEVMETHOD(device_detach,	skc_detach),
294 	DEVMETHOD(device_suspend,	skc_suspend),
295 	DEVMETHOD(device_resume,	skc_resume),
296 	DEVMETHOD(device_shutdown,	skc_shutdown),
297 
298 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
299 
300 	DEVMETHOD_END
301 };
302 
303 static driver_t skc_driver = {
304 	"skc",
305 	skc_methods,
306 	sizeof(struct sk_softc)
307 };
308 
309 static devclass_t skc_devclass;
310 
311 static device_method_t sk_methods[] = {
312 	/* Device interface */
313 	DEVMETHOD(device_probe,		sk_probe),
314 	DEVMETHOD(device_attach,	sk_attach),
315 	DEVMETHOD(device_detach,	sk_detach),
316 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
322 
323 	DEVMETHOD_END
324 };
325 
326 static driver_t sk_driver = {
327 	"sk",
328 	sk_methods,
329 	sizeof(struct sk_if_softc)
330 };
331 
332 static devclass_t sk_devclass;
333 
334 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
335 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
336 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
337 
338 static struct resource_spec sk_res_spec_io[] = {
339 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 static struct resource_spec sk_res_spec_mem[] = {
345 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
346 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
347 	{ -1,			0,		0 }
348 };
349 
350 #define SK_SETBIT(sc, reg, x)		\
351 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
352 
353 #define SK_CLRBIT(sc, reg, x)		\
354 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_4(sc, reg, x)	\
357 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
360 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
361 
362 #define SK_WIN_SETBIT_2(sc, reg, x)	\
363 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
364 
365 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
366 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
367 
368 static u_int32_t
369 sk_win_read_4(sc, reg)
370 	struct sk_softc		*sc;
371 	int			reg;
372 {
373 #ifdef SK_USEIOSPACE
374 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
375 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
376 #else
377 	return(CSR_READ_4(sc, reg));
378 #endif
379 }
380 
381 static u_int16_t
382 sk_win_read_2(sc, reg)
383 	struct sk_softc		*sc;
384 	int			reg;
385 {
386 #ifdef SK_USEIOSPACE
387 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
388 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
389 #else
390 	return(CSR_READ_2(sc, reg));
391 #endif
392 }
393 
394 static u_int8_t
395 sk_win_read_1(sc, reg)
396 	struct sk_softc		*sc;
397 	int			reg;
398 {
399 #ifdef SK_USEIOSPACE
400 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
401 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
402 #else
403 	return(CSR_READ_1(sc, reg));
404 #endif
405 }
406 
407 static void
408 sk_win_write_4(sc, reg, val)
409 	struct sk_softc		*sc;
410 	int			reg;
411 	u_int32_t		val;
412 {
413 #ifdef SK_USEIOSPACE
414 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
415 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
416 #else
417 	CSR_WRITE_4(sc, reg, val);
418 #endif
419 	return;
420 }
421 
422 static void
423 sk_win_write_2(sc, reg, val)
424 	struct sk_softc		*sc;
425 	int			reg;
426 	u_int32_t		val;
427 {
428 #ifdef SK_USEIOSPACE
429 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
430 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
431 #else
432 	CSR_WRITE_2(sc, reg, val);
433 #endif
434 	return;
435 }
436 
437 static void
438 sk_win_write_1(sc, reg, val)
439 	struct sk_softc		*sc;
440 	int			reg;
441 	u_int32_t		val;
442 {
443 #ifdef SK_USEIOSPACE
444 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
445 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
446 #else
447 	CSR_WRITE_1(sc, reg, val);
448 #endif
449 	return;
450 }
451 
452 static int
453 sk_miibus_readreg(dev, phy, reg)
454 	device_t		dev;
455 	int			phy, reg;
456 {
457 	struct sk_if_softc	*sc_if;
458 	int			v;
459 
460 	sc_if = device_get_softc(dev);
461 
462 	SK_IF_MII_LOCK(sc_if);
463 	switch(sc_if->sk_softc->sk_type) {
464 	case SK_GENESIS:
465 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
466 		break;
467 	case SK_YUKON:
468 	case SK_YUKON_LITE:
469 	case SK_YUKON_LP:
470 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
471 		break;
472 	default:
473 		v = 0;
474 		break;
475 	}
476 	SK_IF_MII_UNLOCK(sc_if);
477 
478 	return (v);
479 }
480 
481 static int
482 sk_miibus_writereg(dev, phy, reg, val)
483 	device_t		dev;
484 	int			phy, reg, val;
485 {
486 	struct sk_if_softc	*sc_if;
487 	int			v;
488 
489 	sc_if = device_get_softc(dev);
490 
491 	SK_IF_MII_LOCK(sc_if);
492 	switch(sc_if->sk_softc->sk_type) {
493 	case SK_GENESIS:
494 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
495 		break;
496 	case SK_YUKON:
497 	case SK_YUKON_LITE:
498 	case SK_YUKON_LP:
499 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
500 		break;
501 	default:
502 		v = 0;
503 		break;
504 	}
505 	SK_IF_MII_UNLOCK(sc_if);
506 
507 	return (v);
508 }
509 
510 static void
511 sk_miibus_statchg(dev)
512 	device_t		dev;
513 {
514 	struct sk_if_softc	*sc_if;
515 
516 	sc_if = device_get_softc(dev);
517 
518 	SK_IF_MII_LOCK(sc_if);
519 	switch(sc_if->sk_softc->sk_type) {
520 	case SK_GENESIS:
521 		sk_xmac_miibus_statchg(sc_if);
522 		break;
523 	case SK_YUKON:
524 	case SK_YUKON_LITE:
525 	case SK_YUKON_LP:
526 		sk_marv_miibus_statchg(sc_if);
527 		break;
528 	}
529 	SK_IF_MII_UNLOCK(sc_if);
530 
531 	return;
532 }
533 
534 static int
535 sk_xmac_miibus_readreg(sc_if, phy, reg)
536 	struct sk_if_softc	*sc_if;
537 	int			phy, reg;
538 {
539 	int			i;
540 
541 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
542 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
543 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
544 		for (i = 0; i < SK_TIMEOUT; i++) {
545 			DELAY(1);
546 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
547 			    XM_MMUCMD_PHYDATARDY)
548 				break;
549 		}
550 
551 		if (i == SK_TIMEOUT) {
552 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
553 			return(0);
554 		}
555 	}
556 	DELAY(1);
557 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
558 
559 	return(i);
560 }
561 
562 static int
563 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
564 	struct sk_if_softc	*sc_if;
565 	int			phy, reg, val;
566 {
567 	int			i;
568 
569 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
570 	for (i = 0; i < SK_TIMEOUT; i++) {
571 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
572 			break;
573 	}
574 
575 	if (i == SK_TIMEOUT) {
576 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
577 		return (ETIMEDOUT);
578 	}
579 
580 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
581 	for (i = 0; i < SK_TIMEOUT; i++) {
582 		DELAY(1);
583 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
584 			break;
585 	}
586 	if (i == SK_TIMEOUT)
587 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
588 
589 	return(0);
590 }
591 
592 static void
593 sk_xmac_miibus_statchg(sc_if)
594 	struct sk_if_softc	*sc_if;
595 {
596 	struct mii_data		*mii;
597 
598 	mii = device_get_softc(sc_if->sk_miibus);
599 
600 	/*
601 	 * If this is a GMII PHY, manually set the XMAC's
602 	 * duplex mode accordingly.
603 	 */
604 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
605 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
606 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607 		} else {
608 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609 		}
610 	}
611 }
612 
613 static int
614 sk_marv_miibus_readreg(sc_if, phy, reg)
615 	struct sk_if_softc	*sc_if;
616 	int			phy, reg;
617 {
618 	u_int16_t		val;
619 	int			i;
620 
621 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
622 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
623 		return(0);
624 	}
625 
626         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
627 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
628 
629 	for (i = 0; i < SK_TIMEOUT; i++) {
630 		DELAY(1);
631 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
632 		if (val & YU_SMICR_READ_VALID)
633 			break;
634 	}
635 
636 	if (i == SK_TIMEOUT) {
637 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
638 		return(0);
639 	}
640 
641 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
642 
643 	return(val);
644 }
645 
646 static int
647 sk_marv_miibus_writereg(sc_if, phy, reg, val)
648 	struct sk_if_softc	*sc_if;
649 	int			phy, reg, val;
650 {
651 	int			i;
652 
653 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
654 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
655 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
656 
657 	for (i = 0; i < SK_TIMEOUT; i++) {
658 		DELAY(1);
659 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
660 			break;
661 	}
662 	if (i == SK_TIMEOUT)
663 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
664 
665 	return(0);
666 }
667 
668 static void
669 sk_marv_miibus_statchg(sc_if)
670 	struct sk_if_softc	*sc_if;
671 {
672 	return;
673 }
674 
675 #define HASH_BITS		6
676 
677 static u_int32_t
678 sk_xmchash(addr)
679 	const uint8_t *addr;
680 {
681 	uint32_t crc;
682 
683 	/* Compute CRC for the address value. */
684 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
685 
686 	return (~crc & ((1 << HASH_BITS) - 1));
687 }
688 
689 static void
690 sk_setfilt(sc_if, addr, slot)
691 	struct sk_if_softc	*sc_if;
692 	u_int16_t		*addr;
693 	int			slot;
694 {
695 	int			base;
696 
697 	base = XM_RXFILT_ENTRY(slot);
698 
699 	SK_XM_WRITE_2(sc_if, base, addr[0]);
700 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
701 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
702 
703 	return;
704 }
705 
706 static void
707 sk_rxfilter(sc_if)
708 	struct sk_if_softc	*sc_if;
709 {
710 	struct sk_softc		*sc;
711 
712 	SK_IF_LOCK_ASSERT(sc_if);
713 
714 	sc = sc_if->sk_softc;
715 	if (sc->sk_type == SK_GENESIS)
716 		sk_rxfilter_genesis(sc_if);
717 	else
718 		sk_rxfilter_yukon(sc_if);
719 }
720 
721 static void
722 sk_rxfilter_genesis(sc_if)
723 	struct sk_if_softc	*sc_if;
724 {
725 	struct ifnet		*ifp = sc_if->sk_ifp;
726 	u_int32_t		hashes[2] = { 0, 0 }, mode;
727 	int			h = 0, i;
728 	struct ifmultiaddr	*ifma;
729 	u_int16_t		dummy[] = { 0, 0, 0 };
730 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
731 
732 	SK_IF_LOCK_ASSERT(sc_if);
733 
734 	mode = SK_XM_READ_4(sc_if, XM_MODE);
735 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
736 	    XM_MODE_RX_USE_PERFECT);
737 	/* First, zot all the existing perfect filters. */
738 	for (i = 1; i < XM_RXFILT_MAX; i++)
739 		sk_setfilt(sc_if, dummy, i);
740 
741 	/* Now program new ones. */
742 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
743 		if (ifp->if_flags & IFF_ALLMULTI)
744 			mode |= XM_MODE_RX_USE_HASH;
745 		if (ifp->if_flags & IFF_PROMISC)
746 			mode |= XM_MODE_RX_PROMISC;
747 		hashes[0] = 0xFFFFFFFF;
748 		hashes[1] = 0xFFFFFFFF;
749 	} else {
750 		i = 1;
751 		if_maddr_rlock(ifp);
752 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
753 		    ifma_link) {
754 			if (ifma->ifma_addr->sa_family != AF_LINK)
755 				continue;
756 			/*
757 			 * Program the first XM_RXFILT_MAX multicast groups
758 			 * into the perfect filter.
759 			 */
760 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
761 			    maddr, ETHER_ADDR_LEN);
762 			if (i < XM_RXFILT_MAX) {
763 				sk_setfilt(sc_if, maddr, i);
764 				mode |= XM_MODE_RX_USE_PERFECT;
765 				i++;
766 				continue;
767 			}
768 			h = sk_xmchash((const uint8_t *)maddr);
769 			if (h < 32)
770 				hashes[0] |= (1 << h);
771 			else
772 				hashes[1] |= (1 << (h - 32));
773 			mode |= XM_MODE_RX_USE_HASH;
774 		}
775 		if_maddr_runlock(ifp);
776 	}
777 
778 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
779 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
780 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
781 }
782 
783 static void
784 sk_rxfilter_yukon(sc_if)
785 	struct sk_if_softc	*sc_if;
786 {
787 	struct ifnet		*ifp;
788 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
789 	struct ifmultiaddr	*ifma;
790 
791 	SK_IF_LOCK_ASSERT(sc_if);
792 
793 	ifp = sc_if->sk_ifp;
794 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
795 	if (ifp->if_flags & IFF_PROMISC)
796 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
797 	else if (ifp->if_flags & IFF_ALLMULTI) {
798 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
799 		hashes[0] = 0xFFFFFFFF;
800 		hashes[1] = 0xFFFFFFFF;
801 	} else {
802 		mode |= YU_RCR_UFLEN;
803 		if_maddr_rlock(ifp);
804 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
805 			if (ifma->ifma_addr->sa_family != AF_LINK)
806 				continue;
807 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
808 			    ifma->ifma_addr), ETHER_ADDR_LEN);
809 			/* Just want the 6 least significant bits. */
810 			crc &= 0x3f;
811 			/* Set the corresponding bit in the hash table. */
812 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
813 		}
814 		if_maddr_runlock(ifp);
815 		if (hashes[0] != 0 || hashes[1] != 0)
816 			mode |= YU_RCR_MUFLEN;
817 	}
818 
819 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
820 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
821 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
822 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
823 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
824 }
825 
826 static int
827 sk_init_rx_ring(sc_if)
828 	struct sk_if_softc	*sc_if;
829 {
830 	struct sk_ring_data	*rd;
831 	bus_addr_t		addr;
832 	u_int32_t		csum_start;
833 	int			i;
834 
835 	sc_if->sk_cdata.sk_rx_cons = 0;
836 
837 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
838 	    ETHER_HDR_LEN;
839 	rd = &sc_if->sk_rdata;
840 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
841 	for (i = 0; i < SK_RX_RING_CNT; i++) {
842 		if (sk_newbuf(sc_if, i) != 0)
843 			return (ENOBUFS);
844 		if (i == (SK_RX_RING_CNT - 1))
845 			addr = SK_RX_RING_ADDR(sc_if, 0);
846 		else
847 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
848 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
849 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
850 	}
851 
852 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
853 	    sc_if->sk_cdata.sk_rx_ring_map,
854 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
855 
856 	return(0);
857 }
858 
859 static int
860 sk_init_jumbo_rx_ring(sc_if)
861 	struct sk_if_softc	*sc_if;
862 {
863 	struct sk_ring_data	*rd;
864 	bus_addr_t		addr;
865 	u_int32_t		csum_start;
866 	int			i;
867 
868 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
869 
870 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
871 	    ETHER_HDR_LEN;
872 	rd = &sc_if->sk_rdata;
873 	bzero(rd->sk_jumbo_rx_ring,
874 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
875 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
876 		if (sk_jumbo_newbuf(sc_if, i) != 0)
877 			return (ENOBUFS);
878 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
879 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
880 		else
881 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
882 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
883 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
884 	}
885 
886 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
887 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
888 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
889 
890 	return (0);
891 }
892 
893 static void
894 sk_init_tx_ring(sc_if)
895 	struct sk_if_softc	*sc_if;
896 {
897 	struct sk_ring_data	*rd;
898 	struct sk_txdesc	*txd;
899 	bus_addr_t		addr;
900 	int			i;
901 
902 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
903 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
904 
905 	sc_if->sk_cdata.sk_tx_prod = 0;
906 	sc_if->sk_cdata.sk_tx_cons = 0;
907 	sc_if->sk_cdata.sk_tx_cnt = 0;
908 
909 	rd = &sc_if->sk_rdata;
910 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
911 	for (i = 0; i < SK_TX_RING_CNT; i++) {
912 		if (i == (SK_TX_RING_CNT - 1))
913 			addr = SK_TX_RING_ADDR(sc_if, 0);
914 		else
915 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
916 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
917 		txd = &sc_if->sk_cdata.sk_txdesc[i];
918 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
919 	}
920 
921 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
922 	    sc_if->sk_cdata.sk_tx_ring_map,
923 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
924 }
925 
926 static __inline void
927 sk_discard_rxbuf(sc_if, idx)
928 	struct sk_if_softc	*sc_if;
929 	int			idx;
930 {
931 	struct sk_rx_desc	*r;
932 	struct sk_rxdesc	*rxd;
933 	struct mbuf		*m;
934 
935 
936 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
937 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
938 	m = rxd->rx_m;
939 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
940 }
941 
942 static __inline void
943 sk_discard_jumbo_rxbuf(sc_if, idx)
944 	struct sk_if_softc	*sc_if;
945 	int			idx;
946 {
947 	struct sk_rx_desc	*r;
948 	struct sk_rxdesc	*rxd;
949 	struct mbuf		*m;
950 
951 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
952 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
953 	m = rxd->rx_m;
954 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
955 }
956 
957 static int
958 sk_newbuf(sc_if, idx)
959 	struct sk_if_softc	*sc_if;
960 	int 			idx;
961 {
962 	struct sk_rx_desc	*r;
963 	struct sk_rxdesc	*rxd;
964 	struct mbuf		*m;
965 	bus_dma_segment_t	segs[1];
966 	bus_dmamap_t		map;
967 	int			nsegs;
968 
969 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
970 	if (m == NULL)
971 		return (ENOBUFS);
972 	m->m_len = m->m_pkthdr.len = MCLBYTES;
973 	m_adj(m, ETHER_ALIGN);
974 
975 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
976 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
977 		m_freem(m);
978 		return (ENOBUFS);
979 	}
980 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
981 
982 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
983 	if (rxd->rx_m != NULL) {
984 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
985 		    BUS_DMASYNC_POSTREAD);
986 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
987 	}
988 	map = rxd->rx_dmamap;
989 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
990 	sc_if->sk_cdata.sk_rx_sparemap = map;
991 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
992 	    BUS_DMASYNC_PREREAD);
993 	rxd->rx_m = m;
994 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
995 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
996 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
997 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
998 
999 	return (0);
1000 }
1001 
1002 static int
1003 sk_jumbo_newbuf(sc_if, idx)
1004 	struct sk_if_softc	*sc_if;
1005 	int			idx;
1006 {
1007 	struct sk_rx_desc	*r;
1008 	struct sk_rxdesc	*rxd;
1009 	struct mbuf		*m;
1010 	bus_dma_segment_t	segs[1];
1011 	bus_dmamap_t		map;
1012 	int			nsegs;
1013 
1014 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1015 	if (m == NULL)
1016 		return (ENOBUFS);
1017 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1018 	/*
1019 	 * Adjust alignment so packet payload begins on a
1020 	 * longword boundary. Mandatory for Alpha, useful on
1021 	 * x86 too.
1022 	 */
1023 	m_adj(m, ETHER_ALIGN);
1024 
1025 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1026 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1027 		m_freem(m);
1028 		return (ENOBUFS);
1029 	}
1030 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1031 
1032 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1033 	if (rxd->rx_m != NULL) {
1034 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1035 		    BUS_DMASYNC_POSTREAD);
1036 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1037 		    rxd->rx_dmamap);
1038 	}
1039 	map = rxd->rx_dmamap;
1040 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1041 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1042 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1043 	    BUS_DMASYNC_PREREAD);
1044 	rxd->rx_m = m;
1045 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1046 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1047 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1048 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1049 
1050 	return (0);
1051 }
1052 
1053 /*
1054  * Set media options.
1055  */
1056 static int
1057 sk_ifmedia_upd(ifp)
1058 	struct ifnet		*ifp;
1059 {
1060 	struct sk_if_softc	*sc_if = ifp->if_softc;
1061 	struct mii_data		*mii;
1062 
1063 	mii = device_get_softc(sc_if->sk_miibus);
1064 	sk_init(sc_if);
1065 	mii_mediachg(mii);
1066 
1067 	return(0);
1068 }
1069 
1070 /*
1071  * Report current media status.
1072  */
1073 static void
1074 sk_ifmedia_sts(ifp, ifmr)
1075 	struct ifnet		*ifp;
1076 	struct ifmediareq	*ifmr;
1077 {
1078 	struct sk_if_softc	*sc_if;
1079 	struct mii_data		*mii;
1080 
1081 	sc_if = ifp->if_softc;
1082 	mii = device_get_softc(sc_if->sk_miibus);
1083 
1084 	mii_pollstat(mii);
1085 	ifmr->ifm_active = mii->mii_media_active;
1086 	ifmr->ifm_status = mii->mii_media_status;
1087 
1088 	return;
1089 }
1090 
1091 static int
1092 sk_ioctl(ifp, command, data)
1093 	struct ifnet		*ifp;
1094 	u_long			command;
1095 	caddr_t			data;
1096 {
1097 	struct sk_if_softc	*sc_if = ifp->if_softc;
1098 	struct ifreq		*ifr = (struct ifreq *) data;
1099 	int			error, mask;
1100 	struct mii_data		*mii;
1101 
1102 	error = 0;
1103 	switch(command) {
1104 	case SIOCSIFMTU:
1105 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1106 			error = EINVAL;
1107 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1108 			if (sc_if->sk_jumbo_disable != 0 &&
1109 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1110 				error = EINVAL;
1111 			else {
1112 				SK_IF_LOCK(sc_if);
1113 				ifp->if_mtu = ifr->ifr_mtu;
1114 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1115 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1116 					sk_init_locked(sc_if);
1117 				}
1118 				SK_IF_UNLOCK(sc_if);
1119 			}
1120 		}
1121 		break;
1122 	case SIOCSIFFLAGS:
1123 		SK_IF_LOCK(sc_if);
1124 		if (ifp->if_flags & IFF_UP) {
1125 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1126 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1127 				    & (IFF_PROMISC | IFF_ALLMULTI))
1128 					sk_rxfilter(sc_if);
1129 			} else
1130 				sk_init_locked(sc_if);
1131 		} else {
1132 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1133 				sk_stop(sc_if);
1134 		}
1135 		sc_if->sk_if_flags = ifp->if_flags;
1136 		SK_IF_UNLOCK(sc_if);
1137 		break;
1138 	case SIOCADDMULTI:
1139 	case SIOCDELMULTI:
1140 		SK_IF_LOCK(sc_if);
1141 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1142 			sk_rxfilter(sc_if);
1143 		SK_IF_UNLOCK(sc_if);
1144 		break;
1145 	case SIOCGIFMEDIA:
1146 	case SIOCSIFMEDIA:
1147 		mii = device_get_softc(sc_if->sk_miibus);
1148 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1149 		break;
1150 	case SIOCSIFCAP:
1151 		SK_IF_LOCK(sc_if);
1152 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1153 			SK_IF_UNLOCK(sc_if);
1154 			break;
1155 		}
1156 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1157 		if ((mask & IFCAP_TXCSUM) != 0 &&
1158 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1159 			ifp->if_capenable ^= IFCAP_TXCSUM;
1160 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1161 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1162 			else
1163 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1164 		}
1165 		if ((mask & IFCAP_RXCSUM) != 0 &&
1166 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1167 			ifp->if_capenable ^= IFCAP_RXCSUM;
1168 		SK_IF_UNLOCK(sc_if);
1169 		break;
1170 	default:
1171 		error = ether_ioctl(ifp, command, data);
1172 		break;
1173 	}
1174 
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1180  * IDs against our list and return a device name if we find a match.
1181  */
1182 static int
1183 skc_probe(dev)
1184 	device_t		dev;
1185 {
1186 	const struct sk_type	*t = sk_devs;
1187 
1188 	while(t->sk_name != NULL) {
1189 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1190 		    (pci_get_device(dev) == t->sk_did)) {
1191 			/*
1192 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1193 			 * Rev. 3 is supported by re(4).
1194 			 */
1195 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1196 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1197 				(pci_get_subdevice(dev) !=
1198 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1199 				t++;
1200 				continue;
1201 			}
1202 			device_set_desc(dev, t->sk_name);
1203 			return (BUS_PROBE_DEFAULT);
1204 		}
1205 		t++;
1206 	}
1207 
1208 	return(ENXIO);
1209 }
1210 
1211 /*
1212  * Force the GEnesis into reset, then bring it out of reset.
1213  */
1214 static void
1215 sk_reset(sc)
1216 	struct sk_softc		*sc;
1217 {
1218 
1219 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1220 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1221 	if (SK_YUKON_FAMILY(sc->sk_type))
1222 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1223 
1224 	DELAY(1000);
1225 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1226 	DELAY(2);
1227 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1228 	if (SK_YUKON_FAMILY(sc->sk_type))
1229 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1230 
1231 	if (sc->sk_type == SK_GENESIS) {
1232 		/* Configure packet arbiter */
1233 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1234 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1235 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1236 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1237 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1238 	}
1239 
1240 	/* Enable RAM interface */
1241 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1242 
1243 	/*
1244          * Configure interrupt moderation. The moderation timer
1245 	 * defers interrupts specified in the interrupt moderation
1246 	 * timer mask based on the timeout specified in the interrupt
1247 	 * moderation timer init register. Each bit in the timer
1248 	 * register represents one tick, so to specify a timeout in
1249 	 * microseconds, we have to multiply by the correct number of
1250 	 * ticks-per-microsecond.
1251 	 */
1252 	switch (sc->sk_type) {
1253 	case SK_GENESIS:
1254 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1255 		break;
1256 	default:
1257 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1258 		break;
1259 	}
1260 	if (bootverbose)
1261 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1262 		    sc->sk_int_mod);
1263 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1264 	    sc->sk_int_ticks));
1265 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1266 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1267 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1268 
1269 	return;
1270 }
1271 
1272 static int
1273 sk_probe(dev)
1274 	device_t		dev;
1275 {
1276 	struct sk_softc		*sc;
1277 
1278 	sc = device_get_softc(device_get_parent(dev));
1279 
1280 	/*
1281 	 * Not much to do here. We always know there will be
1282 	 * at least one XMAC present, and if there are two,
1283 	 * skc_attach() will create a second device instance
1284 	 * for us.
1285 	 */
1286 	switch (sc->sk_type) {
1287 	case SK_GENESIS:
1288 		device_set_desc(dev, "XaQti Corp. XMAC II");
1289 		break;
1290 	case SK_YUKON:
1291 	case SK_YUKON_LITE:
1292 	case SK_YUKON_LP:
1293 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1294 		break;
1295 	}
1296 
1297 	return (BUS_PROBE_DEFAULT);
1298 }
1299 
1300 /*
1301  * Each XMAC chip is attached as a separate logical IP interface.
1302  * Single port cards will have only one logical interface of course.
1303  */
1304 static int
1305 sk_attach(dev)
1306 	device_t		dev;
1307 {
1308 	struct sk_softc		*sc;
1309 	struct sk_if_softc	*sc_if;
1310 	struct ifnet		*ifp;
1311 	u_int32_t		r;
1312 	int			error, i, phy, port;
1313 	u_char			eaddr[6];
1314 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1315 
1316 	if (dev == NULL)
1317 		return(EINVAL);
1318 
1319 	error = 0;
1320 	sc_if = device_get_softc(dev);
1321 	sc = device_get_softc(device_get_parent(dev));
1322 	port = *(int *)device_get_ivars(dev);
1323 
1324 	sc_if->sk_if_dev = dev;
1325 	sc_if->sk_port = port;
1326 	sc_if->sk_softc = sc;
1327 	sc->sk_if[port] = sc_if;
1328 	if (port == SK_PORT_A)
1329 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1330 	if (port == SK_PORT_B)
1331 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1332 
1333 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1334 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1335 
1336 	if (sk_dma_alloc(sc_if) != 0) {
1337 		error = ENOMEM;
1338 		goto fail;
1339 	}
1340 	sk_dma_jumbo_alloc(sc_if);
1341 
1342 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1343 	if (ifp == NULL) {
1344 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1345 		error = ENOSPC;
1346 		goto fail;
1347 	}
1348 	ifp->if_softc = sc_if;
1349 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1350 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1351 	/*
1352 	 * SK_GENESIS has a bug in checksum offload - From linux.
1353 	 */
1354 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1355 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1356 		ifp->if_hwassist = 0;
1357 	} else {
1358 		ifp->if_capabilities = 0;
1359 		ifp->if_hwassist = 0;
1360 	}
1361 	ifp->if_capenable = ifp->if_capabilities;
1362 	/*
1363 	 * Some revision of Yukon controller generates corrupted
1364 	 * frame when TX checksum offloading is enabled.  The
1365 	 * frame has a valid checksum value so payload might be
1366 	 * modified during TX checksum calculation. Disable TX
1367 	 * checksum offloading but give users chance to enable it
1368 	 * when they know their controller works without problems
1369 	 * with TX checksum offloading.
1370 	 */
1371 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1372 	ifp->if_ioctl = sk_ioctl;
1373 	ifp->if_start = sk_start;
1374 	ifp->if_init = sk_init;
1375 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1376 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1377 	IFQ_SET_READY(&ifp->if_snd);
1378 
1379 	/*
1380 	 * Get station address for this interface. Note that
1381 	 * dual port cards actually come with three station
1382 	 * addresses: one for each port, plus an extra. The
1383 	 * extra one is used by the SysKonnect driver software
1384 	 * as a 'virtual' station address for when both ports
1385 	 * are operating in failover mode. Currently we don't
1386 	 * use this extra address.
1387 	 */
1388 	SK_IF_LOCK(sc_if);
1389 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1390 		eaddr[i] =
1391 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1392 
1393 	/* Verify whether the station address is invalid or not. */
1394 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1395 		device_printf(sc_if->sk_if_dev,
1396 		    "Generating random ethernet address\n");
1397 		r = arc4random();
1398 		/*
1399 		 * Set OUI to convenient locally assigned address.  'b'
1400 		 * is 0x62, which has the locally assigned bit set, and
1401 		 * the broadcast/multicast bit clear.
1402 		 */
1403 		eaddr[0] = 'b';
1404 		eaddr[1] = 's';
1405 		eaddr[2] = 'd';
1406 		eaddr[3] = (r >> 16) & 0xff;
1407 		eaddr[4] = (r >>  8) & 0xff;
1408 		eaddr[5] = (r >>  0) & 0xff;
1409 	}
1410 	/*
1411 	 * Set up RAM buffer addresses. The NIC will have a certain
1412 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1413 	 * need to divide this up a) between the transmitter and
1414  	 * receiver and b) between the two XMACs, if this is a
1415 	 * dual port NIC. Our algotithm is to divide up the memory
1416 	 * evenly so that everyone gets a fair share.
1417 	 *
1418 	 * Just to be contrary, Yukon2 appears to have separate memory
1419 	 * for each MAC.
1420 	 */
1421 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1422 		u_int32_t		chunk, val;
1423 
1424 		chunk = sc->sk_ramsize / 2;
1425 		val = sc->sk_rboff / sizeof(u_int64_t);
1426 		sc_if->sk_rx_ramstart = val;
1427 		val += (chunk / sizeof(u_int64_t));
1428 		sc_if->sk_rx_ramend = val - 1;
1429 		sc_if->sk_tx_ramstart = val;
1430 		val += (chunk / sizeof(u_int64_t));
1431 		sc_if->sk_tx_ramend = val - 1;
1432 	} else {
1433 		u_int32_t		chunk, val;
1434 
1435 		chunk = sc->sk_ramsize / 4;
1436 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1437 		    sizeof(u_int64_t);
1438 		sc_if->sk_rx_ramstart = val;
1439 		val += (chunk / sizeof(u_int64_t));
1440 		sc_if->sk_rx_ramend = val - 1;
1441 		sc_if->sk_tx_ramstart = val;
1442 		val += (chunk / sizeof(u_int64_t));
1443 		sc_if->sk_tx_ramend = val - 1;
1444 	}
1445 
1446 	/* Read and save PHY type and set PHY address */
1447 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1448 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1449 		switch(sc_if->sk_phytype) {
1450 		case SK_PHYTYPE_XMAC:
1451 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1452 			break;
1453 		case SK_PHYTYPE_BCOM:
1454 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1455 			break;
1456 		default:
1457 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1458 			    sc_if->sk_phytype);
1459 			error = ENODEV;
1460 			SK_IF_UNLOCK(sc_if);
1461 			goto fail;
1462 		}
1463 	} else {
1464 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1465 		    sc->sk_pmd != 'S') {
1466 			/* not initialized, punt */
1467 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1468 			sc->sk_coppertype = 1;
1469 		}
1470 
1471 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1472 
1473 		if (!(sc->sk_coppertype))
1474 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1475 	}
1476 
1477 	/*
1478 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1479 	 */
1480 	SK_IF_UNLOCK(sc_if);
1481 	ether_ifattach(ifp, eaddr);
1482 	SK_IF_LOCK(sc_if);
1483 
1484 	/*
1485 	 * The hardware should be ready for VLAN_MTU by default:
1486 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1487 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1488 	 *
1489 	 */
1490         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1491         ifp->if_capenable |= IFCAP_VLAN_MTU;
1492 	/*
1493 	 * Tell the upper layer(s) we support long frames.
1494 	 * Must appear after the call to ether_ifattach() because
1495 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1496 	 */
1497         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1498 
1499 	/*
1500 	 * Do miibus setup.
1501 	 */
1502 	phy = MII_PHY_ANY;
1503 	switch (sc->sk_type) {
1504 	case SK_GENESIS:
1505 		sk_init_xmac(sc_if);
1506 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1507 			phy = 0;
1508 		break;
1509 	case SK_YUKON:
1510 	case SK_YUKON_LITE:
1511 	case SK_YUKON_LP:
1512 		sk_init_yukon(sc_if);
1513 		phy = 0;
1514 		break;
1515 	}
1516 
1517 	SK_IF_UNLOCK(sc_if);
1518 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1519 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1520 	if (error != 0) {
1521 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1522 		ether_ifdetach(ifp);
1523 		goto fail;
1524 	}
1525 
1526 fail:
1527 	if (error) {
1528 		/* Access should be ok even though lock has been dropped */
1529 		sc->sk_if[port] = NULL;
1530 		sk_detach(dev);
1531 	}
1532 
1533 	return(error);
1534 }
1535 
1536 /*
1537  * Attach the interface. Allocate softc structures, do ifmedia
1538  * setup and ethernet/BPF attach.
1539  */
1540 static int
1541 skc_attach(dev)
1542 	device_t		dev;
1543 {
1544 	struct sk_softc		*sc;
1545 	int			error = 0, *port;
1546 	uint8_t			skrs;
1547 	const char		*pname = NULL;
1548 	char			*revstr;
1549 
1550 	sc = device_get_softc(dev);
1551 	sc->sk_dev = dev;
1552 
1553 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1554 	    MTX_DEF);
1555 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1556 	/*
1557 	 * Map control/status registers.
1558 	 */
1559 	pci_enable_busmaster(dev);
1560 
1561 	/* Allocate resources */
1562 #ifdef SK_USEIOSPACE
1563 	sc->sk_res_spec = sk_res_spec_io;
1564 #else
1565 	sc->sk_res_spec = sk_res_spec_mem;
1566 #endif
1567 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1568 	if (error) {
1569 		if (sc->sk_res_spec == sk_res_spec_mem)
1570 			sc->sk_res_spec = sk_res_spec_io;
1571 		else
1572 			sc->sk_res_spec = sk_res_spec_mem;
1573 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1574 		if (error) {
1575 			device_printf(dev, "couldn't allocate %s resources\n",
1576 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1577 			    "I/O");
1578 			goto fail;
1579 		}
1580 	}
1581 
1582 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1583 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1584 
1585 	/* Bail out if chip is not recognized. */
1586 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1587 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1588 		    sc->sk_type, sc->sk_rev);
1589 		error = ENXIO;
1590 		goto fail;
1591 	}
1592 
1593 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1594 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1595 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1596 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1597 		"SK interrupt moderation");
1598 
1599 	/* Pull in device tunables. */
1600 	sc->sk_int_mod = SK_IM_DEFAULT;
1601 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1602 		"int_mod", &sc->sk_int_mod);
1603 	if (error == 0) {
1604 		if (sc->sk_int_mod < SK_IM_MIN ||
1605 		    sc->sk_int_mod > SK_IM_MAX) {
1606 			device_printf(dev, "int_mod value out of range; "
1607 			    "using default: %d\n", SK_IM_DEFAULT);
1608 			sc->sk_int_mod = SK_IM_DEFAULT;
1609 		}
1610 	}
1611 
1612 	/* Reset the adapter. */
1613 	sk_reset(sc);
1614 
1615 	skrs = sk_win_read_1(sc, SK_EPROM0);
1616 	if (sc->sk_type == SK_GENESIS) {
1617 		/* Read and save RAM size and RAMbuffer offset */
1618 		switch(skrs) {
1619 		case SK_RAMSIZE_512K_64:
1620 			sc->sk_ramsize = 0x80000;
1621 			sc->sk_rboff = SK_RBOFF_0;
1622 			break;
1623 		case SK_RAMSIZE_1024K_64:
1624 			sc->sk_ramsize = 0x100000;
1625 			sc->sk_rboff = SK_RBOFF_80000;
1626 			break;
1627 		case SK_RAMSIZE_1024K_128:
1628 			sc->sk_ramsize = 0x100000;
1629 			sc->sk_rboff = SK_RBOFF_0;
1630 			break;
1631 		case SK_RAMSIZE_2048K_128:
1632 			sc->sk_ramsize = 0x200000;
1633 			sc->sk_rboff = SK_RBOFF_0;
1634 			break;
1635 		default:
1636 			device_printf(dev, "unknown ram size: %d\n", skrs);
1637 			error = ENXIO;
1638 			goto fail;
1639 		}
1640 	} else { /* SK_YUKON_FAMILY */
1641 		if (skrs == 0x00)
1642 			sc->sk_ramsize = 0x20000;
1643 		else
1644 			sc->sk_ramsize = skrs * (1<<12);
1645 		sc->sk_rboff = SK_RBOFF_0;
1646 	}
1647 
1648 	/* Read and save physical media type */
1649 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1650 
1651 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1652 		 sc->sk_coppertype = 1;
1653 	 else
1654 		 sc->sk_coppertype = 0;
1655 
1656 	/* Determine whether to name it with VPD PN or just make it up.
1657 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1658 	switch (pci_get_device(dev)) {
1659 	case DEVICEID_SK_V1:
1660 	case DEVICEID_BELKIN_5005:
1661 	case DEVICEID_3COM_3C940:
1662 	case DEVICEID_LINKSYS_EG1032:
1663 	case DEVICEID_DLINK_DGE530T_A1:
1664 	case DEVICEID_DLINK_DGE530T_B1:
1665 		/* Stay with VPD PN. */
1666 		(void) pci_get_vpd_ident(dev, &pname);
1667 		break;
1668 	case DEVICEID_SK_V2:
1669 		/* YUKON VPD PN might bear no resemblance to reality. */
1670 		switch (sc->sk_type) {
1671 		case SK_GENESIS:
1672 			/* Stay with VPD PN. */
1673 			(void) pci_get_vpd_ident(dev, &pname);
1674 			break;
1675 		case SK_YUKON:
1676 			pname = "Marvell Yukon Gigabit Ethernet";
1677 			break;
1678 		case SK_YUKON_LITE:
1679 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1680 			break;
1681 		case SK_YUKON_LP:
1682 			pname = "Marvell Yukon LP Gigabit Ethernet";
1683 			break;
1684 		default:
1685 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1686 			break;
1687 		}
1688 
1689 		/* Yukon Lite Rev. A0 needs special test. */
1690 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1691 			u_int32_t far;
1692 			u_int8_t testbyte;
1693 
1694 			/* Save flash address register before testing. */
1695 			far = sk_win_read_4(sc, SK_EP_ADDR);
1696 
1697 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1698 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1699 
1700 			if (testbyte != 0x00) {
1701 				/* Yukon Lite Rev. A0 detected. */
1702 				sc->sk_type = SK_YUKON_LITE;
1703 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1704 				/* Restore flash address register. */
1705 				sk_win_write_4(sc, SK_EP_ADDR, far);
1706 			}
1707 		}
1708 		break;
1709 	default:
1710 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1711 			"chipver=%02x, rev=%x\n",
1712 			pci_get_vendor(dev), pci_get_device(dev),
1713 			sc->sk_type, sc->sk_rev);
1714 		error = ENXIO;
1715 		goto fail;
1716 	}
1717 
1718 	if (sc->sk_type == SK_YUKON_LITE) {
1719 		switch (sc->sk_rev) {
1720 		case SK_YUKON_LITE_REV_A0:
1721 			revstr = "A0";
1722 			break;
1723 		case SK_YUKON_LITE_REV_A1:
1724 			revstr = "A1";
1725 			break;
1726 		case SK_YUKON_LITE_REV_A3:
1727 			revstr = "A3";
1728 			break;
1729 		default:
1730 			revstr = "";
1731 			break;
1732 		}
1733 	} else {
1734 		revstr = "";
1735 	}
1736 
1737 	/* Announce the product name and more VPD data if there. */
1738 	if (pname != NULL)
1739 		device_printf(dev, "%s rev. %s(0x%x)\n",
1740 			pname, revstr, sc->sk_rev);
1741 
1742 	if (bootverbose) {
1743 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1744 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1745 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1746 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1747 	}
1748 
1749 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1750 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1751 		device_printf(dev, "failed to add child for PORT_A\n");
1752 		error = ENXIO;
1753 		goto fail;
1754 	}
1755 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1756 	if (port == NULL) {
1757 		device_printf(dev, "failed to allocate memory for "
1758 		    "ivars of PORT_A\n");
1759 		error = ENXIO;
1760 		goto fail;
1761 	}
1762 	*port = SK_PORT_A;
1763 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1764 
1765 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1766 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1767 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1768 			device_printf(dev, "failed to add child for PORT_B\n");
1769 			error = ENXIO;
1770 			goto fail;
1771 		}
1772 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1773 		if (port == NULL) {
1774 			device_printf(dev, "failed to allocate memory for "
1775 			    "ivars of PORT_B\n");
1776 			error = ENXIO;
1777 			goto fail;
1778 		}
1779 		*port = SK_PORT_B;
1780 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1781 	}
1782 
1783 	/* Turn on the 'driver is loaded' LED. */
1784 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1785 
1786 	error = bus_generic_attach(dev);
1787 	if (error) {
1788 		device_printf(dev, "failed to attach port(s)\n");
1789 		goto fail;
1790 	}
1791 
1792 	/* Hook interrupt last to avoid having to lock softc */
1793 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1794 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1795 
1796 	if (error) {
1797 		device_printf(dev, "couldn't set up irq\n");
1798 		goto fail;
1799 	}
1800 
1801 fail:
1802 	if (error)
1803 		skc_detach(dev);
1804 
1805 	return(error);
1806 }
1807 
1808 /*
1809  * Shutdown hardware and free up resources. This can be called any
1810  * time after the mutex has been initialized. It is called in both
1811  * the error case in attach and the normal detach case so it needs
1812  * to be careful about only freeing resources that have actually been
1813  * allocated.
1814  */
1815 static int
1816 sk_detach(dev)
1817 	device_t		dev;
1818 {
1819 	struct sk_if_softc	*sc_if;
1820 	struct ifnet		*ifp;
1821 
1822 	sc_if = device_get_softc(dev);
1823 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1824 	    ("sk mutex not initialized in sk_detach"));
1825 	SK_IF_LOCK(sc_if);
1826 
1827 	ifp = sc_if->sk_ifp;
1828 	/* These should only be active if attach_xmac succeeded */
1829 	if (device_is_attached(dev)) {
1830 		sk_stop(sc_if);
1831 		/* Can't hold locks while calling detach */
1832 		SK_IF_UNLOCK(sc_if);
1833 		callout_drain(&sc_if->sk_tick_ch);
1834 		callout_drain(&sc_if->sk_watchdog_ch);
1835 		ether_ifdetach(ifp);
1836 		SK_IF_LOCK(sc_if);
1837 	}
1838 	/*
1839 	 * We're generally called from skc_detach() which is using
1840 	 * device_delete_child() to get to here. It's already trashed
1841 	 * miibus for us, so don't do it here or we'll panic.
1842 	 */
1843 	/*
1844 	if (sc_if->sk_miibus != NULL)
1845 		device_delete_child(dev, sc_if->sk_miibus);
1846 	*/
1847 	bus_generic_detach(dev);
1848 	sk_dma_jumbo_free(sc_if);
1849 	sk_dma_free(sc_if);
1850 	SK_IF_UNLOCK(sc_if);
1851 	if (ifp)
1852 		if_free(ifp);
1853 
1854 	return(0);
1855 }
1856 
1857 static int
1858 skc_detach(dev)
1859 	device_t		dev;
1860 {
1861 	struct sk_softc		*sc;
1862 
1863 	sc = device_get_softc(dev);
1864 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1865 
1866 	if (device_is_alive(dev)) {
1867 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1868 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1869 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1870 		}
1871 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1872 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1873 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1874 		}
1875 		bus_generic_detach(dev);
1876 	}
1877 
1878 	if (sc->sk_intrhand)
1879 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1880 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1881 
1882 	mtx_destroy(&sc->sk_mii_mtx);
1883 	mtx_destroy(&sc->sk_mtx);
1884 
1885 	return(0);
1886 }
1887 
1888 static bus_dma_tag_t
1889 skc_get_dma_tag(device_t bus, device_t child __unused)
1890 {
1891 
1892 	return (bus_get_dma_tag(bus));
1893 }
1894 
1895 struct sk_dmamap_arg {
1896 	bus_addr_t	sk_busaddr;
1897 };
1898 
1899 static void
1900 sk_dmamap_cb(arg, segs, nseg, error)
1901 	void			*arg;
1902 	bus_dma_segment_t	*segs;
1903 	int			nseg;
1904 	int			error;
1905 {
1906 	struct sk_dmamap_arg	*ctx;
1907 
1908 	if (error != 0)
1909 		return;
1910 
1911 	ctx = arg;
1912 	ctx->sk_busaddr = segs[0].ds_addr;
1913 }
1914 
1915 /*
1916  * Allocate jumbo buffer storage. The SysKonnect adapters support
1917  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1918  * use them in their drivers. In order for us to use them, we need
1919  * large 9K receive buffers, however standard mbuf clusters are only
1920  * 2048 bytes in size. Consequently, we need to allocate and manage
1921  * our own jumbo buffer pool. Fortunately, this does not require an
1922  * excessive amount of additional code.
1923  */
1924 static int
1925 sk_dma_alloc(sc_if)
1926 	struct sk_if_softc	*sc_if;
1927 {
1928 	struct sk_dmamap_arg	ctx;
1929 	struct sk_txdesc	*txd;
1930 	struct sk_rxdesc	*rxd;
1931 	int			error, i;
1932 
1933 	/* create parent tag */
1934 	/*
1935 	 * XXX
1936 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1937 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1938 	 * However bz@ reported that it does not work on amd64 with > 4GB
1939 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1940 	 * by limiting DMA address to be in 32bit address space.
1941 	 */
1942 	error = bus_dma_tag_create(
1943 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1944 		    1, 0,			/* algnmnt, boundary */
1945 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1946 		    BUS_SPACE_MAXADDR,		/* highaddr */
1947 		    NULL, NULL,			/* filter, filterarg */
1948 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1949 		    0,				/* nsegments */
1950 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1951 		    0,				/* flags */
1952 		    NULL, NULL,			/* lockfunc, lockarg */
1953 		    &sc_if->sk_cdata.sk_parent_tag);
1954 	if (error != 0) {
1955 		device_printf(sc_if->sk_if_dev,
1956 		    "failed to create parent DMA tag\n");
1957 		goto fail;
1958 	}
1959 
1960 	/* create tag for Tx ring */
1961 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1962 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1963 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1964 		    BUS_SPACE_MAXADDR,		/* highaddr */
1965 		    NULL, NULL,			/* filter, filterarg */
1966 		    SK_TX_RING_SZ,		/* maxsize */
1967 		    1,				/* nsegments */
1968 		    SK_TX_RING_SZ,		/* maxsegsize */
1969 		    0,				/* flags */
1970 		    NULL, NULL,			/* lockfunc, lockarg */
1971 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1972 	if (error != 0) {
1973 		device_printf(sc_if->sk_if_dev,
1974 		    "failed to allocate Tx ring DMA tag\n");
1975 		goto fail;
1976 	}
1977 
1978 	/* create tag for Rx ring */
1979 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1980 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1981 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1982 		    BUS_SPACE_MAXADDR,		/* highaddr */
1983 		    NULL, NULL,			/* filter, filterarg */
1984 		    SK_RX_RING_SZ,		/* maxsize */
1985 		    1,				/* nsegments */
1986 		    SK_RX_RING_SZ,		/* maxsegsize */
1987 		    0,				/* flags */
1988 		    NULL, NULL,			/* lockfunc, lockarg */
1989 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1990 	if (error != 0) {
1991 		device_printf(sc_if->sk_if_dev,
1992 		    "failed to allocate Rx ring DMA tag\n");
1993 		goto fail;
1994 	}
1995 
1996 	/* create tag for Tx buffers */
1997 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1998 		    1, 0,			/* algnmnt, boundary */
1999 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2000 		    BUS_SPACE_MAXADDR,		/* highaddr */
2001 		    NULL, NULL,			/* filter, filterarg */
2002 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2003 		    SK_MAXTXSEGS,		/* nsegments */
2004 		    MCLBYTES,			/* maxsegsize */
2005 		    0,				/* flags */
2006 		    NULL, NULL,			/* lockfunc, lockarg */
2007 		    &sc_if->sk_cdata.sk_tx_tag);
2008 	if (error != 0) {
2009 		device_printf(sc_if->sk_if_dev,
2010 		    "failed to allocate Tx DMA tag\n");
2011 		goto fail;
2012 	}
2013 
2014 	/* create tag for Rx buffers */
2015 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2016 		    1, 0,			/* algnmnt, boundary */
2017 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2018 		    BUS_SPACE_MAXADDR,		/* highaddr */
2019 		    NULL, NULL,			/* filter, filterarg */
2020 		    MCLBYTES,			/* maxsize */
2021 		    1,				/* nsegments */
2022 		    MCLBYTES,			/* maxsegsize */
2023 		    0,				/* flags */
2024 		    NULL, NULL,			/* lockfunc, lockarg */
2025 		    &sc_if->sk_cdata.sk_rx_tag);
2026 	if (error != 0) {
2027 		device_printf(sc_if->sk_if_dev,
2028 		    "failed to allocate Rx DMA tag\n");
2029 		goto fail;
2030 	}
2031 
2032 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2033 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2034 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2035 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2036 	if (error != 0) {
2037 		device_printf(sc_if->sk_if_dev,
2038 		    "failed to allocate DMA'able memory for Tx ring\n");
2039 		goto fail;
2040 	}
2041 
2042 	ctx.sk_busaddr = 0;
2043 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2044 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2045 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2046 	if (error != 0) {
2047 		device_printf(sc_if->sk_if_dev,
2048 		    "failed to load DMA'able memory for Tx ring\n");
2049 		goto fail;
2050 	}
2051 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2052 
2053 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2054 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2055 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2056 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2057 	if (error != 0) {
2058 		device_printf(sc_if->sk_if_dev,
2059 		    "failed to allocate DMA'able memory for Rx ring\n");
2060 		goto fail;
2061 	}
2062 
2063 	ctx.sk_busaddr = 0;
2064 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2065 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2066 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2067 	if (error != 0) {
2068 		device_printf(sc_if->sk_if_dev,
2069 		    "failed to load DMA'able memory for Rx ring\n");
2070 		goto fail;
2071 	}
2072 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2073 
2074 	/* create DMA maps for Tx buffers */
2075 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2076 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2077 		txd->tx_m = NULL;
2078 		txd->tx_dmamap = NULL;
2079 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2080 		    &txd->tx_dmamap);
2081 		if (error != 0) {
2082 			device_printf(sc_if->sk_if_dev,
2083 			    "failed to create Tx dmamap\n");
2084 			goto fail;
2085 		}
2086 	}
2087 
2088 	/* create DMA maps for Rx buffers */
2089 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2090 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2091 		device_printf(sc_if->sk_if_dev,
2092 		    "failed to create spare Rx dmamap\n");
2093 		goto fail;
2094 	}
2095 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2096 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2097 		rxd->rx_m = NULL;
2098 		rxd->rx_dmamap = NULL;
2099 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2100 		    &rxd->rx_dmamap);
2101 		if (error != 0) {
2102 			device_printf(sc_if->sk_if_dev,
2103 			    "failed to create Rx dmamap\n");
2104 			goto fail;
2105 		}
2106 	}
2107 
2108 fail:
2109 	return (error);
2110 }
2111 
2112 static int
2113 sk_dma_jumbo_alloc(sc_if)
2114 	struct sk_if_softc	*sc_if;
2115 {
2116 	struct sk_dmamap_arg	ctx;
2117 	struct sk_rxdesc	*jrxd;
2118 	int			error, i;
2119 
2120 	if (jumbo_disable != 0) {
2121 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2122 		sc_if->sk_jumbo_disable = 1;
2123 		return (0);
2124 	}
2125 	/* create tag for jumbo Rx ring */
2126 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2127 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2128 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2129 		    BUS_SPACE_MAXADDR,		/* highaddr */
2130 		    NULL, NULL,			/* filter, filterarg */
2131 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2132 		    1,				/* nsegments */
2133 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2134 		    0,				/* flags */
2135 		    NULL, NULL,			/* lockfunc, lockarg */
2136 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2137 	if (error != 0) {
2138 		device_printf(sc_if->sk_if_dev,
2139 		    "failed to allocate jumbo Rx ring DMA tag\n");
2140 		goto jumbo_fail;
2141 	}
2142 
2143 	/* create tag for jumbo Rx buffers */
2144 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2145 		    1, 0,			/* algnmnt, boundary */
2146 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2147 		    BUS_SPACE_MAXADDR,		/* highaddr */
2148 		    NULL, NULL,			/* filter, filterarg */
2149 		    MJUM9BYTES,			/* maxsize */
2150 		    1,				/* nsegments */
2151 		    MJUM9BYTES,			/* maxsegsize */
2152 		    0,				/* flags */
2153 		    NULL, NULL,			/* lockfunc, lockarg */
2154 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2155 	if (error != 0) {
2156 		device_printf(sc_if->sk_if_dev,
2157 		    "failed to allocate jumbo Rx DMA tag\n");
2158 		goto jumbo_fail;
2159 	}
2160 
2161 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2162 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2163 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2164 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2165 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2166 	if (error != 0) {
2167 		device_printf(sc_if->sk_if_dev,
2168 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2169 		goto jumbo_fail;
2170 	}
2171 
2172 	ctx.sk_busaddr = 0;
2173 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2174 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2175 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2176 	    &ctx, BUS_DMA_NOWAIT);
2177 	if (error != 0) {
2178 		device_printf(sc_if->sk_if_dev,
2179 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2180 		goto jumbo_fail;
2181 	}
2182 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2183 
2184 	/* create DMA maps for jumbo Rx buffers */
2185 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2186 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2187 		device_printf(sc_if->sk_if_dev,
2188 		    "failed to create spare jumbo Rx dmamap\n");
2189 		goto jumbo_fail;
2190 	}
2191 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2192 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2193 		jrxd->rx_m = NULL;
2194 		jrxd->rx_dmamap = NULL;
2195 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2196 		    &jrxd->rx_dmamap);
2197 		if (error != 0) {
2198 			device_printf(sc_if->sk_if_dev,
2199 			    "failed to create jumbo Rx dmamap\n");
2200 			goto jumbo_fail;
2201 		}
2202 	}
2203 
2204 	return (0);
2205 
2206 jumbo_fail:
2207 	sk_dma_jumbo_free(sc_if);
2208 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2209 	    "resource shortage\n");
2210 	sc_if->sk_jumbo_disable = 1;
2211 	return (0);
2212 }
2213 
2214 static void
2215 sk_dma_free(sc_if)
2216 	struct sk_if_softc	*sc_if;
2217 {
2218 	struct sk_txdesc	*txd;
2219 	struct sk_rxdesc	*rxd;
2220 	int			i;
2221 
2222 	/* Tx ring */
2223 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2224 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2225 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2226 			    sc_if->sk_cdata.sk_tx_ring_map);
2227 		if (sc_if->sk_rdata.sk_tx_ring)
2228 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2229 			    sc_if->sk_rdata.sk_tx_ring,
2230 			    sc_if->sk_cdata.sk_tx_ring_map);
2231 		sc_if->sk_rdata.sk_tx_ring = NULL;
2232 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2233 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2234 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2235 	}
2236 	/* Rx ring */
2237 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2238 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2239 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2240 			    sc_if->sk_cdata.sk_rx_ring_map);
2241 		if (sc_if->sk_rdata.sk_rx_ring)
2242 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2243 			    sc_if->sk_rdata.sk_rx_ring,
2244 			    sc_if->sk_cdata.sk_rx_ring_map);
2245 		sc_if->sk_rdata.sk_rx_ring = NULL;
2246 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2247 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2248 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2249 	}
2250 	/* Tx buffers */
2251 	if (sc_if->sk_cdata.sk_tx_tag) {
2252 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2253 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2254 			if (txd->tx_dmamap) {
2255 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2256 				    txd->tx_dmamap);
2257 				txd->tx_dmamap = NULL;
2258 			}
2259 		}
2260 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2261 		sc_if->sk_cdata.sk_tx_tag = NULL;
2262 	}
2263 	/* Rx buffers */
2264 	if (sc_if->sk_cdata.sk_rx_tag) {
2265 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2266 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2267 			if (rxd->rx_dmamap) {
2268 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2269 				    rxd->rx_dmamap);
2270 				rxd->rx_dmamap = NULL;
2271 			}
2272 		}
2273 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2274 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2275 			    sc_if->sk_cdata.sk_rx_sparemap);
2276 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2277 		}
2278 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2279 		sc_if->sk_cdata.sk_rx_tag = NULL;
2280 	}
2281 
2282 	if (sc_if->sk_cdata.sk_parent_tag) {
2283 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2284 		sc_if->sk_cdata.sk_parent_tag = NULL;
2285 	}
2286 }
2287 
2288 static void
2289 sk_dma_jumbo_free(sc_if)
2290 	struct sk_if_softc	*sc_if;
2291 {
2292 	struct sk_rxdesc	*jrxd;
2293 	int			i;
2294 
2295 	/* jumbo Rx ring */
2296 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2297 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2298 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2299 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2300 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2301 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2302 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2303 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2304 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2305 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2306 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2307 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2308 	}
2309 
2310 	/* jumbo Rx buffers */
2311 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2312 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2313 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2314 			if (jrxd->rx_dmamap) {
2315 				bus_dmamap_destroy(
2316 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2317 				    jrxd->rx_dmamap);
2318 				jrxd->rx_dmamap = NULL;
2319 			}
2320 		}
2321 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2322 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2323 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2324 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2325 		}
2326 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2327 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2328 	}
2329 }
2330 
2331 static void
2332 sk_txcksum(ifp, m, f)
2333 	struct ifnet		*ifp;
2334 	struct mbuf		*m;
2335 	struct sk_tx_desc	*f;
2336 {
2337 	struct ip		*ip;
2338 	u_int16_t		offset;
2339 	u_int8_t 		*p;
2340 
2341 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2342 	for(; m && m->m_len == 0; m = m->m_next)
2343 		;
2344 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2345 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2346 		/* checksum may be corrupted */
2347 		goto sendit;
2348 	}
2349 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2350 		if (m->m_len != ETHER_HDR_LEN) {
2351 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2352 			    __func__);
2353 			/* checksum may be corrupted */
2354 			goto sendit;
2355 		}
2356 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2357 			;
2358 		if (m == NULL) {
2359 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2360 			/* checksum may be corrupted */
2361 			goto sendit;
2362 		}
2363 		ip = mtod(m, struct ip *);
2364 	} else {
2365 		p = mtod(m, u_int8_t *);
2366 		p += ETHER_HDR_LEN;
2367 		ip = (struct ip *)p;
2368 	}
2369 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2370 
2371 sendit:
2372 	f->sk_csum_startval = 0;
2373 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2374 	    (offset << 16));
2375 }
2376 
2377 static int
2378 sk_encap(sc_if, m_head)
2379         struct sk_if_softc	*sc_if;
2380         struct mbuf		**m_head;
2381 {
2382 	struct sk_txdesc	*txd;
2383 	struct sk_tx_desc	*f = NULL;
2384 	struct mbuf		*m;
2385 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2386 	u_int32_t		cflags, frag, si, sk_ctl;
2387 	int			error, i, nseg;
2388 
2389 	SK_IF_LOCK_ASSERT(sc_if);
2390 
2391 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2392 		return (ENOBUFS);
2393 
2394 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2395 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2396 	if (error == EFBIG) {
2397 		m = m_defrag(*m_head, M_NOWAIT);
2398 		if (m == NULL) {
2399 			m_freem(*m_head);
2400 			*m_head = NULL;
2401 			return (ENOMEM);
2402 		}
2403 		*m_head = m;
2404 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2405 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2406 		if (error != 0) {
2407 			m_freem(*m_head);
2408 			*m_head = NULL;
2409 			return (error);
2410 		}
2411 	} else if (error != 0)
2412 		return (error);
2413 	if (nseg == 0) {
2414 		m_freem(*m_head);
2415 		*m_head = NULL;
2416 		return (EIO);
2417 	}
2418 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2419 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2420 		return (ENOBUFS);
2421 	}
2422 
2423 	m = *m_head;
2424 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2425 		cflags = SK_OPCODE_CSUM;
2426 	else
2427 		cflags = SK_OPCODE_DEFAULT;
2428 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2429 	for (i = 0; i < nseg; i++) {
2430 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2431 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2432 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2433 		sk_ctl = txsegs[i].ds_len | cflags;
2434 		if (i == 0) {
2435 			if (cflags == SK_OPCODE_CSUM)
2436 				sk_txcksum(sc_if->sk_ifp, m, f);
2437 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2438 		} else
2439 			sk_ctl |= SK_TXCTL_OWN;
2440 		f->sk_ctl = htole32(sk_ctl);
2441 		sc_if->sk_cdata.sk_tx_cnt++;
2442 		SK_INC(frag, SK_TX_RING_CNT);
2443 	}
2444 	sc_if->sk_cdata.sk_tx_prod = frag;
2445 
2446 	/* set EOF on the last desciptor */
2447 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2448 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2449 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2450 
2451 	/* turn the first descriptor ownership to NIC */
2452 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2453 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2454 
2455 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2456 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2457 	txd->tx_m = m;
2458 
2459 	/* sync descriptors */
2460 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2461 	    BUS_DMASYNC_PREWRITE);
2462 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2463 	    sc_if->sk_cdata.sk_tx_ring_map,
2464 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2465 
2466 	return (0);
2467 }
2468 
2469 static void
2470 sk_start(ifp)
2471 	struct ifnet		*ifp;
2472 {
2473 	struct sk_if_softc *sc_if;
2474 
2475 	sc_if = ifp->if_softc;
2476 
2477 	SK_IF_LOCK(sc_if);
2478 	sk_start_locked(ifp);
2479 	SK_IF_UNLOCK(sc_if);
2480 
2481 	return;
2482 }
2483 
2484 static void
2485 sk_start_locked(ifp)
2486 	struct ifnet		*ifp;
2487 {
2488         struct sk_softc		*sc;
2489         struct sk_if_softc	*sc_if;
2490         struct mbuf		*m_head;
2491 	int			enq;
2492 
2493 	sc_if = ifp->if_softc;
2494 	sc = sc_if->sk_softc;
2495 
2496 	SK_IF_LOCK_ASSERT(sc_if);
2497 
2498 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2499 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2500 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2501 		if (m_head == NULL)
2502 			break;
2503 
2504 		/*
2505 		 * Pack the data into the transmit ring. If we
2506 		 * don't have room, set the OACTIVE flag and wait
2507 		 * for the NIC to drain the ring.
2508 		 */
2509 		if (sk_encap(sc_if, &m_head)) {
2510 			if (m_head == NULL)
2511 				break;
2512 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2513 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2514 			break;
2515 		}
2516 
2517 		enq++;
2518 		/*
2519 		 * If there's a BPF listener, bounce a copy of this frame
2520 		 * to him.
2521 		 */
2522 		BPF_MTAP(ifp, m_head);
2523 	}
2524 
2525 	if (enq > 0) {
2526 		/* Transmit */
2527 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2528 
2529 		/* Set a timeout in case the chip goes out to lunch. */
2530 		sc_if->sk_watchdog_timer = 5;
2531 	}
2532 }
2533 
2534 
2535 static void
2536 sk_watchdog(arg)
2537 	void			*arg;
2538 {
2539 	struct sk_if_softc	*sc_if;
2540 	struct ifnet		*ifp;
2541 
2542 	ifp = arg;
2543 	sc_if = ifp->if_softc;
2544 
2545 	SK_IF_LOCK_ASSERT(sc_if);
2546 
2547 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2548 		goto done;
2549 
2550 	/*
2551 	 * Reclaim first as there is a possibility of losing Tx completion
2552 	 * interrupts.
2553 	 */
2554 	sk_txeof(sc_if);
2555 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2556 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2557 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2558 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2559 		sk_init_locked(sc_if);
2560 	}
2561 
2562 done:
2563 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2564 
2565 	return;
2566 }
2567 
2568 static int
2569 skc_shutdown(dev)
2570 	device_t		dev;
2571 {
2572 	struct sk_softc		*sc;
2573 
2574 	sc = device_get_softc(dev);
2575 	SK_LOCK(sc);
2576 
2577 	/* Turn off the 'driver is loaded' LED. */
2578 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2579 
2580 	/*
2581 	 * Reset the GEnesis controller. Doing this should also
2582 	 * assert the resets on the attached XMAC(s).
2583 	 */
2584 	sk_reset(sc);
2585 	SK_UNLOCK(sc);
2586 
2587 	return (0);
2588 }
2589 
2590 static int
2591 skc_suspend(dev)
2592 	device_t		dev;
2593 {
2594 	struct sk_softc		*sc;
2595 	struct sk_if_softc	*sc_if0, *sc_if1;
2596 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2597 
2598 	sc = device_get_softc(dev);
2599 
2600 	SK_LOCK(sc);
2601 
2602 	sc_if0 = sc->sk_if[SK_PORT_A];
2603 	sc_if1 = sc->sk_if[SK_PORT_B];
2604 	if (sc_if0 != NULL)
2605 		ifp0 = sc_if0->sk_ifp;
2606 	if (sc_if1 != NULL)
2607 		ifp1 = sc_if1->sk_ifp;
2608 	if (ifp0 != NULL)
2609 		sk_stop(sc_if0);
2610 	if (ifp1 != NULL)
2611 		sk_stop(sc_if1);
2612 	sc->sk_suspended = 1;
2613 
2614 	SK_UNLOCK(sc);
2615 
2616 	return (0);
2617 }
2618 
2619 static int
2620 skc_resume(dev)
2621 	device_t		dev;
2622 {
2623 	struct sk_softc		*sc;
2624 	struct sk_if_softc	*sc_if0, *sc_if1;
2625 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2626 
2627 	sc = device_get_softc(dev);
2628 
2629 	SK_LOCK(sc);
2630 
2631 	sc_if0 = sc->sk_if[SK_PORT_A];
2632 	sc_if1 = sc->sk_if[SK_PORT_B];
2633 	if (sc_if0 != NULL)
2634 		ifp0 = sc_if0->sk_ifp;
2635 	if (sc_if1 != NULL)
2636 		ifp1 = sc_if1->sk_ifp;
2637 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2638 		sk_init_locked(sc_if0);
2639 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2640 		sk_init_locked(sc_if1);
2641 	sc->sk_suspended = 0;
2642 
2643 	SK_UNLOCK(sc);
2644 
2645 	return (0);
2646 }
2647 
2648 /*
2649  * According to the data sheet from SK-NET GENESIS the hardware can compute
2650  * two Rx checksums at the same time(Each checksum start position is
2651  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2652  * does not work at least on my Yukon hardware. I tried every possible ways
2653  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2654  * checksum offload was disabled at the moment and only IP checksum offload
2655  * was enabled.
2656  * As nomral IP header size is 20 bytes I can't expect it would give an
2657  * increase in throughput. However it seems it doesn't hurt performance in
2658  * my testing. If there is a more detailed information for checksum secret
2659  * of the hardware in question please contact yongari@FreeBSD.org to add
2660  * TCP/UDP checksum offload support.
2661  */
2662 static __inline void
2663 sk_rxcksum(ifp, m, csum)
2664 	struct ifnet		*ifp;
2665 	struct mbuf		*m;
2666 	u_int32_t		csum;
2667 {
2668 	struct ether_header	*eh;
2669 	struct ip		*ip;
2670 	int32_t			hlen, len, pktlen;
2671 	u_int16_t		csum1, csum2, ipcsum;
2672 
2673 	pktlen = m->m_pkthdr.len;
2674 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2675 		return;
2676 	eh = mtod(m, struct ether_header *);
2677 	if (eh->ether_type != htons(ETHERTYPE_IP))
2678 		return;
2679 	ip = (struct ip *)(eh + 1);
2680 	if (ip->ip_v != IPVERSION)
2681 		return;
2682 	hlen = ip->ip_hl << 2;
2683 	pktlen -= sizeof(struct ether_header);
2684 	if (hlen < sizeof(struct ip))
2685 		return;
2686 	if (ntohs(ip->ip_len) < hlen)
2687 		return;
2688 	if (ntohs(ip->ip_len) != pktlen)
2689 		return;
2690 
2691 	csum1 = htons(csum & 0xffff);
2692 	csum2 = htons((csum >> 16) & 0xffff);
2693 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2694 	/* checksum fixup for IP options */
2695 	len = hlen - sizeof(struct ip);
2696 	if (len > 0) {
2697 		/*
2698 		 * If the second checksum value is correct we can compute IP
2699 		 * checksum with simple math. Unfortunately the second checksum
2700 		 * value is wrong so we can't verify the checksum from the
2701 		 * value(It seems there is some magic here to get correct
2702 		 * value). If the second checksum value is correct it also
2703 		 * means we can get TCP/UDP checksum) here. However, it still
2704 		 * needs pseudo header checksum calculation due to hardware
2705 		 * limitations.
2706 		 */
2707 		return;
2708 	}
2709 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2710 	if (ipcsum == 0xffff)
2711 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2712 }
2713 
2714 static __inline int
2715 sk_rxvalid(sc, stat, len)
2716 	struct sk_softc		*sc;
2717 	u_int32_t		stat, len;
2718 {
2719 
2720 	if (sc->sk_type == SK_GENESIS) {
2721 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2722 		    XM_RXSTAT_BYTES(stat) != len)
2723 			return (0);
2724 	} else {
2725 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2726 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2727 		    YU_RXSTAT_JABBER)) != 0 ||
2728 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2729 		    YU_RXSTAT_BYTES(stat) != len)
2730 			return (0);
2731 	}
2732 
2733 	return (1);
2734 }
2735 
2736 static void
2737 sk_rxeof(sc_if)
2738 	struct sk_if_softc	*sc_if;
2739 {
2740 	struct sk_softc		*sc;
2741 	struct mbuf		*m;
2742 	struct ifnet		*ifp;
2743 	struct sk_rx_desc	*cur_rx;
2744 	struct sk_rxdesc	*rxd;
2745 	int			cons, prog;
2746 	u_int32_t		csum, rxstat, sk_ctl;
2747 
2748 	sc = sc_if->sk_softc;
2749 	ifp = sc_if->sk_ifp;
2750 
2751 	SK_IF_LOCK_ASSERT(sc_if);
2752 
2753 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2754 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2755 
2756 	prog = 0;
2757 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2758 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2759 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2760 		sk_ctl = le32toh(cur_rx->sk_ctl);
2761 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2762 			break;
2763 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2764 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2765 
2766 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2767 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2768 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2769 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2770 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2771 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2772 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2773 			sk_discard_rxbuf(sc_if, cons);
2774 			continue;
2775 		}
2776 
2777 		m = rxd->rx_m;
2778 		csum = le32toh(cur_rx->sk_csum);
2779 		if (sk_newbuf(sc_if, cons) != 0) {
2780 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2781 			/* reuse old buffer */
2782 			sk_discard_rxbuf(sc_if, cons);
2783 			continue;
2784 		}
2785 		m->m_pkthdr.rcvif = ifp;
2786 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2787 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2788 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2789 			sk_rxcksum(ifp, m, csum);
2790 		SK_IF_UNLOCK(sc_if);
2791 		(*ifp->if_input)(ifp, m);
2792 		SK_IF_LOCK(sc_if);
2793 	}
2794 
2795 	if (prog > 0) {
2796 		sc_if->sk_cdata.sk_rx_cons = cons;
2797 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2798 		    sc_if->sk_cdata.sk_rx_ring_map,
2799 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2800 	}
2801 }
2802 
2803 static void
2804 sk_jumbo_rxeof(sc_if)
2805 	struct sk_if_softc	*sc_if;
2806 {
2807 	struct sk_softc		*sc;
2808 	struct mbuf		*m;
2809 	struct ifnet		*ifp;
2810 	struct sk_rx_desc	*cur_rx;
2811 	struct sk_rxdesc	*jrxd;
2812 	int			cons, prog;
2813 	u_int32_t		csum, rxstat, sk_ctl;
2814 
2815 	sc = sc_if->sk_softc;
2816 	ifp = sc_if->sk_ifp;
2817 
2818 	SK_IF_LOCK_ASSERT(sc_if);
2819 
2820 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2821 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2822 
2823 	prog = 0;
2824 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2825 	    prog < SK_JUMBO_RX_RING_CNT;
2826 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2827 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2828 		sk_ctl = le32toh(cur_rx->sk_ctl);
2829 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2830 			break;
2831 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2832 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2833 
2834 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2835 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2836 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2837 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2838 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2839 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2840 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2841 			sk_discard_jumbo_rxbuf(sc_if, cons);
2842 			continue;
2843 		}
2844 
2845 		m = jrxd->rx_m;
2846 		csum = le32toh(cur_rx->sk_csum);
2847 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2848 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2849 			/* reuse old buffer */
2850 			sk_discard_jumbo_rxbuf(sc_if, cons);
2851 			continue;
2852 		}
2853 		m->m_pkthdr.rcvif = ifp;
2854 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2855 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2856 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2857 			sk_rxcksum(ifp, m, csum);
2858 		SK_IF_UNLOCK(sc_if);
2859 		(*ifp->if_input)(ifp, m);
2860 		SK_IF_LOCK(sc_if);
2861 	}
2862 
2863 	if (prog > 0) {
2864 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2865 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2866 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2867 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2868 	}
2869 }
2870 
2871 static void
2872 sk_txeof(sc_if)
2873 	struct sk_if_softc	*sc_if;
2874 {
2875 	struct sk_txdesc	*txd;
2876 	struct sk_tx_desc	*cur_tx;
2877 	struct ifnet		*ifp;
2878 	u_int32_t		idx, sk_ctl;
2879 
2880 	ifp = sc_if->sk_ifp;
2881 
2882 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2883 	if (txd == NULL)
2884 		return;
2885 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2886 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2887 	/*
2888 	 * Go through our tx ring and free mbufs for those
2889 	 * frames that have been sent.
2890 	 */
2891 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2892 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2893 			break;
2894 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2895 		sk_ctl = le32toh(cur_tx->sk_ctl);
2896 		if (sk_ctl & SK_TXCTL_OWN)
2897 			break;
2898 		sc_if->sk_cdata.sk_tx_cnt--;
2899 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2900 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2901 			continue;
2902 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2903 		    BUS_DMASYNC_POSTWRITE);
2904 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2905 
2906 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2907 		m_freem(txd->tx_m);
2908 		txd->tx_m = NULL;
2909 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2910 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2911 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2912 	}
2913 	sc_if->sk_cdata.sk_tx_cons = idx;
2914 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2915 
2916 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2917 	    sc_if->sk_cdata.sk_tx_ring_map,
2918 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2919 }
2920 
2921 static void
2922 sk_tick(xsc_if)
2923 	void			*xsc_if;
2924 {
2925 	struct sk_if_softc	*sc_if;
2926 	struct mii_data		*mii;
2927 	struct ifnet		*ifp;
2928 	int			i;
2929 
2930 	sc_if = xsc_if;
2931 	ifp = sc_if->sk_ifp;
2932 	mii = device_get_softc(sc_if->sk_miibus);
2933 
2934 	if (!(ifp->if_flags & IFF_UP))
2935 		return;
2936 
2937 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2938 		sk_intr_bcom(sc_if);
2939 		return;
2940 	}
2941 
2942 	/*
2943 	 * According to SysKonnect, the correct way to verify that
2944 	 * the link has come back up is to poll bit 0 of the GPIO
2945 	 * register three times. This pin has the signal from the
2946 	 * link_sync pin connected to it; if we read the same link
2947 	 * state 3 times in a row, we know the link is up.
2948 	 */
2949 	for (i = 0; i < 3; i++) {
2950 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2951 			break;
2952 	}
2953 
2954 	if (i != 3) {
2955 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2956 		return;
2957 	}
2958 
2959 	/* Turn the GP0 interrupt back on. */
2960 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2961 	SK_XM_READ_2(sc_if, XM_ISR);
2962 	mii_tick(mii);
2963 	callout_stop(&sc_if->sk_tick_ch);
2964 }
2965 
2966 static void
2967 sk_yukon_tick(xsc_if)
2968 	void			*xsc_if;
2969 {
2970 	struct sk_if_softc	*sc_if;
2971 	struct mii_data		*mii;
2972 
2973 	sc_if = xsc_if;
2974 	mii = device_get_softc(sc_if->sk_miibus);
2975 
2976 	mii_tick(mii);
2977 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2978 }
2979 
2980 static void
2981 sk_intr_bcom(sc_if)
2982 	struct sk_if_softc	*sc_if;
2983 {
2984 	struct mii_data		*mii;
2985 	struct ifnet		*ifp;
2986 	int			status;
2987 	mii = device_get_softc(sc_if->sk_miibus);
2988 	ifp = sc_if->sk_ifp;
2989 
2990 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2991 
2992 	/*
2993 	 * Read the PHY interrupt register to make sure
2994 	 * we clear any pending interrupts.
2995 	 */
2996 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2997 
2998 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2999 		sk_init_xmac(sc_if);
3000 		return;
3001 	}
3002 
3003 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3004 		int			lstat;
3005 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3006 		    BRGPHY_MII_AUXSTS);
3007 
3008 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3009 			mii_mediachg(mii);
3010 			/* Turn off the link LED. */
3011 			SK_IF_WRITE_1(sc_if, 0,
3012 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3013 			sc_if->sk_link = 0;
3014 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3015 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3016 	    		    BRGPHY_MII_IMR, 0xFF00);
3017 			mii_tick(mii);
3018 			sc_if->sk_link = 1;
3019 			/* Turn on the link LED. */
3020 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3021 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3022 			    SK_LINKLED_BLINK_OFF);
3023 		} else {
3024 			mii_tick(mii);
3025 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3026 		}
3027 	}
3028 
3029 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3030 
3031 	return;
3032 }
3033 
3034 static void
3035 sk_intr_xmac(sc_if)
3036 	struct sk_if_softc	*sc_if;
3037 {
3038 	struct sk_softc		*sc;
3039 	u_int16_t		status;
3040 
3041 	sc = sc_if->sk_softc;
3042 	status = SK_XM_READ_2(sc_if, XM_ISR);
3043 
3044 	/*
3045 	 * Link has gone down. Start MII tick timeout to
3046 	 * watch for link resync.
3047 	 */
3048 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3049 		if (status & XM_ISR_GP0_SET) {
3050 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3051 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3052 		}
3053 
3054 		if (status & XM_ISR_AUTONEG_DONE) {
3055 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3056 		}
3057 	}
3058 
3059 	if (status & XM_IMR_TX_UNDERRUN)
3060 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3061 
3062 	if (status & XM_IMR_RX_OVERRUN)
3063 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3064 
3065 	status = SK_XM_READ_2(sc_if, XM_ISR);
3066 
3067 	return;
3068 }
3069 
3070 static void
3071 sk_intr_yukon(sc_if)
3072 	struct sk_if_softc	*sc_if;
3073 {
3074 	u_int8_t status;
3075 
3076 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3077 	/* RX overrun */
3078 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3079 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3080 		    SK_RFCTL_RX_FIFO_OVER);
3081 	}
3082 	/* TX underrun */
3083 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3084 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3085 		    SK_TFCTL_TX_FIFO_UNDER);
3086 	}
3087 }
3088 
3089 static void
3090 sk_intr(xsc)
3091 	void			*xsc;
3092 {
3093 	struct sk_softc		*sc = xsc;
3094 	struct sk_if_softc	*sc_if0, *sc_if1;
3095 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3096 	u_int32_t		status;
3097 
3098 	SK_LOCK(sc);
3099 
3100 	status = CSR_READ_4(sc, SK_ISSR);
3101 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3102 		goto done_locked;
3103 
3104 	sc_if0 = sc->sk_if[SK_PORT_A];
3105 	sc_if1 = sc->sk_if[SK_PORT_B];
3106 
3107 	if (sc_if0 != NULL)
3108 		ifp0 = sc_if0->sk_ifp;
3109 	if (sc_if1 != NULL)
3110 		ifp1 = sc_if1->sk_ifp;
3111 
3112 	for (; (status &= sc->sk_intrmask) != 0;) {
3113 		/* Handle receive interrupts first. */
3114 		if (status & SK_ISR_RX1_EOF) {
3115 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3116 				sk_jumbo_rxeof(sc_if0);
3117 			else
3118 				sk_rxeof(sc_if0);
3119 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3120 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3121 		}
3122 		if (status & SK_ISR_RX2_EOF) {
3123 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3124 				sk_jumbo_rxeof(sc_if1);
3125 			else
3126 				sk_rxeof(sc_if1);
3127 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3128 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3129 		}
3130 
3131 		/* Then transmit interrupts. */
3132 		if (status & SK_ISR_TX1_S_EOF) {
3133 			sk_txeof(sc_if0);
3134 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3135 		}
3136 		if (status & SK_ISR_TX2_S_EOF) {
3137 			sk_txeof(sc_if1);
3138 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3139 		}
3140 
3141 		/* Then MAC interrupts. */
3142 		if (status & SK_ISR_MAC1 &&
3143 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3144 			if (sc->sk_type == SK_GENESIS)
3145 				sk_intr_xmac(sc_if0);
3146 			else
3147 				sk_intr_yukon(sc_if0);
3148 		}
3149 
3150 		if (status & SK_ISR_MAC2 &&
3151 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3152 			if (sc->sk_type == SK_GENESIS)
3153 				sk_intr_xmac(sc_if1);
3154 			else
3155 				sk_intr_yukon(sc_if1);
3156 		}
3157 
3158 		if (status & SK_ISR_EXTERNAL_REG) {
3159 			if (ifp0 != NULL &&
3160 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3161 				sk_intr_bcom(sc_if0);
3162 			if (ifp1 != NULL &&
3163 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3164 				sk_intr_bcom(sc_if1);
3165 		}
3166 		status = CSR_READ_4(sc, SK_ISSR);
3167 	}
3168 
3169 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3170 
3171 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3172 		sk_start_locked(ifp0);
3173 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3174 		sk_start_locked(ifp1);
3175 
3176 done_locked:
3177 	SK_UNLOCK(sc);
3178 }
3179 
3180 static void
3181 sk_init_xmac(sc_if)
3182 	struct sk_if_softc	*sc_if;
3183 {
3184 	struct sk_softc		*sc;
3185 	struct ifnet		*ifp;
3186 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3187 	static const struct sk_bcom_hack bhack[] = {
3188 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3189 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3190 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3191 	{ 0, 0 } };
3192 
3193 	SK_IF_LOCK_ASSERT(sc_if);
3194 
3195 	sc = sc_if->sk_softc;
3196 	ifp = sc_if->sk_ifp;
3197 
3198 	/* Unreset the XMAC. */
3199 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3200 	DELAY(1000);
3201 
3202 	/* Reset the XMAC's internal state. */
3203 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3204 
3205 	/* Save the XMAC II revision */
3206 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3207 
3208 	/*
3209 	 * Perform additional initialization for external PHYs,
3210 	 * namely for the 1000baseTX cards that use the XMAC's
3211 	 * GMII mode.
3212 	 */
3213 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3214 		int			i = 0;
3215 		u_int32_t		val;
3216 
3217 		/* Take PHY out of reset. */
3218 		val = sk_win_read_4(sc, SK_GPIO);
3219 		if (sc_if->sk_port == SK_PORT_A)
3220 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3221 		else
3222 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3223 		sk_win_write_4(sc, SK_GPIO, val);
3224 
3225 		/* Enable GMII mode on the XMAC. */
3226 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3227 
3228 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3229 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3230 		DELAY(10000);
3231 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3232 		    BRGPHY_MII_IMR, 0xFFF0);
3233 
3234 		/*
3235 		 * Early versions of the BCM5400 apparently have
3236 		 * a bug that requires them to have their reserved
3237 		 * registers initialized to some magic values. I don't
3238 		 * know what the numbers do, I'm just the messenger.
3239 		 */
3240 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3241 		    == 0x6041) {
3242 			while(bhack[i].reg) {
3243 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3244 				    bhack[i].reg, bhack[i].val);
3245 				i++;
3246 			}
3247 		}
3248 	}
3249 
3250 	/* Set station address */
3251 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3252 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3253 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3254 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3255 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3256 
3257 	if (ifp->if_flags & IFF_BROADCAST) {
3258 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3259 	} else {
3260 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3261 	}
3262 
3263 	/* We don't need the FCS appended to the packet. */
3264 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3265 
3266 	/* We want short frames padded to 60 bytes. */
3267 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3268 
3269 	/*
3270 	 * Enable the reception of all error frames. This is is
3271 	 * a necessary evil due to the design of the XMAC. The
3272 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3273 	 * frames can be up to 9000 bytes in length. When bad
3274 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3275 	 * in 'store and forward' mode. For this to work, the
3276 	 * entire frame has to fit into the FIFO, but that means
3277 	 * that jumbo frames larger than 8192 bytes will be
3278 	 * truncated. Disabling all bad frame filtering causes
3279 	 * the RX FIFO to operate in streaming mode, in which
3280 	 * case the XMAC will start transferring frames out of the
3281 	 * RX FIFO as soon as the FIFO threshold is reached.
3282 	 */
3283 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3284 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3285 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3286 		    XM_MODE_RX_INRANGELEN);
3287 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3288 	} else
3289 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3290 
3291 	/*
3292 	 * Bump up the transmit threshold. This helps hold off transmit
3293 	 * underruns when we're blasting traffic from both ports at once.
3294 	 */
3295 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3296 
3297 	/* Set Rx filter */
3298 	sk_rxfilter_genesis(sc_if);
3299 
3300 	/* Clear and enable interrupts */
3301 	SK_XM_READ_2(sc_if, XM_ISR);
3302 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3303 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3304 	else
3305 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3306 
3307 	/* Configure MAC arbiter */
3308 	switch(sc_if->sk_xmac_rev) {
3309 	case XM_XMAC_REV_B2:
3310 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3311 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3312 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3313 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3314 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3315 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3317 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3318 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3319 		break;
3320 	case XM_XMAC_REV_C1:
3321 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3322 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3323 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3324 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3325 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3326 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3328 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3329 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3330 		break;
3331 	default:
3332 		break;
3333 	}
3334 	sk_win_write_2(sc, SK_MACARB_CTL,
3335 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3336 
3337 	sc_if->sk_link = 1;
3338 
3339 	return;
3340 }
3341 
3342 static void
3343 sk_init_yukon(sc_if)
3344 	struct sk_if_softc	*sc_if;
3345 {
3346 	u_int32_t		phy, v;
3347 	u_int16_t		reg;
3348 	struct sk_softc		*sc;
3349 	struct ifnet		*ifp;
3350 	u_int8_t		*eaddr;
3351 	int			i;
3352 
3353 	SK_IF_LOCK_ASSERT(sc_if);
3354 
3355 	sc = sc_if->sk_softc;
3356 	ifp = sc_if->sk_ifp;
3357 
3358 	if (sc->sk_type == SK_YUKON_LITE &&
3359 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3360 		/*
3361 		 * Workaround code for COMA mode, set PHY reset.
3362 		 * Otherwise it will not correctly take chip out of
3363 		 * powerdown (coma)
3364 		 */
3365 		v = sk_win_read_4(sc, SK_GPIO);
3366 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3367 		sk_win_write_4(sc, SK_GPIO, v);
3368 	}
3369 
3370 	/* GMAC and GPHY Reset */
3371 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3372 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3373 	DELAY(1000);
3374 
3375 	if (sc->sk_type == SK_YUKON_LITE &&
3376 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3377 		/*
3378 		 * Workaround code for COMA mode, clear PHY reset
3379 		 */
3380 		v = sk_win_read_4(sc, SK_GPIO);
3381 		v |= SK_GPIO_DIR9;
3382 		v &= ~SK_GPIO_DAT9;
3383 		sk_win_write_4(sc, SK_GPIO, v);
3384 	}
3385 
3386 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3387 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3388 
3389 	if (sc->sk_coppertype)
3390 		phy |= SK_GPHY_COPPER;
3391 	else
3392 		phy |= SK_GPHY_FIBER;
3393 
3394 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3395 	DELAY(1000);
3396 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3397 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3398 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3399 
3400 	/* unused read of the interrupt source register */
3401 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3402 
3403 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3404 
3405 	/* MIB Counter Clear Mode set */
3406 	reg |= YU_PAR_MIB_CLR;
3407 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3408 
3409 	/* MIB Counter Clear Mode clear */
3410 	reg &= ~YU_PAR_MIB_CLR;
3411 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3412 
3413 	/* receive control reg */
3414 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3415 
3416 	/* transmit parameter register */
3417 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3418 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3419 
3420 	/* serial mode register */
3421 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3422 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3423 		reg |= YU_SMR_MFL_JUMBO;
3424 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3425 
3426 	/* Setup Yukon's station address */
3427 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3428 	for (i = 0; i < 3; i++)
3429 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3430 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3431 	/* Set GMAC source address of flow control. */
3432 	for (i = 0; i < 3; i++)
3433 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3434 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3435 	/* Set GMAC virtual address. */
3436 	for (i = 0; i < 3; i++)
3437 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3438 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3439 
3440 	/* Set Rx filter */
3441 	sk_rxfilter_yukon(sc_if);
3442 
3443 	/* enable interrupt mask for counter overflows */
3444 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3445 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3446 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3447 
3448 	/* Configure RX MAC FIFO Flush Mask */
3449 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3450 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3451 	    YU_RXSTAT_JABBER;
3452 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3453 
3454 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3455 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3456 		v = SK_TFCTL_OPERATION_ON;
3457 	else
3458 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3459 	/* Configure RX MAC FIFO */
3460 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3461 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3462 
3463 	/* Increase flush threshould to 64 bytes */
3464 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3465 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3466 
3467 	/* Configure TX MAC FIFO */
3468 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3469 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3470 }
3471 
3472 /*
3473  * Note that to properly initialize any part of the GEnesis chip,
3474  * you first have to take it out of reset mode.
3475  */
3476 static void
3477 sk_init(xsc)
3478 	void			*xsc;
3479 {
3480 	struct sk_if_softc	*sc_if = xsc;
3481 
3482 	SK_IF_LOCK(sc_if);
3483 	sk_init_locked(sc_if);
3484 	SK_IF_UNLOCK(sc_if);
3485 
3486 	return;
3487 }
3488 
3489 static void
3490 sk_init_locked(sc_if)
3491 	struct sk_if_softc	*sc_if;
3492 {
3493 	struct sk_softc		*sc;
3494 	struct ifnet		*ifp;
3495 	struct mii_data		*mii;
3496 	u_int16_t		reg;
3497 	u_int32_t		imr;
3498 	int			error;
3499 
3500 	SK_IF_LOCK_ASSERT(sc_if);
3501 
3502 	ifp = sc_if->sk_ifp;
3503 	sc = sc_if->sk_softc;
3504 	mii = device_get_softc(sc_if->sk_miibus);
3505 
3506 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3507 		return;
3508 
3509 	/* Cancel pending I/O and free all RX/TX buffers. */
3510 	sk_stop(sc_if);
3511 
3512 	if (sc->sk_type == SK_GENESIS) {
3513 		/* Configure LINK_SYNC LED */
3514 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3515 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3516 			SK_LINKLED_LINKSYNC_ON);
3517 
3518 		/* Configure RX LED */
3519 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3520 			SK_RXLEDCTL_COUNTER_START);
3521 
3522 		/* Configure TX LED */
3523 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3524 			SK_TXLEDCTL_COUNTER_START);
3525 	}
3526 
3527 	/*
3528 	 * Configure descriptor poll timer
3529 	 *
3530 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3531 	 * transmit command due to CPU/cache related interim storage problems
3532 	 * under certain conditions. The document recommends a polling
3533 	 * mechanism to send a Start transmit command to initiate transfer
3534 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3535 	 * enables descriptor poll timer to initiate descriptor processing
3536 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3537 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3538 	 * command instead of waiting for next descriptor polling time.
3539 	 * The same rule may apply to Rx side too but it seems that is not
3540 	 * needed at the moment.
3541 	 * Since sk(4) uses descriptor polling as a last resort there is no
3542 	 * need to set smaller polling time than maximum allowable one.
3543 	 */
3544 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3545 
3546 	/* Configure I2C registers */
3547 
3548 	/* Configure XMAC(s) */
3549 	switch (sc->sk_type) {
3550 	case SK_GENESIS:
3551 		sk_init_xmac(sc_if);
3552 		break;
3553 	case SK_YUKON:
3554 	case SK_YUKON_LITE:
3555 	case SK_YUKON_LP:
3556 		sk_init_yukon(sc_if);
3557 		break;
3558 	}
3559 	mii_mediachg(mii);
3560 
3561 	if (sc->sk_type == SK_GENESIS) {
3562 		/* Configure MAC FIFOs */
3563 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3564 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3565 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3566 
3567 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3568 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3569 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3570 	}
3571 
3572 	/* Configure transmit arbiter(s) */
3573 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3574 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3575 
3576 	/* Configure RAMbuffers */
3577 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3578 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3579 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3581 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3583 
3584 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3585 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3586 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3591 
3592 	/* Configure BMUs */
3593 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3594 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3595 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3596 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3597 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3598 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3599 	} else {
3600 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3601 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3602 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3603 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3604 	}
3605 
3606 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3607 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3608 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3609 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3610 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3611 
3612 	/* Init descriptors */
3613 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3614 		error = sk_init_jumbo_rx_ring(sc_if);
3615 	else
3616 		error = sk_init_rx_ring(sc_if);
3617 	if (error != 0) {
3618 		device_printf(sc_if->sk_if_dev,
3619 		    "initialization failed: no memory for rx buffers\n");
3620 		sk_stop(sc_if);
3621 		return;
3622 	}
3623 	sk_init_tx_ring(sc_if);
3624 
3625 	/* Set interrupt moderation if changed via sysctl. */
3626 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3627 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3628 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3629 		    sc->sk_int_ticks));
3630 		if (bootverbose)
3631 			device_printf(sc_if->sk_if_dev,
3632 			    "interrupt moderation is %d us.\n",
3633 			    sc->sk_int_mod);
3634 	}
3635 
3636 	/* Configure interrupt handling */
3637 	CSR_READ_4(sc, SK_ISSR);
3638 	if (sc_if->sk_port == SK_PORT_A)
3639 		sc->sk_intrmask |= SK_INTRS1;
3640 	else
3641 		sc->sk_intrmask |= SK_INTRS2;
3642 
3643 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3644 
3645 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3646 
3647 	/* Start BMUs. */
3648 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3649 
3650 	switch(sc->sk_type) {
3651 	case SK_GENESIS:
3652 		/* Enable XMACs TX and RX state machines */
3653 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3654 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3655 		break;
3656 	case SK_YUKON:
3657 	case SK_YUKON_LITE:
3658 	case SK_YUKON_LP:
3659 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3660 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3661 #if 0
3662 		/* XXX disable 100Mbps and full duplex mode? */
3663 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3664 #endif
3665 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3666 	}
3667 
3668 	/* Activate descriptor polling timer */
3669 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3670 	/* start transfer of Tx descriptors */
3671 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3672 
3673 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3674 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3675 
3676 	switch (sc->sk_type) {
3677 	case SK_YUKON:
3678 	case SK_YUKON_LITE:
3679 	case SK_YUKON_LP:
3680 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3681 		break;
3682 	}
3683 
3684 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3685 
3686 	return;
3687 }
3688 
3689 static void
3690 sk_stop(sc_if)
3691 	struct sk_if_softc	*sc_if;
3692 {
3693 	int			i;
3694 	struct sk_softc		*sc;
3695 	struct sk_txdesc	*txd;
3696 	struct sk_rxdesc	*rxd;
3697 	struct sk_rxdesc	*jrxd;
3698 	struct ifnet		*ifp;
3699 	u_int32_t		val;
3700 
3701 	SK_IF_LOCK_ASSERT(sc_if);
3702 	sc = sc_if->sk_softc;
3703 	ifp = sc_if->sk_ifp;
3704 
3705 	callout_stop(&sc_if->sk_tick_ch);
3706 	callout_stop(&sc_if->sk_watchdog_ch);
3707 
3708 	/* stop Tx descriptor polling timer */
3709 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3710 	/* stop transfer of Tx descriptors */
3711 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3712 	for (i = 0; i < SK_TIMEOUT; i++) {
3713 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3714 		if ((val & SK_TXBMU_TX_STOP) == 0)
3715 			break;
3716 		DELAY(1);
3717 	}
3718 	if (i == SK_TIMEOUT)
3719 		device_printf(sc_if->sk_if_dev,
3720 		    "can not stop transfer of Tx descriptor\n");
3721 	/* stop transfer of Rx descriptors */
3722 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3723 	for (i = 0; i < SK_TIMEOUT; i++) {
3724 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3725 		if ((val & SK_RXBMU_RX_STOP) == 0)
3726 			break;
3727 		DELAY(1);
3728 	}
3729 	if (i == SK_TIMEOUT)
3730 		device_printf(sc_if->sk_if_dev,
3731 		    "can not stop transfer of Rx descriptor\n");
3732 
3733 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3734 		/* Put PHY back into reset. */
3735 		val = sk_win_read_4(sc, SK_GPIO);
3736 		if (sc_if->sk_port == SK_PORT_A) {
3737 			val |= SK_GPIO_DIR0;
3738 			val &= ~SK_GPIO_DAT0;
3739 		} else {
3740 			val |= SK_GPIO_DIR2;
3741 			val &= ~SK_GPIO_DAT2;
3742 		}
3743 		sk_win_write_4(sc, SK_GPIO, val);
3744 	}
3745 
3746 	/* Turn off various components of this interface. */
3747 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3748 	switch (sc->sk_type) {
3749 	case SK_GENESIS:
3750 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3751 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3752 		break;
3753 	case SK_YUKON:
3754 	case SK_YUKON_LITE:
3755 	case SK_YUKON_LP:
3756 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3757 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3758 		break;
3759 	}
3760 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3762 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3763 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3764 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3765 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3766 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3767 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3768 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3769 
3770 	/* Disable interrupts */
3771 	if (sc_if->sk_port == SK_PORT_A)
3772 		sc->sk_intrmask &= ~SK_INTRS1;
3773 	else
3774 		sc->sk_intrmask &= ~SK_INTRS2;
3775 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3776 
3777 	SK_XM_READ_2(sc_if, XM_ISR);
3778 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3779 
3780 	/* Free RX and TX mbufs still in the queues. */
3781 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3782 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3783 		if (rxd->rx_m != NULL) {
3784 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3785 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3786 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3787 			    rxd->rx_dmamap);
3788 			m_freem(rxd->rx_m);
3789 			rxd->rx_m = NULL;
3790 		}
3791 	}
3792 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3793 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3794 		if (jrxd->rx_m != NULL) {
3795 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3796 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3797 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3798 			    jrxd->rx_dmamap);
3799 			m_freem(jrxd->rx_m);
3800 			jrxd->rx_m = NULL;
3801 		}
3802 	}
3803 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3804 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3805 		if (txd->tx_m != NULL) {
3806 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3807 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3808 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3809 			    txd->tx_dmamap);
3810 			m_freem(txd->tx_m);
3811 			txd->tx_m = NULL;
3812 		}
3813 	}
3814 
3815 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3816 
3817 	return;
3818 }
3819 
3820 static int
3821 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3822 {
3823 	int error, value;
3824 
3825 	if (!arg1)
3826 		return (EINVAL);
3827 	value = *(int *)arg1;
3828 	error = sysctl_handle_int(oidp, &value, 0, req);
3829 	if (error || !req->newptr)
3830 		return (error);
3831 	if (value < low || value > high)
3832 		return (EINVAL);
3833 	*(int *)arg1 = value;
3834 	return (0);
3835 }
3836 
3837 static int
3838 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3839 {
3840 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3841 }
3842