xref: /freebsd/sys/dev/sk/if_sk.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 /*
56  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
57  * the SK-984x series adapters, both single port and dual port.
58  * References:
59  * 	The XaQti XMAC II datasheet,
60  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
61  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
62  *
63  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
64  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
65  * convenience to others until Vitesse corrects this problem:
66  *
67  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
68  *
69  * Written by Bill Paul <wpaul@ee.columbia.edu>
70  * Department of Electrical Engineering
71  * Columbia University, New York City
72  */
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/bus.h>
93 #include <sys/endian.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sockio.h>
100 #include <sys/queue.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 
117 #include <machine/bus.h>
118 #include <machine/in_cksum.h>
119 #include <machine/resource.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #if 0
130 #define SK_USEIOSPACE
131 #endif
132 
133 #include <dev/sk/if_skreg.h>
134 #include <dev/sk/xmaciireg.h>
135 #include <dev/sk/yukonreg.h>
136 
137 MODULE_DEPEND(sk, pci, 1, 1, 1);
138 MODULE_DEPEND(sk, ether, 1, 1, 1);
139 MODULE_DEPEND(sk, miibus, 1, 1, 1);
140 
141 /* "device miibus" required.  See GENERIC if you get errors here. */
142 #include "miibus_if.h"
143 
144 static const struct sk_type sk_devs[] = {
145 	{
146 		VENDORID_SK,
147 		DEVICEID_SK_V1,
148 		"SysKonnect Gigabit Ethernet (V1.0)"
149 	},
150 	{
151 		VENDORID_SK,
152 		DEVICEID_SK_V2,
153 		"SysKonnect Gigabit Ethernet (V2.0)"
154 	},
155 	{
156 		VENDORID_MARVELL,
157 		DEVICEID_SK_V2,
158 		"Marvell Gigabit Ethernet"
159 	},
160 	{
161 		VENDORID_MARVELL,
162 		DEVICEID_BELKIN_5005,
163 		"Belkin F5D5005 Gigabit Ethernet"
164 	},
165 	{
166 		VENDORID_3COM,
167 		DEVICEID_3COM_3C940,
168 		"3Com 3C940 Gigabit Ethernet"
169 	},
170 	{
171 		VENDORID_LINKSYS,
172 		DEVICEID_LINKSYS_EG1032,
173 		"Linksys EG1032 Gigabit Ethernet"
174 	},
175 	{
176 		VENDORID_DLINK,
177 		DEVICEID_DLINK_DGE530T_A1,
178 		"D-Link DGE-530T Gigabit Ethernet"
179 	},
180 	{
181 		VENDORID_DLINK,
182 		DEVICEID_DLINK_DGE530T_B1,
183 		"D-Link DGE-530T Gigabit Ethernet"
184 	},
185 	{ 0, 0, NULL }
186 };
187 
188 static int skc_probe(device_t);
189 static int skc_attach(device_t);
190 static int skc_detach(device_t);
191 static int skc_shutdown(device_t);
192 static int skc_suspend(device_t);
193 static int skc_resume(device_t);
194 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
195 static int sk_detach(device_t);
196 static int sk_probe(device_t);
197 static int sk_attach(device_t);
198 static void sk_tick(void *);
199 static void sk_yukon_tick(void *);
200 static void sk_intr(void *);
201 static void sk_intr_xmac(struct sk_if_softc *);
202 static void sk_intr_bcom(struct sk_if_softc *);
203 static void sk_intr_yukon(struct sk_if_softc *);
204 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
205 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
206 static void sk_rxeof(struct sk_if_softc *);
207 static void sk_jumbo_rxeof(struct sk_if_softc *);
208 static void sk_txeof(struct sk_if_softc *);
209 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
210 static int sk_encap(struct sk_if_softc *, struct mbuf **);
211 static void sk_start(struct ifnet *);
212 static void sk_start_locked(struct ifnet *);
213 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
214 static void sk_init(void *);
215 static void sk_init_locked(struct sk_if_softc *);
216 static void sk_init_xmac(struct sk_if_softc *);
217 static void sk_init_yukon(struct sk_if_softc *);
218 static void sk_stop(struct sk_if_softc *);
219 static void sk_watchdog(void *);
220 static int sk_ifmedia_upd(struct ifnet *);
221 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
222 static void sk_reset(struct sk_softc *);
223 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
224 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
225 static int sk_newbuf(struct sk_if_softc *, int);
226 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
227 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
228 static int sk_dma_alloc(struct sk_if_softc *);
229 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
230 static void sk_dma_free(struct sk_if_softc *);
231 static void sk_dma_jumbo_free(struct sk_if_softc *);
232 static int sk_init_rx_ring(struct sk_if_softc *);
233 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
234 static void sk_init_tx_ring(struct sk_if_softc *);
235 static u_int32_t sk_win_read_4(struct sk_softc *, int);
236 static u_int16_t sk_win_read_2(struct sk_softc *, int);
237 static u_int8_t sk_win_read_1(struct sk_softc *, int);
238 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
241 
242 static int sk_miibus_readreg(device_t, int, int);
243 static int sk_miibus_writereg(device_t, int, int, int);
244 static void sk_miibus_statchg(device_t);
245 
246 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
247 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
248 						int);
249 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
250 
251 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
252 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
253 						int);
254 static void sk_marv_miibus_statchg(struct sk_if_softc *);
255 
256 static uint32_t sk_xmchash(const uint8_t *);
257 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
258 static void sk_rxfilter(struct sk_if_softc *);
259 static void sk_rxfilter_genesis(struct sk_if_softc *);
260 static void sk_rxfilter_yukon(struct sk_if_softc *);
261 
262 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
263 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
264 
265 /* Tunables. */
266 static int jumbo_disable = 0;
267 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
268 
269 /*
270  * It seems that SK-NET GENESIS supports very simple checksum offload
271  * capability for Tx and I believe it can generate 0 checksum value for
272  * UDP packets in Tx as the hardware can't differenciate UDP packets from
273  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
274  * means sender didn't perforam checksum computation. For the safety I
275  * disabled UDP checksum offload capability at the moment. Alternatively
276  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
277  * offload routine.
278  */
279 #define SK_CSUM_FEATURES	(CSUM_TCP)
280 
281 /*
282  * Note that we have newbus methods for both the GEnesis controller
283  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
284  * the miibus code is a child of the XMACs. We need to do it this way
285  * so that the miibus drivers can access the PHY registers on the
286  * right PHY. It's not quite what I had in mind, but it's the only
287  * design that achieves the desired effect.
288  */
289 static device_method_t skc_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		skc_probe),
292 	DEVMETHOD(device_attach,	skc_attach),
293 	DEVMETHOD(device_detach,	skc_detach),
294 	DEVMETHOD(device_suspend,	skc_suspend),
295 	DEVMETHOD(device_resume,	skc_resume),
296 	DEVMETHOD(device_shutdown,	skc_shutdown),
297 
298 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
299 
300 	DEVMETHOD_END
301 };
302 
303 static driver_t skc_driver = {
304 	"skc",
305 	skc_methods,
306 	sizeof(struct sk_softc)
307 };
308 
309 static devclass_t skc_devclass;
310 
311 static device_method_t sk_methods[] = {
312 	/* Device interface */
313 	DEVMETHOD(device_probe,		sk_probe),
314 	DEVMETHOD(device_attach,	sk_attach),
315 	DEVMETHOD(device_detach,	sk_detach),
316 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
322 
323 	DEVMETHOD_END
324 };
325 
326 static driver_t sk_driver = {
327 	"sk",
328 	sk_methods,
329 	sizeof(struct sk_if_softc)
330 };
331 
332 static devclass_t sk_devclass;
333 
334 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
335 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
336 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
337 
338 static struct resource_spec sk_res_spec_io[] = {
339 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 static struct resource_spec sk_res_spec_mem[] = {
345 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
346 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
347 	{ -1,			0,		0 }
348 };
349 
350 #define SK_SETBIT(sc, reg, x)		\
351 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
352 
353 #define SK_CLRBIT(sc, reg, x)		\
354 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_4(sc, reg, x)	\
357 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
360 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
361 
362 #define SK_WIN_SETBIT_2(sc, reg, x)	\
363 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
364 
365 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
366 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
367 
368 static u_int32_t
369 sk_win_read_4(sc, reg)
370 	struct sk_softc		*sc;
371 	int			reg;
372 {
373 #ifdef SK_USEIOSPACE
374 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
375 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
376 #else
377 	return(CSR_READ_4(sc, reg));
378 #endif
379 }
380 
381 static u_int16_t
382 sk_win_read_2(sc, reg)
383 	struct sk_softc		*sc;
384 	int			reg;
385 {
386 #ifdef SK_USEIOSPACE
387 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
388 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
389 #else
390 	return(CSR_READ_2(sc, reg));
391 #endif
392 }
393 
394 static u_int8_t
395 sk_win_read_1(sc, reg)
396 	struct sk_softc		*sc;
397 	int			reg;
398 {
399 #ifdef SK_USEIOSPACE
400 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
401 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
402 #else
403 	return(CSR_READ_1(sc, reg));
404 #endif
405 }
406 
407 static void
408 sk_win_write_4(sc, reg, val)
409 	struct sk_softc		*sc;
410 	int			reg;
411 	u_int32_t		val;
412 {
413 #ifdef SK_USEIOSPACE
414 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
415 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
416 #else
417 	CSR_WRITE_4(sc, reg, val);
418 #endif
419 	return;
420 }
421 
422 static void
423 sk_win_write_2(sc, reg, val)
424 	struct sk_softc		*sc;
425 	int			reg;
426 	u_int32_t		val;
427 {
428 #ifdef SK_USEIOSPACE
429 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
430 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
431 #else
432 	CSR_WRITE_2(sc, reg, val);
433 #endif
434 	return;
435 }
436 
437 static void
438 sk_win_write_1(sc, reg, val)
439 	struct sk_softc		*sc;
440 	int			reg;
441 	u_int32_t		val;
442 {
443 #ifdef SK_USEIOSPACE
444 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
445 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
446 #else
447 	CSR_WRITE_1(sc, reg, val);
448 #endif
449 	return;
450 }
451 
452 static int
453 sk_miibus_readreg(dev, phy, reg)
454 	device_t		dev;
455 	int			phy, reg;
456 {
457 	struct sk_if_softc	*sc_if;
458 	int			v;
459 
460 	sc_if = device_get_softc(dev);
461 
462 	SK_IF_MII_LOCK(sc_if);
463 	switch(sc_if->sk_softc->sk_type) {
464 	case SK_GENESIS:
465 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
466 		break;
467 	case SK_YUKON:
468 	case SK_YUKON_LITE:
469 	case SK_YUKON_LP:
470 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
471 		break;
472 	default:
473 		v = 0;
474 		break;
475 	}
476 	SK_IF_MII_UNLOCK(sc_if);
477 
478 	return (v);
479 }
480 
481 static int
482 sk_miibus_writereg(dev, phy, reg, val)
483 	device_t		dev;
484 	int			phy, reg, val;
485 {
486 	struct sk_if_softc	*sc_if;
487 	int			v;
488 
489 	sc_if = device_get_softc(dev);
490 
491 	SK_IF_MII_LOCK(sc_if);
492 	switch(sc_if->sk_softc->sk_type) {
493 	case SK_GENESIS:
494 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
495 		break;
496 	case SK_YUKON:
497 	case SK_YUKON_LITE:
498 	case SK_YUKON_LP:
499 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
500 		break;
501 	default:
502 		v = 0;
503 		break;
504 	}
505 	SK_IF_MII_UNLOCK(sc_if);
506 
507 	return (v);
508 }
509 
510 static void
511 sk_miibus_statchg(dev)
512 	device_t		dev;
513 {
514 	struct sk_if_softc	*sc_if;
515 
516 	sc_if = device_get_softc(dev);
517 
518 	SK_IF_MII_LOCK(sc_if);
519 	switch(sc_if->sk_softc->sk_type) {
520 	case SK_GENESIS:
521 		sk_xmac_miibus_statchg(sc_if);
522 		break;
523 	case SK_YUKON:
524 	case SK_YUKON_LITE:
525 	case SK_YUKON_LP:
526 		sk_marv_miibus_statchg(sc_if);
527 		break;
528 	}
529 	SK_IF_MII_UNLOCK(sc_if);
530 
531 	return;
532 }
533 
534 static int
535 sk_xmac_miibus_readreg(sc_if, phy, reg)
536 	struct sk_if_softc	*sc_if;
537 	int			phy, reg;
538 {
539 	int			i;
540 
541 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
542 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
543 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
544 		for (i = 0; i < SK_TIMEOUT; i++) {
545 			DELAY(1);
546 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
547 			    XM_MMUCMD_PHYDATARDY)
548 				break;
549 		}
550 
551 		if (i == SK_TIMEOUT) {
552 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
553 			return(0);
554 		}
555 	}
556 	DELAY(1);
557 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
558 
559 	return(i);
560 }
561 
562 static int
563 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
564 	struct sk_if_softc	*sc_if;
565 	int			phy, reg, val;
566 {
567 	int			i;
568 
569 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
570 	for (i = 0; i < SK_TIMEOUT; i++) {
571 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
572 			break;
573 	}
574 
575 	if (i == SK_TIMEOUT) {
576 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
577 		return (ETIMEDOUT);
578 	}
579 
580 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
581 	for (i = 0; i < SK_TIMEOUT; i++) {
582 		DELAY(1);
583 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
584 			break;
585 	}
586 	if (i == SK_TIMEOUT)
587 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
588 
589 	return(0);
590 }
591 
592 static void
593 sk_xmac_miibus_statchg(sc_if)
594 	struct sk_if_softc	*sc_if;
595 {
596 	struct mii_data		*mii;
597 
598 	mii = device_get_softc(sc_if->sk_miibus);
599 
600 	/*
601 	 * If this is a GMII PHY, manually set the XMAC's
602 	 * duplex mode accordingly.
603 	 */
604 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
605 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
606 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607 		} else {
608 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609 		}
610 	}
611 }
612 
613 static int
614 sk_marv_miibus_readreg(sc_if, phy, reg)
615 	struct sk_if_softc	*sc_if;
616 	int			phy, reg;
617 {
618 	u_int16_t		val;
619 	int			i;
620 
621 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
622 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
623 		return(0);
624 	}
625 
626         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
627 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
628 
629 	for (i = 0; i < SK_TIMEOUT; i++) {
630 		DELAY(1);
631 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
632 		if (val & YU_SMICR_READ_VALID)
633 			break;
634 	}
635 
636 	if (i == SK_TIMEOUT) {
637 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
638 		return(0);
639 	}
640 
641 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
642 
643 	return(val);
644 }
645 
646 static int
647 sk_marv_miibus_writereg(sc_if, phy, reg, val)
648 	struct sk_if_softc	*sc_if;
649 	int			phy, reg, val;
650 {
651 	int			i;
652 
653 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
654 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
655 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
656 
657 	for (i = 0; i < SK_TIMEOUT; i++) {
658 		DELAY(1);
659 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
660 			break;
661 	}
662 	if (i == SK_TIMEOUT)
663 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
664 
665 	return(0);
666 }
667 
668 static void
669 sk_marv_miibus_statchg(sc_if)
670 	struct sk_if_softc	*sc_if;
671 {
672 	return;
673 }
674 
675 #define HASH_BITS		6
676 
677 static u_int32_t
678 sk_xmchash(addr)
679 	const uint8_t *addr;
680 {
681 	uint32_t crc;
682 
683 	/* Compute CRC for the address value. */
684 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
685 
686 	return (~crc & ((1 << HASH_BITS) - 1));
687 }
688 
689 static void
690 sk_setfilt(sc_if, addr, slot)
691 	struct sk_if_softc	*sc_if;
692 	u_int16_t		*addr;
693 	int			slot;
694 {
695 	int			base;
696 
697 	base = XM_RXFILT_ENTRY(slot);
698 
699 	SK_XM_WRITE_2(sc_if, base, addr[0]);
700 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
701 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
702 
703 	return;
704 }
705 
706 static void
707 sk_rxfilter(sc_if)
708 	struct sk_if_softc	*sc_if;
709 {
710 	struct sk_softc		*sc;
711 
712 	SK_IF_LOCK_ASSERT(sc_if);
713 
714 	sc = sc_if->sk_softc;
715 	if (sc->sk_type == SK_GENESIS)
716 		sk_rxfilter_genesis(sc_if);
717 	else
718 		sk_rxfilter_yukon(sc_if);
719 }
720 
721 static void
722 sk_rxfilter_genesis(sc_if)
723 	struct sk_if_softc	*sc_if;
724 {
725 	struct ifnet		*ifp = sc_if->sk_ifp;
726 	u_int32_t		hashes[2] = { 0, 0 }, mode;
727 	int			h = 0, i;
728 	struct ifmultiaddr	*ifma;
729 	u_int16_t		dummy[] = { 0, 0, 0 };
730 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
731 
732 	SK_IF_LOCK_ASSERT(sc_if);
733 
734 	mode = SK_XM_READ_4(sc_if, XM_MODE);
735 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
736 	    XM_MODE_RX_USE_PERFECT);
737 	/* First, zot all the existing perfect filters. */
738 	for (i = 1; i < XM_RXFILT_MAX; i++)
739 		sk_setfilt(sc_if, dummy, i);
740 
741 	/* Now program new ones. */
742 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
743 		if (ifp->if_flags & IFF_ALLMULTI)
744 			mode |= XM_MODE_RX_USE_HASH;
745 		if (ifp->if_flags & IFF_PROMISC)
746 			mode |= XM_MODE_RX_PROMISC;
747 		hashes[0] = 0xFFFFFFFF;
748 		hashes[1] = 0xFFFFFFFF;
749 	} else {
750 		i = 1;
751 		if_maddr_rlock(ifp);
752 		/* XXX want to maintain reverse semantics */
753 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs,
754 		    ifma_link) {
755 			if (ifma->ifma_addr->sa_family != AF_LINK)
756 				continue;
757 			/*
758 			 * Program the first XM_RXFILT_MAX multicast groups
759 			 * into the perfect filter.
760 			 */
761 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
762 			    maddr, ETHER_ADDR_LEN);
763 			if (i < XM_RXFILT_MAX) {
764 				sk_setfilt(sc_if, maddr, i);
765 				mode |= XM_MODE_RX_USE_PERFECT;
766 				i++;
767 				continue;
768 			}
769 			h = sk_xmchash((const uint8_t *)maddr);
770 			if (h < 32)
771 				hashes[0] |= (1 << h);
772 			else
773 				hashes[1] |= (1 << (h - 32));
774 			mode |= XM_MODE_RX_USE_HASH;
775 		}
776 		if_maddr_runlock(ifp);
777 	}
778 
779 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
780 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
781 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
782 }
783 
784 static void
785 sk_rxfilter_yukon(sc_if)
786 	struct sk_if_softc	*sc_if;
787 {
788 	struct ifnet		*ifp;
789 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
790 	struct ifmultiaddr	*ifma;
791 
792 	SK_IF_LOCK_ASSERT(sc_if);
793 
794 	ifp = sc_if->sk_ifp;
795 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
796 	if (ifp->if_flags & IFF_PROMISC)
797 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
798 	else if (ifp->if_flags & IFF_ALLMULTI) {
799 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
800 		hashes[0] = 0xFFFFFFFF;
801 		hashes[1] = 0xFFFFFFFF;
802 	} else {
803 		mode |= YU_RCR_UFLEN;
804 		if_maddr_rlock(ifp);
805 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
806 			if (ifma->ifma_addr->sa_family != AF_LINK)
807 				continue;
808 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
809 			    ifma->ifma_addr), ETHER_ADDR_LEN);
810 			/* Just want the 6 least significant bits. */
811 			crc &= 0x3f;
812 			/* Set the corresponding bit in the hash table. */
813 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
814 		}
815 		if_maddr_runlock(ifp);
816 		if (hashes[0] != 0 || hashes[1] != 0)
817 			mode |= YU_RCR_MUFLEN;
818 	}
819 
820 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
821 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
822 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
823 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
824 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
825 }
826 
827 static int
828 sk_init_rx_ring(sc_if)
829 	struct sk_if_softc	*sc_if;
830 {
831 	struct sk_ring_data	*rd;
832 	bus_addr_t		addr;
833 	u_int32_t		csum_start;
834 	int			i;
835 
836 	sc_if->sk_cdata.sk_rx_cons = 0;
837 
838 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
839 	    ETHER_HDR_LEN;
840 	rd = &sc_if->sk_rdata;
841 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
842 	for (i = 0; i < SK_RX_RING_CNT; i++) {
843 		if (sk_newbuf(sc_if, i) != 0)
844 			return (ENOBUFS);
845 		if (i == (SK_RX_RING_CNT - 1))
846 			addr = SK_RX_RING_ADDR(sc_if, 0);
847 		else
848 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
849 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
850 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
851 	}
852 
853 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
854 	    sc_if->sk_cdata.sk_rx_ring_map,
855 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
856 
857 	return(0);
858 }
859 
860 static int
861 sk_init_jumbo_rx_ring(sc_if)
862 	struct sk_if_softc	*sc_if;
863 {
864 	struct sk_ring_data	*rd;
865 	bus_addr_t		addr;
866 	u_int32_t		csum_start;
867 	int			i;
868 
869 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
870 
871 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
872 	    ETHER_HDR_LEN;
873 	rd = &sc_if->sk_rdata;
874 	bzero(rd->sk_jumbo_rx_ring,
875 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
876 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
877 		if (sk_jumbo_newbuf(sc_if, i) != 0)
878 			return (ENOBUFS);
879 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
880 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
881 		else
882 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
883 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
884 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
885 	}
886 
887 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
888 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
889 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
890 
891 	return (0);
892 }
893 
894 static void
895 sk_init_tx_ring(sc_if)
896 	struct sk_if_softc	*sc_if;
897 {
898 	struct sk_ring_data	*rd;
899 	struct sk_txdesc	*txd;
900 	bus_addr_t		addr;
901 	int			i;
902 
903 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
904 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
905 
906 	sc_if->sk_cdata.sk_tx_prod = 0;
907 	sc_if->sk_cdata.sk_tx_cons = 0;
908 	sc_if->sk_cdata.sk_tx_cnt = 0;
909 
910 	rd = &sc_if->sk_rdata;
911 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
912 	for (i = 0; i < SK_TX_RING_CNT; i++) {
913 		if (i == (SK_TX_RING_CNT - 1))
914 			addr = SK_TX_RING_ADDR(sc_if, 0);
915 		else
916 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
917 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
918 		txd = &sc_if->sk_cdata.sk_txdesc[i];
919 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
920 	}
921 
922 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
923 	    sc_if->sk_cdata.sk_tx_ring_map,
924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
925 }
926 
927 static __inline void
928 sk_discard_rxbuf(sc_if, idx)
929 	struct sk_if_softc	*sc_if;
930 	int			idx;
931 {
932 	struct sk_rx_desc	*r;
933 	struct sk_rxdesc	*rxd;
934 	struct mbuf		*m;
935 
936 
937 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
938 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
939 	m = rxd->rx_m;
940 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
941 }
942 
943 static __inline void
944 sk_discard_jumbo_rxbuf(sc_if, idx)
945 	struct sk_if_softc	*sc_if;
946 	int			idx;
947 {
948 	struct sk_rx_desc	*r;
949 	struct sk_rxdesc	*rxd;
950 	struct mbuf		*m;
951 
952 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
953 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
954 	m = rxd->rx_m;
955 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
956 }
957 
958 static int
959 sk_newbuf(sc_if, idx)
960 	struct sk_if_softc	*sc_if;
961 	int 			idx;
962 {
963 	struct sk_rx_desc	*r;
964 	struct sk_rxdesc	*rxd;
965 	struct mbuf		*m;
966 	bus_dma_segment_t	segs[1];
967 	bus_dmamap_t		map;
968 	int			nsegs;
969 
970 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
971 	if (m == NULL)
972 		return (ENOBUFS);
973 	m->m_len = m->m_pkthdr.len = MCLBYTES;
974 	m_adj(m, ETHER_ALIGN);
975 
976 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
977 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
978 		m_freem(m);
979 		return (ENOBUFS);
980 	}
981 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
982 
983 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
984 	if (rxd->rx_m != NULL) {
985 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
986 		    BUS_DMASYNC_POSTREAD);
987 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
988 	}
989 	map = rxd->rx_dmamap;
990 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
991 	sc_if->sk_cdata.sk_rx_sparemap = map;
992 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
993 	    BUS_DMASYNC_PREREAD);
994 	rxd->rx_m = m;
995 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
996 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
997 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
998 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
999 
1000 	return (0);
1001 }
1002 
1003 static int
1004 sk_jumbo_newbuf(sc_if, idx)
1005 	struct sk_if_softc	*sc_if;
1006 	int			idx;
1007 {
1008 	struct sk_rx_desc	*r;
1009 	struct sk_rxdesc	*rxd;
1010 	struct mbuf		*m;
1011 	bus_dma_segment_t	segs[1];
1012 	bus_dmamap_t		map;
1013 	int			nsegs;
1014 
1015 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1016 	if (m == NULL)
1017 		return (ENOBUFS);
1018 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1019 	/*
1020 	 * Adjust alignment so packet payload begins on a
1021 	 * longword boundary. Mandatory for Alpha, useful on
1022 	 * x86 too.
1023 	 */
1024 	m_adj(m, ETHER_ALIGN);
1025 
1026 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1027 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1028 		m_freem(m);
1029 		return (ENOBUFS);
1030 	}
1031 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1032 
1033 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1034 	if (rxd->rx_m != NULL) {
1035 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1036 		    BUS_DMASYNC_POSTREAD);
1037 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1038 		    rxd->rx_dmamap);
1039 	}
1040 	map = rxd->rx_dmamap;
1041 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1042 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1043 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1044 	    BUS_DMASYNC_PREREAD);
1045 	rxd->rx_m = m;
1046 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1047 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1048 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1049 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Set media options.
1056  */
1057 static int
1058 sk_ifmedia_upd(ifp)
1059 	struct ifnet		*ifp;
1060 {
1061 	struct sk_if_softc	*sc_if = ifp->if_softc;
1062 	struct mii_data		*mii;
1063 
1064 	mii = device_get_softc(sc_if->sk_miibus);
1065 	sk_init(sc_if);
1066 	mii_mediachg(mii);
1067 
1068 	return(0);
1069 }
1070 
1071 /*
1072  * Report current media status.
1073  */
1074 static void
1075 sk_ifmedia_sts(ifp, ifmr)
1076 	struct ifnet		*ifp;
1077 	struct ifmediareq	*ifmr;
1078 {
1079 	struct sk_if_softc	*sc_if;
1080 	struct mii_data		*mii;
1081 
1082 	sc_if = ifp->if_softc;
1083 	mii = device_get_softc(sc_if->sk_miibus);
1084 
1085 	mii_pollstat(mii);
1086 	ifmr->ifm_active = mii->mii_media_active;
1087 	ifmr->ifm_status = mii->mii_media_status;
1088 
1089 	return;
1090 }
1091 
1092 static int
1093 sk_ioctl(ifp, command, data)
1094 	struct ifnet		*ifp;
1095 	u_long			command;
1096 	caddr_t			data;
1097 {
1098 	struct sk_if_softc	*sc_if = ifp->if_softc;
1099 	struct ifreq		*ifr = (struct ifreq *) data;
1100 	int			error, mask;
1101 	struct mii_data		*mii;
1102 
1103 	error = 0;
1104 	switch(command) {
1105 	case SIOCSIFMTU:
1106 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1107 			error = EINVAL;
1108 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1109 			if (sc_if->sk_jumbo_disable != 0 &&
1110 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1111 				error = EINVAL;
1112 			else {
1113 				SK_IF_LOCK(sc_if);
1114 				ifp->if_mtu = ifr->ifr_mtu;
1115 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1116 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1117 					sk_init_locked(sc_if);
1118 				}
1119 				SK_IF_UNLOCK(sc_if);
1120 			}
1121 		}
1122 		break;
1123 	case SIOCSIFFLAGS:
1124 		SK_IF_LOCK(sc_if);
1125 		if (ifp->if_flags & IFF_UP) {
1126 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1127 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1128 				    & (IFF_PROMISC | IFF_ALLMULTI))
1129 					sk_rxfilter(sc_if);
1130 			} else
1131 				sk_init_locked(sc_if);
1132 		} else {
1133 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1134 				sk_stop(sc_if);
1135 		}
1136 		sc_if->sk_if_flags = ifp->if_flags;
1137 		SK_IF_UNLOCK(sc_if);
1138 		break;
1139 	case SIOCADDMULTI:
1140 	case SIOCDELMULTI:
1141 		SK_IF_LOCK(sc_if);
1142 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1143 			sk_rxfilter(sc_if);
1144 		SK_IF_UNLOCK(sc_if);
1145 		break;
1146 	case SIOCGIFMEDIA:
1147 	case SIOCSIFMEDIA:
1148 		mii = device_get_softc(sc_if->sk_miibus);
1149 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1150 		break;
1151 	case SIOCSIFCAP:
1152 		SK_IF_LOCK(sc_if);
1153 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1154 			SK_IF_UNLOCK(sc_if);
1155 			break;
1156 		}
1157 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1158 		if ((mask & IFCAP_TXCSUM) != 0 &&
1159 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1160 			ifp->if_capenable ^= IFCAP_TXCSUM;
1161 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1162 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1163 			else
1164 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1165 		}
1166 		if ((mask & IFCAP_RXCSUM) != 0 &&
1167 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1168 			ifp->if_capenable ^= IFCAP_RXCSUM;
1169 		SK_IF_UNLOCK(sc_if);
1170 		break;
1171 	default:
1172 		error = ether_ioctl(ifp, command, data);
1173 		break;
1174 	}
1175 
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1181  * IDs against our list and return a device name if we find a match.
1182  */
1183 static int
1184 skc_probe(dev)
1185 	device_t		dev;
1186 {
1187 	const struct sk_type	*t = sk_devs;
1188 
1189 	while(t->sk_name != NULL) {
1190 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1191 		    (pci_get_device(dev) == t->sk_did)) {
1192 			/*
1193 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1194 			 * Rev. 3 is supported by re(4).
1195 			 */
1196 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1197 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1198 				(pci_get_subdevice(dev) !=
1199 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1200 				t++;
1201 				continue;
1202 			}
1203 			device_set_desc(dev, t->sk_name);
1204 			return (BUS_PROBE_DEFAULT);
1205 		}
1206 		t++;
1207 	}
1208 
1209 	return(ENXIO);
1210 }
1211 
1212 /*
1213  * Force the GEnesis into reset, then bring it out of reset.
1214  */
1215 static void
1216 sk_reset(sc)
1217 	struct sk_softc		*sc;
1218 {
1219 
1220 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1221 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1222 	if (SK_YUKON_FAMILY(sc->sk_type))
1223 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1224 
1225 	DELAY(1000);
1226 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1227 	DELAY(2);
1228 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1229 	if (SK_YUKON_FAMILY(sc->sk_type))
1230 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1231 
1232 	if (sc->sk_type == SK_GENESIS) {
1233 		/* Configure packet arbiter */
1234 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1235 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1236 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1237 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1238 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1239 	}
1240 
1241 	/* Enable RAM interface */
1242 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1243 
1244 	/*
1245          * Configure interrupt moderation. The moderation timer
1246 	 * defers interrupts specified in the interrupt moderation
1247 	 * timer mask based on the timeout specified in the interrupt
1248 	 * moderation timer init register. Each bit in the timer
1249 	 * register represents one tick, so to specify a timeout in
1250 	 * microseconds, we have to multiply by the correct number of
1251 	 * ticks-per-microsecond.
1252 	 */
1253 	switch (sc->sk_type) {
1254 	case SK_GENESIS:
1255 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1256 		break;
1257 	default:
1258 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1259 		break;
1260 	}
1261 	if (bootverbose)
1262 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1263 		    sc->sk_int_mod);
1264 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1265 	    sc->sk_int_ticks));
1266 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1267 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1268 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1269 
1270 	return;
1271 }
1272 
1273 static int
1274 sk_probe(dev)
1275 	device_t		dev;
1276 {
1277 	struct sk_softc		*sc;
1278 
1279 	sc = device_get_softc(device_get_parent(dev));
1280 
1281 	/*
1282 	 * Not much to do here. We always know there will be
1283 	 * at least one XMAC present, and if there are two,
1284 	 * skc_attach() will create a second device instance
1285 	 * for us.
1286 	 */
1287 	switch (sc->sk_type) {
1288 	case SK_GENESIS:
1289 		device_set_desc(dev, "XaQti Corp. XMAC II");
1290 		break;
1291 	case SK_YUKON:
1292 	case SK_YUKON_LITE:
1293 	case SK_YUKON_LP:
1294 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1295 		break;
1296 	}
1297 
1298 	return (BUS_PROBE_DEFAULT);
1299 }
1300 
1301 /*
1302  * Each XMAC chip is attached as a separate logical IP interface.
1303  * Single port cards will have only one logical interface of course.
1304  */
1305 static int
1306 sk_attach(dev)
1307 	device_t		dev;
1308 {
1309 	struct sk_softc		*sc;
1310 	struct sk_if_softc	*sc_if;
1311 	struct ifnet		*ifp;
1312 	u_int32_t		r;
1313 	int			error, i, phy, port;
1314 	u_char			eaddr[6];
1315 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1316 
1317 	if (dev == NULL)
1318 		return(EINVAL);
1319 
1320 	error = 0;
1321 	sc_if = device_get_softc(dev);
1322 	sc = device_get_softc(device_get_parent(dev));
1323 	port = *(int *)device_get_ivars(dev);
1324 
1325 	sc_if->sk_if_dev = dev;
1326 	sc_if->sk_port = port;
1327 	sc_if->sk_softc = sc;
1328 	sc->sk_if[port] = sc_if;
1329 	if (port == SK_PORT_A)
1330 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1331 	if (port == SK_PORT_B)
1332 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1333 
1334 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1335 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1336 
1337 	if (sk_dma_alloc(sc_if) != 0) {
1338 		error = ENOMEM;
1339 		goto fail;
1340 	}
1341 	sk_dma_jumbo_alloc(sc_if);
1342 
1343 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1344 	if (ifp == NULL) {
1345 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1346 		error = ENOSPC;
1347 		goto fail;
1348 	}
1349 	ifp->if_softc = sc_if;
1350 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1351 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1352 	/*
1353 	 * SK_GENESIS has a bug in checksum offload - From linux.
1354 	 */
1355 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1356 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1357 		ifp->if_hwassist = 0;
1358 	} else {
1359 		ifp->if_capabilities = 0;
1360 		ifp->if_hwassist = 0;
1361 	}
1362 	ifp->if_capenable = ifp->if_capabilities;
1363 	/*
1364 	 * Some revision of Yukon controller generates corrupted
1365 	 * frame when TX checksum offloading is enabled.  The
1366 	 * frame has a valid checksum value so payload might be
1367 	 * modified during TX checksum calculation. Disable TX
1368 	 * checksum offloading but give users chance to enable it
1369 	 * when they know their controller works without problems
1370 	 * with TX checksum offloading.
1371 	 */
1372 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1373 	ifp->if_ioctl = sk_ioctl;
1374 	ifp->if_start = sk_start;
1375 	ifp->if_init = sk_init;
1376 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1377 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1378 	IFQ_SET_READY(&ifp->if_snd);
1379 
1380 	/*
1381 	 * Get station address for this interface. Note that
1382 	 * dual port cards actually come with three station
1383 	 * addresses: one for each port, plus an extra. The
1384 	 * extra one is used by the SysKonnect driver software
1385 	 * as a 'virtual' station address for when both ports
1386 	 * are operating in failover mode. Currently we don't
1387 	 * use this extra address.
1388 	 */
1389 	SK_IF_LOCK(sc_if);
1390 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1391 		eaddr[i] =
1392 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1393 
1394 	/* Verify whether the station address is invalid or not. */
1395 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1396 		device_printf(sc_if->sk_if_dev,
1397 		    "Generating random ethernet address\n");
1398 		r = arc4random();
1399 		/*
1400 		 * Set OUI to convenient locally assigned address.  'b'
1401 		 * is 0x62, which has the locally assigned bit set, and
1402 		 * the broadcast/multicast bit clear.
1403 		 */
1404 		eaddr[0] = 'b';
1405 		eaddr[1] = 's';
1406 		eaddr[2] = 'd';
1407 		eaddr[3] = (r >> 16) & 0xff;
1408 		eaddr[4] = (r >>  8) & 0xff;
1409 		eaddr[5] = (r >>  0) & 0xff;
1410 	}
1411 	/*
1412 	 * Set up RAM buffer addresses. The NIC will have a certain
1413 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1414 	 * need to divide this up a) between the transmitter and
1415  	 * receiver and b) between the two XMACs, if this is a
1416 	 * dual port NIC. Our algotithm is to divide up the memory
1417 	 * evenly so that everyone gets a fair share.
1418 	 *
1419 	 * Just to be contrary, Yukon2 appears to have separate memory
1420 	 * for each MAC.
1421 	 */
1422 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1423 		u_int32_t		chunk, val;
1424 
1425 		chunk = sc->sk_ramsize / 2;
1426 		val = sc->sk_rboff / sizeof(u_int64_t);
1427 		sc_if->sk_rx_ramstart = val;
1428 		val += (chunk / sizeof(u_int64_t));
1429 		sc_if->sk_rx_ramend = val - 1;
1430 		sc_if->sk_tx_ramstart = val;
1431 		val += (chunk / sizeof(u_int64_t));
1432 		sc_if->sk_tx_ramend = val - 1;
1433 	} else {
1434 		u_int32_t		chunk, val;
1435 
1436 		chunk = sc->sk_ramsize / 4;
1437 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1438 		    sizeof(u_int64_t);
1439 		sc_if->sk_rx_ramstart = val;
1440 		val += (chunk / sizeof(u_int64_t));
1441 		sc_if->sk_rx_ramend = val - 1;
1442 		sc_if->sk_tx_ramstart = val;
1443 		val += (chunk / sizeof(u_int64_t));
1444 		sc_if->sk_tx_ramend = val - 1;
1445 	}
1446 
1447 	/* Read and save PHY type and set PHY address */
1448 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1449 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1450 		switch(sc_if->sk_phytype) {
1451 		case SK_PHYTYPE_XMAC:
1452 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1453 			break;
1454 		case SK_PHYTYPE_BCOM:
1455 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1456 			break;
1457 		default:
1458 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1459 			    sc_if->sk_phytype);
1460 			error = ENODEV;
1461 			SK_IF_UNLOCK(sc_if);
1462 			goto fail;
1463 		}
1464 	} else {
1465 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1466 		    sc->sk_pmd != 'S') {
1467 			/* not initialized, punt */
1468 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1469 			sc->sk_coppertype = 1;
1470 		}
1471 
1472 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1473 
1474 		if (!(sc->sk_coppertype))
1475 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1476 	}
1477 
1478 	/*
1479 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1480 	 */
1481 	SK_IF_UNLOCK(sc_if);
1482 	ether_ifattach(ifp, eaddr);
1483 	SK_IF_LOCK(sc_if);
1484 
1485 	/*
1486 	 * The hardware should be ready for VLAN_MTU by default:
1487 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1488 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1489 	 *
1490 	 */
1491         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1492         ifp->if_capenable |= IFCAP_VLAN_MTU;
1493 	/*
1494 	 * Tell the upper layer(s) we support long frames.
1495 	 * Must appear after the call to ether_ifattach() because
1496 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1497 	 */
1498         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1499 
1500 	/*
1501 	 * Do miibus setup.
1502 	 */
1503 	phy = MII_PHY_ANY;
1504 	switch (sc->sk_type) {
1505 	case SK_GENESIS:
1506 		sk_init_xmac(sc_if);
1507 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1508 			phy = 0;
1509 		break;
1510 	case SK_YUKON:
1511 	case SK_YUKON_LITE:
1512 	case SK_YUKON_LP:
1513 		sk_init_yukon(sc_if);
1514 		phy = 0;
1515 		break;
1516 	}
1517 
1518 	SK_IF_UNLOCK(sc_if);
1519 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1520 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1521 	if (error != 0) {
1522 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1523 		ether_ifdetach(ifp);
1524 		goto fail;
1525 	}
1526 
1527 fail:
1528 	if (error) {
1529 		/* Access should be ok even though lock has been dropped */
1530 		sc->sk_if[port] = NULL;
1531 		sk_detach(dev);
1532 	}
1533 
1534 	return(error);
1535 }
1536 
1537 /*
1538  * Attach the interface. Allocate softc structures, do ifmedia
1539  * setup and ethernet/BPF attach.
1540  */
1541 static int
1542 skc_attach(dev)
1543 	device_t		dev;
1544 {
1545 	struct sk_softc		*sc;
1546 	int			error = 0, *port;
1547 	uint8_t			skrs;
1548 	const char		*pname = NULL;
1549 	char			*revstr;
1550 
1551 	sc = device_get_softc(dev);
1552 	sc->sk_dev = dev;
1553 
1554 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1555 	    MTX_DEF);
1556 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1557 	/*
1558 	 * Map control/status registers.
1559 	 */
1560 	pci_enable_busmaster(dev);
1561 
1562 	/* Allocate resources */
1563 #ifdef SK_USEIOSPACE
1564 	sc->sk_res_spec = sk_res_spec_io;
1565 #else
1566 	sc->sk_res_spec = sk_res_spec_mem;
1567 #endif
1568 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1569 	if (error) {
1570 		if (sc->sk_res_spec == sk_res_spec_mem)
1571 			sc->sk_res_spec = sk_res_spec_io;
1572 		else
1573 			sc->sk_res_spec = sk_res_spec_mem;
1574 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1575 		if (error) {
1576 			device_printf(dev, "couldn't allocate %s resources\n",
1577 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1578 			    "I/O");
1579 			goto fail;
1580 		}
1581 	}
1582 
1583 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1584 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1585 
1586 	/* Bail out if chip is not recognized. */
1587 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1588 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1589 		    sc->sk_type, sc->sk_rev);
1590 		error = ENXIO;
1591 		goto fail;
1592 	}
1593 
1594 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1595 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1596 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1597 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1598 		"SK interrupt moderation");
1599 
1600 	/* Pull in device tunables. */
1601 	sc->sk_int_mod = SK_IM_DEFAULT;
1602 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1603 		"int_mod", &sc->sk_int_mod);
1604 	if (error == 0) {
1605 		if (sc->sk_int_mod < SK_IM_MIN ||
1606 		    sc->sk_int_mod > SK_IM_MAX) {
1607 			device_printf(dev, "int_mod value out of range; "
1608 			    "using default: %d\n", SK_IM_DEFAULT);
1609 			sc->sk_int_mod = SK_IM_DEFAULT;
1610 		}
1611 	}
1612 
1613 	/* Reset the adapter. */
1614 	sk_reset(sc);
1615 
1616 	skrs = sk_win_read_1(sc, SK_EPROM0);
1617 	if (sc->sk_type == SK_GENESIS) {
1618 		/* Read and save RAM size and RAMbuffer offset */
1619 		switch(skrs) {
1620 		case SK_RAMSIZE_512K_64:
1621 			sc->sk_ramsize = 0x80000;
1622 			sc->sk_rboff = SK_RBOFF_0;
1623 			break;
1624 		case SK_RAMSIZE_1024K_64:
1625 			sc->sk_ramsize = 0x100000;
1626 			sc->sk_rboff = SK_RBOFF_80000;
1627 			break;
1628 		case SK_RAMSIZE_1024K_128:
1629 			sc->sk_ramsize = 0x100000;
1630 			sc->sk_rboff = SK_RBOFF_0;
1631 			break;
1632 		case SK_RAMSIZE_2048K_128:
1633 			sc->sk_ramsize = 0x200000;
1634 			sc->sk_rboff = SK_RBOFF_0;
1635 			break;
1636 		default:
1637 			device_printf(dev, "unknown ram size: %d\n", skrs);
1638 			error = ENXIO;
1639 			goto fail;
1640 		}
1641 	} else { /* SK_YUKON_FAMILY */
1642 		if (skrs == 0x00)
1643 			sc->sk_ramsize = 0x20000;
1644 		else
1645 			sc->sk_ramsize = skrs * (1<<12);
1646 		sc->sk_rboff = SK_RBOFF_0;
1647 	}
1648 
1649 	/* Read and save physical media type */
1650 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1651 
1652 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1653 		 sc->sk_coppertype = 1;
1654 	 else
1655 		 sc->sk_coppertype = 0;
1656 
1657 	/* Determine whether to name it with VPD PN or just make it up.
1658 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1659 	switch (pci_get_device(dev)) {
1660 	case DEVICEID_SK_V1:
1661 	case DEVICEID_BELKIN_5005:
1662 	case DEVICEID_3COM_3C940:
1663 	case DEVICEID_LINKSYS_EG1032:
1664 	case DEVICEID_DLINK_DGE530T_A1:
1665 	case DEVICEID_DLINK_DGE530T_B1:
1666 		/* Stay with VPD PN. */
1667 		(void) pci_get_vpd_ident(dev, &pname);
1668 		break;
1669 	case DEVICEID_SK_V2:
1670 		/* YUKON VPD PN might bear no resemblance to reality. */
1671 		switch (sc->sk_type) {
1672 		case SK_GENESIS:
1673 			/* Stay with VPD PN. */
1674 			(void) pci_get_vpd_ident(dev, &pname);
1675 			break;
1676 		case SK_YUKON:
1677 			pname = "Marvell Yukon Gigabit Ethernet";
1678 			break;
1679 		case SK_YUKON_LITE:
1680 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1681 			break;
1682 		case SK_YUKON_LP:
1683 			pname = "Marvell Yukon LP Gigabit Ethernet";
1684 			break;
1685 		default:
1686 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1687 			break;
1688 		}
1689 
1690 		/* Yukon Lite Rev. A0 needs special test. */
1691 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1692 			u_int32_t far;
1693 			u_int8_t testbyte;
1694 
1695 			/* Save flash address register before testing. */
1696 			far = sk_win_read_4(sc, SK_EP_ADDR);
1697 
1698 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1699 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1700 
1701 			if (testbyte != 0x00) {
1702 				/* Yukon Lite Rev. A0 detected. */
1703 				sc->sk_type = SK_YUKON_LITE;
1704 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1705 				/* Restore flash address register. */
1706 				sk_win_write_4(sc, SK_EP_ADDR, far);
1707 			}
1708 		}
1709 		break;
1710 	default:
1711 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1712 			"chipver=%02x, rev=%x\n",
1713 			pci_get_vendor(dev), pci_get_device(dev),
1714 			sc->sk_type, sc->sk_rev);
1715 		error = ENXIO;
1716 		goto fail;
1717 	}
1718 
1719 	if (sc->sk_type == SK_YUKON_LITE) {
1720 		switch (sc->sk_rev) {
1721 		case SK_YUKON_LITE_REV_A0:
1722 			revstr = "A0";
1723 			break;
1724 		case SK_YUKON_LITE_REV_A1:
1725 			revstr = "A1";
1726 			break;
1727 		case SK_YUKON_LITE_REV_A3:
1728 			revstr = "A3";
1729 			break;
1730 		default:
1731 			revstr = "";
1732 			break;
1733 		}
1734 	} else {
1735 		revstr = "";
1736 	}
1737 
1738 	/* Announce the product name and more VPD data if there. */
1739 	if (pname != NULL)
1740 		device_printf(dev, "%s rev. %s(0x%x)\n",
1741 			pname, revstr, sc->sk_rev);
1742 
1743 	if (bootverbose) {
1744 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1745 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1746 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1747 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1748 	}
1749 
1750 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1751 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1752 		device_printf(dev, "failed to add child for PORT_A\n");
1753 		error = ENXIO;
1754 		goto fail;
1755 	}
1756 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1757 	if (port == NULL) {
1758 		device_printf(dev, "failed to allocate memory for "
1759 		    "ivars of PORT_A\n");
1760 		error = ENXIO;
1761 		goto fail;
1762 	}
1763 	*port = SK_PORT_A;
1764 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1765 
1766 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1767 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1768 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1769 			device_printf(dev, "failed to add child for PORT_B\n");
1770 			error = ENXIO;
1771 			goto fail;
1772 		}
1773 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1774 		if (port == NULL) {
1775 			device_printf(dev, "failed to allocate memory for "
1776 			    "ivars of PORT_B\n");
1777 			error = ENXIO;
1778 			goto fail;
1779 		}
1780 		*port = SK_PORT_B;
1781 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1782 	}
1783 
1784 	/* Turn on the 'driver is loaded' LED. */
1785 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1786 
1787 	error = bus_generic_attach(dev);
1788 	if (error) {
1789 		device_printf(dev, "failed to attach port(s)\n");
1790 		goto fail;
1791 	}
1792 
1793 	/* Hook interrupt last to avoid having to lock softc */
1794 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1795 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1796 
1797 	if (error) {
1798 		device_printf(dev, "couldn't set up irq\n");
1799 		goto fail;
1800 	}
1801 
1802 fail:
1803 	if (error)
1804 		skc_detach(dev);
1805 
1806 	return(error);
1807 }
1808 
1809 /*
1810  * Shutdown hardware and free up resources. This can be called any
1811  * time after the mutex has been initialized. It is called in both
1812  * the error case in attach and the normal detach case so it needs
1813  * to be careful about only freeing resources that have actually been
1814  * allocated.
1815  */
1816 static int
1817 sk_detach(dev)
1818 	device_t		dev;
1819 {
1820 	struct sk_if_softc	*sc_if;
1821 	struct ifnet		*ifp;
1822 
1823 	sc_if = device_get_softc(dev);
1824 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1825 	    ("sk mutex not initialized in sk_detach"));
1826 	SK_IF_LOCK(sc_if);
1827 
1828 	ifp = sc_if->sk_ifp;
1829 	/* These should only be active if attach_xmac succeeded */
1830 	if (device_is_attached(dev)) {
1831 		sk_stop(sc_if);
1832 		/* Can't hold locks while calling detach */
1833 		SK_IF_UNLOCK(sc_if);
1834 		callout_drain(&sc_if->sk_tick_ch);
1835 		callout_drain(&sc_if->sk_watchdog_ch);
1836 		ether_ifdetach(ifp);
1837 		SK_IF_LOCK(sc_if);
1838 	}
1839 	/*
1840 	 * We're generally called from skc_detach() which is using
1841 	 * device_delete_child() to get to here. It's already trashed
1842 	 * miibus for us, so don't do it here or we'll panic.
1843 	 */
1844 	/*
1845 	if (sc_if->sk_miibus != NULL)
1846 		device_delete_child(dev, sc_if->sk_miibus);
1847 	*/
1848 	bus_generic_detach(dev);
1849 	sk_dma_jumbo_free(sc_if);
1850 	sk_dma_free(sc_if);
1851 	SK_IF_UNLOCK(sc_if);
1852 	if (ifp)
1853 		if_free(ifp);
1854 
1855 	return(0);
1856 }
1857 
1858 static int
1859 skc_detach(dev)
1860 	device_t		dev;
1861 {
1862 	struct sk_softc		*sc;
1863 
1864 	sc = device_get_softc(dev);
1865 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1866 
1867 	if (device_is_alive(dev)) {
1868 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1869 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1870 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1871 		}
1872 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1873 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1874 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1875 		}
1876 		bus_generic_detach(dev);
1877 	}
1878 
1879 	if (sc->sk_intrhand)
1880 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1881 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1882 
1883 	mtx_destroy(&sc->sk_mii_mtx);
1884 	mtx_destroy(&sc->sk_mtx);
1885 
1886 	return(0);
1887 }
1888 
1889 static bus_dma_tag_t
1890 skc_get_dma_tag(device_t bus, device_t child __unused)
1891 {
1892 
1893 	return (bus_get_dma_tag(bus));
1894 }
1895 
1896 struct sk_dmamap_arg {
1897 	bus_addr_t	sk_busaddr;
1898 };
1899 
1900 static void
1901 sk_dmamap_cb(arg, segs, nseg, error)
1902 	void			*arg;
1903 	bus_dma_segment_t	*segs;
1904 	int			nseg;
1905 	int			error;
1906 {
1907 	struct sk_dmamap_arg	*ctx;
1908 
1909 	if (error != 0)
1910 		return;
1911 
1912 	ctx = arg;
1913 	ctx->sk_busaddr = segs[0].ds_addr;
1914 }
1915 
1916 /*
1917  * Allocate jumbo buffer storage. The SysKonnect adapters support
1918  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1919  * use them in their drivers. In order for us to use them, we need
1920  * large 9K receive buffers, however standard mbuf clusters are only
1921  * 2048 bytes in size. Consequently, we need to allocate and manage
1922  * our own jumbo buffer pool. Fortunately, this does not require an
1923  * excessive amount of additional code.
1924  */
1925 static int
1926 sk_dma_alloc(sc_if)
1927 	struct sk_if_softc	*sc_if;
1928 {
1929 	struct sk_dmamap_arg	ctx;
1930 	struct sk_txdesc	*txd;
1931 	struct sk_rxdesc	*rxd;
1932 	int			error, i;
1933 
1934 	/* create parent tag */
1935 	/*
1936 	 * XXX
1937 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1938 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1939 	 * However bz@ reported that it does not work on amd64 with > 4GB
1940 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1941 	 * by limiting DMA address to be in 32bit address space.
1942 	 */
1943 	error = bus_dma_tag_create(
1944 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1945 		    1, 0,			/* algnmnt, boundary */
1946 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1947 		    BUS_SPACE_MAXADDR,		/* highaddr */
1948 		    NULL, NULL,			/* filter, filterarg */
1949 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1950 		    0,				/* nsegments */
1951 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1952 		    0,				/* flags */
1953 		    NULL, NULL,			/* lockfunc, lockarg */
1954 		    &sc_if->sk_cdata.sk_parent_tag);
1955 	if (error != 0) {
1956 		device_printf(sc_if->sk_if_dev,
1957 		    "failed to create parent DMA tag\n");
1958 		goto fail;
1959 	}
1960 
1961 	/* create tag for Tx ring */
1962 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1963 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1964 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1965 		    BUS_SPACE_MAXADDR,		/* highaddr */
1966 		    NULL, NULL,			/* filter, filterarg */
1967 		    SK_TX_RING_SZ,		/* maxsize */
1968 		    1,				/* nsegments */
1969 		    SK_TX_RING_SZ,		/* maxsegsize */
1970 		    0,				/* flags */
1971 		    NULL, NULL,			/* lockfunc, lockarg */
1972 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1973 	if (error != 0) {
1974 		device_printf(sc_if->sk_if_dev,
1975 		    "failed to allocate Tx ring DMA tag\n");
1976 		goto fail;
1977 	}
1978 
1979 	/* create tag for Rx ring */
1980 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1981 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1982 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1983 		    BUS_SPACE_MAXADDR,		/* highaddr */
1984 		    NULL, NULL,			/* filter, filterarg */
1985 		    SK_RX_RING_SZ,		/* maxsize */
1986 		    1,				/* nsegments */
1987 		    SK_RX_RING_SZ,		/* maxsegsize */
1988 		    0,				/* flags */
1989 		    NULL, NULL,			/* lockfunc, lockarg */
1990 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1991 	if (error != 0) {
1992 		device_printf(sc_if->sk_if_dev,
1993 		    "failed to allocate Rx ring DMA tag\n");
1994 		goto fail;
1995 	}
1996 
1997 	/* create tag for Tx buffers */
1998 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1999 		    1, 0,			/* algnmnt, boundary */
2000 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2001 		    BUS_SPACE_MAXADDR,		/* highaddr */
2002 		    NULL, NULL,			/* filter, filterarg */
2003 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2004 		    SK_MAXTXSEGS,		/* nsegments */
2005 		    MCLBYTES,			/* maxsegsize */
2006 		    0,				/* flags */
2007 		    NULL, NULL,			/* lockfunc, lockarg */
2008 		    &sc_if->sk_cdata.sk_tx_tag);
2009 	if (error != 0) {
2010 		device_printf(sc_if->sk_if_dev,
2011 		    "failed to allocate Tx DMA tag\n");
2012 		goto fail;
2013 	}
2014 
2015 	/* create tag for Rx buffers */
2016 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2017 		    1, 0,			/* algnmnt, boundary */
2018 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2019 		    BUS_SPACE_MAXADDR,		/* highaddr */
2020 		    NULL, NULL,			/* filter, filterarg */
2021 		    MCLBYTES,			/* maxsize */
2022 		    1,				/* nsegments */
2023 		    MCLBYTES,			/* maxsegsize */
2024 		    0,				/* flags */
2025 		    NULL, NULL,			/* lockfunc, lockarg */
2026 		    &sc_if->sk_cdata.sk_rx_tag);
2027 	if (error != 0) {
2028 		device_printf(sc_if->sk_if_dev,
2029 		    "failed to allocate Rx DMA tag\n");
2030 		goto fail;
2031 	}
2032 
2033 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2034 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2035 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2036 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2037 	if (error != 0) {
2038 		device_printf(sc_if->sk_if_dev,
2039 		    "failed to allocate DMA'able memory for Tx ring\n");
2040 		goto fail;
2041 	}
2042 
2043 	ctx.sk_busaddr = 0;
2044 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2045 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2046 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2047 	if (error != 0) {
2048 		device_printf(sc_if->sk_if_dev,
2049 		    "failed to load DMA'able memory for Tx ring\n");
2050 		goto fail;
2051 	}
2052 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2053 
2054 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2055 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2056 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2057 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2058 	if (error != 0) {
2059 		device_printf(sc_if->sk_if_dev,
2060 		    "failed to allocate DMA'able memory for Rx ring\n");
2061 		goto fail;
2062 	}
2063 
2064 	ctx.sk_busaddr = 0;
2065 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2066 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2067 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2068 	if (error != 0) {
2069 		device_printf(sc_if->sk_if_dev,
2070 		    "failed to load DMA'able memory for Rx ring\n");
2071 		goto fail;
2072 	}
2073 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2074 
2075 	/* create DMA maps for Tx buffers */
2076 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2077 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2078 		txd->tx_m = NULL;
2079 		txd->tx_dmamap = NULL;
2080 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2081 		    &txd->tx_dmamap);
2082 		if (error != 0) {
2083 			device_printf(sc_if->sk_if_dev,
2084 			    "failed to create Tx dmamap\n");
2085 			goto fail;
2086 		}
2087 	}
2088 
2089 	/* create DMA maps for Rx buffers */
2090 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2091 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2092 		device_printf(sc_if->sk_if_dev,
2093 		    "failed to create spare Rx dmamap\n");
2094 		goto fail;
2095 	}
2096 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2097 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2098 		rxd->rx_m = NULL;
2099 		rxd->rx_dmamap = NULL;
2100 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2101 		    &rxd->rx_dmamap);
2102 		if (error != 0) {
2103 			device_printf(sc_if->sk_if_dev,
2104 			    "failed to create Rx dmamap\n");
2105 			goto fail;
2106 		}
2107 	}
2108 
2109 fail:
2110 	return (error);
2111 }
2112 
2113 static int
2114 sk_dma_jumbo_alloc(sc_if)
2115 	struct sk_if_softc	*sc_if;
2116 {
2117 	struct sk_dmamap_arg	ctx;
2118 	struct sk_rxdesc	*jrxd;
2119 	int			error, i;
2120 
2121 	if (jumbo_disable != 0) {
2122 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2123 		sc_if->sk_jumbo_disable = 1;
2124 		return (0);
2125 	}
2126 	/* create tag for jumbo Rx ring */
2127 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2128 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2129 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2130 		    BUS_SPACE_MAXADDR,		/* highaddr */
2131 		    NULL, NULL,			/* filter, filterarg */
2132 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2133 		    1,				/* nsegments */
2134 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2135 		    0,				/* flags */
2136 		    NULL, NULL,			/* lockfunc, lockarg */
2137 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2138 	if (error != 0) {
2139 		device_printf(sc_if->sk_if_dev,
2140 		    "failed to allocate jumbo Rx ring DMA tag\n");
2141 		goto jumbo_fail;
2142 	}
2143 
2144 	/* create tag for jumbo Rx buffers */
2145 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2146 		    1, 0,			/* algnmnt, boundary */
2147 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2148 		    BUS_SPACE_MAXADDR,		/* highaddr */
2149 		    NULL, NULL,			/* filter, filterarg */
2150 		    MJUM9BYTES,			/* maxsize */
2151 		    1,				/* nsegments */
2152 		    MJUM9BYTES,			/* maxsegsize */
2153 		    0,				/* flags */
2154 		    NULL, NULL,			/* lockfunc, lockarg */
2155 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2156 	if (error != 0) {
2157 		device_printf(sc_if->sk_if_dev,
2158 		    "failed to allocate jumbo Rx DMA tag\n");
2159 		goto jumbo_fail;
2160 	}
2161 
2162 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2163 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2164 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2165 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2166 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2167 	if (error != 0) {
2168 		device_printf(sc_if->sk_if_dev,
2169 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2170 		goto jumbo_fail;
2171 	}
2172 
2173 	ctx.sk_busaddr = 0;
2174 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2175 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2176 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2177 	    &ctx, BUS_DMA_NOWAIT);
2178 	if (error != 0) {
2179 		device_printf(sc_if->sk_if_dev,
2180 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2181 		goto jumbo_fail;
2182 	}
2183 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2184 
2185 	/* create DMA maps for jumbo Rx buffers */
2186 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2187 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2188 		device_printf(sc_if->sk_if_dev,
2189 		    "failed to create spare jumbo Rx dmamap\n");
2190 		goto jumbo_fail;
2191 	}
2192 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2193 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2194 		jrxd->rx_m = NULL;
2195 		jrxd->rx_dmamap = NULL;
2196 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2197 		    &jrxd->rx_dmamap);
2198 		if (error != 0) {
2199 			device_printf(sc_if->sk_if_dev,
2200 			    "failed to create jumbo Rx dmamap\n");
2201 			goto jumbo_fail;
2202 		}
2203 	}
2204 
2205 	return (0);
2206 
2207 jumbo_fail:
2208 	sk_dma_jumbo_free(sc_if);
2209 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2210 	    "resource shortage\n");
2211 	sc_if->sk_jumbo_disable = 1;
2212 	return (0);
2213 }
2214 
2215 static void
2216 sk_dma_free(sc_if)
2217 	struct sk_if_softc	*sc_if;
2218 {
2219 	struct sk_txdesc	*txd;
2220 	struct sk_rxdesc	*rxd;
2221 	int			i;
2222 
2223 	/* Tx ring */
2224 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2225 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2226 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2227 			    sc_if->sk_cdata.sk_tx_ring_map);
2228 		if (sc_if->sk_rdata.sk_tx_ring)
2229 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2230 			    sc_if->sk_rdata.sk_tx_ring,
2231 			    sc_if->sk_cdata.sk_tx_ring_map);
2232 		sc_if->sk_rdata.sk_tx_ring = NULL;
2233 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2234 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2235 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2236 	}
2237 	/* Rx ring */
2238 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2239 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2240 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2241 			    sc_if->sk_cdata.sk_rx_ring_map);
2242 		if (sc_if->sk_rdata.sk_rx_ring)
2243 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2244 			    sc_if->sk_rdata.sk_rx_ring,
2245 			    sc_if->sk_cdata.sk_rx_ring_map);
2246 		sc_if->sk_rdata.sk_rx_ring = NULL;
2247 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2248 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2249 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2250 	}
2251 	/* Tx buffers */
2252 	if (sc_if->sk_cdata.sk_tx_tag) {
2253 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2254 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2255 			if (txd->tx_dmamap) {
2256 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2257 				    txd->tx_dmamap);
2258 				txd->tx_dmamap = NULL;
2259 			}
2260 		}
2261 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2262 		sc_if->sk_cdata.sk_tx_tag = NULL;
2263 	}
2264 	/* Rx buffers */
2265 	if (sc_if->sk_cdata.sk_rx_tag) {
2266 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2267 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2268 			if (rxd->rx_dmamap) {
2269 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2270 				    rxd->rx_dmamap);
2271 				rxd->rx_dmamap = NULL;
2272 			}
2273 		}
2274 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2275 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2276 			    sc_if->sk_cdata.sk_rx_sparemap);
2277 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2278 		}
2279 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2280 		sc_if->sk_cdata.sk_rx_tag = NULL;
2281 	}
2282 
2283 	if (sc_if->sk_cdata.sk_parent_tag) {
2284 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2285 		sc_if->sk_cdata.sk_parent_tag = NULL;
2286 	}
2287 }
2288 
2289 static void
2290 sk_dma_jumbo_free(sc_if)
2291 	struct sk_if_softc	*sc_if;
2292 {
2293 	struct sk_rxdesc	*jrxd;
2294 	int			i;
2295 
2296 	/* jumbo Rx ring */
2297 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2298 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2299 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2300 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2301 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2302 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2303 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2304 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2305 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2306 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2307 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2308 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2309 	}
2310 
2311 	/* jumbo Rx buffers */
2312 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2313 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2314 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2315 			if (jrxd->rx_dmamap) {
2316 				bus_dmamap_destroy(
2317 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2318 				    jrxd->rx_dmamap);
2319 				jrxd->rx_dmamap = NULL;
2320 			}
2321 		}
2322 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2323 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2324 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2325 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2326 		}
2327 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2328 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2329 	}
2330 }
2331 
2332 static void
2333 sk_txcksum(ifp, m, f)
2334 	struct ifnet		*ifp;
2335 	struct mbuf		*m;
2336 	struct sk_tx_desc	*f;
2337 {
2338 	struct ip		*ip;
2339 	u_int16_t		offset;
2340 	u_int8_t 		*p;
2341 
2342 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2343 	for(; m && m->m_len == 0; m = m->m_next)
2344 		;
2345 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2346 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2347 		/* checksum may be corrupted */
2348 		goto sendit;
2349 	}
2350 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2351 		if (m->m_len != ETHER_HDR_LEN) {
2352 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2353 			    __func__);
2354 			/* checksum may be corrupted */
2355 			goto sendit;
2356 		}
2357 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2358 			;
2359 		if (m == NULL) {
2360 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2361 			/* checksum may be corrupted */
2362 			goto sendit;
2363 		}
2364 		ip = mtod(m, struct ip *);
2365 	} else {
2366 		p = mtod(m, u_int8_t *);
2367 		p += ETHER_HDR_LEN;
2368 		ip = (struct ip *)p;
2369 	}
2370 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2371 
2372 sendit:
2373 	f->sk_csum_startval = 0;
2374 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2375 	    (offset << 16));
2376 }
2377 
2378 static int
2379 sk_encap(sc_if, m_head)
2380         struct sk_if_softc	*sc_if;
2381         struct mbuf		**m_head;
2382 {
2383 	struct sk_txdesc	*txd;
2384 	struct sk_tx_desc	*f = NULL;
2385 	struct mbuf		*m;
2386 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2387 	u_int32_t		cflags, frag, si, sk_ctl;
2388 	int			error, i, nseg;
2389 
2390 	SK_IF_LOCK_ASSERT(sc_if);
2391 
2392 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2393 		return (ENOBUFS);
2394 
2395 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2396 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2397 	if (error == EFBIG) {
2398 		m = m_defrag(*m_head, M_NOWAIT);
2399 		if (m == NULL) {
2400 			m_freem(*m_head);
2401 			*m_head = NULL;
2402 			return (ENOMEM);
2403 		}
2404 		*m_head = m;
2405 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2406 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2407 		if (error != 0) {
2408 			m_freem(*m_head);
2409 			*m_head = NULL;
2410 			return (error);
2411 		}
2412 	} else if (error != 0)
2413 		return (error);
2414 	if (nseg == 0) {
2415 		m_freem(*m_head);
2416 		*m_head = NULL;
2417 		return (EIO);
2418 	}
2419 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2420 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2421 		return (ENOBUFS);
2422 	}
2423 
2424 	m = *m_head;
2425 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2426 		cflags = SK_OPCODE_CSUM;
2427 	else
2428 		cflags = SK_OPCODE_DEFAULT;
2429 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2430 	for (i = 0; i < nseg; i++) {
2431 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2432 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2433 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2434 		sk_ctl = txsegs[i].ds_len | cflags;
2435 		if (i == 0) {
2436 			if (cflags == SK_OPCODE_CSUM)
2437 				sk_txcksum(sc_if->sk_ifp, m, f);
2438 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2439 		} else
2440 			sk_ctl |= SK_TXCTL_OWN;
2441 		f->sk_ctl = htole32(sk_ctl);
2442 		sc_if->sk_cdata.sk_tx_cnt++;
2443 		SK_INC(frag, SK_TX_RING_CNT);
2444 	}
2445 	sc_if->sk_cdata.sk_tx_prod = frag;
2446 
2447 	/* set EOF on the last desciptor */
2448 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2449 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2450 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2451 
2452 	/* turn the first descriptor ownership to NIC */
2453 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2454 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2455 
2456 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2457 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2458 	txd->tx_m = m;
2459 
2460 	/* sync descriptors */
2461 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2462 	    BUS_DMASYNC_PREWRITE);
2463 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2464 	    sc_if->sk_cdata.sk_tx_ring_map,
2465 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2466 
2467 	return (0);
2468 }
2469 
2470 static void
2471 sk_start(ifp)
2472 	struct ifnet		*ifp;
2473 {
2474 	struct sk_if_softc *sc_if;
2475 
2476 	sc_if = ifp->if_softc;
2477 
2478 	SK_IF_LOCK(sc_if);
2479 	sk_start_locked(ifp);
2480 	SK_IF_UNLOCK(sc_if);
2481 
2482 	return;
2483 }
2484 
2485 static void
2486 sk_start_locked(ifp)
2487 	struct ifnet		*ifp;
2488 {
2489         struct sk_softc		*sc;
2490         struct sk_if_softc	*sc_if;
2491         struct mbuf		*m_head;
2492 	int			enq;
2493 
2494 	sc_if = ifp->if_softc;
2495 	sc = sc_if->sk_softc;
2496 
2497 	SK_IF_LOCK_ASSERT(sc_if);
2498 
2499 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2500 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2501 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2502 		if (m_head == NULL)
2503 			break;
2504 
2505 		/*
2506 		 * Pack the data into the transmit ring. If we
2507 		 * don't have room, set the OACTIVE flag and wait
2508 		 * for the NIC to drain the ring.
2509 		 */
2510 		if (sk_encap(sc_if, &m_head)) {
2511 			if (m_head == NULL)
2512 				break;
2513 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2514 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2515 			break;
2516 		}
2517 
2518 		enq++;
2519 		/*
2520 		 * If there's a BPF listener, bounce a copy of this frame
2521 		 * to him.
2522 		 */
2523 		BPF_MTAP(ifp, m_head);
2524 	}
2525 
2526 	if (enq > 0) {
2527 		/* Transmit */
2528 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2529 
2530 		/* Set a timeout in case the chip goes out to lunch. */
2531 		sc_if->sk_watchdog_timer = 5;
2532 	}
2533 }
2534 
2535 
2536 static void
2537 sk_watchdog(arg)
2538 	void			*arg;
2539 {
2540 	struct sk_if_softc	*sc_if;
2541 	struct ifnet		*ifp;
2542 
2543 	ifp = arg;
2544 	sc_if = ifp->if_softc;
2545 
2546 	SK_IF_LOCK_ASSERT(sc_if);
2547 
2548 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2549 		goto done;
2550 
2551 	/*
2552 	 * Reclaim first as there is a possibility of losing Tx completion
2553 	 * interrupts.
2554 	 */
2555 	sk_txeof(sc_if);
2556 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2557 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2558 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2559 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2560 		sk_init_locked(sc_if);
2561 	}
2562 
2563 done:
2564 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2565 
2566 	return;
2567 }
2568 
2569 static int
2570 skc_shutdown(dev)
2571 	device_t		dev;
2572 {
2573 	struct sk_softc		*sc;
2574 
2575 	sc = device_get_softc(dev);
2576 	SK_LOCK(sc);
2577 
2578 	/* Turn off the 'driver is loaded' LED. */
2579 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2580 
2581 	/*
2582 	 * Reset the GEnesis controller. Doing this should also
2583 	 * assert the resets on the attached XMAC(s).
2584 	 */
2585 	sk_reset(sc);
2586 	SK_UNLOCK(sc);
2587 
2588 	return (0);
2589 }
2590 
2591 static int
2592 skc_suspend(dev)
2593 	device_t		dev;
2594 {
2595 	struct sk_softc		*sc;
2596 	struct sk_if_softc	*sc_if0, *sc_if1;
2597 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2598 
2599 	sc = device_get_softc(dev);
2600 
2601 	SK_LOCK(sc);
2602 
2603 	sc_if0 = sc->sk_if[SK_PORT_A];
2604 	sc_if1 = sc->sk_if[SK_PORT_B];
2605 	if (sc_if0 != NULL)
2606 		ifp0 = sc_if0->sk_ifp;
2607 	if (sc_if1 != NULL)
2608 		ifp1 = sc_if1->sk_ifp;
2609 	if (ifp0 != NULL)
2610 		sk_stop(sc_if0);
2611 	if (ifp1 != NULL)
2612 		sk_stop(sc_if1);
2613 	sc->sk_suspended = 1;
2614 
2615 	SK_UNLOCK(sc);
2616 
2617 	return (0);
2618 }
2619 
2620 static int
2621 skc_resume(dev)
2622 	device_t		dev;
2623 {
2624 	struct sk_softc		*sc;
2625 	struct sk_if_softc	*sc_if0, *sc_if1;
2626 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2627 
2628 	sc = device_get_softc(dev);
2629 
2630 	SK_LOCK(sc);
2631 
2632 	sc_if0 = sc->sk_if[SK_PORT_A];
2633 	sc_if1 = sc->sk_if[SK_PORT_B];
2634 	if (sc_if0 != NULL)
2635 		ifp0 = sc_if0->sk_ifp;
2636 	if (sc_if1 != NULL)
2637 		ifp1 = sc_if1->sk_ifp;
2638 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2639 		sk_init_locked(sc_if0);
2640 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2641 		sk_init_locked(sc_if1);
2642 	sc->sk_suspended = 0;
2643 
2644 	SK_UNLOCK(sc);
2645 
2646 	return (0);
2647 }
2648 
2649 /*
2650  * According to the data sheet from SK-NET GENESIS the hardware can compute
2651  * two Rx checksums at the same time(Each checksum start position is
2652  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2653  * does not work at least on my Yukon hardware. I tried every possible ways
2654  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2655  * checksum offload was disabled at the moment and only IP checksum offload
2656  * was enabled.
2657  * As nomral IP header size is 20 bytes I can't expect it would give an
2658  * increase in throughput. However it seems it doesn't hurt performance in
2659  * my testing. If there is a more detailed information for checksum secret
2660  * of the hardware in question please contact yongari@FreeBSD.org to add
2661  * TCP/UDP checksum offload support.
2662  */
2663 static __inline void
2664 sk_rxcksum(ifp, m, csum)
2665 	struct ifnet		*ifp;
2666 	struct mbuf		*m;
2667 	u_int32_t		csum;
2668 {
2669 	struct ether_header	*eh;
2670 	struct ip		*ip;
2671 	int32_t			hlen, len, pktlen;
2672 	u_int16_t		csum1, csum2, ipcsum;
2673 
2674 	pktlen = m->m_pkthdr.len;
2675 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2676 		return;
2677 	eh = mtod(m, struct ether_header *);
2678 	if (eh->ether_type != htons(ETHERTYPE_IP))
2679 		return;
2680 	ip = (struct ip *)(eh + 1);
2681 	if (ip->ip_v != IPVERSION)
2682 		return;
2683 	hlen = ip->ip_hl << 2;
2684 	pktlen -= sizeof(struct ether_header);
2685 	if (hlen < sizeof(struct ip))
2686 		return;
2687 	if (ntohs(ip->ip_len) < hlen)
2688 		return;
2689 	if (ntohs(ip->ip_len) != pktlen)
2690 		return;
2691 
2692 	csum1 = htons(csum & 0xffff);
2693 	csum2 = htons((csum >> 16) & 0xffff);
2694 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2695 	/* checksum fixup for IP options */
2696 	len = hlen - sizeof(struct ip);
2697 	if (len > 0) {
2698 		/*
2699 		 * If the second checksum value is correct we can compute IP
2700 		 * checksum with simple math. Unfortunately the second checksum
2701 		 * value is wrong so we can't verify the checksum from the
2702 		 * value(It seems there is some magic here to get correct
2703 		 * value). If the second checksum value is correct it also
2704 		 * means we can get TCP/UDP checksum) here. However, it still
2705 		 * needs pseudo header checksum calculation due to hardware
2706 		 * limitations.
2707 		 */
2708 		return;
2709 	}
2710 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2711 	if (ipcsum == 0xffff)
2712 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2713 }
2714 
2715 static __inline int
2716 sk_rxvalid(sc, stat, len)
2717 	struct sk_softc		*sc;
2718 	u_int32_t		stat, len;
2719 {
2720 
2721 	if (sc->sk_type == SK_GENESIS) {
2722 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2723 		    XM_RXSTAT_BYTES(stat) != len)
2724 			return (0);
2725 	} else {
2726 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2727 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2728 		    YU_RXSTAT_JABBER)) != 0 ||
2729 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2730 		    YU_RXSTAT_BYTES(stat) != len)
2731 			return (0);
2732 	}
2733 
2734 	return (1);
2735 }
2736 
2737 static void
2738 sk_rxeof(sc_if)
2739 	struct sk_if_softc	*sc_if;
2740 {
2741 	struct sk_softc		*sc;
2742 	struct mbuf		*m;
2743 	struct ifnet		*ifp;
2744 	struct sk_rx_desc	*cur_rx;
2745 	struct sk_rxdesc	*rxd;
2746 	int			cons, prog;
2747 	u_int32_t		csum, rxstat, sk_ctl;
2748 
2749 	sc = sc_if->sk_softc;
2750 	ifp = sc_if->sk_ifp;
2751 
2752 	SK_IF_LOCK_ASSERT(sc_if);
2753 
2754 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2755 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2756 
2757 	prog = 0;
2758 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2759 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2760 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2761 		sk_ctl = le32toh(cur_rx->sk_ctl);
2762 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2763 			break;
2764 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2765 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2766 
2767 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2768 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2769 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2770 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2771 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2772 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2773 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2774 			sk_discard_rxbuf(sc_if, cons);
2775 			continue;
2776 		}
2777 
2778 		m = rxd->rx_m;
2779 		csum = le32toh(cur_rx->sk_csum);
2780 		if (sk_newbuf(sc_if, cons) != 0) {
2781 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2782 			/* reuse old buffer */
2783 			sk_discard_rxbuf(sc_if, cons);
2784 			continue;
2785 		}
2786 		m->m_pkthdr.rcvif = ifp;
2787 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2788 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2789 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2790 			sk_rxcksum(ifp, m, csum);
2791 		SK_IF_UNLOCK(sc_if);
2792 		(*ifp->if_input)(ifp, m);
2793 		SK_IF_LOCK(sc_if);
2794 	}
2795 
2796 	if (prog > 0) {
2797 		sc_if->sk_cdata.sk_rx_cons = cons;
2798 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2799 		    sc_if->sk_cdata.sk_rx_ring_map,
2800 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2801 	}
2802 }
2803 
2804 static void
2805 sk_jumbo_rxeof(sc_if)
2806 	struct sk_if_softc	*sc_if;
2807 {
2808 	struct sk_softc		*sc;
2809 	struct mbuf		*m;
2810 	struct ifnet		*ifp;
2811 	struct sk_rx_desc	*cur_rx;
2812 	struct sk_rxdesc	*jrxd;
2813 	int			cons, prog;
2814 	u_int32_t		csum, rxstat, sk_ctl;
2815 
2816 	sc = sc_if->sk_softc;
2817 	ifp = sc_if->sk_ifp;
2818 
2819 	SK_IF_LOCK_ASSERT(sc_if);
2820 
2821 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2822 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2823 
2824 	prog = 0;
2825 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2826 	    prog < SK_JUMBO_RX_RING_CNT;
2827 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2828 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2829 		sk_ctl = le32toh(cur_rx->sk_ctl);
2830 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2831 			break;
2832 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2833 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2834 
2835 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2836 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2837 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2838 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2839 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2840 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2841 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2842 			sk_discard_jumbo_rxbuf(sc_if, cons);
2843 			continue;
2844 		}
2845 
2846 		m = jrxd->rx_m;
2847 		csum = le32toh(cur_rx->sk_csum);
2848 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2849 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2850 			/* reuse old buffer */
2851 			sk_discard_jumbo_rxbuf(sc_if, cons);
2852 			continue;
2853 		}
2854 		m->m_pkthdr.rcvif = ifp;
2855 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2856 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2857 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2858 			sk_rxcksum(ifp, m, csum);
2859 		SK_IF_UNLOCK(sc_if);
2860 		(*ifp->if_input)(ifp, m);
2861 		SK_IF_LOCK(sc_if);
2862 	}
2863 
2864 	if (prog > 0) {
2865 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2866 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2867 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2868 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2869 	}
2870 }
2871 
2872 static void
2873 sk_txeof(sc_if)
2874 	struct sk_if_softc	*sc_if;
2875 {
2876 	struct sk_txdesc	*txd;
2877 	struct sk_tx_desc	*cur_tx;
2878 	struct ifnet		*ifp;
2879 	u_int32_t		idx, sk_ctl;
2880 
2881 	ifp = sc_if->sk_ifp;
2882 
2883 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2884 	if (txd == NULL)
2885 		return;
2886 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2887 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2888 	/*
2889 	 * Go through our tx ring and free mbufs for those
2890 	 * frames that have been sent.
2891 	 */
2892 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2893 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2894 			break;
2895 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2896 		sk_ctl = le32toh(cur_tx->sk_ctl);
2897 		if (sk_ctl & SK_TXCTL_OWN)
2898 			break;
2899 		sc_if->sk_cdata.sk_tx_cnt--;
2900 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2901 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2902 			continue;
2903 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2904 		    BUS_DMASYNC_POSTWRITE);
2905 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2906 
2907 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2908 		m_freem(txd->tx_m);
2909 		txd->tx_m = NULL;
2910 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2911 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2912 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2913 	}
2914 	sc_if->sk_cdata.sk_tx_cons = idx;
2915 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2916 
2917 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2918 	    sc_if->sk_cdata.sk_tx_ring_map,
2919 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2920 }
2921 
2922 static void
2923 sk_tick(xsc_if)
2924 	void			*xsc_if;
2925 {
2926 	struct sk_if_softc	*sc_if;
2927 	struct mii_data		*mii;
2928 	struct ifnet		*ifp;
2929 	int			i;
2930 
2931 	sc_if = xsc_if;
2932 	ifp = sc_if->sk_ifp;
2933 	mii = device_get_softc(sc_if->sk_miibus);
2934 
2935 	if (!(ifp->if_flags & IFF_UP))
2936 		return;
2937 
2938 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2939 		sk_intr_bcom(sc_if);
2940 		return;
2941 	}
2942 
2943 	/*
2944 	 * According to SysKonnect, the correct way to verify that
2945 	 * the link has come back up is to poll bit 0 of the GPIO
2946 	 * register three times. This pin has the signal from the
2947 	 * link_sync pin connected to it; if we read the same link
2948 	 * state 3 times in a row, we know the link is up.
2949 	 */
2950 	for (i = 0; i < 3; i++) {
2951 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2952 			break;
2953 	}
2954 
2955 	if (i != 3) {
2956 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2957 		return;
2958 	}
2959 
2960 	/* Turn the GP0 interrupt back on. */
2961 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2962 	SK_XM_READ_2(sc_if, XM_ISR);
2963 	mii_tick(mii);
2964 	callout_stop(&sc_if->sk_tick_ch);
2965 }
2966 
2967 static void
2968 sk_yukon_tick(xsc_if)
2969 	void			*xsc_if;
2970 {
2971 	struct sk_if_softc	*sc_if;
2972 	struct mii_data		*mii;
2973 
2974 	sc_if = xsc_if;
2975 	mii = device_get_softc(sc_if->sk_miibus);
2976 
2977 	mii_tick(mii);
2978 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2979 }
2980 
2981 static void
2982 sk_intr_bcom(sc_if)
2983 	struct sk_if_softc	*sc_if;
2984 {
2985 	struct mii_data		*mii;
2986 	struct ifnet		*ifp;
2987 	int			status;
2988 	mii = device_get_softc(sc_if->sk_miibus);
2989 	ifp = sc_if->sk_ifp;
2990 
2991 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2992 
2993 	/*
2994 	 * Read the PHY interrupt register to make sure
2995 	 * we clear any pending interrupts.
2996 	 */
2997 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2998 
2999 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3000 		sk_init_xmac(sc_if);
3001 		return;
3002 	}
3003 
3004 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3005 		int			lstat;
3006 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3007 		    BRGPHY_MII_AUXSTS);
3008 
3009 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3010 			mii_mediachg(mii);
3011 			/* Turn off the link LED. */
3012 			SK_IF_WRITE_1(sc_if, 0,
3013 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3014 			sc_if->sk_link = 0;
3015 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3016 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3017 	    		    BRGPHY_MII_IMR, 0xFF00);
3018 			mii_tick(mii);
3019 			sc_if->sk_link = 1;
3020 			/* Turn on the link LED. */
3021 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3022 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3023 			    SK_LINKLED_BLINK_OFF);
3024 		} else {
3025 			mii_tick(mii);
3026 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3027 		}
3028 	}
3029 
3030 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3031 
3032 	return;
3033 }
3034 
3035 static void
3036 sk_intr_xmac(sc_if)
3037 	struct sk_if_softc	*sc_if;
3038 {
3039 	struct sk_softc		*sc;
3040 	u_int16_t		status;
3041 
3042 	sc = sc_if->sk_softc;
3043 	status = SK_XM_READ_2(sc_if, XM_ISR);
3044 
3045 	/*
3046 	 * Link has gone down. Start MII tick timeout to
3047 	 * watch for link resync.
3048 	 */
3049 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3050 		if (status & XM_ISR_GP0_SET) {
3051 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3052 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3053 		}
3054 
3055 		if (status & XM_ISR_AUTONEG_DONE) {
3056 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3057 		}
3058 	}
3059 
3060 	if (status & XM_IMR_TX_UNDERRUN)
3061 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3062 
3063 	if (status & XM_IMR_RX_OVERRUN)
3064 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3065 
3066 	status = SK_XM_READ_2(sc_if, XM_ISR);
3067 
3068 	return;
3069 }
3070 
3071 static void
3072 sk_intr_yukon(sc_if)
3073 	struct sk_if_softc	*sc_if;
3074 {
3075 	u_int8_t status;
3076 
3077 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3078 	/* RX overrun */
3079 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3080 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3081 		    SK_RFCTL_RX_FIFO_OVER);
3082 	}
3083 	/* TX underrun */
3084 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3085 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3086 		    SK_TFCTL_TX_FIFO_UNDER);
3087 	}
3088 }
3089 
3090 static void
3091 sk_intr(xsc)
3092 	void			*xsc;
3093 {
3094 	struct sk_softc		*sc = xsc;
3095 	struct sk_if_softc	*sc_if0, *sc_if1;
3096 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3097 	u_int32_t		status;
3098 
3099 	SK_LOCK(sc);
3100 
3101 	status = CSR_READ_4(sc, SK_ISSR);
3102 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3103 		goto done_locked;
3104 
3105 	sc_if0 = sc->sk_if[SK_PORT_A];
3106 	sc_if1 = sc->sk_if[SK_PORT_B];
3107 
3108 	if (sc_if0 != NULL)
3109 		ifp0 = sc_if0->sk_ifp;
3110 	if (sc_if1 != NULL)
3111 		ifp1 = sc_if1->sk_ifp;
3112 
3113 	for (; (status &= sc->sk_intrmask) != 0;) {
3114 		/* Handle receive interrupts first. */
3115 		if (status & SK_ISR_RX1_EOF) {
3116 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3117 				sk_jumbo_rxeof(sc_if0);
3118 			else
3119 				sk_rxeof(sc_if0);
3120 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3121 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3122 		}
3123 		if (status & SK_ISR_RX2_EOF) {
3124 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3125 				sk_jumbo_rxeof(sc_if1);
3126 			else
3127 				sk_rxeof(sc_if1);
3128 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3129 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3130 		}
3131 
3132 		/* Then transmit interrupts. */
3133 		if (status & SK_ISR_TX1_S_EOF) {
3134 			sk_txeof(sc_if0);
3135 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3136 		}
3137 		if (status & SK_ISR_TX2_S_EOF) {
3138 			sk_txeof(sc_if1);
3139 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3140 		}
3141 
3142 		/* Then MAC interrupts. */
3143 		if (status & SK_ISR_MAC1 &&
3144 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3145 			if (sc->sk_type == SK_GENESIS)
3146 				sk_intr_xmac(sc_if0);
3147 			else
3148 				sk_intr_yukon(sc_if0);
3149 		}
3150 
3151 		if (status & SK_ISR_MAC2 &&
3152 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3153 			if (sc->sk_type == SK_GENESIS)
3154 				sk_intr_xmac(sc_if1);
3155 			else
3156 				sk_intr_yukon(sc_if1);
3157 		}
3158 
3159 		if (status & SK_ISR_EXTERNAL_REG) {
3160 			if (ifp0 != NULL &&
3161 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3162 				sk_intr_bcom(sc_if0);
3163 			if (ifp1 != NULL &&
3164 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3165 				sk_intr_bcom(sc_if1);
3166 		}
3167 		status = CSR_READ_4(sc, SK_ISSR);
3168 	}
3169 
3170 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3171 
3172 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3173 		sk_start_locked(ifp0);
3174 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3175 		sk_start_locked(ifp1);
3176 
3177 done_locked:
3178 	SK_UNLOCK(sc);
3179 }
3180 
3181 static void
3182 sk_init_xmac(sc_if)
3183 	struct sk_if_softc	*sc_if;
3184 {
3185 	struct sk_softc		*sc;
3186 	struct ifnet		*ifp;
3187 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3188 	static const struct sk_bcom_hack bhack[] = {
3189 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3190 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3191 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3192 	{ 0, 0 } };
3193 
3194 	SK_IF_LOCK_ASSERT(sc_if);
3195 
3196 	sc = sc_if->sk_softc;
3197 	ifp = sc_if->sk_ifp;
3198 
3199 	/* Unreset the XMAC. */
3200 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3201 	DELAY(1000);
3202 
3203 	/* Reset the XMAC's internal state. */
3204 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3205 
3206 	/* Save the XMAC II revision */
3207 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3208 
3209 	/*
3210 	 * Perform additional initialization for external PHYs,
3211 	 * namely for the 1000baseTX cards that use the XMAC's
3212 	 * GMII mode.
3213 	 */
3214 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3215 		int			i = 0;
3216 		u_int32_t		val;
3217 
3218 		/* Take PHY out of reset. */
3219 		val = sk_win_read_4(sc, SK_GPIO);
3220 		if (sc_if->sk_port == SK_PORT_A)
3221 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3222 		else
3223 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3224 		sk_win_write_4(sc, SK_GPIO, val);
3225 
3226 		/* Enable GMII mode on the XMAC. */
3227 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3228 
3229 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3230 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3231 		DELAY(10000);
3232 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3233 		    BRGPHY_MII_IMR, 0xFFF0);
3234 
3235 		/*
3236 		 * Early versions of the BCM5400 apparently have
3237 		 * a bug that requires them to have their reserved
3238 		 * registers initialized to some magic values. I don't
3239 		 * know what the numbers do, I'm just the messenger.
3240 		 */
3241 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3242 		    == 0x6041) {
3243 			while(bhack[i].reg) {
3244 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3245 				    bhack[i].reg, bhack[i].val);
3246 				i++;
3247 			}
3248 		}
3249 	}
3250 
3251 	/* Set station address */
3252 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3253 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3254 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3255 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3256 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3257 
3258 	if (ifp->if_flags & IFF_BROADCAST) {
3259 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3260 	} else {
3261 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3262 	}
3263 
3264 	/* We don't need the FCS appended to the packet. */
3265 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3266 
3267 	/* We want short frames padded to 60 bytes. */
3268 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3269 
3270 	/*
3271 	 * Enable the reception of all error frames. This is is
3272 	 * a necessary evil due to the design of the XMAC. The
3273 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3274 	 * frames can be up to 9000 bytes in length. When bad
3275 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3276 	 * in 'store and forward' mode. For this to work, the
3277 	 * entire frame has to fit into the FIFO, but that means
3278 	 * that jumbo frames larger than 8192 bytes will be
3279 	 * truncated. Disabling all bad frame filtering causes
3280 	 * the RX FIFO to operate in streaming mode, in which
3281 	 * case the XMAC will start transferring frames out of the
3282 	 * RX FIFO as soon as the FIFO threshold is reached.
3283 	 */
3284 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3285 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3286 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3287 		    XM_MODE_RX_INRANGELEN);
3288 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3289 	} else
3290 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3291 
3292 	/*
3293 	 * Bump up the transmit threshold. This helps hold off transmit
3294 	 * underruns when we're blasting traffic from both ports at once.
3295 	 */
3296 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3297 
3298 	/* Set Rx filter */
3299 	sk_rxfilter_genesis(sc_if);
3300 
3301 	/* Clear and enable interrupts */
3302 	SK_XM_READ_2(sc_if, XM_ISR);
3303 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3304 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3305 	else
3306 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3307 
3308 	/* Configure MAC arbiter */
3309 	switch(sc_if->sk_xmac_rev) {
3310 	case XM_XMAC_REV_B2:
3311 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3312 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3313 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3314 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3315 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3317 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3318 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3319 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3320 		break;
3321 	case XM_XMAC_REV_C1:
3322 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3323 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3324 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3325 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3326 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3328 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3329 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3330 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3331 		break;
3332 	default:
3333 		break;
3334 	}
3335 	sk_win_write_2(sc, SK_MACARB_CTL,
3336 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3337 
3338 	sc_if->sk_link = 1;
3339 
3340 	return;
3341 }
3342 
3343 static void
3344 sk_init_yukon(sc_if)
3345 	struct sk_if_softc	*sc_if;
3346 {
3347 	u_int32_t		phy, v;
3348 	u_int16_t		reg;
3349 	struct sk_softc		*sc;
3350 	struct ifnet		*ifp;
3351 	u_int8_t		*eaddr;
3352 	int			i;
3353 
3354 	SK_IF_LOCK_ASSERT(sc_if);
3355 
3356 	sc = sc_if->sk_softc;
3357 	ifp = sc_if->sk_ifp;
3358 
3359 	if (sc->sk_type == SK_YUKON_LITE &&
3360 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3361 		/*
3362 		 * Workaround code for COMA mode, set PHY reset.
3363 		 * Otherwise it will not correctly take chip out of
3364 		 * powerdown (coma)
3365 		 */
3366 		v = sk_win_read_4(sc, SK_GPIO);
3367 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3368 		sk_win_write_4(sc, SK_GPIO, v);
3369 	}
3370 
3371 	/* GMAC and GPHY Reset */
3372 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3373 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3374 	DELAY(1000);
3375 
3376 	if (sc->sk_type == SK_YUKON_LITE &&
3377 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3378 		/*
3379 		 * Workaround code for COMA mode, clear PHY reset
3380 		 */
3381 		v = sk_win_read_4(sc, SK_GPIO);
3382 		v |= SK_GPIO_DIR9;
3383 		v &= ~SK_GPIO_DAT9;
3384 		sk_win_write_4(sc, SK_GPIO, v);
3385 	}
3386 
3387 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3388 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3389 
3390 	if (sc->sk_coppertype)
3391 		phy |= SK_GPHY_COPPER;
3392 	else
3393 		phy |= SK_GPHY_FIBER;
3394 
3395 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3396 	DELAY(1000);
3397 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3398 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3399 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3400 
3401 	/* unused read of the interrupt source register */
3402 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3403 
3404 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3405 
3406 	/* MIB Counter Clear Mode set */
3407 	reg |= YU_PAR_MIB_CLR;
3408 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3409 
3410 	/* MIB Counter Clear Mode clear */
3411 	reg &= ~YU_PAR_MIB_CLR;
3412 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3413 
3414 	/* receive control reg */
3415 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3416 
3417 	/* transmit parameter register */
3418 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3419 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3420 
3421 	/* serial mode register */
3422 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3423 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3424 		reg |= YU_SMR_MFL_JUMBO;
3425 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3426 
3427 	/* Setup Yukon's station address */
3428 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3429 	for (i = 0; i < 3; i++)
3430 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3431 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3432 	/* Set GMAC source address of flow control. */
3433 	for (i = 0; i < 3; i++)
3434 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3435 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3436 	/* Set GMAC virtual address. */
3437 	for (i = 0; i < 3; i++)
3438 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3439 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3440 
3441 	/* Set Rx filter */
3442 	sk_rxfilter_yukon(sc_if);
3443 
3444 	/* enable interrupt mask for counter overflows */
3445 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3446 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3447 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3448 
3449 	/* Configure RX MAC FIFO Flush Mask */
3450 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3451 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3452 	    YU_RXSTAT_JABBER;
3453 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3454 
3455 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3456 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3457 		v = SK_TFCTL_OPERATION_ON;
3458 	else
3459 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3460 	/* Configure RX MAC FIFO */
3461 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3462 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3463 
3464 	/* Increase flush threshould to 64 bytes */
3465 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3466 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3467 
3468 	/* Configure TX MAC FIFO */
3469 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3470 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3471 }
3472 
3473 /*
3474  * Note that to properly initialize any part of the GEnesis chip,
3475  * you first have to take it out of reset mode.
3476  */
3477 static void
3478 sk_init(xsc)
3479 	void			*xsc;
3480 {
3481 	struct sk_if_softc	*sc_if = xsc;
3482 
3483 	SK_IF_LOCK(sc_if);
3484 	sk_init_locked(sc_if);
3485 	SK_IF_UNLOCK(sc_if);
3486 
3487 	return;
3488 }
3489 
3490 static void
3491 sk_init_locked(sc_if)
3492 	struct sk_if_softc	*sc_if;
3493 {
3494 	struct sk_softc		*sc;
3495 	struct ifnet		*ifp;
3496 	struct mii_data		*mii;
3497 	u_int16_t		reg;
3498 	u_int32_t		imr;
3499 	int			error;
3500 
3501 	SK_IF_LOCK_ASSERT(sc_if);
3502 
3503 	ifp = sc_if->sk_ifp;
3504 	sc = sc_if->sk_softc;
3505 	mii = device_get_softc(sc_if->sk_miibus);
3506 
3507 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3508 		return;
3509 
3510 	/* Cancel pending I/O and free all RX/TX buffers. */
3511 	sk_stop(sc_if);
3512 
3513 	if (sc->sk_type == SK_GENESIS) {
3514 		/* Configure LINK_SYNC LED */
3515 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3516 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3517 			SK_LINKLED_LINKSYNC_ON);
3518 
3519 		/* Configure RX LED */
3520 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3521 			SK_RXLEDCTL_COUNTER_START);
3522 
3523 		/* Configure TX LED */
3524 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3525 			SK_TXLEDCTL_COUNTER_START);
3526 	}
3527 
3528 	/*
3529 	 * Configure descriptor poll timer
3530 	 *
3531 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3532 	 * transmit command due to CPU/cache related interim storage problems
3533 	 * under certain conditions. The document recommends a polling
3534 	 * mechanism to send a Start transmit command to initiate transfer
3535 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3536 	 * enables descriptor poll timer to initiate descriptor processing
3537 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3538 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3539 	 * command instead of waiting for next descriptor polling time.
3540 	 * The same rule may apply to Rx side too but it seems that is not
3541 	 * needed at the moment.
3542 	 * Since sk(4) uses descriptor polling as a last resort there is no
3543 	 * need to set smaller polling time than maximum allowable one.
3544 	 */
3545 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3546 
3547 	/* Configure I2C registers */
3548 
3549 	/* Configure XMAC(s) */
3550 	switch (sc->sk_type) {
3551 	case SK_GENESIS:
3552 		sk_init_xmac(sc_if);
3553 		break;
3554 	case SK_YUKON:
3555 	case SK_YUKON_LITE:
3556 	case SK_YUKON_LP:
3557 		sk_init_yukon(sc_if);
3558 		break;
3559 	}
3560 	mii_mediachg(mii);
3561 
3562 	if (sc->sk_type == SK_GENESIS) {
3563 		/* Configure MAC FIFOs */
3564 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3565 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3566 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3567 
3568 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3569 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3570 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3571 	}
3572 
3573 	/* Configure transmit arbiter(s) */
3574 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3575 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3576 
3577 	/* Configure RAMbuffers */
3578 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3579 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3581 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3583 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3584 
3585 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3586 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3591 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3592 
3593 	/* Configure BMUs */
3594 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3595 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3596 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3597 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3598 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3599 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3600 	} else {
3601 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3602 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3603 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3604 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3605 	}
3606 
3607 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3608 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3609 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3610 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3611 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3612 
3613 	/* Init descriptors */
3614 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3615 		error = sk_init_jumbo_rx_ring(sc_if);
3616 	else
3617 		error = sk_init_rx_ring(sc_if);
3618 	if (error != 0) {
3619 		device_printf(sc_if->sk_if_dev,
3620 		    "initialization failed: no memory for rx buffers\n");
3621 		sk_stop(sc_if);
3622 		return;
3623 	}
3624 	sk_init_tx_ring(sc_if);
3625 
3626 	/* Set interrupt moderation if changed via sysctl. */
3627 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3628 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3629 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3630 		    sc->sk_int_ticks));
3631 		if (bootverbose)
3632 			device_printf(sc_if->sk_if_dev,
3633 			    "interrupt moderation is %d us.\n",
3634 			    sc->sk_int_mod);
3635 	}
3636 
3637 	/* Configure interrupt handling */
3638 	CSR_READ_4(sc, SK_ISSR);
3639 	if (sc_if->sk_port == SK_PORT_A)
3640 		sc->sk_intrmask |= SK_INTRS1;
3641 	else
3642 		sc->sk_intrmask |= SK_INTRS2;
3643 
3644 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3645 
3646 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3647 
3648 	/* Start BMUs. */
3649 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3650 
3651 	switch(sc->sk_type) {
3652 	case SK_GENESIS:
3653 		/* Enable XMACs TX and RX state machines */
3654 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3655 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3656 		break;
3657 	case SK_YUKON:
3658 	case SK_YUKON_LITE:
3659 	case SK_YUKON_LP:
3660 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3661 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3662 #if 0
3663 		/* XXX disable 100Mbps and full duplex mode? */
3664 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3665 #endif
3666 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3667 	}
3668 
3669 	/* Activate descriptor polling timer */
3670 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3671 	/* start transfer of Tx descriptors */
3672 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3673 
3674 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3675 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3676 
3677 	switch (sc->sk_type) {
3678 	case SK_YUKON:
3679 	case SK_YUKON_LITE:
3680 	case SK_YUKON_LP:
3681 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3682 		break;
3683 	}
3684 
3685 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3686 
3687 	return;
3688 }
3689 
3690 static void
3691 sk_stop(sc_if)
3692 	struct sk_if_softc	*sc_if;
3693 {
3694 	int			i;
3695 	struct sk_softc		*sc;
3696 	struct sk_txdesc	*txd;
3697 	struct sk_rxdesc	*rxd;
3698 	struct sk_rxdesc	*jrxd;
3699 	struct ifnet		*ifp;
3700 	u_int32_t		val;
3701 
3702 	SK_IF_LOCK_ASSERT(sc_if);
3703 	sc = sc_if->sk_softc;
3704 	ifp = sc_if->sk_ifp;
3705 
3706 	callout_stop(&sc_if->sk_tick_ch);
3707 	callout_stop(&sc_if->sk_watchdog_ch);
3708 
3709 	/* stop Tx descriptor polling timer */
3710 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3711 	/* stop transfer of Tx descriptors */
3712 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3713 	for (i = 0; i < SK_TIMEOUT; i++) {
3714 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3715 		if ((val & SK_TXBMU_TX_STOP) == 0)
3716 			break;
3717 		DELAY(1);
3718 	}
3719 	if (i == SK_TIMEOUT)
3720 		device_printf(sc_if->sk_if_dev,
3721 		    "can not stop transfer of Tx descriptor\n");
3722 	/* stop transfer of Rx descriptors */
3723 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3724 	for (i = 0; i < SK_TIMEOUT; i++) {
3725 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3726 		if ((val & SK_RXBMU_RX_STOP) == 0)
3727 			break;
3728 		DELAY(1);
3729 	}
3730 	if (i == SK_TIMEOUT)
3731 		device_printf(sc_if->sk_if_dev,
3732 		    "can not stop transfer of Rx descriptor\n");
3733 
3734 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3735 		/* Put PHY back into reset. */
3736 		val = sk_win_read_4(sc, SK_GPIO);
3737 		if (sc_if->sk_port == SK_PORT_A) {
3738 			val |= SK_GPIO_DIR0;
3739 			val &= ~SK_GPIO_DAT0;
3740 		} else {
3741 			val |= SK_GPIO_DIR2;
3742 			val &= ~SK_GPIO_DAT2;
3743 		}
3744 		sk_win_write_4(sc, SK_GPIO, val);
3745 	}
3746 
3747 	/* Turn off various components of this interface. */
3748 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3749 	switch (sc->sk_type) {
3750 	case SK_GENESIS:
3751 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3752 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3753 		break;
3754 	case SK_YUKON:
3755 	case SK_YUKON_LITE:
3756 	case SK_YUKON_LP:
3757 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3758 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3759 		break;
3760 	}
3761 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3763 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3764 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3765 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3766 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3767 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3768 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3769 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3770 
3771 	/* Disable interrupts */
3772 	if (sc_if->sk_port == SK_PORT_A)
3773 		sc->sk_intrmask &= ~SK_INTRS1;
3774 	else
3775 		sc->sk_intrmask &= ~SK_INTRS2;
3776 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3777 
3778 	SK_XM_READ_2(sc_if, XM_ISR);
3779 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3780 
3781 	/* Free RX and TX mbufs still in the queues. */
3782 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3783 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3784 		if (rxd->rx_m != NULL) {
3785 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3786 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3787 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3788 			    rxd->rx_dmamap);
3789 			m_freem(rxd->rx_m);
3790 			rxd->rx_m = NULL;
3791 		}
3792 	}
3793 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3794 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3795 		if (jrxd->rx_m != NULL) {
3796 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3797 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3798 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3799 			    jrxd->rx_dmamap);
3800 			m_freem(jrxd->rx_m);
3801 			jrxd->rx_m = NULL;
3802 		}
3803 	}
3804 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3805 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3806 		if (txd->tx_m != NULL) {
3807 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3808 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3809 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3810 			    txd->tx_dmamap);
3811 			m_freem(txd->tx_m);
3812 			txd->tx_m = NULL;
3813 		}
3814 	}
3815 
3816 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3817 
3818 	return;
3819 }
3820 
3821 static int
3822 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3823 {
3824 	int error, value;
3825 
3826 	if (!arg1)
3827 		return (EINVAL);
3828 	value = *(int *)arg1;
3829 	error = sysctl_handle_int(oidp, &value, 0, req);
3830 	if (error || !req->newptr)
3831 		return (error);
3832 	if (value < low || value > high)
3833 		return (EINVAL);
3834 	*(int *)arg1 = value;
3835 	return (0);
3836 }
3837 
3838 static int
3839 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3840 {
3841 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3842 }
3843