1 /* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ 2 3 /*- 4 * Copyright (c) 1997, 1998, 1999, 2000 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 /*- 35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 36 * 37 * Permission to use, copy, modify, and distribute this software for any 38 * purpose with or without fee is hereby granted, provided that the above 39 * copyright notice and this permission notice appear in all copies. 40 * 41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* 54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 55 * the SK-984x series adapters, both single port and dual port. 56 * References: 57 * The XaQti XMAC II datasheet, 58 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 59 * The SysKonnect GEnesis manual, http://www.syskonnect.com 60 * 61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 63 * convenience to others until Vitesse corrects this problem: 64 * 65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 66 * 67 * Written by Bill Paul <wpaul@ee.columbia.edu> 68 * Department of Electrical Engineering 69 * Columbia University, New York City 70 */ 71 /* 72 * The SysKonnect gigabit ethernet adapters consist of two main 73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 75 * components and a PHY while the GEnesis controller provides a PCI 76 * interface with DMA support. Each card may have between 512K and 77 * 2MB of SRAM on board depending on the configuration. 78 * 79 * The SysKonnect GEnesis controller can have either one or two XMAC 80 * chips connected to it, allowing single or dual port NIC configurations. 81 * SysKonnect has the distinction of being the only vendor on the market 82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 84 * XMAC registers. This driver takes advantage of these features to allow 85 * both XMACs to operate as independent interfaces. 86 */ 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/bus.h> 91 #include <sys/endian.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/module.h> 96 #include <sys/socket.h> 97 #include <sys/sockio.h> 98 #include <sys/queue.h> 99 #include <sys/sysctl.h> 100 101 #include <net/bpf.h> 102 #include <net/ethernet.h> 103 #include <net/if.h> 104 #include <net/if_arp.h> 105 #include <net/if_dl.h> 106 #include <net/if_media.h> 107 #include <net/if_types.h> 108 #include <net/if_vlan_var.h> 109 110 #include <netinet/in.h> 111 #include <netinet/in_systm.h> 112 #include <netinet/ip.h> 113 114 #include <machine/bus.h> 115 #include <machine/in_cksum.h> 116 #include <machine/resource.h> 117 #include <sys/rman.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/brgphyreg.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 126 #if 0 127 #define SK_USEIOSPACE 128 #endif 129 130 #include <dev/sk/if_skreg.h> 131 #include <dev/sk/xmaciireg.h> 132 #include <dev/sk/yukonreg.h> 133 134 MODULE_DEPEND(sk, pci, 1, 1, 1); 135 MODULE_DEPEND(sk, ether, 1, 1, 1); 136 MODULE_DEPEND(sk, miibus, 1, 1, 1); 137 138 /* "device miibus" required. See GENERIC if you get errors here. */ 139 #include "miibus_if.h" 140 141 #ifndef lint 142 static const char rcsid[] = 143 "$FreeBSD$"; 144 #endif 145 146 static const struct sk_type sk_devs[] = { 147 { 148 VENDORID_SK, 149 DEVICEID_SK_V1, 150 "SysKonnect Gigabit Ethernet (V1.0)" 151 }, 152 { 153 VENDORID_SK, 154 DEVICEID_SK_V2, 155 "SysKonnect Gigabit Ethernet (V2.0)" 156 }, 157 { 158 VENDORID_MARVELL, 159 DEVICEID_SK_V2, 160 "Marvell Gigabit Ethernet" 161 }, 162 { 163 VENDORID_MARVELL, 164 DEVICEID_BELKIN_5005, 165 "Belkin F5D5005 Gigabit Ethernet" 166 }, 167 { 168 VENDORID_3COM, 169 DEVICEID_3COM_3C940, 170 "3Com 3C940 Gigabit Ethernet" 171 }, 172 { 173 VENDORID_LINKSYS, 174 DEVICEID_LINKSYS_EG1032, 175 "Linksys EG1032 Gigabit Ethernet" 176 }, 177 { 178 VENDORID_DLINK, 179 DEVICEID_DLINK_DGE530T_A1, 180 "D-Link DGE-530T Gigabit Ethernet" 181 }, 182 { 183 VENDORID_DLINK, 184 DEVICEID_DLINK_DGE530T_B1, 185 "D-Link DGE-530T Gigabit Ethernet" 186 }, 187 { 0, 0, NULL } 188 }; 189 190 static int skc_probe(device_t); 191 static int skc_attach(device_t); 192 static int skc_detach(device_t); 193 static int skc_shutdown(device_t); 194 static int skc_suspend(device_t); 195 static int skc_resume(device_t); 196 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t); 197 static int sk_detach(device_t); 198 static int sk_probe(device_t); 199 static int sk_attach(device_t); 200 static void sk_tick(void *); 201 static void sk_yukon_tick(void *); 202 static void sk_intr(void *); 203 static void sk_intr_xmac(struct sk_if_softc *); 204 static void sk_intr_bcom(struct sk_if_softc *); 205 static void sk_intr_yukon(struct sk_if_softc *); 206 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t); 207 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); 208 static void sk_rxeof(struct sk_if_softc *); 209 static void sk_jumbo_rxeof(struct sk_if_softc *); 210 static void sk_txeof(struct sk_if_softc *); 211 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *); 212 static int sk_encap(struct sk_if_softc *, struct mbuf **); 213 static void sk_start(struct ifnet *); 214 static void sk_start_locked(struct ifnet *); 215 static int sk_ioctl(struct ifnet *, u_long, caddr_t); 216 static void sk_init(void *); 217 static void sk_init_locked(struct sk_if_softc *); 218 static void sk_init_xmac(struct sk_if_softc *); 219 static void sk_init_yukon(struct sk_if_softc *); 220 static void sk_stop(struct sk_if_softc *); 221 static void sk_watchdog(void *); 222 static int sk_ifmedia_upd(struct ifnet *); 223 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); 224 static void sk_reset(struct sk_softc *); 225 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int); 226 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int); 227 static int sk_newbuf(struct sk_if_softc *, int); 228 static int sk_jumbo_newbuf(struct sk_if_softc *, int); 229 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int); 230 static int sk_dma_alloc(struct sk_if_softc *); 231 static int sk_dma_jumbo_alloc(struct sk_if_softc *); 232 static void sk_dma_free(struct sk_if_softc *); 233 static void sk_dma_jumbo_free(struct sk_if_softc *); 234 static int sk_init_rx_ring(struct sk_if_softc *); 235 static int sk_init_jumbo_rx_ring(struct sk_if_softc *); 236 static void sk_init_tx_ring(struct sk_if_softc *); 237 static u_int32_t sk_win_read_4(struct sk_softc *, int); 238 static u_int16_t sk_win_read_2(struct sk_softc *, int); 239 static u_int8_t sk_win_read_1(struct sk_softc *, int); 240 static void sk_win_write_4(struct sk_softc *, int, u_int32_t); 241 static void sk_win_write_2(struct sk_softc *, int, u_int32_t); 242 static void sk_win_write_1(struct sk_softc *, int, u_int32_t); 243 244 static int sk_miibus_readreg(device_t, int, int); 245 static int sk_miibus_writereg(device_t, int, int, int); 246 static void sk_miibus_statchg(device_t); 247 248 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); 249 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, 250 int); 251 static void sk_xmac_miibus_statchg(struct sk_if_softc *); 252 253 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); 254 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, 255 int); 256 static void sk_marv_miibus_statchg(struct sk_if_softc *); 257 258 static uint32_t sk_xmchash(const uint8_t *); 259 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int); 260 static void sk_rxfilter(struct sk_if_softc *); 261 static void sk_rxfilter_genesis(struct sk_if_softc *); 262 static void sk_rxfilter_yukon(struct sk_if_softc *); 263 264 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); 265 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); 266 267 /* Tunables. */ 268 static int jumbo_disable = 0; 269 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable); 270 271 /* 272 * It seems that SK-NET GENESIS supports very simple checksum offload 273 * capability for Tx and I believe it can generate 0 checksum value for 274 * UDP packets in Tx as the hardware can't differenciate UDP packets from 275 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it 276 * means sender didn't perforam checksum computation. For the safety I 277 * disabled UDP checksum offload capability at the moment. Alternatively 278 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum 279 * offload routine. 280 */ 281 #define SK_CSUM_FEATURES (CSUM_TCP) 282 283 /* 284 * Note that we have newbus methods for both the GEnesis controller 285 * itself and the XMAC(s). The XMACs are children of the GEnesis, and 286 * the miibus code is a child of the XMACs. We need to do it this way 287 * so that the miibus drivers can access the PHY registers on the 288 * right PHY. It's not quite what I had in mind, but it's the only 289 * design that achieves the desired effect. 290 */ 291 static device_method_t skc_methods[] = { 292 /* Device interface */ 293 DEVMETHOD(device_probe, skc_probe), 294 DEVMETHOD(device_attach, skc_attach), 295 DEVMETHOD(device_detach, skc_detach), 296 DEVMETHOD(device_suspend, skc_suspend), 297 DEVMETHOD(device_resume, skc_resume), 298 DEVMETHOD(device_shutdown, skc_shutdown), 299 300 DEVMETHOD(bus_get_dma_tag, skc_get_dma_tag), 301 302 DEVMETHOD_END 303 }; 304 305 static driver_t skc_driver = { 306 "skc", 307 skc_methods, 308 sizeof(struct sk_softc) 309 }; 310 311 static devclass_t skc_devclass; 312 313 static device_method_t sk_methods[] = { 314 /* Device interface */ 315 DEVMETHOD(device_probe, sk_probe), 316 DEVMETHOD(device_attach, sk_attach), 317 DEVMETHOD(device_detach, sk_detach), 318 DEVMETHOD(device_shutdown, bus_generic_shutdown), 319 320 /* MII interface */ 321 DEVMETHOD(miibus_readreg, sk_miibus_readreg), 322 DEVMETHOD(miibus_writereg, sk_miibus_writereg), 323 DEVMETHOD(miibus_statchg, sk_miibus_statchg), 324 325 DEVMETHOD_END 326 }; 327 328 static driver_t sk_driver = { 329 "sk", 330 sk_methods, 331 sizeof(struct sk_if_softc) 332 }; 333 334 static devclass_t sk_devclass; 335 336 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL); 337 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL); 338 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL); 339 340 static struct resource_spec sk_res_spec_io[] = { 341 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, 342 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 343 { -1, 0, 0 } 344 }; 345 346 static struct resource_spec sk_res_spec_mem[] = { 347 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 348 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 349 { -1, 0, 0 } 350 }; 351 352 #define SK_SETBIT(sc, reg, x) \ 353 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) 354 355 #define SK_CLRBIT(sc, reg, x) \ 356 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) 357 358 #define SK_WIN_SETBIT_4(sc, reg, x) \ 359 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) 360 361 #define SK_WIN_CLRBIT_4(sc, reg, x) \ 362 sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) 363 364 #define SK_WIN_SETBIT_2(sc, reg, x) \ 365 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) 366 367 #define SK_WIN_CLRBIT_2(sc, reg, x) \ 368 sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) 369 370 static u_int32_t 371 sk_win_read_4(sc, reg) 372 struct sk_softc *sc; 373 int reg; 374 { 375 #ifdef SK_USEIOSPACE 376 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 377 return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); 378 #else 379 return(CSR_READ_4(sc, reg)); 380 #endif 381 } 382 383 static u_int16_t 384 sk_win_read_2(sc, reg) 385 struct sk_softc *sc; 386 int reg; 387 { 388 #ifdef SK_USEIOSPACE 389 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 390 return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); 391 #else 392 return(CSR_READ_2(sc, reg)); 393 #endif 394 } 395 396 static u_int8_t 397 sk_win_read_1(sc, reg) 398 struct sk_softc *sc; 399 int reg; 400 { 401 #ifdef SK_USEIOSPACE 402 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 403 return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); 404 #else 405 return(CSR_READ_1(sc, reg)); 406 #endif 407 } 408 409 static void 410 sk_win_write_4(sc, reg, val) 411 struct sk_softc *sc; 412 int reg; 413 u_int32_t val; 414 { 415 #ifdef SK_USEIOSPACE 416 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 417 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); 418 #else 419 CSR_WRITE_4(sc, reg, val); 420 #endif 421 return; 422 } 423 424 static void 425 sk_win_write_2(sc, reg, val) 426 struct sk_softc *sc; 427 int reg; 428 u_int32_t val; 429 { 430 #ifdef SK_USEIOSPACE 431 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 432 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); 433 #else 434 CSR_WRITE_2(sc, reg, val); 435 #endif 436 return; 437 } 438 439 static void 440 sk_win_write_1(sc, reg, val) 441 struct sk_softc *sc; 442 int reg; 443 u_int32_t val; 444 { 445 #ifdef SK_USEIOSPACE 446 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 447 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); 448 #else 449 CSR_WRITE_1(sc, reg, val); 450 #endif 451 return; 452 } 453 454 static int 455 sk_miibus_readreg(dev, phy, reg) 456 device_t dev; 457 int phy, reg; 458 { 459 struct sk_if_softc *sc_if; 460 int v; 461 462 sc_if = device_get_softc(dev); 463 464 SK_IF_MII_LOCK(sc_if); 465 switch(sc_if->sk_softc->sk_type) { 466 case SK_GENESIS: 467 v = sk_xmac_miibus_readreg(sc_if, phy, reg); 468 break; 469 case SK_YUKON: 470 case SK_YUKON_LITE: 471 case SK_YUKON_LP: 472 v = sk_marv_miibus_readreg(sc_if, phy, reg); 473 break; 474 default: 475 v = 0; 476 break; 477 } 478 SK_IF_MII_UNLOCK(sc_if); 479 480 return (v); 481 } 482 483 static int 484 sk_miibus_writereg(dev, phy, reg, val) 485 device_t dev; 486 int phy, reg, val; 487 { 488 struct sk_if_softc *sc_if; 489 int v; 490 491 sc_if = device_get_softc(dev); 492 493 SK_IF_MII_LOCK(sc_if); 494 switch(sc_if->sk_softc->sk_type) { 495 case SK_GENESIS: 496 v = sk_xmac_miibus_writereg(sc_if, phy, reg, val); 497 break; 498 case SK_YUKON: 499 case SK_YUKON_LITE: 500 case SK_YUKON_LP: 501 v = sk_marv_miibus_writereg(sc_if, phy, reg, val); 502 break; 503 default: 504 v = 0; 505 break; 506 } 507 SK_IF_MII_UNLOCK(sc_if); 508 509 return (v); 510 } 511 512 static void 513 sk_miibus_statchg(dev) 514 device_t dev; 515 { 516 struct sk_if_softc *sc_if; 517 518 sc_if = device_get_softc(dev); 519 520 SK_IF_MII_LOCK(sc_if); 521 switch(sc_if->sk_softc->sk_type) { 522 case SK_GENESIS: 523 sk_xmac_miibus_statchg(sc_if); 524 break; 525 case SK_YUKON: 526 case SK_YUKON_LITE: 527 case SK_YUKON_LP: 528 sk_marv_miibus_statchg(sc_if); 529 break; 530 } 531 SK_IF_MII_UNLOCK(sc_if); 532 533 return; 534 } 535 536 static int 537 sk_xmac_miibus_readreg(sc_if, phy, reg) 538 struct sk_if_softc *sc_if; 539 int phy, reg; 540 { 541 int i; 542 543 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 544 SK_XM_READ_2(sc_if, XM_PHY_DATA); 545 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 546 for (i = 0; i < SK_TIMEOUT; i++) { 547 DELAY(1); 548 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 549 XM_MMUCMD_PHYDATARDY) 550 break; 551 } 552 553 if (i == SK_TIMEOUT) { 554 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 555 return(0); 556 } 557 } 558 DELAY(1); 559 i = SK_XM_READ_2(sc_if, XM_PHY_DATA); 560 561 return(i); 562 } 563 564 static int 565 sk_xmac_miibus_writereg(sc_if, phy, reg, val) 566 struct sk_if_softc *sc_if; 567 int phy, reg, val; 568 { 569 int i; 570 571 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 572 for (i = 0; i < SK_TIMEOUT; i++) { 573 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 574 break; 575 } 576 577 if (i == SK_TIMEOUT) { 578 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 579 return (ETIMEDOUT); 580 } 581 582 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 583 for (i = 0; i < SK_TIMEOUT; i++) { 584 DELAY(1); 585 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 586 break; 587 } 588 if (i == SK_TIMEOUT) 589 if_printf(sc_if->sk_ifp, "phy write timed out\n"); 590 591 return(0); 592 } 593 594 static void 595 sk_xmac_miibus_statchg(sc_if) 596 struct sk_if_softc *sc_if; 597 { 598 struct mii_data *mii; 599 600 mii = device_get_softc(sc_if->sk_miibus); 601 602 /* 603 * If this is a GMII PHY, manually set the XMAC's 604 * duplex mode accordingly. 605 */ 606 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 607 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 608 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 609 } else { 610 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 611 } 612 } 613 } 614 615 static int 616 sk_marv_miibus_readreg(sc_if, phy, reg) 617 struct sk_if_softc *sc_if; 618 int phy, reg; 619 { 620 u_int16_t val; 621 int i; 622 623 if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 624 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) { 625 return(0); 626 } 627 628 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 629 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 630 631 for (i = 0; i < SK_TIMEOUT; i++) { 632 DELAY(1); 633 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 634 if (val & YU_SMICR_READ_VALID) 635 break; 636 } 637 638 if (i == SK_TIMEOUT) { 639 if_printf(sc_if->sk_ifp, "phy failed to come ready\n"); 640 return(0); 641 } 642 643 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 644 645 return(val); 646 } 647 648 static int 649 sk_marv_miibus_writereg(sc_if, phy, reg, val) 650 struct sk_if_softc *sc_if; 651 int phy, reg, val; 652 { 653 int i; 654 655 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 656 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 657 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 658 659 for (i = 0; i < SK_TIMEOUT; i++) { 660 DELAY(1); 661 if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0) 662 break; 663 } 664 if (i == SK_TIMEOUT) 665 if_printf(sc_if->sk_ifp, "phy write timeout\n"); 666 667 return(0); 668 } 669 670 static void 671 sk_marv_miibus_statchg(sc_if) 672 struct sk_if_softc *sc_if; 673 { 674 return; 675 } 676 677 #define HASH_BITS 6 678 679 static u_int32_t 680 sk_xmchash(addr) 681 const uint8_t *addr; 682 { 683 uint32_t crc; 684 685 /* Compute CRC for the address value. */ 686 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 687 688 return (~crc & ((1 << HASH_BITS) - 1)); 689 } 690 691 static void 692 sk_setfilt(sc_if, addr, slot) 693 struct sk_if_softc *sc_if; 694 u_int16_t *addr; 695 int slot; 696 { 697 int base; 698 699 base = XM_RXFILT_ENTRY(slot); 700 701 SK_XM_WRITE_2(sc_if, base, addr[0]); 702 SK_XM_WRITE_2(sc_if, base + 2, addr[1]); 703 SK_XM_WRITE_2(sc_if, base + 4, addr[2]); 704 705 return; 706 } 707 708 static void 709 sk_rxfilter(sc_if) 710 struct sk_if_softc *sc_if; 711 { 712 struct sk_softc *sc; 713 714 SK_IF_LOCK_ASSERT(sc_if); 715 716 sc = sc_if->sk_softc; 717 if (sc->sk_type == SK_GENESIS) 718 sk_rxfilter_genesis(sc_if); 719 else 720 sk_rxfilter_yukon(sc_if); 721 } 722 723 static void 724 sk_rxfilter_genesis(sc_if) 725 struct sk_if_softc *sc_if; 726 { 727 struct ifnet *ifp = sc_if->sk_ifp; 728 u_int32_t hashes[2] = { 0, 0 }, mode; 729 int h = 0, i; 730 struct ifmultiaddr *ifma; 731 u_int16_t dummy[] = { 0, 0, 0 }; 732 u_int16_t maddr[(ETHER_ADDR_LEN+1)/2]; 733 734 SK_IF_LOCK_ASSERT(sc_if); 735 736 mode = SK_XM_READ_4(sc_if, XM_MODE); 737 mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH | 738 XM_MODE_RX_USE_PERFECT); 739 /* First, zot all the existing perfect filters. */ 740 for (i = 1; i < XM_RXFILT_MAX; i++) 741 sk_setfilt(sc_if, dummy, i); 742 743 /* Now program new ones. */ 744 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 745 if (ifp->if_flags & IFF_ALLMULTI) 746 mode |= XM_MODE_RX_USE_HASH; 747 if (ifp->if_flags & IFF_PROMISC) 748 mode |= XM_MODE_RX_PROMISC; 749 hashes[0] = 0xFFFFFFFF; 750 hashes[1] = 0xFFFFFFFF; 751 } else { 752 i = 1; 753 if_maddr_rlock(ifp); 754 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, 755 ifma_link) { 756 if (ifma->ifma_addr->sa_family != AF_LINK) 757 continue; 758 /* 759 * Program the first XM_RXFILT_MAX multicast groups 760 * into the perfect filter. 761 */ 762 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 763 maddr, ETHER_ADDR_LEN); 764 if (i < XM_RXFILT_MAX) { 765 sk_setfilt(sc_if, maddr, i); 766 mode |= XM_MODE_RX_USE_PERFECT; 767 i++; 768 continue; 769 } 770 h = sk_xmchash((const uint8_t *)maddr); 771 if (h < 32) 772 hashes[0] |= (1 << h); 773 else 774 hashes[1] |= (1 << (h - 32)); 775 mode |= XM_MODE_RX_USE_HASH; 776 } 777 if_maddr_runlock(ifp); 778 } 779 780 SK_XM_WRITE_4(sc_if, XM_MODE, mode); 781 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 782 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 783 } 784 785 static void 786 sk_rxfilter_yukon(sc_if) 787 struct sk_if_softc *sc_if; 788 { 789 struct ifnet *ifp; 790 u_int32_t crc, hashes[2] = { 0, 0 }, mode; 791 struct ifmultiaddr *ifma; 792 793 SK_IF_LOCK_ASSERT(sc_if); 794 795 ifp = sc_if->sk_ifp; 796 mode = SK_YU_READ_2(sc_if, YUKON_RCR); 797 if (ifp->if_flags & IFF_PROMISC) 798 mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN); 799 else if (ifp->if_flags & IFF_ALLMULTI) { 800 mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN; 801 hashes[0] = 0xFFFFFFFF; 802 hashes[1] = 0xFFFFFFFF; 803 } else { 804 mode |= YU_RCR_UFLEN; 805 if_maddr_rlock(ifp); 806 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 807 if (ifma->ifma_addr->sa_family != AF_LINK) 808 continue; 809 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 810 ifma->ifma_addr), ETHER_ADDR_LEN); 811 /* Just want the 6 least significant bits. */ 812 crc &= 0x3f; 813 /* Set the corresponding bit in the hash table. */ 814 hashes[crc >> 5] |= 1 << (crc & 0x1f); 815 } 816 if_maddr_runlock(ifp); 817 if (hashes[0] != 0 || hashes[1] != 0) 818 mode |= YU_RCR_MUFLEN; 819 } 820 821 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 822 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 823 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 824 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 825 SK_YU_WRITE_2(sc_if, YUKON_RCR, mode); 826 } 827 828 static int 829 sk_init_rx_ring(sc_if) 830 struct sk_if_softc *sc_if; 831 { 832 struct sk_ring_data *rd; 833 bus_addr_t addr; 834 u_int32_t csum_start; 835 int i; 836 837 sc_if->sk_cdata.sk_rx_cons = 0; 838 839 csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 | 840 ETHER_HDR_LEN; 841 rd = &sc_if->sk_rdata; 842 bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 843 for (i = 0; i < SK_RX_RING_CNT; i++) { 844 if (sk_newbuf(sc_if, i) != 0) 845 return (ENOBUFS); 846 if (i == (SK_RX_RING_CNT - 1)) 847 addr = SK_RX_RING_ADDR(sc_if, 0); 848 else 849 addr = SK_RX_RING_ADDR(sc_if, i + 1); 850 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 851 rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start); 852 } 853 854 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 855 sc_if->sk_cdata.sk_rx_ring_map, 856 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 857 858 return(0); 859 } 860 861 static int 862 sk_init_jumbo_rx_ring(sc_if) 863 struct sk_if_softc *sc_if; 864 { 865 struct sk_ring_data *rd; 866 bus_addr_t addr; 867 u_int32_t csum_start; 868 int i; 869 870 sc_if->sk_cdata.sk_jumbo_rx_cons = 0; 871 872 csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) | 873 ETHER_HDR_LEN; 874 rd = &sc_if->sk_rdata; 875 bzero(rd->sk_jumbo_rx_ring, 876 sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT); 877 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 878 if (sk_jumbo_newbuf(sc_if, i) != 0) 879 return (ENOBUFS); 880 if (i == (SK_JUMBO_RX_RING_CNT - 1)) 881 addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0); 882 else 883 addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1); 884 rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 885 rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start); 886 } 887 888 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 889 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 890 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 891 892 return (0); 893 } 894 895 static void 896 sk_init_tx_ring(sc_if) 897 struct sk_if_softc *sc_if; 898 { 899 struct sk_ring_data *rd; 900 struct sk_txdesc *txd; 901 bus_addr_t addr; 902 int i; 903 904 STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq); 905 STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq); 906 907 sc_if->sk_cdata.sk_tx_prod = 0; 908 sc_if->sk_cdata.sk_tx_cons = 0; 909 sc_if->sk_cdata.sk_tx_cnt = 0; 910 911 rd = &sc_if->sk_rdata; 912 bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 913 for (i = 0; i < SK_TX_RING_CNT; i++) { 914 if (i == (SK_TX_RING_CNT - 1)) 915 addr = SK_TX_RING_ADDR(sc_if, 0); 916 else 917 addr = SK_TX_RING_ADDR(sc_if, i + 1); 918 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr)); 919 txd = &sc_if->sk_cdata.sk_txdesc[i]; 920 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 921 } 922 923 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 924 sc_if->sk_cdata.sk_tx_ring_map, 925 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 926 } 927 928 static __inline void 929 sk_discard_rxbuf(sc_if, idx) 930 struct sk_if_softc *sc_if; 931 int idx; 932 { 933 struct sk_rx_desc *r; 934 struct sk_rxdesc *rxd; 935 struct mbuf *m; 936 937 938 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 939 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 940 m = rxd->rx_m; 941 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 942 } 943 944 static __inline void 945 sk_discard_jumbo_rxbuf(sc_if, idx) 946 struct sk_if_softc *sc_if; 947 int idx; 948 { 949 struct sk_rx_desc *r; 950 struct sk_rxdesc *rxd; 951 struct mbuf *m; 952 953 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 954 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 955 m = rxd->rx_m; 956 r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM); 957 } 958 959 static int 960 sk_newbuf(sc_if, idx) 961 struct sk_if_softc *sc_if; 962 int idx; 963 { 964 struct sk_rx_desc *r; 965 struct sk_rxdesc *rxd; 966 struct mbuf *m; 967 bus_dma_segment_t segs[1]; 968 bus_dmamap_t map; 969 int nsegs; 970 971 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 972 if (m == NULL) 973 return (ENOBUFS); 974 m->m_len = m->m_pkthdr.len = MCLBYTES; 975 m_adj(m, ETHER_ALIGN); 976 977 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag, 978 sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) { 979 m_freem(m); 980 return (ENOBUFS); 981 } 982 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 983 984 rxd = &sc_if->sk_cdata.sk_rxdesc[idx]; 985 if (rxd->rx_m != NULL) { 986 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 987 BUS_DMASYNC_POSTREAD); 988 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap); 989 } 990 map = rxd->rx_dmamap; 991 rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap; 992 sc_if->sk_cdata.sk_rx_sparemap = map; 993 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap, 994 BUS_DMASYNC_PREREAD); 995 rxd->rx_m = m; 996 r = &sc_if->sk_rdata.sk_rx_ring[idx]; 997 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 998 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 999 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1000 1001 return (0); 1002 } 1003 1004 static int 1005 sk_jumbo_newbuf(sc_if, idx) 1006 struct sk_if_softc *sc_if; 1007 int idx; 1008 { 1009 struct sk_rx_desc *r; 1010 struct sk_rxdesc *rxd; 1011 struct mbuf *m; 1012 bus_dma_segment_t segs[1]; 1013 bus_dmamap_t map; 1014 int nsegs; 1015 1016 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1017 if (m == NULL) 1018 return (ENOBUFS); 1019 if ((m->m_flags & M_EXT) == 0) { 1020 m_freem(m); 1021 return (ENOBUFS); 1022 } 1023 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1024 /* 1025 * Adjust alignment so packet payload begins on a 1026 * longword boundary. Mandatory for Alpha, useful on 1027 * x86 too. 1028 */ 1029 m_adj(m, ETHER_ALIGN); 1030 1031 if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag, 1032 sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) { 1033 m_freem(m); 1034 return (ENOBUFS); 1035 } 1036 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1037 1038 rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx]; 1039 if (rxd->rx_m != NULL) { 1040 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1041 BUS_DMASYNC_POSTREAD); 1042 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 1043 rxd->rx_dmamap); 1044 } 1045 map = rxd->rx_dmamap; 1046 rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap; 1047 sc_if->sk_cdata.sk_jumbo_rx_sparemap = map; 1048 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap, 1049 BUS_DMASYNC_PREREAD); 1050 rxd->rx_m = m; 1051 r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx]; 1052 r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr)); 1053 r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr)); 1054 r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM); 1055 1056 return (0); 1057 } 1058 1059 /* 1060 * Set media options. 1061 */ 1062 static int 1063 sk_ifmedia_upd(ifp) 1064 struct ifnet *ifp; 1065 { 1066 struct sk_if_softc *sc_if = ifp->if_softc; 1067 struct mii_data *mii; 1068 1069 mii = device_get_softc(sc_if->sk_miibus); 1070 sk_init(sc_if); 1071 mii_mediachg(mii); 1072 1073 return(0); 1074 } 1075 1076 /* 1077 * Report current media status. 1078 */ 1079 static void 1080 sk_ifmedia_sts(ifp, ifmr) 1081 struct ifnet *ifp; 1082 struct ifmediareq *ifmr; 1083 { 1084 struct sk_if_softc *sc_if; 1085 struct mii_data *mii; 1086 1087 sc_if = ifp->if_softc; 1088 mii = device_get_softc(sc_if->sk_miibus); 1089 1090 mii_pollstat(mii); 1091 ifmr->ifm_active = mii->mii_media_active; 1092 ifmr->ifm_status = mii->mii_media_status; 1093 1094 return; 1095 } 1096 1097 static int 1098 sk_ioctl(ifp, command, data) 1099 struct ifnet *ifp; 1100 u_long command; 1101 caddr_t data; 1102 { 1103 struct sk_if_softc *sc_if = ifp->if_softc; 1104 struct ifreq *ifr = (struct ifreq *) data; 1105 int error, mask; 1106 struct mii_data *mii; 1107 1108 error = 0; 1109 switch(command) { 1110 case SIOCSIFMTU: 1111 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU) 1112 error = EINVAL; 1113 else if (ifp->if_mtu != ifr->ifr_mtu) { 1114 if (sc_if->sk_jumbo_disable != 0 && 1115 ifr->ifr_mtu > SK_MAX_FRAMELEN) 1116 error = EINVAL; 1117 else { 1118 SK_IF_LOCK(sc_if); 1119 ifp->if_mtu = ifr->ifr_mtu; 1120 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1121 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1122 sk_init_locked(sc_if); 1123 } 1124 SK_IF_UNLOCK(sc_if); 1125 } 1126 } 1127 break; 1128 case SIOCSIFFLAGS: 1129 SK_IF_LOCK(sc_if); 1130 if (ifp->if_flags & IFF_UP) { 1131 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1132 if ((ifp->if_flags ^ sc_if->sk_if_flags) 1133 & (IFF_PROMISC | IFF_ALLMULTI)) 1134 sk_rxfilter(sc_if); 1135 } else 1136 sk_init_locked(sc_if); 1137 } else { 1138 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1139 sk_stop(sc_if); 1140 } 1141 sc_if->sk_if_flags = ifp->if_flags; 1142 SK_IF_UNLOCK(sc_if); 1143 break; 1144 case SIOCADDMULTI: 1145 case SIOCDELMULTI: 1146 SK_IF_LOCK(sc_if); 1147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1148 sk_rxfilter(sc_if); 1149 SK_IF_UNLOCK(sc_if); 1150 break; 1151 case SIOCGIFMEDIA: 1152 case SIOCSIFMEDIA: 1153 mii = device_get_softc(sc_if->sk_miibus); 1154 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1155 break; 1156 case SIOCSIFCAP: 1157 SK_IF_LOCK(sc_if); 1158 if (sc_if->sk_softc->sk_type == SK_GENESIS) { 1159 SK_IF_UNLOCK(sc_if); 1160 break; 1161 } 1162 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1163 if ((mask & IFCAP_TXCSUM) != 0 && 1164 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1165 ifp->if_capenable ^= IFCAP_TXCSUM; 1166 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 1167 ifp->if_hwassist |= SK_CSUM_FEATURES; 1168 else 1169 ifp->if_hwassist &= ~SK_CSUM_FEATURES; 1170 } 1171 if ((mask & IFCAP_RXCSUM) != 0 && 1172 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) 1173 ifp->if_capenable ^= IFCAP_RXCSUM; 1174 SK_IF_UNLOCK(sc_if); 1175 break; 1176 default: 1177 error = ether_ioctl(ifp, command, data); 1178 break; 1179 } 1180 1181 return (error); 1182 } 1183 1184 /* 1185 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device 1186 * IDs against our list and return a device name if we find a match. 1187 */ 1188 static int 1189 skc_probe(dev) 1190 device_t dev; 1191 { 1192 const struct sk_type *t = sk_devs; 1193 1194 while(t->sk_name != NULL) { 1195 if ((pci_get_vendor(dev) == t->sk_vid) && 1196 (pci_get_device(dev) == t->sk_did)) { 1197 /* 1198 * Only attach to rev. 2 of the Linksys EG1032 adapter. 1199 * Rev. 3 is supported by re(4). 1200 */ 1201 if ((t->sk_vid == VENDORID_LINKSYS) && 1202 (t->sk_did == DEVICEID_LINKSYS_EG1032) && 1203 (pci_get_subdevice(dev) != 1204 SUBDEVICEID_LINKSYS_EG1032_REV2)) { 1205 t++; 1206 continue; 1207 } 1208 device_set_desc(dev, t->sk_name); 1209 return (BUS_PROBE_DEFAULT); 1210 } 1211 t++; 1212 } 1213 1214 return(ENXIO); 1215 } 1216 1217 /* 1218 * Force the GEnesis into reset, then bring it out of reset. 1219 */ 1220 static void 1221 sk_reset(sc) 1222 struct sk_softc *sc; 1223 { 1224 1225 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1226 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1227 if (SK_YUKON_FAMILY(sc->sk_type)) 1228 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1229 1230 DELAY(1000); 1231 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1232 DELAY(2); 1233 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1234 if (SK_YUKON_FAMILY(sc->sk_type)) 1235 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1236 1237 if (sc->sk_type == SK_GENESIS) { 1238 /* Configure packet arbiter */ 1239 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1240 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1241 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1242 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1243 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1244 } 1245 1246 /* Enable RAM interface */ 1247 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1248 1249 /* 1250 * Configure interrupt moderation. The moderation timer 1251 * defers interrupts specified in the interrupt moderation 1252 * timer mask based on the timeout specified in the interrupt 1253 * moderation timer init register. Each bit in the timer 1254 * register represents one tick, so to specify a timeout in 1255 * microseconds, we have to multiply by the correct number of 1256 * ticks-per-microsecond. 1257 */ 1258 switch (sc->sk_type) { 1259 case SK_GENESIS: 1260 sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS; 1261 break; 1262 default: 1263 sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON; 1264 break; 1265 } 1266 if (bootverbose) 1267 device_printf(sc->sk_dev, "interrupt moderation is %d us\n", 1268 sc->sk_int_mod); 1269 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 1270 sc->sk_int_ticks)); 1271 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1272 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1273 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1274 1275 return; 1276 } 1277 1278 static int 1279 sk_probe(dev) 1280 device_t dev; 1281 { 1282 struct sk_softc *sc; 1283 1284 sc = device_get_softc(device_get_parent(dev)); 1285 1286 /* 1287 * Not much to do here. We always know there will be 1288 * at least one XMAC present, and if there are two, 1289 * skc_attach() will create a second device instance 1290 * for us. 1291 */ 1292 switch (sc->sk_type) { 1293 case SK_GENESIS: 1294 device_set_desc(dev, "XaQti Corp. XMAC II"); 1295 break; 1296 case SK_YUKON: 1297 case SK_YUKON_LITE: 1298 case SK_YUKON_LP: 1299 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); 1300 break; 1301 } 1302 1303 return (BUS_PROBE_DEFAULT); 1304 } 1305 1306 /* 1307 * Each XMAC chip is attached as a separate logical IP interface. 1308 * Single port cards will have only one logical interface of course. 1309 */ 1310 static int 1311 sk_attach(dev) 1312 device_t dev; 1313 { 1314 struct sk_softc *sc; 1315 struct sk_if_softc *sc_if; 1316 struct ifnet *ifp; 1317 u_int32_t r; 1318 int error, i, phy, port; 1319 u_char eaddr[6]; 1320 u_char inv_mac[] = {0, 0, 0, 0, 0, 0}; 1321 1322 if (dev == NULL) 1323 return(EINVAL); 1324 1325 error = 0; 1326 sc_if = device_get_softc(dev); 1327 sc = device_get_softc(device_get_parent(dev)); 1328 port = *(int *)device_get_ivars(dev); 1329 1330 sc_if->sk_if_dev = dev; 1331 sc_if->sk_port = port; 1332 sc_if->sk_softc = sc; 1333 sc->sk_if[port] = sc_if; 1334 if (port == SK_PORT_A) 1335 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1336 if (port == SK_PORT_B) 1337 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1338 1339 callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0); 1340 callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0); 1341 1342 if (sk_dma_alloc(sc_if) != 0) { 1343 error = ENOMEM; 1344 goto fail; 1345 } 1346 sk_dma_jumbo_alloc(sc_if); 1347 1348 ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER); 1349 if (ifp == NULL) { 1350 device_printf(sc_if->sk_if_dev, "can not if_alloc()\n"); 1351 error = ENOSPC; 1352 goto fail; 1353 } 1354 ifp->if_softc = sc_if; 1355 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1356 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1357 /* 1358 * SK_GENESIS has a bug in checksum offload - From linux. 1359 */ 1360 if (sc_if->sk_softc->sk_type != SK_GENESIS) { 1361 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM; 1362 ifp->if_hwassist = 0; 1363 } else { 1364 ifp->if_capabilities = 0; 1365 ifp->if_hwassist = 0; 1366 } 1367 ifp->if_capenable = ifp->if_capabilities; 1368 /* 1369 * Some revision of Yukon controller generates corrupted 1370 * frame when TX checksum offloading is enabled. The 1371 * frame has a valid checksum value so payload might be 1372 * modified during TX checksum calculation. Disable TX 1373 * checksum offloading but give users chance to enable it 1374 * when they know their controller works without problems 1375 * with TX checksum offloading. 1376 */ 1377 ifp->if_capenable &= ~IFCAP_TXCSUM; 1378 ifp->if_ioctl = sk_ioctl; 1379 ifp->if_start = sk_start; 1380 ifp->if_init = sk_init; 1381 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1382 ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; 1383 IFQ_SET_READY(&ifp->if_snd); 1384 1385 /* 1386 * Get station address for this interface. Note that 1387 * dual port cards actually come with three station 1388 * addresses: one for each port, plus an extra. The 1389 * extra one is used by the SysKonnect driver software 1390 * as a 'virtual' station address for when both ports 1391 * are operating in failover mode. Currently we don't 1392 * use this extra address. 1393 */ 1394 SK_IF_LOCK(sc_if); 1395 for (i = 0; i < ETHER_ADDR_LEN; i++) 1396 eaddr[i] = 1397 sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); 1398 1399 /* Verify whether the station address is invalid or not. */ 1400 if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) { 1401 device_printf(sc_if->sk_if_dev, 1402 "Generating random ethernet address\n"); 1403 r = arc4random(); 1404 /* 1405 * Set OUI to convenient locally assigned address. 'b' 1406 * is 0x62, which has the locally assigned bit set, and 1407 * the broadcast/multicast bit clear. 1408 */ 1409 eaddr[0] = 'b'; 1410 eaddr[1] = 's'; 1411 eaddr[2] = 'd'; 1412 eaddr[3] = (r >> 16) & 0xff; 1413 eaddr[4] = (r >> 8) & 0xff; 1414 eaddr[5] = (r >> 0) & 0xff; 1415 } 1416 /* 1417 * Set up RAM buffer addresses. The NIC will have a certain 1418 * amount of SRAM on it, somewhere between 512K and 2MB. We 1419 * need to divide this up a) between the transmitter and 1420 * receiver and b) between the two XMACs, if this is a 1421 * dual port NIC. Our algotithm is to divide up the memory 1422 * evenly so that everyone gets a fair share. 1423 * 1424 * Just to be contrary, Yukon2 appears to have separate memory 1425 * for each MAC. 1426 */ 1427 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1428 u_int32_t chunk, val; 1429 1430 chunk = sc->sk_ramsize / 2; 1431 val = sc->sk_rboff / sizeof(u_int64_t); 1432 sc_if->sk_rx_ramstart = val; 1433 val += (chunk / sizeof(u_int64_t)); 1434 sc_if->sk_rx_ramend = val - 1; 1435 sc_if->sk_tx_ramstart = val; 1436 val += (chunk / sizeof(u_int64_t)); 1437 sc_if->sk_tx_ramend = val - 1; 1438 } else { 1439 u_int32_t chunk, val; 1440 1441 chunk = sc->sk_ramsize / 4; 1442 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1443 sizeof(u_int64_t); 1444 sc_if->sk_rx_ramstart = val; 1445 val += (chunk / sizeof(u_int64_t)); 1446 sc_if->sk_rx_ramend = val - 1; 1447 sc_if->sk_tx_ramstart = val; 1448 val += (chunk / sizeof(u_int64_t)); 1449 sc_if->sk_tx_ramend = val - 1; 1450 } 1451 1452 /* Read and save PHY type and set PHY address */ 1453 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1454 if (!SK_YUKON_FAMILY(sc->sk_type)) { 1455 switch(sc_if->sk_phytype) { 1456 case SK_PHYTYPE_XMAC: 1457 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1458 break; 1459 case SK_PHYTYPE_BCOM: 1460 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1461 break; 1462 default: 1463 device_printf(sc->sk_dev, "unsupported PHY type: %d\n", 1464 sc_if->sk_phytype); 1465 error = ENODEV; 1466 SK_IF_UNLOCK(sc_if); 1467 goto fail; 1468 } 1469 } else { 1470 if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER && 1471 sc->sk_pmd != 'S') { 1472 /* not initialized, punt */ 1473 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER; 1474 sc->sk_coppertype = 1; 1475 } 1476 1477 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1478 1479 if (!(sc->sk_coppertype)) 1480 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER; 1481 } 1482 1483 /* 1484 * Call MI attach routine. Can't hold locks when calling into ether_*. 1485 */ 1486 SK_IF_UNLOCK(sc_if); 1487 ether_ifattach(ifp, eaddr); 1488 SK_IF_LOCK(sc_if); 1489 1490 /* 1491 * The hardware should be ready for VLAN_MTU by default: 1492 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially; 1493 * YU_SMR_MFL_VLAN is set by this driver in Yukon. 1494 * 1495 */ 1496 ifp->if_capabilities |= IFCAP_VLAN_MTU; 1497 ifp->if_capenable |= IFCAP_VLAN_MTU; 1498 /* 1499 * Tell the upper layer(s) we support long frames. 1500 * Must appear after the call to ether_ifattach() because 1501 * ether_ifattach() sets ifi_hdrlen to the default value. 1502 */ 1503 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1504 1505 /* 1506 * Do miibus setup. 1507 */ 1508 phy = MII_PHY_ANY; 1509 switch (sc->sk_type) { 1510 case SK_GENESIS: 1511 sk_init_xmac(sc_if); 1512 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 1513 phy = 0; 1514 break; 1515 case SK_YUKON: 1516 case SK_YUKON_LITE: 1517 case SK_YUKON_LP: 1518 sk_init_yukon(sc_if); 1519 phy = 0; 1520 break; 1521 } 1522 1523 SK_IF_UNLOCK(sc_if); 1524 error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd, 1525 sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 1526 if (error != 0) { 1527 device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n"); 1528 ether_ifdetach(ifp); 1529 goto fail; 1530 } 1531 1532 fail: 1533 if (error) { 1534 /* Access should be ok even though lock has been dropped */ 1535 sc->sk_if[port] = NULL; 1536 sk_detach(dev); 1537 } 1538 1539 return(error); 1540 } 1541 1542 /* 1543 * Attach the interface. Allocate softc structures, do ifmedia 1544 * setup and ethernet/BPF attach. 1545 */ 1546 static int 1547 skc_attach(dev) 1548 device_t dev; 1549 { 1550 struct sk_softc *sc; 1551 int error = 0, *port; 1552 uint8_t skrs; 1553 const char *pname = NULL; 1554 char *revstr; 1555 1556 sc = device_get_softc(dev); 1557 sc->sk_dev = dev; 1558 1559 mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1560 MTX_DEF); 1561 mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF); 1562 /* 1563 * Map control/status registers. 1564 */ 1565 pci_enable_busmaster(dev); 1566 1567 /* Allocate resources */ 1568 #ifdef SK_USEIOSPACE 1569 sc->sk_res_spec = sk_res_spec_io; 1570 #else 1571 sc->sk_res_spec = sk_res_spec_mem; 1572 #endif 1573 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1574 if (error) { 1575 if (sc->sk_res_spec == sk_res_spec_mem) 1576 sc->sk_res_spec = sk_res_spec_io; 1577 else 1578 sc->sk_res_spec = sk_res_spec_mem; 1579 error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res); 1580 if (error) { 1581 device_printf(dev, "couldn't allocate %s resources\n", 1582 sc->sk_res_spec == sk_res_spec_mem ? "memory" : 1583 "I/O"); 1584 goto fail; 1585 } 1586 } 1587 1588 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1589 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; 1590 1591 /* Bail out if chip is not recognized. */ 1592 if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { 1593 device_printf(dev, "unknown device: chipver=%02x, rev=%x\n", 1594 sc->sk_type, sc->sk_rev); 1595 error = ENXIO; 1596 goto fail; 1597 } 1598 1599 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 1600 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 1601 OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, 1602 &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", 1603 "SK interrupt moderation"); 1604 1605 /* Pull in device tunables. */ 1606 sc->sk_int_mod = SK_IM_DEFAULT; 1607 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 1608 "int_mod", &sc->sk_int_mod); 1609 if (error == 0) { 1610 if (sc->sk_int_mod < SK_IM_MIN || 1611 sc->sk_int_mod > SK_IM_MAX) { 1612 device_printf(dev, "int_mod value out of range; " 1613 "using default: %d\n", SK_IM_DEFAULT); 1614 sc->sk_int_mod = SK_IM_DEFAULT; 1615 } 1616 } 1617 1618 /* Reset the adapter. */ 1619 sk_reset(sc); 1620 1621 skrs = sk_win_read_1(sc, SK_EPROM0); 1622 if (sc->sk_type == SK_GENESIS) { 1623 /* Read and save RAM size and RAMbuffer offset */ 1624 switch(skrs) { 1625 case SK_RAMSIZE_512K_64: 1626 sc->sk_ramsize = 0x80000; 1627 sc->sk_rboff = SK_RBOFF_0; 1628 break; 1629 case SK_RAMSIZE_1024K_64: 1630 sc->sk_ramsize = 0x100000; 1631 sc->sk_rboff = SK_RBOFF_80000; 1632 break; 1633 case SK_RAMSIZE_1024K_128: 1634 sc->sk_ramsize = 0x100000; 1635 sc->sk_rboff = SK_RBOFF_0; 1636 break; 1637 case SK_RAMSIZE_2048K_128: 1638 sc->sk_ramsize = 0x200000; 1639 sc->sk_rboff = SK_RBOFF_0; 1640 break; 1641 default: 1642 device_printf(dev, "unknown ram size: %d\n", skrs); 1643 error = ENXIO; 1644 goto fail; 1645 } 1646 } else { /* SK_YUKON_FAMILY */ 1647 if (skrs == 0x00) 1648 sc->sk_ramsize = 0x20000; 1649 else 1650 sc->sk_ramsize = skrs * (1<<12); 1651 sc->sk_rboff = SK_RBOFF_0; 1652 } 1653 1654 /* Read and save physical media type */ 1655 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE); 1656 1657 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1') 1658 sc->sk_coppertype = 1; 1659 else 1660 sc->sk_coppertype = 0; 1661 1662 /* Determine whether to name it with VPD PN or just make it up. 1663 * Marvell Yukon VPD PN seems to freqently be bogus. */ 1664 switch (pci_get_device(dev)) { 1665 case DEVICEID_SK_V1: 1666 case DEVICEID_BELKIN_5005: 1667 case DEVICEID_3COM_3C940: 1668 case DEVICEID_LINKSYS_EG1032: 1669 case DEVICEID_DLINK_DGE530T_A1: 1670 case DEVICEID_DLINK_DGE530T_B1: 1671 /* Stay with VPD PN. */ 1672 (void) pci_get_vpd_ident(dev, &pname); 1673 break; 1674 case DEVICEID_SK_V2: 1675 /* YUKON VPD PN might bear no resemblance to reality. */ 1676 switch (sc->sk_type) { 1677 case SK_GENESIS: 1678 /* Stay with VPD PN. */ 1679 (void) pci_get_vpd_ident(dev, &pname); 1680 break; 1681 case SK_YUKON: 1682 pname = "Marvell Yukon Gigabit Ethernet"; 1683 break; 1684 case SK_YUKON_LITE: 1685 pname = "Marvell Yukon Lite Gigabit Ethernet"; 1686 break; 1687 case SK_YUKON_LP: 1688 pname = "Marvell Yukon LP Gigabit Ethernet"; 1689 break; 1690 default: 1691 pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1692 break; 1693 } 1694 1695 /* Yukon Lite Rev. A0 needs special test. */ 1696 if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { 1697 u_int32_t far; 1698 u_int8_t testbyte; 1699 1700 /* Save flash address register before testing. */ 1701 far = sk_win_read_4(sc, SK_EP_ADDR); 1702 1703 sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); 1704 testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); 1705 1706 if (testbyte != 0x00) { 1707 /* Yukon Lite Rev. A0 detected. */ 1708 sc->sk_type = SK_YUKON_LITE; 1709 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1710 /* Restore flash address register. */ 1711 sk_win_write_4(sc, SK_EP_ADDR, far); 1712 } 1713 } 1714 break; 1715 default: 1716 device_printf(dev, "unknown device: vendor=%04x, device=%04x, " 1717 "chipver=%02x, rev=%x\n", 1718 pci_get_vendor(dev), pci_get_device(dev), 1719 sc->sk_type, sc->sk_rev); 1720 error = ENXIO; 1721 goto fail; 1722 } 1723 1724 if (sc->sk_type == SK_YUKON_LITE) { 1725 switch (sc->sk_rev) { 1726 case SK_YUKON_LITE_REV_A0: 1727 revstr = "A0"; 1728 break; 1729 case SK_YUKON_LITE_REV_A1: 1730 revstr = "A1"; 1731 break; 1732 case SK_YUKON_LITE_REV_A3: 1733 revstr = "A3"; 1734 break; 1735 default: 1736 revstr = ""; 1737 break; 1738 } 1739 } else { 1740 revstr = ""; 1741 } 1742 1743 /* Announce the product name and more VPD data if there. */ 1744 if (pname != NULL) 1745 device_printf(dev, "%s rev. %s(0x%x)\n", 1746 pname, revstr, sc->sk_rev); 1747 1748 if (bootverbose) { 1749 device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); 1750 device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); 1751 device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); 1752 device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); 1753 } 1754 1755 sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); 1756 if (sc->sk_devs[SK_PORT_A] == NULL) { 1757 device_printf(dev, "failed to add child for PORT_A\n"); 1758 error = ENXIO; 1759 goto fail; 1760 } 1761 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1762 if (port == NULL) { 1763 device_printf(dev, "failed to allocate memory for " 1764 "ivars of PORT_A\n"); 1765 error = ENXIO; 1766 goto fail; 1767 } 1768 *port = SK_PORT_A; 1769 device_set_ivars(sc->sk_devs[SK_PORT_A], port); 1770 1771 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1772 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); 1773 if (sc->sk_devs[SK_PORT_B] == NULL) { 1774 device_printf(dev, "failed to add child for PORT_B\n"); 1775 error = ENXIO; 1776 goto fail; 1777 } 1778 port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 1779 if (port == NULL) { 1780 device_printf(dev, "failed to allocate memory for " 1781 "ivars of PORT_B\n"); 1782 error = ENXIO; 1783 goto fail; 1784 } 1785 *port = SK_PORT_B; 1786 device_set_ivars(sc->sk_devs[SK_PORT_B], port); 1787 } 1788 1789 /* Turn on the 'driver is loaded' LED. */ 1790 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1791 1792 error = bus_generic_attach(dev); 1793 if (error) { 1794 device_printf(dev, "failed to attach port(s)\n"); 1795 goto fail; 1796 } 1797 1798 /* Hook interrupt last to avoid having to lock softc */ 1799 error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE, 1800 NULL, sk_intr, sc, &sc->sk_intrhand); 1801 1802 if (error) { 1803 device_printf(dev, "couldn't set up irq\n"); 1804 goto fail; 1805 } 1806 1807 fail: 1808 if (error) 1809 skc_detach(dev); 1810 1811 return(error); 1812 } 1813 1814 /* 1815 * Shutdown hardware and free up resources. This can be called any 1816 * time after the mutex has been initialized. It is called in both 1817 * the error case in attach and the normal detach case so it needs 1818 * to be careful about only freeing resources that have actually been 1819 * allocated. 1820 */ 1821 static int 1822 sk_detach(dev) 1823 device_t dev; 1824 { 1825 struct sk_if_softc *sc_if; 1826 struct ifnet *ifp; 1827 1828 sc_if = device_get_softc(dev); 1829 KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), 1830 ("sk mutex not initialized in sk_detach")); 1831 SK_IF_LOCK(sc_if); 1832 1833 ifp = sc_if->sk_ifp; 1834 /* These should only be active if attach_xmac succeeded */ 1835 if (device_is_attached(dev)) { 1836 sk_stop(sc_if); 1837 /* Can't hold locks while calling detach */ 1838 SK_IF_UNLOCK(sc_if); 1839 callout_drain(&sc_if->sk_tick_ch); 1840 callout_drain(&sc_if->sk_watchdog_ch); 1841 ether_ifdetach(ifp); 1842 SK_IF_LOCK(sc_if); 1843 } 1844 if (ifp) 1845 if_free(ifp); 1846 /* 1847 * We're generally called from skc_detach() which is using 1848 * device_delete_child() to get to here. It's already trashed 1849 * miibus for us, so don't do it here or we'll panic. 1850 */ 1851 /* 1852 if (sc_if->sk_miibus != NULL) 1853 device_delete_child(dev, sc_if->sk_miibus); 1854 */ 1855 bus_generic_detach(dev); 1856 sk_dma_jumbo_free(sc_if); 1857 sk_dma_free(sc_if); 1858 SK_IF_UNLOCK(sc_if); 1859 1860 return(0); 1861 } 1862 1863 static int 1864 skc_detach(dev) 1865 device_t dev; 1866 { 1867 struct sk_softc *sc; 1868 1869 sc = device_get_softc(dev); 1870 KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); 1871 1872 if (device_is_alive(dev)) { 1873 if (sc->sk_devs[SK_PORT_A] != NULL) { 1874 free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); 1875 device_delete_child(dev, sc->sk_devs[SK_PORT_A]); 1876 } 1877 if (sc->sk_devs[SK_PORT_B] != NULL) { 1878 free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); 1879 device_delete_child(dev, sc->sk_devs[SK_PORT_B]); 1880 } 1881 bus_generic_detach(dev); 1882 } 1883 1884 if (sc->sk_intrhand) 1885 bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand); 1886 bus_release_resources(dev, sc->sk_res_spec, sc->sk_res); 1887 1888 mtx_destroy(&sc->sk_mii_mtx); 1889 mtx_destroy(&sc->sk_mtx); 1890 1891 return(0); 1892 } 1893 1894 static bus_dma_tag_t 1895 skc_get_dma_tag(device_t bus, device_t child __unused) 1896 { 1897 1898 return (bus_get_dma_tag(bus)); 1899 } 1900 1901 struct sk_dmamap_arg { 1902 bus_addr_t sk_busaddr; 1903 }; 1904 1905 static void 1906 sk_dmamap_cb(arg, segs, nseg, error) 1907 void *arg; 1908 bus_dma_segment_t *segs; 1909 int nseg; 1910 int error; 1911 { 1912 struct sk_dmamap_arg *ctx; 1913 1914 if (error != 0) 1915 return; 1916 1917 ctx = arg; 1918 ctx->sk_busaddr = segs[0].ds_addr; 1919 } 1920 1921 /* 1922 * Allocate jumbo buffer storage. The SysKonnect adapters support 1923 * "jumbograms" (9K frames), although SysKonnect doesn't currently 1924 * use them in their drivers. In order for us to use them, we need 1925 * large 9K receive buffers, however standard mbuf clusters are only 1926 * 2048 bytes in size. Consequently, we need to allocate and manage 1927 * our own jumbo buffer pool. Fortunately, this does not require an 1928 * excessive amount of additional code. 1929 */ 1930 static int 1931 sk_dma_alloc(sc_if) 1932 struct sk_if_softc *sc_if; 1933 { 1934 struct sk_dmamap_arg ctx; 1935 struct sk_txdesc *txd; 1936 struct sk_rxdesc *rxd; 1937 int error, i; 1938 1939 /* create parent tag */ 1940 /* 1941 * XXX 1942 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument 1943 * in bus_dma_tag_create(9) as the NIC would support DAC mode. 1944 * However bz@ reported that it does not work on amd64 with > 4GB 1945 * RAM. Until we have more clues of the breakage, disable DAC mode 1946 * by limiting DMA address to be in 32bit address space. 1947 */ 1948 error = bus_dma_tag_create( 1949 bus_get_dma_tag(sc_if->sk_if_dev),/* parent */ 1950 1, 0, /* algnmnt, boundary */ 1951 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1952 BUS_SPACE_MAXADDR, /* highaddr */ 1953 NULL, NULL, /* filter, filterarg */ 1954 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1955 0, /* nsegments */ 1956 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1957 0, /* flags */ 1958 NULL, NULL, /* lockfunc, lockarg */ 1959 &sc_if->sk_cdata.sk_parent_tag); 1960 if (error != 0) { 1961 device_printf(sc_if->sk_if_dev, 1962 "failed to create parent DMA tag\n"); 1963 goto fail; 1964 } 1965 1966 /* create tag for Tx ring */ 1967 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1968 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1969 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1970 BUS_SPACE_MAXADDR, /* highaddr */ 1971 NULL, NULL, /* filter, filterarg */ 1972 SK_TX_RING_SZ, /* maxsize */ 1973 1, /* nsegments */ 1974 SK_TX_RING_SZ, /* maxsegsize */ 1975 0, /* flags */ 1976 NULL, NULL, /* lockfunc, lockarg */ 1977 &sc_if->sk_cdata.sk_tx_ring_tag); 1978 if (error != 0) { 1979 device_printf(sc_if->sk_if_dev, 1980 "failed to allocate Tx ring DMA tag\n"); 1981 goto fail; 1982 } 1983 1984 /* create tag for Rx ring */ 1985 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 1986 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 1987 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1988 BUS_SPACE_MAXADDR, /* highaddr */ 1989 NULL, NULL, /* filter, filterarg */ 1990 SK_RX_RING_SZ, /* maxsize */ 1991 1, /* nsegments */ 1992 SK_RX_RING_SZ, /* maxsegsize */ 1993 0, /* flags */ 1994 NULL, NULL, /* lockfunc, lockarg */ 1995 &sc_if->sk_cdata.sk_rx_ring_tag); 1996 if (error != 0) { 1997 device_printf(sc_if->sk_if_dev, 1998 "failed to allocate Rx ring DMA tag\n"); 1999 goto fail; 2000 } 2001 2002 /* create tag for Tx buffers */ 2003 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2004 1, 0, /* algnmnt, boundary */ 2005 BUS_SPACE_MAXADDR, /* lowaddr */ 2006 BUS_SPACE_MAXADDR, /* highaddr */ 2007 NULL, NULL, /* filter, filterarg */ 2008 MCLBYTES * SK_MAXTXSEGS, /* maxsize */ 2009 SK_MAXTXSEGS, /* nsegments */ 2010 MCLBYTES, /* maxsegsize */ 2011 0, /* flags */ 2012 NULL, NULL, /* lockfunc, lockarg */ 2013 &sc_if->sk_cdata.sk_tx_tag); 2014 if (error != 0) { 2015 device_printf(sc_if->sk_if_dev, 2016 "failed to allocate Tx DMA tag\n"); 2017 goto fail; 2018 } 2019 2020 /* create tag for Rx buffers */ 2021 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2022 1, 0, /* algnmnt, boundary */ 2023 BUS_SPACE_MAXADDR, /* lowaddr */ 2024 BUS_SPACE_MAXADDR, /* highaddr */ 2025 NULL, NULL, /* filter, filterarg */ 2026 MCLBYTES, /* maxsize */ 2027 1, /* nsegments */ 2028 MCLBYTES, /* maxsegsize */ 2029 0, /* flags */ 2030 NULL, NULL, /* lockfunc, lockarg */ 2031 &sc_if->sk_cdata.sk_rx_tag); 2032 if (error != 0) { 2033 device_printf(sc_if->sk_if_dev, 2034 "failed to allocate Rx DMA tag\n"); 2035 goto fail; 2036 } 2037 2038 /* allocate DMA'able memory and load the DMA map for Tx ring */ 2039 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag, 2040 (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | 2041 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map); 2042 if (error != 0) { 2043 device_printf(sc_if->sk_if_dev, 2044 "failed to allocate DMA'able memory for Tx ring\n"); 2045 goto fail; 2046 } 2047 2048 ctx.sk_busaddr = 0; 2049 error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag, 2050 sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring, 2051 SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2052 if (error != 0) { 2053 device_printf(sc_if->sk_if_dev, 2054 "failed to load DMA'able memory for Tx ring\n"); 2055 goto fail; 2056 } 2057 sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr; 2058 2059 /* allocate DMA'able memory and load the DMA map for Rx ring */ 2060 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag, 2061 (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | 2062 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map); 2063 if (error != 0) { 2064 device_printf(sc_if->sk_if_dev, 2065 "failed to allocate DMA'able memory for Rx ring\n"); 2066 goto fail; 2067 } 2068 2069 ctx.sk_busaddr = 0; 2070 error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag, 2071 sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring, 2072 SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 2073 if (error != 0) { 2074 device_printf(sc_if->sk_if_dev, 2075 "failed to load DMA'able memory for Rx ring\n"); 2076 goto fail; 2077 } 2078 sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr; 2079 2080 /* create DMA maps for Tx buffers */ 2081 for (i = 0; i < SK_TX_RING_CNT; i++) { 2082 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2083 txd->tx_m = NULL; 2084 txd->tx_dmamap = NULL; 2085 error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0, 2086 &txd->tx_dmamap); 2087 if (error != 0) { 2088 device_printf(sc_if->sk_if_dev, 2089 "failed to create Tx dmamap\n"); 2090 goto fail; 2091 } 2092 } 2093 2094 /* create DMA maps for Rx buffers */ 2095 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2096 &sc_if->sk_cdata.sk_rx_sparemap)) != 0) { 2097 device_printf(sc_if->sk_if_dev, 2098 "failed to create spare Rx dmamap\n"); 2099 goto fail; 2100 } 2101 for (i = 0; i < SK_RX_RING_CNT; i++) { 2102 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2103 rxd->rx_m = NULL; 2104 rxd->rx_dmamap = NULL; 2105 error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0, 2106 &rxd->rx_dmamap); 2107 if (error != 0) { 2108 device_printf(sc_if->sk_if_dev, 2109 "failed to create Rx dmamap\n"); 2110 goto fail; 2111 } 2112 } 2113 2114 fail: 2115 return (error); 2116 } 2117 2118 static int 2119 sk_dma_jumbo_alloc(sc_if) 2120 struct sk_if_softc *sc_if; 2121 { 2122 struct sk_dmamap_arg ctx; 2123 struct sk_rxdesc *jrxd; 2124 int error, i; 2125 2126 if (jumbo_disable != 0) { 2127 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n"); 2128 sc_if->sk_jumbo_disable = 1; 2129 return (0); 2130 } 2131 /* create tag for jumbo Rx ring */ 2132 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2133 SK_RING_ALIGN, 0, /* algnmnt, boundary */ 2134 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2135 BUS_SPACE_MAXADDR, /* highaddr */ 2136 NULL, NULL, /* filter, filterarg */ 2137 SK_JUMBO_RX_RING_SZ, /* maxsize */ 2138 1, /* nsegments */ 2139 SK_JUMBO_RX_RING_SZ, /* maxsegsize */ 2140 0, /* flags */ 2141 NULL, NULL, /* lockfunc, lockarg */ 2142 &sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2143 if (error != 0) { 2144 device_printf(sc_if->sk_if_dev, 2145 "failed to allocate jumbo Rx ring DMA tag\n"); 2146 goto jumbo_fail; 2147 } 2148 2149 /* create tag for jumbo Rx buffers */ 2150 error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */ 2151 1, 0, /* algnmnt, boundary */ 2152 BUS_SPACE_MAXADDR, /* lowaddr */ 2153 BUS_SPACE_MAXADDR, /* highaddr */ 2154 NULL, NULL, /* filter, filterarg */ 2155 MJUM9BYTES, /* maxsize */ 2156 1, /* nsegments */ 2157 MJUM9BYTES, /* maxsegsize */ 2158 0, /* flags */ 2159 NULL, NULL, /* lockfunc, lockarg */ 2160 &sc_if->sk_cdata.sk_jumbo_rx_tag); 2161 if (error != 0) { 2162 device_printf(sc_if->sk_if_dev, 2163 "failed to allocate jumbo Rx DMA tag\n"); 2164 goto jumbo_fail; 2165 } 2166 2167 /* allocate DMA'able memory and load the DMA map for jumbo Rx ring */ 2168 error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2169 (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT | 2170 BUS_DMA_COHERENT | BUS_DMA_ZERO, 2171 &sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2172 if (error != 0) { 2173 device_printf(sc_if->sk_if_dev, 2174 "failed to allocate DMA'able memory for jumbo Rx ring\n"); 2175 goto jumbo_fail; 2176 } 2177 2178 ctx.sk_busaddr = 0; 2179 error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2180 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2181 sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb, 2182 &ctx, BUS_DMA_NOWAIT); 2183 if (error != 0) { 2184 device_printf(sc_if->sk_if_dev, 2185 "failed to load DMA'able memory for jumbo Rx ring\n"); 2186 goto jumbo_fail; 2187 } 2188 sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr; 2189 2190 /* create DMA maps for jumbo Rx buffers */ 2191 if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2192 &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) { 2193 device_printf(sc_if->sk_if_dev, 2194 "failed to create spare jumbo Rx dmamap\n"); 2195 goto jumbo_fail; 2196 } 2197 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2198 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2199 jrxd->rx_m = NULL; 2200 jrxd->rx_dmamap = NULL; 2201 error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0, 2202 &jrxd->rx_dmamap); 2203 if (error != 0) { 2204 device_printf(sc_if->sk_if_dev, 2205 "failed to create jumbo Rx dmamap\n"); 2206 goto jumbo_fail; 2207 } 2208 } 2209 2210 return (0); 2211 2212 jumbo_fail: 2213 sk_dma_jumbo_free(sc_if); 2214 device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to " 2215 "resource shortage\n"); 2216 sc_if->sk_jumbo_disable = 1; 2217 return (0); 2218 } 2219 2220 static void 2221 sk_dma_free(sc_if) 2222 struct sk_if_softc *sc_if; 2223 { 2224 struct sk_txdesc *txd; 2225 struct sk_rxdesc *rxd; 2226 int i; 2227 2228 /* Tx ring */ 2229 if (sc_if->sk_cdata.sk_tx_ring_tag) { 2230 if (sc_if->sk_cdata.sk_tx_ring_map) 2231 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag, 2232 sc_if->sk_cdata.sk_tx_ring_map); 2233 if (sc_if->sk_cdata.sk_tx_ring_map && 2234 sc_if->sk_rdata.sk_tx_ring) 2235 bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag, 2236 sc_if->sk_rdata.sk_tx_ring, 2237 sc_if->sk_cdata.sk_tx_ring_map); 2238 sc_if->sk_rdata.sk_tx_ring = NULL; 2239 sc_if->sk_cdata.sk_tx_ring_map = NULL; 2240 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag); 2241 sc_if->sk_cdata.sk_tx_ring_tag = NULL; 2242 } 2243 /* Rx ring */ 2244 if (sc_if->sk_cdata.sk_rx_ring_tag) { 2245 if (sc_if->sk_cdata.sk_rx_ring_map) 2246 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag, 2247 sc_if->sk_cdata.sk_rx_ring_map); 2248 if (sc_if->sk_cdata.sk_rx_ring_map && 2249 sc_if->sk_rdata.sk_rx_ring) 2250 bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag, 2251 sc_if->sk_rdata.sk_rx_ring, 2252 sc_if->sk_cdata.sk_rx_ring_map); 2253 sc_if->sk_rdata.sk_rx_ring = NULL; 2254 sc_if->sk_cdata.sk_rx_ring_map = NULL; 2255 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag); 2256 sc_if->sk_cdata.sk_rx_ring_tag = NULL; 2257 } 2258 /* Tx buffers */ 2259 if (sc_if->sk_cdata.sk_tx_tag) { 2260 for (i = 0; i < SK_TX_RING_CNT; i++) { 2261 txd = &sc_if->sk_cdata.sk_txdesc[i]; 2262 if (txd->tx_dmamap) { 2263 bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag, 2264 txd->tx_dmamap); 2265 txd->tx_dmamap = NULL; 2266 } 2267 } 2268 bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag); 2269 sc_if->sk_cdata.sk_tx_tag = NULL; 2270 } 2271 /* Rx buffers */ 2272 if (sc_if->sk_cdata.sk_rx_tag) { 2273 for (i = 0; i < SK_RX_RING_CNT; i++) { 2274 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 2275 if (rxd->rx_dmamap) { 2276 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2277 rxd->rx_dmamap); 2278 rxd->rx_dmamap = NULL; 2279 } 2280 } 2281 if (sc_if->sk_cdata.sk_rx_sparemap) { 2282 bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag, 2283 sc_if->sk_cdata.sk_rx_sparemap); 2284 sc_if->sk_cdata.sk_rx_sparemap = NULL; 2285 } 2286 bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag); 2287 sc_if->sk_cdata.sk_rx_tag = NULL; 2288 } 2289 2290 if (sc_if->sk_cdata.sk_parent_tag) { 2291 bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag); 2292 sc_if->sk_cdata.sk_parent_tag = NULL; 2293 } 2294 } 2295 2296 static void 2297 sk_dma_jumbo_free(sc_if) 2298 struct sk_if_softc *sc_if; 2299 { 2300 struct sk_rxdesc *jrxd; 2301 int i; 2302 2303 /* jumbo Rx ring */ 2304 if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) { 2305 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map) 2306 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2307 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2308 if (sc_if->sk_cdata.sk_jumbo_rx_ring_map && 2309 sc_if->sk_rdata.sk_jumbo_rx_ring) 2310 bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2311 sc_if->sk_rdata.sk_jumbo_rx_ring, 2312 sc_if->sk_cdata.sk_jumbo_rx_ring_map); 2313 sc_if->sk_rdata.sk_jumbo_rx_ring = NULL; 2314 sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL; 2315 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag); 2316 sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL; 2317 } 2318 2319 /* jumbo Rx buffers */ 2320 if (sc_if->sk_cdata.sk_jumbo_rx_tag) { 2321 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 2322 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 2323 if (jrxd->rx_dmamap) { 2324 bus_dmamap_destroy( 2325 sc_if->sk_cdata.sk_jumbo_rx_tag, 2326 jrxd->rx_dmamap); 2327 jrxd->rx_dmamap = NULL; 2328 } 2329 } 2330 if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) { 2331 bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag, 2332 sc_if->sk_cdata.sk_jumbo_rx_sparemap); 2333 sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL; 2334 } 2335 bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag); 2336 sc_if->sk_cdata.sk_jumbo_rx_tag = NULL; 2337 } 2338 } 2339 2340 static void 2341 sk_txcksum(ifp, m, f) 2342 struct ifnet *ifp; 2343 struct mbuf *m; 2344 struct sk_tx_desc *f; 2345 { 2346 struct ip *ip; 2347 u_int16_t offset; 2348 u_int8_t *p; 2349 2350 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2351 for(; m && m->m_len == 0; m = m->m_next) 2352 ; 2353 if (m == NULL || m->m_len < ETHER_HDR_LEN) { 2354 if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__); 2355 /* checksum may be corrupted */ 2356 goto sendit; 2357 } 2358 if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) { 2359 if (m->m_len != ETHER_HDR_LEN) { 2360 if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n", 2361 __func__); 2362 /* checksum may be corrupted */ 2363 goto sendit; 2364 } 2365 for(m = m->m_next; m && m->m_len == 0; m = m->m_next) 2366 ; 2367 if (m == NULL) { 2368 offset = sizeof(struct ip) + ETHER_HDR_LEN; 2369 /* checksum may be corrupted */ 2370 goto sendit; 2371 } 2372 ip = mtod(m, struct ip *); 2373 } else { 2374 p = mtod(m, u_int8_t *); 2375 p += ETHER_HDR_LEN; 2376 ip = (struct ip *)p; 2377 } 2378 offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; 2379 2380 sendit: 2381 f->sk_csum_startval = 0; 2382 f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) | 2383 (offset << 16)); 2384 } 2385 2386 static int 2387 sk_encap(sc_if, m_head) 2388 struct sk_if_softc *sc_if; 2389 struct mbuf **m_head; 2390 { 2391 struct sk_txdesc *txd; 2392 struct sk_tx_desc *f = NULL; 2393 struct mbuf *m; 2394 bus_dma_segment_t txsegs[SK_MAXTXSEGS]; 2395 u_int32_t cflags, frag, si, sk_ctl; 2396 int error, i, nseg; 2397 2398 SK_IF_LOCK_ASSERT(sc_if); 2399 2400 if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL) 2401 return (ENOBUFS); 2402 2403 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2404 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2405 if (error == EFBIG) { 2406 m = m_defrag(*m_head, M_NOWAIT); 2407 if (m == NULL) { 2408 m_freem(*m_head); 2409 *m_head = NULL; 2410 return (ENOMEM); 2411 } 2412 *m_head = m; 2413 error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag, 2414 txd->tx_dmamap, *m_head, txsegs, &nseg, 0); 2415 if (error != 0) { 2416 m_freem(*m_head); 2417 *m_head = NULL; 2418 return (error); 2419 } 2420 } else if (error != 0) 2421 return (error); 2422 if (nseg == 0) { 2423 m_freem(*m_head); 2424 *m_head = NULL; 2425 return (EIO); 2426 } 2427 if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) { 2428 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2429 return (ENOBUFS); 2430 } 2431 2432 m = *m_head; 2433 if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0) 2434 cflags = SK_OPCODE_CSUM; 2435 else 2436 cflags = SK_OPCODE_DEFAULT; 2437 si = frag = sc_if->sk_cdata.sk_tx_prod; 2438 for (i = 0; i < nseg; i++) { 2439 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2440 f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr)); 2441 f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr)); 2442 sk_ctl = txsegs[i].ds_len | cflags; 2443 if (i == 0) { 2444 if (cflags == SK_OPCODE_CSUM) 2445 sk_txcksum(sc_if->sk_ifp, m, f); 2446 sk_ctl |= SK_TXCTL_FIRSTFRAG; 2447 } else 2448 sk_ctl |= SK_TXCTL_OWN; 2449 f->sk_ctl = htole32(sk_ctl); 2450 sc_if->sk_cdata.sk_tx_cnt++; 2451 SK_INC(frag, SK_TX_RING_CNT); 2452 } 2453 sc_if->sk_cdata.sk_tx_prod = frag; 2454 2455 /* set EOF on the last desciptor */ 2456 frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT; 2457 f = &sc_if->sk_rdata.sk_tx_ring[frag]; 2458 f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 2459 2460 /* turn the first descriptor ownership to NIC */ 2461 f = &sc_if->sk_rdata.sk_tx_ring[si]; 2462 f->sk_ctl |= htole32(SK_TXCTL_OWN); 2463 2464 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q); 2465 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q); 2466 txd->tx_m = m; 2467 2468 /* sync descriptors */ 2469 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2470 BUS_DMASYNC_PREWRITE); 2471 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2472 sc_if->sk_cdata.sk_tx_ring_map, 2473 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2474 2475 return (0); 2476 } 2477 2478 static void 2479 sk_start(ifp) 2480 struct ifnet *ifp; 2481 { 2482 struct sk_if_softc *sc_if; 2483 2484 sc_if = ifp->if_softc; 2485 2486 SK_IF_LOCK(sc_if); 2487 sk_start_locked(ifp); 2488 SK_IF_UNLOCK(sc_if); 2489 2490 return; 2491 } 2492 2493 static void 2494 sk_start_locked(ifp) 2495 struct ifnet *ifp; 2496 { 2497 struct sk_softc *sc; 2498 struct sk_if_softc *sc_if; 2499 struct mbuf *m_head; 2500 int enq; 2501 2502 sc_if = ifp->if_softc; 2503 sc = sc_if->sk_softc; 2504 2505 SK_IF_LOCK_ASSERT(sc_if); 2506 2507 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2508 sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) { 2509 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2510 if (m_head == NULL) 2511 break; 2512 2513 /* 2514 * Pack the data into the transmit ring. If we 2515 * don't have room, set the OACTIVE flag and wait 2516 * for the NIC to drain the ring. 2517 */ 2518 if (sk_encap(sc_if, &m_head)) { 2519 if (m_head == NULL) 2520 break; 2521 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2522 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2523 break; 2524 } 2525 2526 enq++; 2527 /* 2528 * If there's a BPF listener, bounce a copy of this frame 2529 * to him. 2530 */ 2531 BPF_MTAP(ifp, m_head); 2532 } 2533 2534 if (enq > 0) { 2535 /* Transmit */ 2536 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2537 2538 /* Set a timeout in case the chip goes out to lunch. */ 2539 sc_if->sk_watchdog_timer = 5; 2540 } 2541 } 2542 2543 2544 static void 2545 sk_watchdog(arg) 2546 void *arg; 2547 { 2548 struct sk_if_softc *sc_if; 2549 struct ifnet *ifp; 2550 2551 ifp = arg; 2552 sc_if = ifp->if_softc; 2553 2554 SK_IF_LOCK_ASSERT(sc_if); 2555 2556 if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer) 2557 goto done; 2558 2559 /* 2560 * Reclaim first as there is a possibility of losing Tx completion 2561 * interrupts. 2562 */ 2563 sk_txeof(sc_if); 2564 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2565 if_printf(sc_if->sk_ifp, "watchdog timeout\n"); 2566 ifp->if_oerrors++; 2567 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2568 sk_init_locked(sc_if); 2569 } 2570 2571 done: 2572 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 2573 2574 return; 2575 } 2576 2577 static int 2578 skc_shutdown(dev) 2579 device_t dev; 2580 { 2581 struct sk_softc *sc; 2582 2583 sc = device_get_softc(dev); 2584 SK_LOCK(sc); 2585 2586 /* Turn off the 'driver is loaded' LED. */ 2587 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2588 2589 /* 2590 * Reset the GEnesis controller. Doing this should also 2591 * assert the resets on the attached XMAC(s). 2592 */ 2593 sk_reset(sc); 2594 SK_UNLOCK(sc); 2595 2596 return (0); 2597 } 2598 2599 static int 2600 skc_suspend(dev) 2601 device_t dev; 2602 { 2603 struct sk_softc *sc; 2604 struct sk_if_softc *sc_if0, *sc_if1; 2605 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2606 2607 sc = device_get_softc(dev); 2608 2609 SK_LOCK(sc); 2610 2611 sc_if0 = sc->sk_if[SK_PORT_A]; 2612 sc_if1 = sc->sk_if[SK_PORT_B]; 2613 if (sc_if0 != NULL) 2614 ifp0 = sc_if0->sk_ifp; 2615 if (sc_if1 != NULL) 2616 ifp1 = sc_if1->sk_ifp; 2617 if (ifp0 != NULL) 2618 sk_stop(sc_if0); 2619 if (ifp1 != NULL) 2620 sk_stop(sc_if1); 2621 sc->sk_suspended = 1; 2622 2623 SK_UNLOCK(sc); 2624 2625 return (0); 2626 } 2627 2628 static int 2629 skc_resume(dev) 2630 device_t dev; 2631 { 2632 struct sk_softc *sc; 2633 struct sk_if_softc *sc_if0, *sc_if1; 2634 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2635 2636 sc = device_get_softc(dev); 2637 2638 SK_LOCK(sc); 2639 2640 sc_if0 = sc->sk_if[SK_PORT_A]; 2641 sc_if1 = sc->sk_if[SK_PORT_B]; 2642 if (sc_if0 != NULL) 2643 ifp0 = sc_if0->sk_ifp; 2644 if (sc_if1 != NULL) 2645 ifp1 = sc_if1->sk_ifp; 2646 if (ifp0 != NULL && ifp0->if_flags & IFF_UP) 2647 sk_init_locked(sc_if0); 2648 if (ifp1 != NULL && ifp1->if_flags & IFF_UP) 2649 sk_init_locked(sc_if1); 2650 sc->sk_suspended = 0; 2651 2652 SK_UNLOCK(sc); 2653 2654 return (0); 2655 } 2656 2657 /* 2658 * According to the data sheet from SK-NET GENESIS the hardware can compute 2659 * two Rx checksums at the same time(Each checksum start position is 2660 * programmed in Rx descriptors). However it seems that TCP/UDP checksum 2661 * does not work at least on my Yukon hardware. I tried every possible ways 2662 * to get correct checksum value but couldn't get correct one. So TCP/UDP 2663 * checksum offload was disabled at the moment and only IP checksum offload 2664 * was enabled. 2665 * As nomral IP header size is 20 bytes I can't expect it would give an 2666 * increase in throughput. However it seems it doesn't hurt performance in 2667 * my testing. If there is a more detailed information for checksum secret 2668 * of the hardware in question please contact yongari@FreeBSD.org to add 2669 * TCP/UDP checksum offload support. 2670 */ 2671 static __inline void 2672 sk_rxcksum(ifp, m, csum) 2673 struct ifnet *ifp; 2674 struct mbuf *m; 2675 u_int32_t csum; 2676 { 2677 struct ether_header *eh; 2678 struct ip *ip; 2679 int32_t hlen, len, pktlen; 2680 u_int16_t csum1, csum2, ipcsum; 2681 2682 pktlen = m->m_pkthdr.len; 2683 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 2684 return; 2685 eh = mtod(m, struct ether_header *); 2686 if (eh->ether_type != htons(ETHERTYPE_IP)) 2687 return; 2688 ip = (struct ip *)(eh + 1); 2689 if (ip->ip_v != IPVERSION) 2690 return; 2691 hlen = ip->ip_hl << 2; 2692 pktlen -= sizeof(struct ether_header); 2693 if (hlen < sizeof(struct ip)) 2694 return; 2695 if (ntohs(ip->ip_len) < hlen) 2696 return; 2697 if (ntohs(ip->ip_len) != pktlen) 2698 return; 2699 2700 csum1 = htons(csum & 0xffff); 2701 csum2 = htons((csum >> 16) & 0xffff); 2702 ipcsum = in_addword(csum1, ~csum2 & 0xffff); 2703 /* checksum fixup for IP options */ 2704 len = hlen - sizeof(struct ip); 2705 if (len > 0) { 2706 /* 2707 * If the second checksum value is correct we can compute IP 2708 * checksum with simple math. Unfortunately the second checksum 2709 * value is wrong so we can't verify the checksum from the 2710 * value(It seems there is some magic here to get correct 2711 * value). If the second checksum value is correct it also 2712 * means we can get TCP/UDP checksum) here. However, it still 2713 * needs pseudo header checksum calculation due to hardware 2714 * limitations. 2715 */ 2716 return; 2717 } 2718 m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; 2719 if (ipcsum == 0xffff) 2720 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2721 } 2722 2723 static __inline int 2724 sk_rxvalid(sc, stat, len) 2725 struct sk_softc *sc; 2726 u_int32_t stat, len; 2727 { 2728 2729 if (sc->sk_type == SK_GENESIS) { 2730 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME || 2731 XM_RXSTAT_BYTES(stat) != len) 2732 return (0); 2733 } else { 2734 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | 2735 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | 2736 YU_RXSTAT_JABBER)) != 0 || 2737 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || 2738 YU_RXSTAT_BYTES(stat) != len) 2739 return (0); 2740 } 2741 2742 return (1); 2743 } 2744 2745 static void 2746 sk_rxeof(sc_if) 2747 struct sk_if_softc *sc_if; 2748 { 2749 struct sk_softc *sc; 2750 struct mbuf *m; 2751 struct ifnet *ifp; 2752 struct sk_rx_desc *cur_rx; 2753 struct sk_rxdesc *rxd; 2754 int cons, prog; 2755 u_int32_t csum, rxstat, sk_ctl; 2756 2757 sc = sc_if->sk_softc; 2758 ifp = sc_if->sk_ifp; 2759 2760 SK_IF_LOCK_ASSERT(sc_if); 2761 2762 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2763 sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD); 2764 2765 prog = 0; 2766 for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT; 2767 prog++, SK_INC(cons, SK_RX_RING_CNT)) { 2768 cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons]; 2769 sk_ctl = le32toh(cur_rx->sk_ctl); 2770 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2771 break; 2772 rxd = &sc_if->sk_cdata.sk_rxdesc[cons]; 2773 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2774 2775 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2776 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2777 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2778 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2779 SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN || 2780 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2781 ifp->if_ierrors++; 2782 sk_discard_rxbuf(sc_if, cons); 2783 continue; 2784 } 2785 2786 m = rxd->rx_m; 2787 csum = le32toh(cur_rx->sk_csum); 2788 if (sk_newbuf(sc_if, cons) != 0) { 2789 ifp->if_iqdrops++; 2790 /* reuse old buffer */ 2791 sk_discard_rxbuf(sc_if, cons); 2792 continue; 2793 } 2794 m->m_pkthdr.rcvif = ifp; 2795 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2796 ifp->if_ipackets++; 2797 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2798 sk_rxcksum(ifp, m, csum); 2799 SK_IF_UNLOCK(sc_if); 2800 (*ifp->if_input)(ifp, m); 2801 SK_IF_LOCK(sc_if); 2802 } 2803 2804 if (prog > 0) { 2805 sc_if->sk_cdata.sk_rx_cons = cons; 2806 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag, 2807 sc_if->sk_cdata.sk_rx_ring_map, 2808 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2809 } 2810 } 2811 2812 static void 2813 sk_jumbo_rxeof(sc_if) 2814 struct sk_if_softc *sc_if; 2815 { 2816 struct sk_softc *sc; 2817 struct mbuf *m; 2818 struct ifnet *ifp; 2819 struct sk_rx_desc *cur_rx; 2820 struct sk_rxdesc *jrxd; 2821 int cons, prog; 2822 u_int32_t csum, rxstat, sk_ctl; 2823 2824 sc = sc_if->sk_softc; 2825 ifp = sc_if->sk_ifp; 2826 2827 SK_IF_LOCK_ASSERT(sc_if); 2828 2829 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2830 sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD); 2831 2832 prog = 0; 2833 for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons; 2834 prog < SK_JUMBO_RX_RING_CNT; 2835 prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) { 2836 cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons]; 2837 sk_ctl = le32toh(cur_rx->sk_ctl); 2838 if ((sk_ctl & SK_RXCTL_OWN) != 0) 2839 break; 2840 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons]; 2841 rxstat = le32toh(cur_rx->sk_xmac_rxstat); 2842 2843 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG | 2844 SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID | 2845 SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) || 2846 SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN || 2847 SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN || 2848 sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) { 2849 ifp->if_ierrors++; 2850 sk_discard_jumbo_rxbuf(sc_if, cons); 2851 continue; 2852 } 2853 2854 m = jrxd->rx_m; 2855 csum = le32toh(cur_rx->sk_csum); 2856 if (sk_jumbo_newbuf(sc_if, cons) != 0) { 2857 ifp->if_iqdrops++; 2858 /* reuse old buffer */ 2859 sk_discard_jumbo_rxbuf(sc_if, cons); 2860 continue; 2861 } 2862 m->m_pkthdr.rcvif = ifp; 2863 m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl); 2864 ifp->if_ipackets++; 2865 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2866 sk_rxcksum(ifp, m, csum); 2867 SK_IF_UNLOCK(sc_if); 2868 (*ifp->if_input)(ifp, m); 2869 SK_IF_LOCK(sc_if); 2870 } 2871 2872 if (prog > 0) { 2873 sc_if->sk_cdata.sk_jumbo_rx_cons = cons; 2874 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag, 2875 sc_if->sk_cdata.sk_jumbo_rx_ring_map, 2876 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2877 } 2878 } 2879 2880 static void 2881 sk_txeof(sc_if) 2882 struct sk_if_softc *sc_if; 2883 { 2884 struct sk_softc *sc; 2885 struct sk_txdesc *txd; 2886 struct sk_tx_desc *cur_tx; 2887 struct ifnet *ifp; 2888 u_int32_t idx, sk_ctl; 2889 2890 sc = sc_if->sk_softc; 2891 ifp = sc_if->sk_ifp; 2892 2893 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2894 if (txd == NULL) 2895 return; 2896 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2897 sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD); 2898 /* 2899 * Go through our tx ring and free mbufs for those 2900 * frames that have been sent. 2901 */ 2902 for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) { 2903 if (sc_if->sk_cdata.sk_tx_cnt <= 0) 2904 break; 2905 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx]; 2906 sk_ctl = le32toh(cur_tx->sk_ctl); 2907 if (sk_ctl & SK_TXCTL_OWN) 2908 break; 2909 sc_if->sk_cdata.sk_tx_cnt--; 2910 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2911 if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0) 2912 continue; 2913 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap, 2914 BUS_DMASYNC_POSTWRITE); 2915 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap); 2916 2917 ifp->if_opackets++; 2918 m_freem(txd->tx_m); 2919 txd->tx_m = NULL; 2920 STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q); 2921 STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q); 2922 txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq); 2923 } 2924 sc_if->sk_cdata.sk_tx_cons = idx; 2925 sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; 2926 2927 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag, 2928 sc_if->sk_cdata.sk_tx_ring_map, 2929 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2930 } 2931 2932 static void 2933 sk_tick(xsc_if) 2934 void *xsc_if; 2935 { 2936 struct sk_if_softc *sc_if; 2937 struct mii_data *mii; 2938 struct ifnet *ifp; 2939 int i; 2940 2941 sc_if = xsc_if; 2942 ifp = sc_if->sk_ifp; 2943 mii = device_get_softc(sc_if->sk_miibus); 2944 2945 if (!(ifp->if_flags & IFF_UP)) 2946 return; 2947 2948 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2949 sk_intr_bcom(sc_if); 2950 return; 2951 } 2952 2953 /* 2954 * According to SysKonnect, the correct way to verify that 2955 * the link has come back up is to poll bit 0 of the GPIO 2956 * register three times. This pin has the signal from the 2957 * link_sync pin connected to it; if we read the same link 2958 * state 3 times in a row, we know the link is up. 2959 */ 2960 for (i = 0; i < 3; i++) { 2961 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2962 break; 2963 } 2964 2965 if (i != 3) { 2966 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2967 return; 2968 } 2969 2970 /* Turn the GP0 interrupt back on. */ 2971 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2972 SK_XM_READ_2(sc_if, XM_ISR); 2973 mii_tick(mii); 2974 callout_stop(&sc_if->sk_tick_ch); 2975 } 2976 2977 static void 2978 sk_yukon_tick(xsc_if) 2979 void *xsc_if; 2980 { 2981 struct sk_if_softc *sc_if; 2982 struct mii_data *mii; 2983 2984 sc_if = xsc_if; 2985 mii = device_get_softc(sc_if->sk_miibus); 2986 2987 mii_tick(mii); 2988 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 2989 } 2990 2991 static void 2992 sk_intr_bcom(sc_if) 2993 struct sk_if_softc *sc_if; 2994 { 2995 struct mii_data *mii; 2996 struct ifnet *ifp; 2997 int status; 2998 mii = device_get_softc(sc_if->sk_miibus); 2999 ifp = sc_if->sk_ifp; 3000 3001 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3002 3003 /* 3004 * Read the PHY interrupt register to make sure 3005 * we clear any pending interrupts. 3006 */ 3007 status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 3008 3009 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3010 sk_init_xmac(sc_if); 3011 return; 3012 } 3013 3014 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 3015 int lstat; 3016 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 3017 BRGPHY_MII_AUXSTS); 3018 3019 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 3020 mii_mediachg(mii); 3021 /* Turn off the link LED. */ 3022 SK_IF_WRITE_1(sc_if, 0, 3023 SK_LINKLED1_CTL, SK_LINKLED_OFF); 3024 sc_if->sk_link = 0; 3025 } else if (status & BRGPHY_ISR_LNK_CHG) { 3026 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3027 BRGPHY_MII_IMR, 0xFF00); 3028 mii_tick(mii); 3029 sc_if->sk_link = 1; 3030 /* Turn on the link LED. */ 3031 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3032 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 3033 SK_LINKLED_BLINK_OFF); 3034 } else { 3035 mii_tick(mii); 3036 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3037 } 3038 } 3039 3040 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3041 3042 return; 3043 } 3044 3045 static void 3046 sk_intr_xmac(sc_if) 3047 struct sk_if_softc *sc_if; 3048 { 3049 struct sk_softc *sc; 3050 u_int16_t status; 3051 3052 sc = sc_if->sk_softc; 3053 status = SK_XM_READ_2(sc_if, XM_ISR); 3054 3055 /* 3056 * Link has gone down. Start MII tick timeout to 3057 * watch for link resync. 3058 */ 3059 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 3060 if (status & XM_ISR_GP0_SET) { 3061 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 3062 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3063 } 3064 3065 if (status & XM_ISR_AUTONEG_DONE) { 3066 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 3067 } 3068 } 3069 3070 if (status & XM_IMR_TX_UNDERRUN) 3071 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 3072 3073 if (status & XM_IMR_RX_OVERRUN) 3074 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 3075 3076 status = SK_XM_READ_2(sc_if, XM_ISR); 3077 3078 return; 3079 } 3080 3081 static void 3082 sk_intr_yukon(sc_if) 3083 struct sk_if_softc *sc_if; 3084 { 3085 u_int8_t status; 3086 3087 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); 3088 /* RX overrun */ 3089 if ((status & SK_GMAC_INT_RX_OVER) != 0) { 3090 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3091 SK_RFCTL_RX_FIFO_OVER); 3092 } 3093 /* TX underrun */ 3094 if ((status & SK_GMAC_INT_TX_UNDER) != 0) { 3095 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, 3096 SK_TFCTL_TX_FIFO_UNDER); 3097 } 3098 } 3099 3100 static void 3101 sk_intr(xsc) 3102 void *xsc; 3103 { 3104 struct sk_softc *sc = xsc; 3105 struct sk_if_softc *sc_if0, *sc_if1; 3106 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 3107 u_int32_t status; 3108 3109 SK_LOCK(sc); 3110 3111 status = CSR_READ_4(sc, SK_ISSR); 3112 if (status == 0 || status == 0xffffffff || sc->sk_suspended) 3113 goto done_locked; 3114 3115 sc_if0 = sc->sk_if[SK_PORT_A]; 3116 sc_if1 = sc->sk_if[SK_PORT_B]; 3117 3118 if (sc_if0 != NULL) 3119 ifp0 = sc_if0->sk_ifp; 3120 if (sc_if1 != NULL) 3121 ifp1 = sc_if1->sk_ifp; 3122 3123 for (; (status &= sc->sk_intrmask) != 0;) { 3124 /* Handle receive interrupts first. */ 3125 if (status & SK_ISR_RX1_EOF) { 3126 if (ifp0->if_mtu > SK_MAX_FRAMELEN) 3127 sk_jumbo_rxeof(sc_if0); 3128 else 3129 sk_rxeof(sc_if0); 3130 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 3131 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3132 } 3133 if (status & SK_ISR_RX2_EOF) { 3134 if (ifp1->if_mtu > SK_MAX_FRAMELEN) 3135 sk_jumbo_rxeof(sc_if1); 3136 else 3137 sk_rxeof(sc_if1); 3138 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 3139 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 3140 } 3141 3142 /* Then transmit interrupts. */ 3143 if (status & SK_ISR_TX1_S_EOF) { 3144 sk_txeof(sc_if0); 3145 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); 3146 } 3147 if (status & SK_ISR_TX2_S_EOF) { 3148 sk_txeof(sc_if1); 3149 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); 3150 } 3151 3152 /* Then MAC interrupts. */ 3153 if (status & SK_ISR_MAC1 && 3154 ifp0->if_drv_flags & IFF_DRV_RUNNING) { 3155 if (sc->sk_type == SK_GENESIS) 3156 sk_intr_xmac(sc_if0); 3157 else 3158 sk_intr_yukon(sc_if0); 3159 } 3160 3161 if (status & SK_ISR_MAC2 && 3162 ifp1->if_drv_flags & IFF_DRV_RUNNING) { 3163 if (sc->sk_type == SK_GENESIS) 3164 sk_intr_xmac(sc_if1); 3165 else 3166 sk_intr_yukon(sc_if1); 3167 } 3168 3169 if (status & SK_ISR_EXTERNAL_REG) { 3170 if (ifp0 != NULL && 3171 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 3172 sk_intr_bcom(sc_if0); 3173 if (ifp1 != NULL && 3174 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 3175 sk_intr_bcom(sc_if1); 3176 } 3177 status = CSR_READ_4(sc, SK_ISSR); 3178 } 3179 3180 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3181 3182 if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) 3183 sk_start_locked(ifp0); 3184 if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) 3185 sk_start_locked(ifp1); 3186 3187 done_locked: 3188 SK_UNLOCK(sc); 3189 } 3190 3191 static void 3192 sk_init_xmac(sc_if) 3193 struct sk_if_softc *sc_if; 3194 { 3195 struct sk_softc *sc; 3196 struct ifnet *ifp; 3197 u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2]; 3198 static const struct sk_bcom_hack bhack[] = { 3199 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 3200 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 3201 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 3202 { 0, 0 } }; 3203 3204 SK_IF_LOCK_ASSERT(sc_if); 3205 3206 sc = sc_if->sk_softc; 3207 ifp = sc_if->sk_ifp; 3208 3209 /* Unreset the XMAC. */ 3210 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 3211 DELAY(1000); 3212 3213 /* Reset the XMAC's internal state. */ 3214 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3215 3216 /* Save the XMAC II revision */ 3217 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 3218 3219 /* 3220 * Perform additional initialization for external PHYs, 3221 * namely for the 1000baseTX cards that use the XMAC's 3222 * GMII mode. 3223 */ 3224 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3225 int i = 0; 3226 u_int32_t val; 3227 3228 /* Take PHY out of reset. */ 3229 val = sk_win_read_4(sc, SK_GPIO); 3230 if (sc_if->sk_port == SK_PORT_A) 3231 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 3232 else 3233 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 3234 sk_win_write_4(sc, SK_GPIO, val); 3235 3236 /* Enable GMII mode on the XMAC. */ 3237 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 3238 3239 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3240 BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); 3241 DELAY(10000); 3242 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3243 BRGPHY_MII_IMR, 0xFFF0); 3244 3245 /* 3246 * Early versions of the BCM5400 apparently have 3247 * a bug that requires them to have their reserved 3248 * registers initialized to some magic values. I don't 3249 * know what the numbers do, I'm just the messenger. 3250 */ 3251 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) 3252 == 0x6041) { 3253 while(bhack[i].reg) { 3254 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, 3255 bhack[i].reg, bhack[i].val); 3256 i++; 3257 } 3258 } 3259 } 3260 3261 /* Set station address */ 3262 bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN); 3263 SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]); 3264 SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]); 3265 SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]); 3266 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 3267 3268 if (ifp->if_flags & IFF_BROADCAST) { 3269 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3270 } else { 3271 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 3272 } 3273 3274 /* We don't need the FCS appended to the packet. */ 3275 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 3276 3277 /* We want short frames padded to 60 bytes. */ 3278 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 3279 3280 /* 3281 * Enable the reception of all error frames. This is is 3282 * a necessary evil due to the design of the XMAC. The 3283 * XMAC's receive FIFO is only 8K in size, however jumbo 3284 * frames can be up to 9000 bytes in length. When bad 3285 * frame filtering is enabled, the XMAC's RX FIFO operates 3286 * in 'store and forward' mode. For this to work, the 3287 * entire frame has to fit into the FIFO, but that means 3288 * that jumbo frames larger than 8192 bytes will be 3289 * truncated. Disabling all bad frame filtering causes 3290 * the RX FIFO to operate in streaming mode, in which 3291 * case the XMAC will start transfering frames out of the 3292 * RX FIFO as soon as the FIFO threshold is reached. 3293 */ 3294 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3295 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 3296 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 3297 XM_MODE_RX_INRANGELEN); 3298 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3299 } else 3300 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 3301 3302 /* 3303 * Bump up the transmit threshold. This helps hold off transmit 3304 * underruns when we're blasting traffic from both ports at once. 3305 */ 3306 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 3307 3308 /* Set Rx filter */ 3309 sk_rxfilter_genesis(sc_if); 3310 3311 /* Clear and enable interrupts */ 3312 SK_XM_READ_2(sc_if, XM_ISR); 3313 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 3314 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 3315 else 3316 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3317 3318 /* Configure MAC arbiter */ 3319 switch(sc_if->sk_xmac_rev) { 3320 case XM_XMAC_REV_B2: 3321 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 3322 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 3323 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 3324 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 3325 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 3326 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 3327 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 3328 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 3329 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3330 break; 3331 case XM_XMAC_REV_C1: 3332 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 3333 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 3334 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 3335 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 3336 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 3337 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 3338 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 3339 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 3340 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 3341 break; 3342 default: 3343 break; 3344 } 3345 sk_win_write_2(sc, SK_MACARB_CTL, 3346 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 3347 3348 sc_if->sk_link = 1; 3349 3350 return; 3351 } 3352 3353 static void 3354 sk_init_yukon(sc_if) 3355 struct sk_if_softc *sc_if; 3356 { 3357 u_int32_t phy, v; 3358 u_int16_t reg; 3359 struct sk_softc *sc; 3360 struct ifnet *ifp; 3361 u_int8_t *eaddr; 3362 int i; 3363 3364 SK_IF_LOCK_ASSERT(sc_if); 3365 3366 sc = sc_if->sk_softc; 3367 ifp = sc_if->sk_ifp; 3368 3369 if (sc->sk_type == SK_YUKON_LITE && 3370 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3371 /* 3372 * Workaround code for COMA mode, set PHY reset. 3373 * Otherwise it will not correctly take chip out of 3374 * powerdown (coma) 3375 */ 3376 v = sk_win_read_4(sc, SK_GPIO); 3377 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9; 3378 sk_win_write_4(sc, SK_GPIO, v); 3379 } 3380 3381 /* GMAC and GPHY Reset */ 3382 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 3383 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 3384 DELAY(1000); 3385 3386 if (sc->sk_type == SK_YUKON_LITE && 3387 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 3388 /* 3389 * Workaround code for COMA mode, clear PHY reset 3390 */ 3391 v = sk_win_read_4(sc, SK_GPIO); 3392 v |= SK_GPIO_DIR9; 3393 v &= ~SK_GPIO_DAT9; 3394 sk_win_write_4(sc, SK_GPIO, v); 3395 } 3396 3397 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 3398 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 3399 3400 if (sc->sk_coppertype) 3401 phy |= SK_GPHY_COPPER; 3402 else 3403 phy |= SK_GPHY_FIBER; 3404 3405 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 3406 DELAY(1000); 3407 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 3408 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 3409 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 3410 3411 /* unused read of the interrupt source register */ 3412 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 3413 3414 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 3415 3416 /* MIB Counter Clear Mode set */ 3417 reg |= YU_PAR_MIB_CLR; 3418 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3419 3420 /* MIB Counter Clear Mode clear */ 3421 reg &= ~YU_PAR_MIB_CLR; 3422 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 3423 3424 /* receive control reg */ 3425 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); 3426 3427 /* transmit parameter register */ 3428 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 3429 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 3430 3431 /* serial mode register */ 3432 reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); 3433 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3434 reg |= YU_SMR_MFL_JUMBO; 3435 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); 3436 3437 /* Setup Yukon's station address */ 3438 eaddr = IF_LLADDR(sc_if->sk_ifp); 3439 for (i = 0; i < 3; i++) 3440 SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4, 3441 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3442 /* Set GMAC source address of flow control. */ 3443 for (i = 0; i < 3; i++) 3444 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 3445 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3446 /* Set GMAC virtual address. */ 3447 for (i = 0; i < 3; i++) 3448 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, 3449 eaddr[i * 2] | eaddr[i * 2 + 1] << 8); 3450 3451 /* Set Rx filter */ 3452 sk_rxfilter_yukon(sc_if); 3453 3454 /* enable interrupt mask for counter overflows */ 3455 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 3456 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 3457 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 3458 3459 /* Configure RX MAC FIFO Flush Mask */ 3460 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | 3461 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | 3462 YU_RXSTAT_JABBER; 3463 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); 3464 3465 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */ 3466 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0) 3467 v = SK_TFCTL_OPERATION_ON; 3468 else 3469 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON; 3470 /* Configure RX MAC FIFO */ 3471 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 3472 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v); 3473 3474 /* Increase flush threshould to 64 bytes */ 3475 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, 3476 SK_RFCTL_FIFO_THRESHOLD + 1); 3477 3478 /* Configure TX MAC FIFO */ 3479 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 3480 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 3481 } 3482 3483 /* 3484 * Note that to properly initialize any part of the GEnesis chip, 3485 * you first have to take it out of reset mode. 3486 */ 3487 static void 3488 sk_init(xsc) 3489 void *xsc; 3490 { 3491 struct sk_if_softc *sc_if = xsc; 3492 3493 SK_IF_LOCK(sc_if); 3494 sk_init_locked(sc_if); 3495 SK_IF_UNLOCK(sc_if); 3496 3497 return; 3498 } 3499 3500 static void 3501 sk_init_locked(sc_if) 3502 struct sk_if_softc *sc_if; 3503 { 3504 struct sk_softc *sc; 3505 struct ifnet *ifp; 3506 struct mii_data *mii; 3507 u_int16_t reg; 3508 u_int32_t imr; 3509 int error; 3510 3511 SK_IF_LOCK_ASSERT(sc_if); 3512 3513 ifp = sc_if->sk_ifp; 3514 sc = sc_if->sk_softc; 3515 mii = device_get_softc(sc_if->sk_miibus); 3516 3517 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3518 return; 3519 3520 /* Cancel pending I/O and free all RX/TX buffers. */ 3521 sk_stop(sc_if); 3522 3523 if (sc->sk_type == SK_GENESIS) { 3524 /* Configure LINK_SYNC LED */ 3525 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 3526 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 3527 SK_LINKLED_LINKSYNC_ON); 3528 3529 /* Configure RX LED */ 3530 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 3531 SK_RXLEDCTL_COUNTER_START); 3532 3533 /* Configure TX LED */ 3534 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 3535 SK_TXLEDCTL_COUNTER_START); 3536 } 3537 3538 /* 3539 * Configure descriptor poll timer 3540 * 3541 * SK-NET GENESIS data sheet says that possibility of losing Start 3542 * transmit command due to CPU/cache related interim storage problems 3543 * under certain conditions. The document recommends a polling 3544 * mechanism to send a Start transmit command to initiate transfer 3545 * of ready descriptors regulary. To cope with this issue sk(4) now 3546 * enables descriptor poll timer to initiate descriptor processing 3547 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still 3548 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx 3549 * command instead of waiting for next descriptor polling time. 3550 * The same rule may apply to Rx side too but it seems that is not 3551 * needed at the moment. 3552 * Since sk(4) uses descriptor polling as a last resort there is no 3553 * need to set smaller polling time than maximum allowable one. 3554 */ 3555 SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX); 3556 3557 /* Configure I2C registers */ 3558 3559 /* Configure XMAC(s) */ 3560 switch (sc->sk_type) { 3561 case SK_GENESIS: 3562 sk_init_xmac(sc_if); 3563 break; 3564 case SK_YUKON: 3565 case SK_YUKON_LITE: 3566 case SK_YUKON_LP: 3567 sk_init_yukon(sc_if); 3568 break; 3569 } 3570 mii_mediachg(mii); 3571 3572 if (sc->sk_type == SK_GENESIS) { 3573 /* Configure MAC FIFOs */ 3574 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 3575 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 3576 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 3577 3578 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 3579 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 3580 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 3581 } 3582 3583 /* Configure transmit arbiter(s) */ 3584 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 3585 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 3586 3587 /* Configure RAMbuffers */ 3588 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 3589 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 3590 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 3591 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 3592 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 3593 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 3594 3595 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 3596 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 3597 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 3598 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 3599 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 3600 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 3601 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 3602 3603 /* Configure BMUs */ 3604 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 3605 if (ifp->if_mtu > SK_MAX_FRAMELEN) { 3606 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3607 SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3608 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3609 SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0))); 3610 } else { 3611 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 3612 SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0))); 3613 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 3614 SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0))); 3615 } 3616 3617 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 3618 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 3619 SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0))); 3620 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 3621 SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0))); 3622 3623 /* Init descriptors */ 3624 if (ifp->if_mtu > SK_MAX_FRAMELEN) 3625 error = sk_init_jumbo_rx_ring(sc_if); 3626 else 3627 error = sk_init_rx_ring(sc_if); 3628 if (error != 0) { 3629 device_printf(sc_if->sk_if_dev, 3630 "initialization failed: no memory for rx buffers\n"); 3631 sk_stop(sc_if); 3632 return; 3633 } 3634 sk_init_tx_ring(sc_if); 3635 3636 /* Set interrupt moderation if changed via sysctl. */ 3637 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 3638 if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) { 3639 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod, 3640 sc->sk_int_ticks)); 3641 if (bootverbose) 3642 device_printf(sc_if->sk_if_dev, 3643 "interrupt moderation is %d us.\n", 3644 sc->sk_int_mod); 3645 } 3646 3647 /* Configure interrupt handling */ 3648 CSR_READ_4(sc, SK_ISSR); 3649 if (sc_if->sk_port == SK_PORT_A) 3650 sc->sk_intrmask |= SK_INTRS1; 3651 else 3652 sc->sk_intrmask |= SK_INTRS2; 3653 3654 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 3655 3656 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3657 3658 /* Start BMUs. */ 3659 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 3660 3661 switch(sc->sk_type) { 3662 case SK_GENESIS: 3663 /* Enable XMACs TX and RX state machines */ 3664 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 3665 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 3666 break; 3667 case SK_YUKON: 3668 case SK_YUKON_LITE: 3669 case SK_YUKON_LP: 3670 reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 3671 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 3672 #if 0 3673 /* XXX disable 100Mbps and full duplex mode? */ 3674 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS); 3675 #endif 3676 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 3677 } 3678 3679 /* Activate descriptor polling timer */ 3680 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START); 3681 /* start transfer of Tx descriptors */ 3682 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 3683 3684 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3685 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3686 3687 switch (sc->sk_type) { 3688 case SK_YUKON: 3689 case SK_YUKON_LITE: 3690 case SK_YUKON_LP: 3691 callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if); 3692 break; 3693 } 3694 3695 callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp); 3696 3697 return; 3698 } 3699 3700 static void 3701 sk_stop(sc_if) 3702 struct sk_if_softc *sc_if; 3703 { 3704 int i; 3705 struct sk_softc *sc; 3706 struct sk_txdesc *txd; 3707 struct sk_rxdesc *rxd; 3708 struct sk_rxdesc *jrxd; 3709 struct ifnet *ifp; 3710 u_int32_t val; 3711 3712 SK_IF_LOCK_ASSERT(sc_if); 3713 sc = sc_if->sk_softc; 3714 ifp = sc_if->sk_ifp; 3715 3716 callout_stop(&sc_if->sk_tick_ch); 3717 callout_stop(&sc_if->sk_watchdog_ch); 3718 3719 /* stop Tx descriptor polling timer */ 3720 SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); 3721 /* stop transfer of Tx descriptors */ 3722 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP); 3723 for (i = 0; i < SK_TIMEOUT; i++) { 3724 val = CSR_READ_4(sc, sc_if->sk_tx_bmu); 3725 if ((val & SK_TXBMU_TX_STOP) == 0) 3726 break; 3727 DELAY(1); 3728 } 3729 if (i == SK_TIMEOUT) 3730 device_printf(sc_if->sk_if_dev, 3731 "can not stop transfer of Tx descriptor\n"); 3732 /* stop transfer of Rx descriptors */ 3733 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP); 3734 for (i = 0; i < SK_TIMEOUT; i++) { 3735 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR); 3736 if ((val & SK_RXBMU_RX_STOP) == 0) 3737 break; 3738 DELAY(1); 3739 } 3740 if (i == SK_TIMEOUT) 3741 device_printf(sc_if->sk_if_dev, 3742 "can not stop transfer of Rx descriptor\n"); 3743 3744 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 3745 /* Put PHY back into reset. */ 3746 val = sk_win_read_4(sc, SK_GPIO); 3747 if (sc_if->sk_port == SK_PORT_A) { 3748 val |= SK_GPIO_DIR0; 3749 val &= ~SK_GPIO_DAT0; 3750 } else { 3751 val |= SK_GPIO_DIR2; 3752 val &= ~SK_GPIO_DAT2; 3753 } 3754 sk_win_write_4(sc, SK_GPIO, val); 3755 } 3756 3757 /* Turn off various components of this interface. */ 3758 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 3759 switch (sc->sk_type) { 3760 case SK_GENESIS: 3761 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); 3762 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 3763 break; 3764 case SK_YUKON: 3765 case SK_YUKON_LITE: 3766 case SK_YUKON_LP: 3767 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 3768 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 3769 break; 3770 } 3771 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 3772 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3773 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 3774 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 3775 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 3776 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3777 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 3778 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 3779 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 3780 3781 /* Disable interrupts */ 3782 if (sc_if->sk_port == SK_PORT_A) 3783 sc->sk_intrmask &= ~SK_INTRS1; 3784 else 3785 sc->sk_intrmask &= ~SK_INTRS2; 3786 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 3787 3788 SK_XM_READ_2(sc_if, XM_ISR); 3789 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 3790 3791 /* Free RX and TX mbufs still in the queues. */ 3792 for (i = 0; i < SK_RX_RING_CNT; i++) { 3793 rxd = &sc_if->sk_cdata.sk_rxdesc[i]; 3794 if (rxd->rx_m != NULL) { 3795 bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, 3796 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3797 bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, 3798 rxd->rx_dmamap); 3799 m_freem(rxd->rx_m); 3800 rxd->rx_m = NULL; 3801 } 3802 } 3803 for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) { 3804 jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i]; 3805 if (jrxd->rx_m != NULL) { 3806 bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, 3807 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3808 bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag, 3809 jrxd->rx_dmamap); 3810 m_freem(jrxd->rx_m); 3811 jrxd->rx_m = NULL; 3812 } 3813 } 3814 for (i = 0; i < SK_TX_RING_CNT; i++) { 3815 txd = &sc_if->sk_cdata.sk_txdesc[i]; 3816 if (txd->tx_m != NULL) { 3817 bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, 3818 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3819 bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, 3820 txd->tx_dmamap); 3821 m_freem(txd->tx_m); 3822 txd->tx_m = NULL; 3823 } 3824 } 3825 3826 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); 3827 3828 return; 3829 } 3830 3831 static int 3832 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3833 { 3834 int error, value; 3835 3836 if (!arg1) 3837 return (EINVAL); 3838 value = *(int *)arg1; 3839 error = sysctl_handle_int(oidp, &value, 0, req); 3840 if (error || !req->newptr) 3841 return (error); 3842 if (value < low || value > high) 3843 return (EINVAL); 3844 *(int *)arg1 = value; 3845 return (0); 3846 } 3847 3848 static int 3849 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) 3850 { 3851 return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); 3852 } 3853