1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /* 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/sockio.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/kernel.h> 94 #include <sys/module.h> 95 #include <sys/socket.h> 96 #include <sys/queue.h> 97 98 #include <net/if.h> 99 #include <net/if_arp.h> 100 #include <net/ethernet.h> 101 #include <net/if_dl.h> 102 #include <net/if_media.h> 103 104 #include <net/bpf.h> 105 106 #include <vm/vm.h> /* for vtophys */ 107 #include <vm/pmap.h> /* for vtophys */ 108 #include <machine/bus_pio.h> 109 #include <machine/bus_memio.h> 110 #include <machine/bus.h> 111 #include <machine/resource.h> 112 #include <sys/bus.h> 113 #include <sys/rman.h> 114 115 #include <dev/mii/mii.h> 116 #include <dev/mii/miivar.h> 117 #include <dev/mii/brgphyreg.h> 118 119 #include <dev/pci/pcireg.h> 120 #include <dev/pci/pcivar.h> 121 122 #if 0 123 #define SK_USEIOSPACE 124 #endif 125 126 #include <pci/if_skreg.h> 127 #include <pci/xmaciireg.h> 128 #include <pci/yukonreg.h> 129 130 MODULE_DEPEND(sk, pci, 1, 1, 1); 131 MODULE_DEPEND(sk, ether, 1, 1, 1); 132 MODULE_DEPEND(sk, miibus, 1, 1, 1); 133 134 /* "controller miibus0" required. See GENERIC if you get errors here. */ 135 #include "miibus_if.h" 136 137 #ifndef lint 138 static const char rcsid[] = 139 "$FreeBSD$"; 140 #endif 141 142 static struct sk_type sk_devs[] = { 143 { 144 VENDORID_SK, 145 DEVICEID_SK_V1, 146 "SysKonnect Gigabit Ethernet (V1.0)" 147 }, 148 { 149 VENDORID_SK, 150 DEVICEID_SK_V2, 151 "SysKonnect Gigabit Ethernet (V2.0)" 152 }, 153 { 154 VENDORID_MARVELL, 155 DEVICEID_SK_V2, 156 "Marvell Gigabit Ethernet" 157 }, 158 { 159 VENDORID_MARVELL, 160 DEVICEID_BELKIN_5005, 161 "Belkin F5D5005 Gigabit Ethernet" 162 }, 163 { 164 VENDORID_3COM, 165 DEVICEID_3COM_3C940, 166 "3Com 3C940 Gigabit Ethernet" 167 }, 168 { 169 VENDORID_LINKSYS, 170 DEVICEID_LINKSYS_EG1032, 171 "Linksys EG1032 Gigabit Ethernet" 172 }, 173 { 174 VENDORID_DLINK, 175 DEVICEID_DLINK_DGE530T, 176 "D-Link DGE-530T Gigabit Ethernet" 177 }, 178 { 0, 0, NULL } 179 }; 180 181 static int skc_probe (device_t); 182 static int skc_attach (device_t); 183 static int skc_detach (device_t); 184 static void skc_shutdown (device_t); 185 static int sk_detach (device_t); 186 static int sk_probe (device_t); 187 static int sk_attach (device_t); 188 static void sk_tick (void *); 189 static void sk_intr (void *); 190 static void sk_intr_xmac (struct sk_if_softc *); 191 static void sk_intr_bcom (struct sk_if_softc *); 192 static void sk_intr_yukon (struct sk_if_softc *); 193 static void sk_rxeof (struct sk_if_softc *); 194 static void sk_txeof (struct sk_if_softc *); 195 static int sk_encap (struct sk_if_softc *, struct mbuf *, 196 u_int32_t *); 197 static void sk_start (struct ifnet *); 198 static int sk_ioctl (struct ifnet *, u_long, caddr_t); 199 static void sk_init (void *); 200 static void sk_init_xmac (struct sk_if_softc *); 201 static void sk_init_yukon (struct sk_if_softc *); 202 static void sk_stop (struct sk_if_softc *); 203 static void sk_watchdog (struct ifnet *); 204 static int sk_ifmedia_upd (struct ifnet *); 205 static void sk_ifmedia_sts (struct ifnet *, struct ifmediareq *); 206 static void sk_reset (struct sk_softc *); 207 static int sk_newbuf (struct sk_if_softc *, 208 struct sk_chain *, struct mbuf *); 209 static int sk_alloc_jumbo_mem (struct sk_if_softc *); 210 static void *sk_jalloc (struct sk_if_softc *); 211 static void sk_jfree (void *, void *); 212 static int sk_init_rx_ring (struct sk_if_softc *); 213 static void sk_init_tx_ring (struct sk_if_softc *); 214 static u_int32_t sk_win_read_4 (struct sk_softc *, int); 215 static u_int16_t sk_win_read_2 (struct sk_softc *, int); 216 static u_int8_t sk_win_read_1 (struct sk_softc *, int); 217 static void sk_win_write_4 (struct sk_softc *, int, u_int32_t); 218 static void sk_win_write_2 (struct sk_softc *, int, u_int32_t); 219 static void sk_win_write_1 (struct sk_softc *, int, u_int32_t); 220 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int); 221 static void sk_vpd_read_res (struct sk_softc *, struct vpd_res *, int); 222 static void sk_vpd_read (struct sk_softc *); 223 224 static int sk_miibus_readreg (device_t, int, int); 225 static int sk_miibus_writereg (device_t, int, int, int); 226 static void sk_miibus_statchg (device_t); 227 228 static int sk_xmac_miibus_readreg (struct sk_if_softc *, int, int); 229 static int sk_xmac_miibus_writereg (struct sk_if_softc *, int, int, 230 int); 231 static void sk_xmac_miibus_statchg (struct sk_if_softc *); 232 233 static int sk_marv_miibus_readreg (struct sk_if_softc *, int, int); 234 static int sk_marv_miibus_writereg (struct sk_if_softc *, int, int, 235 int); 236 static void sk_marv_miibus_statchg (struct sk_if_softc *); 237 238 static uint32_t sk_xmchash (const uint8_t *); 239 static uint32_t sk_gmchash (const uint8_t *); 240 static void sk_setfilt (struct sk_if_softc *, caddr_t, int); 241 static void sk_setmulti (struct sk_if_softc *); 242 static void sk_setpromisc (struct sk_if_softc *); 243 244 #ifdef SK_USEIOSPACE 245 #define SK_RES SYS_RES_IOPORT 246 #define SK_RID SK_PCI_LOIO 247 #else 248 #define SK_RES SYS_RES_MEMORY 249 #define SK_RID SK_PCI_LOMEM 250 #endif 251 252 /* 253 * Note that we have newbus methods for both the GEnesis controller 254 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 255 * the miibus code is a child of the XMACs. We need to do it this way 256 * so that the miibus drivers can access the PHY registers on the 257 * right PHY. It's not quite what I had in mind, but it's the only 258 * design that achieves the desired effect. 259 */ 260 static device_method_t skc_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, skc_probe), 263 DEVMETHOD(device_attach, skc_attach), 264 DEVMETHOD(device_detach, skc_detach), 265 DEVMETHOD(device_shutdown, skc_shutdown), 266 267 /* bus interface */ 268 DEVMETHOD(bus_print_child, bus_generic_print_child), 269 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 270 271 { 0, 0 } 272 }; 273 274 static driver_t skc_driver = { 275 "skc", 276 skc_methods, 277 sizeof(struct sk_softc) 278 }; 279 280 static devclass_t skc_devclass; 281 282 static device_method_t sk_methods[] = { 283 /* Device interface */ 284 DEVMETHOD(device_probe, sk_probe), 285 DEVMETHOD(device_attach, sk_attach), 286 DEVMETHOD(device_detach, sk_detach), 287 DEVMETHOD(device_shutdown, bus_generic_shutdown), 288 289 /* bus interface */ 290 DEVMETHOD(bus_print_child, bus_generic_print_child), 291 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 292 293 /* MII interface */ 294 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 295 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 296 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 297 298 { 0, 0 } 299 }; 300 301 static driver_t sk_driver = { 302 "sk", 303 sk_methods, 304 sizeof(struct sk_if_softc) 305 }; 306 307 static devclass_t sk_devclass; 308 309 DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0); 310 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); 311 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); 312 313 #define SK_SETBIT(sc, reg, x) \ 314 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 315 316 #define SK_CLRBIT(sc, reg, x) \ 317 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 318 319 #define SK_WIN_SETBIT_4(sc, reg, x) \ 320 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 321 322 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 323 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 324 325 #define SK_WIN_SETBIT_2(sc, reg, x) \ 326 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 327 328 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 329 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 330 331 static u_int32_t 332 sk_win_read_4(sc, reg) 333 struct sk_softc *sc; 334 int reg; 335 { 336 #ifdef SK_USEIOSPACE 337 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 338 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 339 #else 340 return(CSR_READ_4(sc, reg)); 341 #endif 342 } 343 344 static u_int16_t 345 sk_win_read_2(sc, reg) 346 struct sk_softc *sc; 347 int reg; 348 { 349 #ifdef SK_USEIOSPACE 350 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 351 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 352 #else 353 return(CSR_READ_2(sc, reg)); 354 #endif 355 } 356 357 static u_int8_t 358 sk_win_read_1(sc, reg) 359 struct sk_softc *sc; 360 int reg; 361 { 362 #ifdef SK_USEIOSPACE 363 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 364 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 365 #else 366 return(CSR_READ_1(sc, reg)); 367 #endif 368 } 369 370 static void 371 sk_win_write_4(sc, reg, val) 372 struct sk_softc *sc; 373 int reg; 374 u_int32_t val; 375 { 376 #ifdef SK_USEIOSPACE 377 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 378 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 379 #else 380 CSR_WRITE_4(sc, reg, val); 381 #endif 382 return; 383 } 384 385 static void 386 sk_win_write_2(sc, reg, val) 387 struct sk_softc *sc; 388 int reg; 389 u_int32_t val; 390 { 391 #ifdef SK_USEIOSPACE 392 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 393 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 394 #else 395 CSR_WRITE_2(sc, reg, val); 396 #endif 397 return; 398 } 399 400 static void 401 sk_win_write_1(sc, reg, val) 402 struct sk_softc *sc; 403 int reg; 404 u_int32_t val; 405 { 406 #ifdef SK_USEIOSPACE 407 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 408 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 409 #else 410 CSR_WRITE_1(sc, reg, val); 411 #endif 412 return; 413 } 414 415 /* 416 * The VPD EEPROM contains Vital Product Data, as suggested in 417 * the PCI 2.1 specification. The VPD data is separared into areas 418 * denoted by resource IDs. The SysKonnect VPD contains an ID string 419 * resource (the name of the adapter), a read-only area resource 420 * containing various key/data fields and a read/write area which 421 * can be used to store asset management information or log messages. 422 * We read the ID string and read-only into buffers attached to 423 * the controller softc structure for later use. At the moment, 424 * we only use the ID string during skc_attach(). 425 */ 426 static u_int8_t 427 sk_vpd_readbyte(sc, addr) 428 struct sk_softc *sc; 429 int addr; 430 { 431 int i; 432 433 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 434 for (i = 0; i < SK_TIMEOUT; i++) { 435 DELAY(1); 436 if (sk_win_read_2(sc, 437 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 438 break; 439 } 440 441 if (i == SK_TIMEOUT) 442 return(0); 443 444 return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); 445 } 446 447 static void 448 sk_vpd_read_res(sc, res, addr) 449 struct sk_softc *sc; 450 struct vpd_res *res; 451 int addr; 452 { 453 int i; 454 u_int8_t *ptr; 455 456 ptr = (u_int8_t *)res; 457 for (i = 0; i < sizeof(struct vpd_res); i++) 458 ptr[i] = sk_vpd_readbyte(sc, i + addr); 459 460 return; 461 } 462 463 static void 464 sk_vpd_read(sc) 465 struct sk_softc *sc; 466 { 467 int pos = 0, i; 468 struct vpd_res res; 469 470 if (sc->sk_vpd_prodname != NULL) 471 free(sc->sk_vpd_prodname, M_DEVBUF); 472 if (sc->sk_vpd_readonly != NULL) 473 free(sc->sk_vpd_readonly, M_DEVBUF); 474 sc->sk_vpd_prodname = NULL; 475 sc->sk_vpd_readonly = NULL; 476 477 sk_vpd_read_res(sc, &res, pos); 478 479 /* 480 * Bail out quietly if the eeprom appears to be missing or empty. 481 */ 482 if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff) 483 return; 484 485 if (res.vr_id != VPD_RES_ID) { 486 printf("skc%d: bad VPD resource id: expected %x got %x\n", 487 sc->sk_unit, VPD_RES_ID, res.vr_id); 488 return; 489 } 490 491 pos += sizeof(res); 492 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 493 for (i = 0; i < res.vr_len; i++) 494 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 495 sc->sk_vpd_prodname[i] = '\0'; 496 pos += i; 497 498 sk_vpd_read_res(sc, &res, pos); 499 500 if (res.vr_id != VPD_RES_READ) { 501 printf("skc%d: bad VPD resource id: expected %x got %x\n", 502 sc->sk_unit, VPD_RES_READ, res.vr_id); 503 return; 504 } 505 506 pos += sizeof(res); 507 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 508 for (i = 0; i < res.vr_len + 1; i++) 509 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 510 511 return; 512 } 513 514 static int 515 sk_miibus_readreg(dev, phy, reg) 516 device_t dev; 517 int phy, reg; 518 { 519 struct sk_if_softc *sc_if; 520 521 sc_if = device_get_softc(dev); 522 523 switch(sc_if->sk_softc->sk_type) { 524 case SK_GENESIS: 525 return(sk_xmac_miibus_readreg(sc_if, phy, reg)); 526 case SK_YUKON: 527 return(sk_marv_miibus_readreg(sc_if, phy, reg)); 528 } 529 530 return(0); 531 } 532 533 static int 534 sk_miibus_writereg(dev, phy, reg, val) 535 device_t dev; 536 int phy, reg, val; 537 { 538 struct sk_if_softc *sc_if; 539 540 sc_if = device_get_softc(dev); 541 542 switch(sc_if->sk_softc->sk_type) { 543 case SK_GENESIS: 544 return(sk_xmac_miibus_writereg(sc_if, phy, reg, val)); 545 case SK_YUKON: 546 return(sk_marv_miibus_writereg(sc_if, phy, reg, val)); 547 } 548 549 return(0); 550 } 551 552 static void 553 sk_miibus_statchg(dev) 554 device_t dev; 555 { 556 struct sk_if_softc *sc_if; 557 558 sc_if = device_get_softc(dev); 559 560 switch(sc_if->sk_softc->sk_type) { 561 case SK_GENESIS: 562 sk_xmac_miibus_statchg(sc_if); 563 break; 564 case SK_YUKON: 565 sk_marv_miibus_statchg(sc_if); 566 break; 567 } 568 569 return; 570 } 571 572 static int 573 sk_xmac_miibus_readreg(sc_if, phy, reg) 574 struct sk_if_softc *sc_if; 575 int phy, reg; 576 { 577 int i; 578 579 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 580 return(0); 581 582 SK_IF_LOCK(sc_if); 583 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 584 SK_XM_READ_2(sc_if, XM_PHY_DATA); 585 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 586 for (i = 0; i < SK_TIMEOUT; i++) { 587 DELAY(1); 588 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 589 XM_MMUCMD_PHYDATARDY) 590 break; 591 } 592 593 if (i == SK_TIMEOUT) { 594 printf("sk%d: phy failed to come ready\n", 595 sc_if->sk_unit); 596 SK_IF_UNLOCK(sc_if); 597 return(0); 598 } 599 } 600 DELAY(1); 601 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 602 SK_IF_UNLOCK(sc_if); 603 return(i); 604 } 605 606 static int 607 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 608 struct sk_if_softc *sc_if; 609 int phy, reg, val; 610 { 611 int i; 612 613 SK_IF_LOCK(sc_if); 614 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 615 for (i = 0; i < SK_TIMEOUT; i++) { 616 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 617 break; 618 } 619 620 if (i == SK_TIMEOUT) { 621 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); 622 SK_IF_UNLOCK(sc_if); 623 return(ETIMEDOUT); 624 } 625 626 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 627 for (i = 0; i < SK_TIMEOUT; i++) { 628 DELAY(1); 629 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 630 break; 631 } 632 SK_IF_UNLOCK(sc_if); 633 if (i == SK_TIMEOUT) 634 printf("sk%d: phy write timed out\n", sc_if->sk_unit); 635 636 return(0); 637 } 638 639 static void 640 sk_xmac_miibus_statchg(sc_if) 641 struct sk_if_softc *sc_if; 642 { 643 struct mii_data *mii; 644 645 mii = device_get_softc(sc_if->sk_miibus); 646 647 SK_IF_LOCK(sc_if); 648 /* 649 * If this is a GMII PHY, manually set the XMAC's 650 * duplex mode accordingly. 651 */ 652 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 653 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 654 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 655 } else { 656 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 657 } 658 } 659 SK_IF_UNLOCK(sc_if); 660 661 return; 662 } 663 664 static int 665 sk_marv_miibus_readreg(sc_if, phy, reg) 666 struct sk_if_softc *sc_if; 667 int phy, reg; 668 { 669 u_int16_t val; 670 int i; 671 672 if (phy != 0 || 673 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 674 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 675 return(0); 676 } 677 678 SK_IF_LOCK(sc_if); 679 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 680 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 681 682 for (i = 0; i < SK_TIMEOUT; i++) { 683 DELAY(1); 684 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 685 if (val & YU_SMICR_READ_VALID) 686 break; 687 } 688 689 if (i == SK_TIMEOUT) { 690 printf("sk%d: phy failed to come ready\n", 691 sc_if->sk_unit); 692 SK_IF_UNLOCK(sc_if); 693 return(0); 694 } 695 696 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 697 SK_IF_UNLOCK(sc_if); 698 699 return(val); 700 } 701 702 static int 703 sk_marv_miibus_writereg(sc_if, phy, reg, val) 704 struct sk_if_softc *sc_if; 705 int phy, reg, val; 706 { 707 int i; 708 709 SK_IF_LOCK(sc_if); 710 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 711 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 712 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 713 714 for (i = 0; i < SK_TIMEOUT; i++) { 715 DELAY(1); 716 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) 717 break; 718 } 719 SK_IF_UNLOCK(sc_if); 720 721 return(0); 722 } 723 724 static void 725 sk_marv_miibus_statchg(sc_if) 726 struct sk_if_softc *sc_if; 727 { 728 return; 729 } 730 731 #define HASH_BITS 6 732 733 static u_int32_t 734 sk_xmchash(addr) 735 const uint8_t *addr; 736 { 737 uint32_t crc; 738 739 /* Compute CRC for the address value. */ 740 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 741 742 return (~crc & ((1 << HASH_BITS) - 1)); 743 } 744 745 /* gmchash is just a big endian crc */ 746 static u_int32_t 747 sk_gmchash(addr) 748 const uint8_t *addr; 749 { 750 uint32_t crc; 751 752 /* Compute CRC for the address value. */ 753 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 754 755 return (crc & ((1 << HASH_BITS) - 1)); 756 } 757 758 static void 759 sk_setfilt(sc_if, addr, slot) 760 struct sk_if_softc *sc_if; 761 caddr_t addr; 762 int slot; 763 { 764 int base; 765 766 base = XM_RXFILT_ENTRY(slot); 767 768 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); 769 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); 770 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); 771 772 return; 773 } 774 775 static void 776 sk_setmulti(sc_if) 777 struct sk_if_softc *sc_if; 778 { 779 struct sk_softc *sc = sc_if->sk_softc; 780 struct ifnet *ifp = &sc_if->arpcom.ac_if; 781 u_int32_t hashes[2] = { 0, 0 }; 782 int h = 0, i; 783 struct ifmultiaddr *ifma; 784 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; 785 786 787 /* First, zot all the existing filters. */ 788 switch(sc->sk_type) { 789 case SK_GENESIS: 790 for (i = 1; i < XM_RXFILT_MAX; i++) 791 sk_setfilt(sc_if, (caddr_t)&dummy, i); 792 793 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 794 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 795 break; 796 case SK_YUKON: 797 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 798 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 799 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 800 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 801 break; 802 } 803 804 /* Now program new ones. */ 805 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 806 hashes[0] = 0xFFFFFFFF; 807 hashes[1] = 0xFFFFFFFF; 808 } else { 809 i = 1; 810 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { 811 if (ifma->ifma_addr->sa_family != AF_LINK) 812 continue; 813 /* 814 * Program the first XM_RXFILT_MAX multicast groups 815 * into the perfect filter. For all others, 816 * use the hash table. 817 */ 818 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { 819 sk_setfilt(sc_if, 820 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); 821 i++; 822 continue; 823 } 824 825 switch(sc->sk_type) { 826 case SK_GENESIS: 827 h = sk_xmchash( 828 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 829 break; 830 case SK_YUKON: 831 h = sk_gmchash( 832 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 833 break; 834 } 835 if (h < 32) 836 hashes[0] |= (1 << h); 837 else 838 hashes[1] |= (1 << (h - 32)); 839 } 840 } 841 842 switch(sc->sk_type) { 843 case SK_GENESIS: 844 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 845 XM_MODE_RX_USE_PERFECT); 846 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 847 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 848 break; 849 case SK_YUKON: 850 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 851 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 852 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 853 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 854 break; 855 } 856 857 return; 858 } 859 860 static void 861 sk_setpromisc(sc_if) 862 struct sk_if_softc *sc_if; 863 { 864 struct sk_softc *sc = sc_if->sk_softc; 865 struct ifnet *ifp = &sc_if->arpcom.ac_if; 866 867 switch(sc->sk_type) { 868 case SK_GENESIS: 869 if (ifp->if_flags & IFF_PROMISC) { 870 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 871 } else { 872 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 873 } 874 break; 875 case SK_YUKON: 876 if (ifp->if_flags & IFF_PROMISC) { 877 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 878 YU_RCR_UFLEN | YU_RCR_MUFLEN); 879 } else { 880 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 881 YU_RCR_UFLEN | YU_RCR_MUFLEN); 882 } 883 break; 884 } 885 886 return; 887 } 888 889 static int 890 sk_init_rx_ring(sc_if) 891 struct sk_if_softc *sc_if; 892 { 893 struct sk_chain_data *cd = &sc_if->sk_cdata; 894 struct sk_ring_data *rd = sc_if->sk_rdata; 895 int i; 896 897 bzero((char *)rd->sk_rx_ring, 898 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 899 900 for (i = 0; i < SK_RX_RING_CNT; i++) { 901 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 902 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) 903 return(ENOBUFS); 904 if (i == (SK_RX_RING_CNT - 1)) { 905 cd->sk_rx_chain[i].sk_next = 906 &cd->sk_rx_chain[0]; 907 rd->sk_rx_ring[i].sk_next = 908 vtophys(&rd->sk_rx_ring[0]); 909 } else { 910 cd->sk_rx_chain[i].sk_next = 911 &cd->sk_rx_chain[i + 1]; 912 rd->sk_rx_ring[i].sk_next = 913 vtophys(&rd->sk_rx_ring[i + 1]); 914 } 915 } 916 917 sc_if->sk_cdata.sk_rx_prod = 0; 918 sc_if->sk_cdata.sk_rx_cons = 0; 919 920 return(0); 921 } 922 923 static void 924 sk_init_tx_ring(sc_if) 925 struct sk_if_softc *sc_if; 926 { 927 struct sk_chain_data *cd = &sc_if->sk_cdata; 928 struct sk_ring_data *rd = sc_if->sk_rdata; 929 int i; 930 931 bzero((char *)sc_if->sk_rdata->sk_tx_ring, 932 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 933 934 for (i = 0; i < SK_TX_RING_CNT; i++) { 935 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 936 if (i == (SK_TX_RING_CNT - 1)) { 937 cd->sk_tx_chain[i].sk_next = 938 &cd->sk_tx_chain[0]; 939 rd->sk_tx_ring[i].sk_next = 940 vtophys(&rd->sk_tx_ring[0]); 941 } else { 942 cd->sk_tx_chain[i].sk_next = 943 &cd->sk_tx_chain[i + 1]; 944 rd->sk_tx_ring[i].sk_next = 945 vtophys(&rd->sk_tx_ring[i + 1]); 946 } 947 } 948 949 sc_if->sk_cdata.sk_tx_prod = 0; 950 sc_if->sk_cdata.sk_tx_cons = 0; 951 sc_if->sk_cdata.sk_tx_cnt = 0; 952 953 return; 954 } 955 956 static int 957 sk_newbuf(sc_if, c, m) 958 struct sk_if_softc *sc_if; 959 struct sk_chain *c; 960 struct mbuf *m; 961 { 962 struct mbuf *m_new = NULL; 963 struct sk_rx_desc *r; 964 965 if (m == NULL) { 966 caddr_t *buf = NULL; 967 968 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 969 if (m_new == NULL) 970 return(ENOBUFS); 971 972 /* Allocate the jumbo buffer */ 973 buf = sk_jalloc(sc_if); 974 if (buf == NULL) { 975 m_freem(m_new); 976 #ifdef SK_VERBOSE 977 printf("sk%d: jumbo allocation failed " 978 "-- packet dropped!\n", sc_if->sk_unit); 979 #endif 980 return(ENOBUFS); 981 } 982 983 /* Attach the buffer to the mbuf */ 984 MEXTADD(m_new, buf, SK_JLEN, sk_jfree, 985 (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV); 986 m_new->m_data = (void *)buf; 987 m_new->m_pkthdr.len = m_new->m_len = SK_JLEN; 988 } else { 989 /* 990 * We're re-using a previously allocated mbuf; 991 * be sure to re-init pointers and lengths to 992 * default values. 993 */ 994 m_new = m; 995 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 996 m_new->m_data = m_new->m_ext.ext_buf; 997 } 998 999 /* 1000 * Adjust alignment so packet payload begins on a 1001 * longword boundary. Mandatory for Alpha, useful on 1002 * x86 too. 1003 */ 1004 m_adj(m_new, ETHER_ALIGN); 1005 1006 r = c->sk_desc; 1007 c->sk_mbuf = m_new; 1008 r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); 1009 r->sk_ctl = m_new->m_len | SK_RXSTAT; 1010 1011 return(0); 1012 } 1013 1014 /* 1015 * Allocate jumbo buffer storage. The SysKonnect adapters support 1016 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1017 * use them in their drivers. In order for us to use them, we need 1018 * large 9K receive buffers, however standard mbuf clusters are only 1019 * 2048 bytes in size. Consequently, we need to allocate and manage 1020 * our own jumbo buffer pool. Fortunately, this does not require an 1021 * excessive amount of additional code. 1022 */ 1023 static int 1024 sk_alloc_jumbo_mem(sc_if) 1025 struct sk_if_softc *sc_if; 1026 { 1027 caddr_t ptr; 1028 register int i; 1029 struct sk_jpool_entry *entry; 1030 1031 /* Grab a big chunk o' storage. */ 1032 sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, 1033 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1034 1035 if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { 1036 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); 1037 return(ENOBUFS); 1038 } 1039 1040 SLIST_INIT(&sc_if->sk_jfree_listhead); 1041 SLIST_INIT(&sc_if->sk_jinuse_listhead); 1042 1043 /* 1044 * Now divide it up into 9K pieces and save the addresses 1045 * in an array. 1046 */ 1047 ptr = sc_if->sk_cdata.sk_jumbo_buf; 1048 for (i = 0; i < SK_JSLOTS; i++) { 1049 sc_if->sk_cdata.sk_jslots[i] = ptr; 1050 ptr += SK_JLEN; 1051 entry = malloc(sizeof(struct sk_jpool_entry), 1052 M_DEVBUF, M_NOWAIT); 1053 if (entry == NULL) { 1054 free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF); 1055 sc_if->sk_cdata.sk_jumbo_buf = NULL; 1056 printf("sk%d: no memory for jumbo " 1057 "buffer queue!\n", sc_if->sk_unit); 1058 return(ENOBUFS); 1059 } 1060 entry->slot = i; 1061 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 1062 entry, jpool_entries); 1063 } 1064 1065 return(0); 1066 } 1067 1068 /* 1069 * Allocate a jumbo buffer. 1070 */ 1071 static void * 1072 sk_jalloc(sc_if) 1073 struct sk_if_softc *sc_if; 1074 { 1075 struct sk_jpool_entry *entry; 1076 1077 entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); 1078 1079 if (entry == NULL) { 1080 #ifdef SK_VERBOSE 1081 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); 1082 #endif 1083 return(NULL); 1084 } 1085 1086 SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); 1087 SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 1088 return(sc_if->sk_cdata.sk_jslots[entry->slot]); 1089 } 1090 1091 /* 1092 * Release a jumbo buffer. 1093 */ 1094 static void 1095 sk_jfree(buf, args) 1096 void *buf; 1097 void *args; 1098 { 1099 struct sk_if_softc *sc_if; 1100 int i; 1101 struct sk_jpool_entry *entry; 1102 1103 /* Extract the softc struct pointer. */ 1104 sc_if = (struct sk_if_softc *)args; 1105 1106 if (sc_if == NULL) 1107 panic("sk_jfree: didn't get softc pointer!"); 1108 1109 /* calculate the slot this buffer belongs to */ 1110 i = ((vm_offset_t)buf 1111 - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; 1112 1113 if ((i < 0) || (i >= SK_JSLOTS)) 1114 panic("sk_jfree: asked to free buffer that we don't manage!"); 1115 1116 entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); 1117 if (entry == NULL) 1118 panic("sk_jfree: buffer not in use!"); 1119 entry->slot = i; 1120 SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); 1121 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); 1122 1123 return; 1124 } 1125 1126 /* 1127 * Set media options. 1128 */ 1129 static int 1130 sk_ifmedia_upd(ifp) 1131 struct ifnet *ifp; 1132 { 1133 struct sk_if_softc *sc_if = ifp->if_softc; 1134 struct mii_data *mii; 1135 1136 mii = device_get_softc(sc_if->sk_miibus); 1137 sk_init(sc_if); 1138 mii_mediachg(mii); 1139 1140 return(0); 1141 } 1142 1143 /* 1144 * Report current media status. 1145 */ 1146 static void 1147 sk_ifmedia_sts(ifp, ifmr) 1148 struct ifnet *ifp; 1149 struct ifmediareq *ifmr; 1150 { 1151 struct sk_if_softc *sc_if; 1152 struct mii_data *mii; 1153 1154 sc_if = ifp->if_softc; 1155 mii = device_get_softc(sc_if->sk_miibus); 1156 1157 mii_pollstat(mii); 1158 ifmr->ifm_active = mii->mii_media_active; 1159 ifmr->ifm_status = mii->mii_media_status; 1160 1161 return; 1162 } 1163 1164 static int 1165 sk_ioctl(ifp, command, data) 1166 struct ifnet *ifp; 1167 u_long command; 1168 caddr_t data; 1169 { 1170 struct sk_if_softc *sc_if = ifp->if_softc; 1171 struct ifreq *ifr = (struct ifreq *) data; 1172 int error = 0; 1173 struct mii_data *mii; 1174 1175 SK_IF_LOCK(sc_if); 1176 1177 switch(command) { 1178 case SIOCSIFMTU: 1179 if (ifr->ifr_mtu > SK_JUMBO_MTU) 1180 error = EINVAL; 1181 else { 1182 ifp->if_mtu = ifr->ifr_mtu; 1183 sk_init(sc_if); 1184 } 1185 break; 1186 case SIOCSIFFLAGS: 1187 if (ifp->if_flags & IFF_UP) { 1188 if (ifp->if_flags & IFF_RUNNING) { 1189 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1190 & IFF_PROMISC) { 1191 sk_setpromisc(sc_if); 1192 sk_setmulti(sc_if); 1193 } 1194 } else 1195 sk_init(sc_if); 1196 } else { 1197 if (ifp->if_flags & IFF_RUNNING) 1198 sk_stop(sc_if); 1199 } 1200 sc_if->sk_if_flags = ifp->if_flags; 1201 error = 0; 1202 break; 1203 case SIOCADDMULTI: 1204 case SIOCDELMULTI: 1205 sk_setmulti(sc_if); 1206 error = 0; 1207 break; 1208 case SIOCGIFMEDIA: 1209 case SIOCSIFMEDIA: 1210 mii = device_get_softc(sc_if->sk_miibus); 1211 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1212 break; 1213 default: 1214 error = ether_ioctl(ifp, command, data); 1215 break; 1216 } 1217 1218 SK_IF_UNLOCK(sc_if); 1219 1220 return(error); 1221 } 1222 1223 /* 1224 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1225 * IDs against our list and return a device name if we find a match. 1226 */ 1227 static int 1228 skc_probe(dev) 1229 device_t dev; 1230 { 1231 struct sk_softc *sc; 1232 struct sk_type *t = sk_devs; 1233 1234 sc = device_get_softc(dev); 1235 1236 while(t->sk_name != NULL) { 1237 if ((pci_get_vendor(dev) == t->sk_vid) && 1238 (pci_get_device(dev) == t->sk_did)) { 1239 device_set_desc(dev, t->sk_name); 1240 return(0); 1241 } 1242 t++; 1243 } 1244 1245 return(ENXIO); 1246 } 1247 1248 /* 1249 * Force the GEnesis into reset, then bring it out of reset. 1250 */ 1251 static void 1252 sk_reset(sc) 1253 struct sk_softc *sc; 1254 { 1255 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1256 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1257 if (sc->sk_type == SK_YUKON) 1258 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1259 1260 DELAY(1000); 1261 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1262 DELAY(2); 1263 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1264 if (sc->sk_type == SK_YUKON) 1265 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1266 1267 if (sc->sk_type == SK_GENESIS) { 1268 /* Configure packet arbiter */ 1269 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1270 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1271 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1272 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1273 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1274 } 1275 1276 /* Enable RAM interface */ 1277 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1278 1279 /* 1280 * Configure interrupt moderation. The moderation timer 1281 * defers interrupts specified in the interrupt moderation 1282 * timer mask based on the timeout specified in the interrupt 1283 * moderation timer init register. Each bit in the timer 1284 * register represents 18.825ns, so to specify a timeout in 1285 * microseconds, we have to multiply by 54. 1286 */ 1287 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); 1288 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1289 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1290 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1291 1292 return; 1293 } 1294 1295 static int 1296 sk_probe(dev) 1297 device_t dev; 1298 { 1299 struct sk_softc *sc; 1300 1301 sc = device_get_softc(device_get_parent(dev)); 1302 1303 /* 1304 * Not much to do here. We always know there will be 1305 * at least one XMAC present, and if there are two, 1306 * skc_attach() will create a second device instance 1307 * for us. 1308 */ 1309 switch (sc->sk_type) { 1310 case SK_GENESIS: 1311 device_set_desc(dev, "XaQti Corp. XMAC II"); 1312 break; 1313 case SK_YUKON: 1314 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1315 break; 1316 } 1317 1318 return(0); 1319 } 1320 1321 /* 1322 * Each XMAC chip is attached as a separate logical IP interface. 1323 * Single port cards will have only one logical interface of course. 1324 */ 1325 static int 1326 sk_attach(dev) 1327 device_t dev; 1328 { 1329 struct sk_softc *sc; 1330 struct sk_if_softc *sc_if; 1331 struct ifnet *ifp; 1332 int i, port, error; 1333 1334 if (dev == NULL) 1335 return(EINVAL); 1336 1337 error = 0; 1338 sc_if = device_get_softc(dev); 1339 sc = device_get_softc(device_get_parent(dev)); 1340 port = *(int *)device_get_ivars(dev); 1341 free(device_get_ivars(dev), M_DEVBUF); 1342 device_set_ivars(dev, NULL); 1343 1344 sc_if->sk_dev = dev; 1345 sc_if->sk_unit = device_get_unit(dev); 1346 sc_if->sk_port = port; 1347 sc_if->sk_softc = sc; 1348 sc->sk_if[port] = sc_if; 1349 if (port == SK_PORT_A) 1350 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1351 if (port == SK_PORT_B) 1352 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1353 1354 /* Allocate the descriptor queues. */ 1355 sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, 1356 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1357 1358 if (sc_if->sk_rdata == NULL) { 1359 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); 1360 error = ENOMEM; 1361 goto fail; 1362 } 1363 1364 bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); 1365 1366 /* Try to allocate memory for jumbo buffers. */ 1367 if (sk_alloc_jumbo_mem(sc_if)) { 1368 printf("sk%d: jumbo buffer allocation failed\n", 1369 sc_if->sk_unit); 1370 error = ENOMEM; 1371 goto fail; 1372 } 1373 1374 ifp = &sc_if->arpcom.ac_if; 1375 ifp->if_softc = sc_if; 1376 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1377 ifp->if_mtu = ETHERMTU; 1378 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1379 ifp->if_ioctl = sk_ioctl; 1380 ifp->if_start = sk_start; 1381 ifp->if_watchdog = sk_watchdog; 1382 ifp->if_init = sk_init; 1383 ifp->if_baudrate = 1000000000; 1384 ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; 1385 1386 callout_handle_init(&sc_if->sk_tick_ch); 1387 1388 /* 1389 * Get station address for this interface. Note that 1390 * dual port cards actually come with three station 1391 * addresses: one for each port, plus an extra. The 1392 * extra one is used by the SysKonnect driver software 1393 * as a 'virtual' station address for when both ports 1394 * are operating in failover mode. Currently we don't 1395 * use this extra address. 1396 */ 1397 SK_LOCK(sc); 1398 for (i = 0; i < ETHER_ADDR_LEN; i++) 1399 sc_if->arpcom.ac_enaddr[i] = 1400 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1401 1402 /* 1403 * Set up RAM buffer addresses. The NIC will have a certain 1404 * amount of SRAM on it, somewhere between 512K and 2MB. We 1405 * need to divide this up a) between the transmitter and 1406 * receiver and b) between the two XMACs, if this is a 1407 * dual port NIC. Our algotithm is to divide up the memory 1408 * evenly so that everyone gets a fair share. 1409 */ 1410 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1411 u_int32_t chunk, val; 1412 1413 chunk = sc->sk_ramsize / 2; 1414 val = sc->sk_rboff / sizeof(u_int64_t); 1415 sc_if->sk_rx_ramstart = val; 1416 val += (chunk / sizeof(u_int64_t)); 1417 sc_if->sk_rx_ramend = val - 1; 1418 sc_if->sk_tx_ramstart = val; 1419 val += (chunk / sizeof(u_int64_t)); 1420 sc_if->sk_tx_ramend = val - 1; 1421 } else { 1422 u_int32_t chunk, val; 1423 1424 chunk = sc->sk_ramsize / 4; 1425 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1426 sizeof(u_int64_t); 1427 sc_if->sk_rx_ramstart = val; 1428 val += (chunk / sizeof(u_int64_t)); 1429 sc_if->sk_rx_ramend = val - 1; 1430 sc_if->sk_tx_ramstart = val; 1431 val += (chunk / sizeof(u_int64_t)); 1432 sc_if->sk_tx_ramend = val - 1; 1433 } 1434 1435 /* Read and save PHY type and set PHY address */ 1436 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1437 switch(sc_if->sk_phytype) { 1438 case SK_PHYTYPE_XMAC: 1439 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1440 break; 1441 case SK_PHYTYPE_BCOM: 1442 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1443 break; 1444 case SK_PHYTYPE_MARV_COPPER: 1445 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1446 break; 1447 default: 1448 printf("skc%d: unsupported PHY type: %d\n", 1449 sc->sk_unit, sc_if->sk_phytype); 1450 error = ENODEV; 1451 SK_UNLOCK(sc); 1452 goto fail; 1453 } 1454 1455 1456 /* 1457 * Call MI attach routine. Can't hold locks when calling into ether_*. 1458 */ 1459 SK_UNLOCK(sc); 1460 ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); 1461 SK_LOCK(sc); 1462 1463 /* 1464 * Do miibus setup. 1465 */ 1466 switch (sc->sk_type) { 1467 case SK_GENESIS: 1468 sk_init_xmac(sc_if); 1469 break; 1470 case SK_YUKON: 1471 sk_init_yukon(sc_if); 1472 break; 1473 } 1474 1475 SK_UNLOCK(sc); 1476 if (mii_phy_probe(dev, &sc_if->sk_miibus, 1477 sk_ifmedia_upd, sk_ifmedia_sts)) { 1478 printf("skc%d: no PHY found!\n", sc_if->sk_unit); 1479 ether_ifdetach(ifp); 1480 error = ENXIO; 1481 goto fail; 1482 } 1483 1484 fail: 1485 if (error) { 1486 /* Access should be ok even though lock has been dropped */ 1487 sc->sk_if[port] = NULL; 1488 sk_detach(dev); 1489 } 1490 1491 return(error); 1492 } 1493 1494 /* 1495 * Attach the interface. Allocate softc structures, do ifmedia 1496 * setup and ethernet/BPF attach. 1497 */ 1498 static int 1499 skc_attach(dev) 1500 device_t dev; 1501 { 1502 struct sk_softc *sc; 1503 int unit, error = 0, rid, *port; 1504 1505 sc = device_get_softc(dev); 1506 unit = device_get_unit(dev); 1507 1508 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1509 MTX_DEF | MTX_RECURSE); 1510 /* 1511 * Map control/status registers. 1512 */ 1513 pci_enable_busmaster(dev); 1514 1515 rid = SK_RID; 1516 sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE); 1517 1518 if (sc->sk_res == NULL) { 1519 printf("sk%d: couldn't map ports/memory\n", unit); 1520 error = ENXIO; 1521 goto fail; 1522 } 1523 1524 sc->sk_btag = rman_get_bustag(sc->sk_res); 1525 sc->sk_bhandle = rman_get_bushandle(sc->sk_res); 1526 1527 /* Allocate interrupt */ 1528 rid = 0; 1529 sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1530 RF_SHAREABLE | RF_ACTIVE); 1531 1532 if (sc->sk_irq == NULL) { 1533 printf("skc%d: couldn't map interrupt\n", unit); 1534 error = ENXIO; 1535 goto fail; 1536 } 1537 1538 /* Set adapter type */ 1539 switch (pci_get_device(dev)) { 1540 case DEVICEID_SK_V1: 1541 sc->sk_type = SK_GENESIS; 1542 break; 1543 case DEVICEID_SK_V2: 1544 case DEVICEID_BELKIN_5005: 1545 case DEVICEID_3COM_3C940: 1546 case DEVICEID_LINKSYS_EG1032: 1547 case DEVICEID_DLINK_DGE530T: 1548 sc->sk_type = SK_YUKON; 1549 break; 1550 default: 1551 printf("skc%d: unknown device!\n", unit); 1552 error = ENXIO; 1553 goto fail; 1554 } 1555 1556 /* Reset the adapter. */ 1557 sk_reset(sc); 1558 1559 sc->sk_unit = unit; 1560 1561 /* Read and save vital product data from EEPROM. */ 1562 sk_vpd_read(sc); 1563 1564 if (sc->sk_type == SK_GENESIS) { 1565 /* Read and save RAM size and RAMbuffer offset */ 1566 switch(sk_win_read_1(sc, SK_EPROM0)) { 1567 case SK_RAMSIZE_512K_64: 1568 sc->sk_ramsize = 0x80000; 1569 sc->sk_rboff = SK_RBOFF_0; 1570 break; 1571 case SK_RAMSIZE_1024K_64: 1572 sc->sk_ramsize = 0x100000; 1573 sc->sk_rboff = SK_RBOFF_80000; 1574 break; 1575 case SK_RAMSIZE_1024K_128: 1576 sc->sk_ramsize = 0x100000; 1577 sc->sk_rboff = SK_RBOFF_0; 1578 break; 1579 case SK_RAMSIZE_2048K_128: 1580 sc->sk_ramsize = 0x200000; 1581 sc->sk_rboff = SK_RBOFF_0; 1582 break; 1583 default: 1584 printf("skc%d: unknown ram size: %d\n", 1585 sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); 1586 error = ENXIO; 1587 goto fail; 1588 } 1589 } else { 1590 sc->sk_ramsize = 0x20000; 1591 sc->sk_rboff = SK_RBOFF_0; 1592 } 1593 1594 /* Read and save physical media type */ 1595 switch(sk_win_read_1(sc, SK_PMDTYPE)) { 1596 case SK_PMD_1000BASESX: 1597 sc->sk_pmd = IFM_1000_SX; 1598 break; 1599 case SK_PMD_1000BASELX: 1600 sc->sk_pmd = IFM_1000_LX; 1601 break; 1602 case SK_PMD_1000BASECX: 1603 sc->sk_pmd = IFM_1000_CX; 1604 break; 1605 case SK_PMD_1000BASETX: 1606 sc->sk_pmd = IFM_1000_T; 1607 break; 1608 default: 1609 printf("skc%d: unknown media type: 0x%x\n", 1610 sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); 1611 error = ENXIO; 1612 goto fail; 1613 } 1614 1615 /* Announce the product name. */ 1616 if (sc->sk_vpd_prodname != NULL) 1617 printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname); 1618 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1619 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1620 *port = SK_PORT_A; 1621 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1622 1623 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1624 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1625 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1626 *port = SK_PORT_B; 1627 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1628 } 1629 1630 /* Turn on the 'driver is loaded' LED. */ 1631 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1632 1633 bus_generic_attach(dev); 1634 1635 /* Hook interrupt last to avoid having to lock softc */ 1636 error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE, 1637 sk_intr, sc, &sc->sk_intrhand); 1638 1639 if (error) { 1640 printf("skc%d: couldn't set up irq\n", unit); 1641 goto fail; 1642 } 1643 1644 fail: 1645 if (error) 1646 skc_detach(dev); 1647 1648 return(error); 1649 } 1650 1651 /* 1652 * Shutdown hardware and free up resources. This can be called any 1653 * time after the mutex has been initialized. It is called in both 1654 * the error case in attach and the normal detach case so it needs 1655 * to be careful about only freeing resources that have actually been 1656 * allocated. 1657 */ 1658 static int 1659 sk_detach(dev) 1660 device_t dev; 1661 { 1662 struct sk_if_softc *sc_if; 1663 struct ifnet *ifp; 1664 1665 sc_if = device_get_softc(dev); 1666 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1667 ("sk mutex not initialized in sk_detach")); 1668 SK_IF_LOCK(sc_if); 1669 1670 ifp = &sc_if->arpcom.ac_if; 1671 /* These should only be active if attach_xmac succeeded */ 1672 if (device_is_attached(dev)) { 1673 sk_stop(sc_if); 1674 /* Can't hold locks while calling detach */ 1675 SK_IF_UNLOCK(sc_if); 1676 ether_ifdetach(ifp); 1677 SK_IF_LOCK(sc_if); 1678 } 1679 /* 1680 * We're generally called from skc_detach() which is using 1681 * device_delete_child() to get to here. It's already trashed 1682 * miibus for us, so don't do it here or we'll panic. 1683 */ 1684 /* 1685 if (sc_if->sk_miibus != NULL) 1686 device_delete_child(dev, sc_if->sk_miibus); 1687 */ 1688 bus_generic_detach(dev); 1689 if (sc_if->sk_cdata.sk_jumbo_buf != NULL) 1690 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); 1691 if (sc_if->sk_rdata != NULL) { 1692 contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), 1693 M_DEVBUF); 1694 } 1695 SK_IF_UNLOCK(sc_if); 1696 1697 return(0); 1698 } 1699 1700 static int 1701 skc_detach(dev) 1702 device_t dev; 1703 { 1704 struct sk_softc *sc; 1705 1706 sc = device_get_softc(dev); 1707 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1708 1709 if (device_is_alive(dev)) { 1710 if (sc->sk_devs[SK_PORT_A] != NULL) 1711 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1712 if (sc->sk_devs[SK_PORT_B] != NULL) 1713 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1714 bus_generic_detach(dev); 1715 } 1716 1717 if (sc->sk_intrhand) 1718 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); 1719 if (sc->sk_irq) 1720 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); 1721 if (sc->sk_res) 1722 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); 1723 1724 mtx_destroy(&sc->sk_mtx); 1725 1726 return(0); 1727 } 1728 1729 static int 1730 sk_encap(sc_if, m_head, txidx) 1731 struct sk_if_softc *sc_if; 1732 struct mbuf *m_head; 1733 u_int32_t *txidx; 1734 { 1735 struct sk_tx_desc *f = NULL; 1736 struct mbuf *m; 1737 u_int32_t frag, cur, cnt = 0; 1738 1739 m = m_head; 1740 cur = frag = *txidx; 1741 1742 /* 1743 * Start packing the mbufs in this chain into 1744 * the fragment pointers. Stop when we run out 1745 * of fragments or hit the end of the mbuf chain. 1746 */ 1747 for (m = m_head; m != NULL; m = m->m_next) { 1748 if (m->m_len != 0) { 1749 if ((SK_TX_RING_CNT - 1750 (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) 1751 return(ENOBUFS); 1752 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1753 f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); 1754 f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; 1755 if (cnt == 0) 1756 f->sk_ctl |= SK_TXCTL_FIRSTFRAG; 1757 else 1758 f->sk_ctl |= SK_TXCTL_OWN; 1759 cur = frag; 1760 SK_INC(frag, SK_TX_RING_CNT); 1761 cnt++; 1762 } 1763 } 1764 1765 if (m != NULL) 1766 return(ENOBUFS); 1767 1768 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1769 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; 1770 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1771 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; 1772 sc_if->sk_cdata.sk_tx_cnt += cnt; 1773 1774 *txidx = frag; 1775 1776 return(0); 1777 } 1778 1779 static void 1780 sk_start(ifp) 1781 struct ifnet *ifp; 1782 { 1783 struct sk_softc *sc; 1784 struct sk_if_softc *sc_if; 1785 struct mbuf *m_head = NULL; 1786 u_int32_t idx; 1787 1788 sc_if = ifp->if_softc; 1789 sc = sc_if->sk_softc; 1790 1791 SK_IF_LOCK(sc_if); 1792 1793 idx = sc_if->sk_cdata.sk_tx_prod; 1794 1795 while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1796 IF_DEQUEUE(&ifp->if_snd, m_head); 1797 if (m_head == NULL) 1798 break; 1799 1800 /* 1801 * Pack the data into the transmit ring. If we 1802 * don't have room, set the OACTIVE flag and wait 1803 * for the NIC to drain the ring. 1804 */ 1805 if (sk_encap(sc_if, m_head, &idx)) { 1806 IF_PREPEND(&ifp->if_snd, m_head); 1807 ifp->if_flags |= IFF_OACTIVE; 1808 break; 1809 } 1810 1811 /* 1812 * If there's a BPF listener, bounce a copy of this frame 1813 * to him. 1814 */ 1815 BPF_MTAP(ifp, m_head); 1816 } 1817 1818 /* Transmit */ 1819 sc_if->sk_cdata.sk_tx_prod = idx; 1820 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1821 1822 /* Set a timeout in case the chip goes out to lunch. */ 1823 ifp->if_timer = 5; 1824 SK_IF_UNLOCK(sc_if); 1825 1826 return; 1827 } 1828 1829 1830 static void 1831 sk_watchdog(ifp) 1832 struct ifnet *ifp; 1833 { 1834 struct sk_if_softc *sc_if; 1835 1836 sc_if = ifp->if_softc; 1837 1838 printf("sk%d: watchdog timeout\n", sc_if->sk_unit); 1839 sk_init(sc_if); 1840 1841 return; 1842 } 1843 1844 static void 1845 skc_shutdown(dev) 1846 device_t dev; 1847 { 1848 struct sk_softc *sc; 1849 1850 sc = device_get_softc(dev); 1851 SK_LOCK(sc); 1852 1853 /* Turn off the 'driver is loaded' LED. */ 1854 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 1855 1856 /* 1857 * Reset the GEnesis controller. Doing this should also 1858 * assert the resets on the attached XMAC(s). 1859 */ 1860 sk_reset(sc); 1861 SK_UNLOCK(sc); 1862 1863 return; 1864 } 1865 1866 static void 1867 sk_rxeof(sc_if) 1868 struct sk_if_softc *sc_if; 1869 { 1870 struct sk_softc *sc; 1871 struct mbuf *m; 1872 struct ifnet *ifp; 1873 struct sk_chain *cur_rx; 1874 int total_len = 0; 1875 int i; 1876 u_int32_t rxstat; 1877 1878 sc = sc_if->sk_softc; 1879 ifp = &sc_if->arpcom.ac_if; 1880 i = sc_if->sk_cdata.sk_rx_prod; 1881 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1882 1883 SK_LOCK_ASSERT(sc); 1884 1885 while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { 1886 1887 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; 1888 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; 1889 m = cur_rx->sk_mbuf; 1890 cur_rx->sk_mbuf = NULL; 1891 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); 1892 SK_INC(i, SK_RX_RING_CNT); 1893 1894 if (rxstat & XM_RXSTAT_ERRFRAME) { 1895 ifp->if_ierrors++; 1896 sk_newbuf(sc_if, cur_rx, m); 1897 continue; 1898 } 1899 1900 /* 1901 * Try to allocate a new jumbo buffer. If that 1902 * fails, copy the packet to mbufs and put the 1903 * jumbo buffer back in the ring so it can be 1904 * re-used. If allocating mbufs fails, then we 1905 * have to drop the packet. 1906 */ 1907 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { 1908 struct mbuf *m0; 1909 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 1910 ifp, NULL); 1911 sk_newbuf(sc_if, cur_rx, m); 1912 if (m0 == NULL) { 1913 printf("sk%d: no receive buffers " 1914 "available -- packet dropped!\n", 1915 sc_if->sk_unit); 1916 ifp->if_ierrors++; 1917 continue; 1918 } 1919 m = m0; 1920 } else { 1921 m->m_pkthdr.rcvif = ifp; 1922 m->m_pkthdr.len = m->m_len = total_len; 1923 } 1924 1925 ifp->if_ipackets++; 1926 SK_UNLOCK(sc); 1927 (*ifp->if_input)(ifp, m); 1928 SK_LOCK(sc); 1929 } 1930 1931 sc_if->sk_cdata.sk_rx_prod = i; 1932 1933 return; 1934 } 1935 1936 static void 1937 sk_txeof(sc_if) 1938 struct sk_if_softc *sc_if; 1939 { 1940 struct sk_tx_desc *cur_tx = NULL; 1941 struct ifnet *ifp; 1942 u_int32_t idx; 1943 1944 ifp = &sc_if->arpcom.ac_if; 1945 1946 /* 1947 * Go through our tx ring and free mbufs for those 1948 * frames that have been sent. 1949 */ 1950 idx = sc_if->sk_cdata.sk_tx_cons; 1951 while(idx != sc_if->sk_cdata.sk_tx_prod) { 1952 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 1953 if (cur_tx->sk_ctl & SK_TXCTL_OWN) 1954 break; 1955 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) 1956 ifp->if_opackets++; 1957 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 1958 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 1959 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 1960 } 1961 sc_if->sk_cdata.sk_tx_cnt--; 1962 SK_INC(idx, SK_TX_RING_CNT); 1963 ifp->if_timer = 0; 1964 } 1965 1966 sc_if->sk_cdata.sk_tx_cons = idx; 1967 1968 if (cur_tx != NULL) 1969 ifp->if_flags &= ~IFF_OACTIVE; 1970 1971 return; 1972 } 1973 1974 static void 1975 sk_tick(xsc_if) 1976 void *xsc_if; 1977 { 1978 struct sk_if_softc *sc_if; 1979 struct mii_data *mii; 1980 struct ifnet *ifp; 1981 int i; 1982 1983 sc_if = xsc_if; 1984 SK_IF_LOCK(sc_if); 1985 ifp = &sc_if->arpcom.ac_if; 1986 mii = device_get_softc(sc_if->sk_miibus); 1987 1988 if (!(ifp->if_flags & IFF_UP)) { 1989 SK_IF_UNLOCK(sc_if); 1990 return; 1991 } 1992 1993 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 1994 sk_intr_bcom(sc_if); 1995 SK_IF_UNLOCK(sc_if); 1996 return; 1997 } 1998 1999 /* 2000 * According to SysKonnect, the correct way to verify that 2001 * the link has come back up is to poll bit 0 of the GPIO 2002 * register three times. This pin has the signal from the 2003 * link_sync pin connected to it; if we read the same link 2004 * state 3 times in a row, we know the link is up. 2005 */ 2006 for (i = 0; i < 3; i++) { 2007 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2008 break; 2009 } 2010 2011 if (i != 3) { 2012 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 2013 SK_IF_UNLOCK(sc_if); 2014 return; 2015 } 2016 2017 /* Turn the GP0 interrupt back on. */ 2018 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2019 SK_XM_READ_2(sc_if, XM_ISR); 2020 mii_tick(mii); 2021 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 2022 2023 SK_IF_UNLOCK(sc_if); 2024 return; 2025 } 2026 2027 static void 2028 sk_intr_bcom(sc_if) 2029 struct sk_if_softc *sc_if; 2030 { 2031 struct mii_data *mii; 2032 struct ifnet *ifp; 2033 int status; 2034 mii = device_get_softc(sc_if->sk_miibus); 2035 ifp = &sc_if->arpcom.ac_if; 2036 2037 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2038 2039 /* 2040 * Read the PHY interrupt register to make sure 2041 * we clear any pending interrupts. 2042 */ 2043 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2044 2045 if (!(ifp->if_flags & IFF_RUNNING)) { 2046 sk_init_xmac(sc_if); 2047 return; 2048 } 2049 2050 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 2051 int lstat; 2052 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 2053 BRGPHY_MII_AUXSTS); 2054 2055 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 2056 mii_mediachg(mii); 2057 /* Turn off the link LED. */ 2058 SK_IF_WRITE_1(sc_if, 0, 2059 SK_LINKLED1_CTL, SK_LINKLED_OFF); 2060 sc_if->sk_link = 0; 2061 } else if (status & BRGPHY_ISR_LNK_CHG) { 2062 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2063 BRGPHY_MII_IMR, 0xFF00); 2064 mii_tick(mii); 2065 sc_if->sk_link = 1; 2066 /* Turn on the link LED. */ 2067 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2068 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 2069 SK_LINKLED_BLINK_OFF); 2070 } else { 2071 mii_tick(mii); 2072 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 2073 } 2074 } 2075 2076 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2077 2078 return; 2079 } 2080 2081 static void 2082 sk_intr_xmac(sc_if) 2083 struct sk_if_softc *sc_if; 2084 { 2085 struct sk_softc *sc; 2086 u_int16_t status; 2087 2088 sc = sc_if->sk_softc; 2089 status = SK_XM_READ_2(sc_if, XM_ISR); 2090 2091 /* 2092 * Link has gone down. Start MII tick timeout to 2093 * watch for link resync. 2094 */ 2095 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 2096 if (status & XM_ISR_GP0_SET) { 2097 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2098 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 2099 } 2100 2101 if (status & XM_ISR_AUTONEG_DONE) { 2102 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); 2103 } 2104 } 2105 2106 if (status & XM_IMR_TX_UNDERRUN) 2107 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 2108 2109 if (status & XM_IMR_RX_OVERRUN) 2110 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 2111 2112 status = SK_XM_READ_2(sc_if, XM_ISR); 2113 2114 return; 2115 } 2116 2117 static void 2118 sk_intr_yukon(sc_if) 2119 struct sk_if_softc *sc_if; 2120 { 2121 int status; 2122 2123 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2124 2125 return; 2126 } 2127 2128 static void 2129 sk_intr(xsc) 2130 void *xsc; 2131 { 2132 struct sk_softc *sc = xsc; 2133 struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; 2134 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2135 u_int32_t status; 2136 2137 SK_LOCK(sc); 2138 2139 sc_if0 = sc->sk_if[SK_PORT_A]; 2140 sc_if1 = sc->sk_if[SK_PORT_B]; 2141 2142 if (sc_if0 != NULL) 2143 ifp0 = &sc_if0->arpcom.ac_if; 2144 if (sc_if1 != NULL) 2145 ifp1 = &sc_if1->arpcom.ac_if; 2146 2147 for (;;) { 2148 status = CSR_READ_4(sc, SK_ISSR); 2149 if (!(status & sc->sk_intrmask)) 2150 break; 2151 2152 /* Handle receive interrupts first. */ 2153 if (status & SK_ISR_RX1_EOF) { 2154 sk_rxeof(sc_if0); 2155 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 2156 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2157 } 2158 if (status & SK_ISR_RX2_EOF) { 2159 sk_rxeof(sc_if1); 2160 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 2161 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2162 } 2163 2164 /* Then transmit interrupts. */ 2165 if (status & SK_ISR_TX1_S_EOF) { 2166 sk_txeof(sc_if0); 2167 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 2168 SK_TXBMU_CLR_IRQ_EOF); 2169 } 2170 if (status & SK_ISR_TX2_S_EOF) { 2171 sk_txeof(sc_if1); 2172 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 2173 SK_TXBMU_CLR_IRQ_EOF); 2174 } 2175 2176 /* Then MAC interrupts. */ 2177 if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) { 2178 if (sc->sk_type == SK_GENESIS) 2179 sk_intr_xmac(sc_if0); 2180 else 2181 sk_intr_yukon(sc_if0); 2182 } 2183 2184 if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) { 2185 if (sc->sk_type == SK_GENESIS) 2186 sk_intr_xmac(sc_if1); 2187 else 2188 sk_intr_yukon(sc_if1); 2189 } 2190 2191 if (status & SK_ISR_EXTERNAL_REG) { 2192 if (ifp0 != NULL && 2193 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 2194 sk_intr_bcom(sc_if0); 2195 if (ifp1 != NULL && 2196 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 2197 sk_intr_bcom(sc_if1); 2198 } 2199 } 2200 2201 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2202 2203 if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) 2204 sk_start(ifp0); 2205 if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) 2206 sk_start(ifp1); 2207 2208 SK_UNLOCK(sc); 2209 2210 return; 2211 } 2212 2213 static void 2214 sk_init_xmac(sc_if) 2215 struct sk_if_softc *sc_if; 2216 { 2217 struct sk_softc *sc; 2218 struct ifnet *ifp; 2219 struct sk_bcom_hack bhack[] = { 2220 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 2221 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 2222 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 2223 { 0, 0 } }; 2224 2225 sc = sc_if->sk_softc; 2226 ifp = &sc_if->arpcom.ac_if; 2227 2228 /* Unreset the XMAC. */ 2229 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 2230 DELAY(1000); 2231 2232 /* Reset the XMAC's internal state. */ 2233 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2234 2235 /* Save the XMAC II revision */ 2236 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 2237 2238 /* 2239 * Perform additional initialization for external PHYs, 2240 * namely for the 1000baseTX cards that use the XMAC's 2241 * GMII mode. 2242 */ 2243 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2244 int i = 0; 2245 u_int32_t val; 2246 2247 /* Take PHY out of reset. */ 2248 val = sk_win_read_4(sc, SK_GPIO); 2249 if (sc_if->sk_port == SK_PORT_A) 2250 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 2251 else 2252 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 2253 sk_win_write_4(sc, SK_GPIO, val); 2254 2255 /* Enable GMII mode on the XMAC. */ 2256 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 2257 2258 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2259 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 2260 DELAY(10000); 2261 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2262 BRGPHY_MII_IMR, 0xFFF0); 2263 2264 /* 2265 * Early versions of the BCM5400 apparently have 2266 * a bug that requires them to have their reserved 2267 * registers initialized to some magic values. I don't 2268 * know what the numbers do, I'm just the messenger. 2269 */ 2270 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 2271 == 0x6041) { 2272 while(bhack[i].reg) { 2273 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 2274 bhack[i].reg, bhack[i].val); 2275 i++; 2276 } 2277 } 2278 } 2279 2280 /* Set station address */ 2281 SK_XM_WRITE_2(sc_if, XM_PAR0, 2282 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); 2283 SK_XM_WRITE_2(sc_if, XM_PAR1, 2284 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); 2285 SK_XM_WRITE_2(sc_if, XM_PAR2, 2286 *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); 2287 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 2288 2289 if (ifp->if_flags & IFF_BROADCAST) { 2290 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2291 } else { 2292 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2293 } 2294 2295 /* We don't need the FCS appended to the packet. */ 2296 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 2297 2298 /* We want short frames padded to 60 bytes. */ 2299 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 2300 2301 /* 2302 * Enable the reception of all error frames. This is is 2303 * a necessary evil due to the design of the XMAC. The 2304 * XMAC's receive FIFO is only 8K in size, however jumbo 2305 * frames can be up to 9000 bytes in length. When bad 2306 * frame filtering is enabled, the XMAC's RX FIFO operates 2307 * in 'store and forward' mode. For this to work, the 2308 * entire frame has to fit into the FIFO, but that means 2309 * that jumbo frames larger than 8192 bytes will be 2310 * truncated. Disabling all bad frame filtering causes 2311 * the RX FIFO to operate in streaming mode, in which 2312 * case the XMAC will start transfering frames out of the 2313 * RX FIFO as soon as the FIFO threshold is reached. 2314 */ 2315 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 2316 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 2317 XM_MODE_RX_INRANGELEN); 2318 2319 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2320 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2321 else 2322 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2323 2324 /* 2325 * Bump up the transmit threshold. This helps hold off transmit 2326 * underruns when we're blasting traffic from both ports at once. 2327 */ 2328 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2329 2330 /* Set promiscuous mode */ 2331 sk_setpromisc(sc_if); 2332 2333 /* Set multicast filter */ 2334 sk_setmulti(sc_if); 2335 2336 /* Clear and enable interrupts */ 2337 SK_XM_READ_2(sc_if, XM_ISR); 2338 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2339 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2340 else 2341 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2342 2343 /* Configure MAC arbiter */ 2344 switch(sc_if->sk_xmac_rev) { 2345 case XM_XMAC_REV_B2: 2346 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2347 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2348 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2349 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2350 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2351 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2352 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2353 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2354 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2355 break; 2356 case XM_XMAC_REV_C1: 2357 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2358 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2359 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2360 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2361 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2362 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2363 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2364 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2365 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2366 break; 2367 default: 2368 break; 2369 } 2370 sk_win_write_2(sc, SK_MACARB_CTL, 2371 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 2372 2373 sc_if->sk_link = 1; 2374 2375 return; 2376 } 2377 2378 static void 2379 sk_init_yukon(sc_if) 2380 struct sk_if_softc *sc_if; 2381 { 2382 u_int32_t phy; 2383 u_int16_t reg; 2384 int i; 2385 2386 /* GMAC and GPHY Reset */ 2387 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 2388 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2389 DELAY(1000); 2390 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); 2391 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2392 DELAY(1000); 2393 2394 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 2395 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 2396 2397 switch(sc_if->sk_softc->sk_pmd) { 2398 case IFM_1000_SX: 2399 case IFM_1000_LX: 2400 phy |= SK_GPHY_FIBER; 2401 break; 2402 2403 case IFM_1000_CX: 2404 case IFM_1000_T: 2405 phy |= SK_GPHY_COPPER; 2406 break; 2407 } 2408 2409 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 2410 DELAY(1000); 2411 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 2412 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 2413 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 2414 2415 /* unused read of the interrupt source register */ 2416 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2417 2418 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2419 2420 /* MIB Counter Clear Mode set */ 2421 reg |= YU_PAR_MIB_CLR; 2422 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2423 2424 /* MIB Counter Clear Mode clear */ 2425 reg &= ~YU_PAR_MIB_CLR; 2426 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2427 2428 /* receive control reg */ 2429 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 2430 2431 /* transmit parameter register */ 2432 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2433 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 2434 2435 /* serial mode register */ 2436 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) | 2437 YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e)); 2438 2439 /* Setup Yukon's address */ 2440 for (i = 0; i < 3; i++) { 2441 /* Write Source Address 1 (unicast filter) */ 2442 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2443 sc_if->arpcom.ac_enaddr[i * 2] | 2444 sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8); 2445 } 2446 2447 for (i = 0; i < 3; i++) { 2448 reg = sk_win_read_2(sc_if->sk_softc, 2449 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2450 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2451 } 2452 2453 /* Set promiscuous mode */ 2454 sk_setpromisc(sc_if); 2455 2456 /* Set multicast filter */ 2457 sk_setmulti(sc_if); 2458 2459 /* enable interrupt mask for counter overflows */ 2460 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2461 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2462 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2463 2464 /* Configure RX MAC FIFO */ 2465 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2466 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); 2467 2468 /* Configure TX MAC FIFO */ 2469 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2470 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2471 } 2472 2473 /* 2474 * Note that to properly initialize any part of the GEnesis chip, 2475 * you first have to take it out of reset mode. 2476 */ 2477 static void 2478 sk_init(xsc) 2479 void *xsc; 2480 { 2481 struct sk_if_softc *sc_if = xsc; 2482 struct sk_softc *sc; 2483 struct ifnet *ifp; 2484 struct mii_data *mii; 2485 u_int16_t reg; 2486 2487 SK_IF_LOCK(sc_if); 2488 2489 ifp = &sc_if->arpcom.ac_if; 2490 sc = sc_if->sk_softc; 2491 mii = device_get_softc(sc_if->sk_miibus); 2492 2493 /* Cancel pending I/O and free all RX/TX buffers. */ 2494 sk_stop(sc_if); 2495 2496 if (sc->sk_type == SK_GENESIS) { 2497 /* Configure LINK_SYNC LED */ 2498 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2499 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2500 SK_LINKLED_LINKSYNC_ON); 2501 2502 /* Configure RX LED */ 2503 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 2504 SK_RXLEDCTL_COUNTER_START); 2505 2506 /* Configure TX LED */ 2507 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 2508 SK_TXLEDCTL_COUNTER_START); 2509 } 2510 2511 /* Configure I2C registers */ 2512 2513 /* Configure XMAC(s) */ 2514 switch (sc->sk_type) { 2515 case SK_GENESIS: 2516 sk_init_xmac(sc_if); 2517 break; 2518 case SK_YUKON: 2519 sk_init_yukon(sc_if); 2520 break; 2521 } 2522 mii_mediachg(mii); 2523 2524 if (sc->sk_type == SK_GENESIS) { 2525 /* Configure MAC FIFOs */ 2526 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2527 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2528 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2529 2530 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2531 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2532 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2533 } 2534 2535 /* Configure transmit arbiter(s) */ 2536 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2537 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 2538 2539 /* Configure RAMbuffers */ 2540 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2541 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2542 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2543 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2544 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2545 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2546 2547 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2548 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2549 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2550 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2551 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2552 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2553 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2554 2555 /* Configure BMUs */ 2556 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2557 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2558 vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); 2559 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2560 2561 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2562 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2563 vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); 2564 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2565 2566 /* Init descriptors */ 2567 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2568 printf("sk%d: initialization failed: no " 2569 "memory for rx buffers\n", sc_if->sk_unit); 2570 sk_stop(sc_if); 2571 SK_IF_UNLOCK(sc_if); 2572 return; 2573 } 2574 sk_init_tx_ring(sc_if); 2575 2576 /* Configure interrupt handling */ 2577 CSR_READ_4(sc, SK_ISSR); 2578 if (sc_if->sk_port == SK_PORT_A) 2579 sc->sk_intrmask |= SK_INTRS1; 2580 else 2581 sc->sk_intrmask |= SK_INTRS2; 2582 2583 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2584 2585 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2586 2587 /* Start BMUs. */ 2588 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2589 2590 switch(sc->sk_type) { 2591 case SK_GENESIS: 2592 /* Enable XMACs TX and RX state machines */ 2593 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2594 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2595 break; 2596 case SK_YUKON: 2597 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 2598 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 2599 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN); 2600 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 2601 } 2602 2603 ifp->if_flags |= IFF_RUNNING; 2604 ifp->if_flags &= ~IFF_OACTIVE; 2605 2606 SK_IF_UNLOCK(sc_if); 2607 2608 return; 2609 } 2610 2611 static void 2612 sk_stop(sc_if) 2613 struct sk_if_softc *sc_if; 2614 { 2615 int i; 2616 struct sk_softc *sc; 2617 struct ifnet *ifp; 2618 2619 SK_IF_LOCK(sc_if); 2620 sc = sc_if->sk_softc; 2621 ifp = &sc_if->arpcom.ac_if; 2622 2623 untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); 2624 2625 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2626 u_int32_t val; 2627 2628 /* Put PHY back into reset. */ 2629 val = sk_win_read_4(sc, SK_GPIO); 2630 if (sc_if->sk_port == SK_PORT_A) { 2631 val |= SK_GPIO_DIR0; 2632 val &= ~SK_GPIO_DAT0; 2633 } else { 2634 val |= SK_GPIO_DIR2; 2635 val &= ~SK_GPIO_DAT2; 2636 } 2637 sk_win_write_4(sc, SK_GPIO, val); 2638 } 2639 2640 /* Turn off various components of this interface. */ 2641 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2642 switch (sc->sk_type) { 2643 case SK_GENESIS: 2644 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 2645 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2646 break; 2647 case SK_YUKON: 2648 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2649 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2650 break; 2651 } 2652 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2653 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2654 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2655 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2656 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2657 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2658 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2659 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2660 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2661 2662 /* Disable interrupts */ 2663 if (sc_if->sk_port == SK_PORT_A) 2664 sc->sk_intrmask &= ~SK_INTRS1; 2665 else 2666 sc->sk_intrmask &= ~SK_INTRS2; 2667 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2668 2669 SK_XM_READ_2(sc_if, XM_ISR); 2670 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2671 2672 /* Free RX and TX mbufs still in the queues. */ 2673 for (i = 0; i < SK_RX_RING_CNT; i++) { 2674 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2675 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2676 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2677 } 2678 } 2679 2680 for (i = 0; i < SK_TX_RING_CNT; i++) { 2681 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2682 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2683 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2684 } 2685 } 2686 2687 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 2688 SK_IF_UNLOCK(sc_if); 2689 return; 2690 } 2691