xref: /freebsd/sys/dev/sk/if_sk.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
37  * the SK-984x series adapters, both single port and dual port.
38  * References:
39  * 	The XaQti XMAC II datasheet,
40  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
41  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
42  *
43  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
44  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
45  * convenience to others until Vitesse corrects this problem:
46  *
47  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
48  *
49  * Written by Bill Paul <wpaul@ee.columbia.edu>
50  * Department of Electrical Engineering
51  * Columbia University, New York City
52  */
53 
54 /*
55  * The SysKonnect gigabit ethernet adapters consist of two main
56  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
57  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
58  * components and a PHY while the GEnesis controller provides a PCI
59  * interface with DMA support. Each card may have between 512K and
60  * 2MB of SRAM on board depending on the configuration.
61  *
62  * The SysKonnect GEnesis controller can have either one or two XMAC
63  * chips connected to it, allowing single or dual port NIC configurations.
64  * SysKonnect has the distinction of being the only vendor on the market
65  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
66  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
67  * XMAC registers. This driver takes advantage of these features to allow
68  * both XMACs to operate as independent interfaces.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/sockio.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/queue.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/bus_pio.h>
91 #include <machine/bus_memio.h>
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 #include <dev/mii/brgphyreg.h>
100 
101 #include <pci/pcireg.h>
102 #include <pci/pcivar.h>
103 
104 #define SK_USEIOSPACE
105 
106 #include <pci/if_skreg.h>
107 #include <pci/xmaciireg.h>
108 
109 MODULE_DEPEND(sk, miibus, 1, 1, 1);
110 
111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113 
114 #ifndef lint
115 static const char rcsid[] =
116   "$FreeBSD$";
117 #endif
118 
119 static struct sk_type sk_devs[] = {
120 	{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
121 	{ 0, 0, NULL }
122 };
123 
124 static int sk_probe		__P((device_t));
125 static int sk_attach		__P((device_t));
126 static int sk_detach		__P((device_t));
127 static int sk_detach_xmac	__P((device_t));
128 static int sk_probe_xmac	__P((device_t));
129 static int sk_attach_xmac	__P((device_t));
130 static void sk_tick		__P((void *));
131 static void sk_intr		__P((void *));
132 static void sk_intr_xmac	__P((struct sk_if_softc *));
133 static void sk_intr_bcom	__P((struct sk_if_softc *));
134 static void sk_rxeof		__P((struct sk_if_softc *));
135 static void sk_txeof		__P((struct sk_if_softc *));
136 static int sk_encap		__P((struct sk_if_softc *, struct mbuf *,
137 					u_int32_t *));
138 static void sk_start		__P((struct ifnet *));
139 static int sk_ioctl		__P((struct ifnet *, u_long, caddr_t));
140 static void sk_init		__P((void *));
141 static void sk_init_xmac	__P((struct sk_if_softc *));
142 static void sk_stop		__P((struct sk_if_softc *));
143 static void sk_watchdog		__P((struct ifnet *));
144 static void sk_shutdown		__P((device_t));
145 static int sk_ifmedia_upd	__P((struct ifnet *));
146 static void sk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
147 static void sk_reset		__P((struct sk_softc *));
148 static int sk_newbuf		__P((struct sk_if_softc *,
149 					struct sk_chain *, struct mbuf *));
150 static int sk_alloc_jumbo_mem	__P((struct sk_if_softc *));
151 static void *sk_jalloc		__P((struct sk_if_softc *));
152 static void sk_jfree		__P((caddr_t, void *));
153 static int sk_init_rx_ring	__P((struct sk_if_softc *));
154 static void sk_init_tx_ring	__P((struct sk_if_softc *));
155 static u_int32_t sk_win_read_4	__P((struct sk_softc *, int));
156 static u_int16_t sk_win_read_2	__P((struct sk_softc *, int));
157 static u_int8_t sk_win_read_1	__P((struct sk_softc *, int));
158 static void sk_win_write_4	__P((struct sk_softc *, int, u_int32_t));
159 static void sk_win_write_2	__P((struct sk_softc *, int, u_int32_t));
160 static void sk_win_write_1	__P((struct sk_softc *, int, u_int32_t));
161 static u_int8_t sk_vpd_readbyte	__P((struct sk_softc *, int));
162 static void sk_vpd_read_res	__P((struct sk_softc *,
163 					struct vpd_res *, int));
164 static void sk_vpd_read		__P((struct sk_softc *));
165 
166 static int sk_miibus_readreg	__P((device_t, int, int));
167 static int sk_miibus_writereg	__P((device_t, int, int, int));
168 static void sk_miibus_statchg	__P((device_t));
169 
170 static u_int32_t sk_calchash	__P((caddr_t));
171 static void sk_setfilt		__P((struct sk_if_softc *, caddr_t, int));
172 static void sk_setmulti		__P((struct sk_if_softc *));
173 
174 #ifdef SK_USEIOSPACE
175 #define SK_RES		SYS_RES_IOPORT
176 #define SK_RID		SK_PCI_LOIO
177 #else
178 #define SK_RES		SYS_RES_MEMORY
179 #define SK_RID		SK_PCI_LOMEM
180 #endif
181 
182 /*
183  * Note that we have newbus methods for both the GEnesis controller
184  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
185  * the miibus code is a child of the XMACs. We need to do it this way
186  * so that the miibus drivers can access the PHY registers on the
187  * right PHY. It's not quite what I had in mind, but it's the only
188  * design that achieves the desired effect.
189  */
190 static device_method_t skc_methods[] = {
191 	/* Device interface */
192 	DEVMETHOD(device_probe,		sk_probe),
193 	DEVMETHOD(device_attach,	sk_attach),
194 	DEVMETHOD(device_detach,	sk_detach),
195 	DEVMETHOD(device_shutdown,	sk_shutdown),
196 
197 	/* bus interface */
198 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
199 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
200 
201 	{ 0, 0 }
202 };
203 
204 static driver_t skc_driver = {
205 	"skc",
206 	skc_methods,
207 	sizeof(struct sk_softc)
208 };
209 
210 static devclass_t skc_devclass;
211 
212 static device_method_t sk_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		sk_probe_xmac),
215 	DEVMETHOD(device_attach,	sk_attach_xmac),
216 	DEVMETHOD(device_detach,	sk_detach_xmac),
217 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
218 
219 	/* bus interface */
220 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
221 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
222 
223 	/* MII interface */
224 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
225 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
226 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
227 
228 	{ 0, 0 }
229 };
230 
231 static driver_t sk_driver = {
232 	"sk",
233 	sk_methods,
234 	sizeof(struct sk_if_softc)
235 };
236 
237 static devclass_t sk_devclass;
238 
239 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
240 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
241 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
242 
243 #define SK_SETBIT(sc, reg, x)		\
244 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
245 
246 #define SK_CLRBIT(sc, reg, x)		\
247 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
248 
249 #define SK_WIN_SETBIT_4(sc, reg, x)	\
250 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
251 
252 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
253 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
254 
255 #define SK_WIN_SETBIT_2(sc, reg, x)	\
256 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
257 
258 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
259 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
260 
261 static u_int32_t sk_win_read_4(sc, reg)
262 	struct sk_softc		*sc;
263 	int			reg;
264 {
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
267 }
268 
269 static u_int16_t sk_win_read_2(sc, reg)
270 	struct sk_softc		*sc;
271 	int			reg;
272 {
273 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
274 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
275 }
276 
277 static u_int8_t sk_win_read_1(sc, reg)
278 	struct sk_softc		*sc;
279 	int			reg;
280 {
281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
283 }
284 
285 static void sk_win_write_4(sc, reg, val)
286 	struct sk_softc		*sc;
287 	int			reg;
288 	u_int32_t		val;
289 {
290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
292 	return;
293 }
294 
295 static void sk_win_write_2(sc, reg, val)
296 	struct sk_softc		*sc;
297 	int			reg;
298 	u_int32_t		val;
299 {
300 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
301 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
302 	return;
303 }
304 
305 static void sk_win_write_1(sc, reg, val)
306 	struct sk_softc		*sc;
307 	int			reg;
308 	u_int32_t		val;
309 {
310 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
311 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
312 	return;
313 }
314 
315 /*
316  * The VPD EEPROM contains Vital Product Data, as suggested in
317  * the PCI 2.1 specification. The VPD data is separared into areas
318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
319  * resource (the name of the adapter), a read-only area resource
320  * containing various key/data fields and a read/write area which
321  * can be used to store asset management information or log messages.
322  * We read the ID string and read-only into buffers attached to
323  * the controller softc structure for later use. At the moment,
324  * we only use the ID string during sk_attach().
325  */
326 static u_int8_t sk_vpd_readbyte(sc, addr)
327 	struct sk_softc		*sc;
328 	int			addr;
329 {
330 	int			i;
331 
332 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 	for (i = 0; i < SK_TIMEOUT; i++) {
334 		DELAY(1);
335 		if (sk_win_read_2(sc,
336 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 			break;
338 	}
339 
340 	if (i == SK_TIMEOUT)
341 		return(0);
342 
343 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
344 }
345 
346 static void sk_vpd_read_res(sc, res, addr)
347 	struct sk_softc		*sc;
348 	struct vpd_res		*res;
349 	int			addr;
350 {
351 	int			i;
352 	u_int8_t		*ptr;
353 
354 	ptr = (u_int8_t *)res;
355 	for (i = 0; i < sizeof(struct vpd_res); i++)
356 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
357 
358 	return;
359 }
360 
361 static void sk_vpd_read(sc)
362 	struct sk_softc		*sc;
363 {
364 	int			pos = 0, i;
365 	struct vpd_res		res;
366 
367 	if (sc->sk_vpd_prodname != NULL)
368 		free(sc->sk_vpd_prodname, M_DEVBUF);
369 	if (sc->sk_vpd_readonly != NULL)
370 		free(sc->sk_vpd_readonly, M_DEVBUF);
371 	sc->sk_vpd_prodname = NULL;
372 	sc->sk_vpd_readonly = NULL;
373 
374 	sk_vpd_read_res(sc, &res, pos);
375 
376 	if (res.vr_id != VPD_RES_ID) {
377 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
378 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
379 		return;
380 	}
381 
382 	pos += sizeof(res);
383 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
384 	for (i = 0; i < res.vr_len; i++)
385 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
386 	sc->sk_vpd_prodname[i] = '\0';
387 	pos += i;
388 
389 	sk_vpd_read_res(sc, &res, pos);
390 
391 	if (res.vr_id != VPD_RES_READ) {
392 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
393 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
394 		return;
395 	}
396 
397 	pos += sizeof(res);
398 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 	for (i = 0; i < res.vr_len + 1; i++)
400 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
401 
402 	return;
403 }
404 
405 static int sk_miibus_readreg(dev, phy, reg)
406 	device_t		dev;
407 	int			phy, reg;
408 {
409 	struct sk_if_softc	*sc_if;
410 	int			i;
411 
412 	sc_if = device_get_softc(dev);
413 
414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 		return(0);
416 
417 	SK_IF_LOCK(sc_if);
418 
419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 		for (i = 0; i < SK_TIMEOUT; i++) {
423 			DELAY(1);
424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 			    XM_MMUCMD_PHYDATARDY)
426 				break;
427 		}
428 
429 		if (i == SK_TIMEOUT) {
430 			printf("sk%d: phy failed to come ready\n",
431 			    sc_if->sk_unit);
432 			return(0);
433 		}
434 	}
435 	DELAY(1);
436 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 	SK_IF_UNLOCK(sc_if);
438 	return(i);
439 }
440 
441 static int sk_miibus_writereg(dev, phy, reg, val)
442 	device_t		dev;
443 	int			phy, reg, val;
444 {
445 	struct sk_if_softc	*sc_if;
446 	int			i;
447 
448 	sc_if = device_get_softc(dev);
449 	SK_IF_LOCK(sc_if);
450 
451 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
452 	for (i = 0; i < SK_TIMEOUT; i++) {
453 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
454 			break;
455 	}
456 
457 	if (i == SK_TIMEOUT) {
458 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
459 		return(ETIMEDOUT);
460 	}
461 
462 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
463 	for (i = 0; i < SK_TIMEOUT; i++) {
464 		DELAY(1);
465 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
466 			break;
467 	}
468 
469 	SK_IF_UNLOCK(sc_if);
470 
471 	if (i == SK_TIMEOUT)
472 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
473 
474 	return(0);
475 }
476 
477 static void sk_miibus_statchg(dev)
478 	device_t		dev;
479 {
480 	struct sk_if_softc	*sc_if;
481 	struct mii_data		*mii;
482 
483 	sc_if = device_get_softc(dev);
484 	mii = device_get_softc(sc_if->sk_miibus);
485 	SK_IF_LOCK(sc_if);
486 	/*
487 	 * If this is a GMII PHY, manually set the XMAC's
488 	 * duplex mode accordingly.
489 	 */
490 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
491 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
492 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
493 		} else {
494 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
495 		}
496 	}
497 	SK_IF_UNLOCK(sc_if);
498 
499 	return;
500 }
501 
502 #define SK_POLY		0xEDB88320
503 #define SK_BITS		6
504 
505 static u_int32_t sk_calchash(addr)
506 	caddr_t			addr;
507 {
508 	u_int32_t		idx, bit, data, crc;
509 
510 	/* Compute CRC for the address value. */
511 	crc = 0xFFFFFFFF; /* initial value */
512 
513 	for (idx = 0; idx < 6; idx++) {
514 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
515 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
516 	}
517 
518 	return (~crc & ((1 << SK_BITS) - 1));
519 }
520 
521 static void sk_setfilt(sc_if, addr, slot)
522 	struct sk_if_softc	*sc_if;
523 	caddr_t			addr;
524 	int			slot;
525 {
526 	int			base;
527 
528 	base = XM_RXFILT_ENTRY(slot);
529 
530 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
531 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
532 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
533 
534 	return;
535 }
536 
537 static void sk_setmulti(sc_if)
538 	struct sk_if_softc	*sc_if;
539 {
540 	struct ifnet		*ifp;
541 	u_int32_t		hashes[2] = { 0, 0 };
542 	int			h, i;
543 	struct ifmultiaddr	*ifma;
544 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
545 
546 	ifp = &sc_if->arpcom.ac_if;
547 
548 	/* First, zot all the existing filters. */
549 	for (i = 1; i < XM_RXFILT_MAX; i++)
550 		sk_setfilt(sc_if, (caddr_t)&dummy, i);
551 	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
552 	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
553 
554 	/* Now program new ones. */
555 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
556 		hashes[0] = 0xFFFFFFFF;
557 		hashes[1] = 0xFFFFFFFF;
558 	} else {
559 		i = 1;
560 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
561 			if (ifma->ifma_addr->sa_family != AF_LINK)
562 				continue;
563 			/*
564 			 * Program the first XM_RXFILT_MAX multicast groups
565 			 * into the perfect filter. For all others,
566 			 * use the hash table.
567 			 */
568 			if (i < XM_RXFILT_MAX) {
569 				sk_setfilt(sc_if,
570 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
571 				i++;
572 				continue;
573 			}
574 
575 			h = sk_calchash(
576 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
577 			if (h < 32)
578 				hashes[0] |= (1 << h);
579 			else
580 				hashes[1] |= (1 << (h - 32));
581 		}
582 	}
583 
584 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
585 	    XM_MODE_RX_USE_PERFECT);
586 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
587 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
588 
589 	return;
590 }
591 
592 static int sk_init_rx_ring(sc_if)
593 	struct sk_if_softc	*sc_if;
594 {
595 	struct sk_chain_data	*cd;
596 	struct sk_ring_data	*rd;
597 	int			i;
598 
599 	cd = &sc_if->sk_cdata;
600 	rd = sc_if->sk_rdata;
601 
602 	bzero((char *)rd->sk_rx_ring,
603 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
604 
605 	for (i = 0; i < SK_RX_RING_CNT; i++) {
606 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
607 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
608 			return(ENOBUFS);
609 		if (i == (SK_RX_RING_CNT - 1)) {
610 			cd->sk_rx_chain[i].sk_next =
611 			    &cd->sk_rx_chain[0];
612 			rd->sk_rx_ring[i].sk_next =
613 			    vtophys(&rd->sk_rx_ring[0]);
614 		} else {
615 			cd->sk_rx_chain[i].sk_next =
616 			    &cd->sk_rx_chain[i + 1];
617 			rd->sk_rx_ring[i].sk_next =
618 			    vtophys(&rd->sk_rx_ring[i + 1]);
619 		}
620 	}
621 
622 	sc_if->sk_cdata.sk_rx_prod = 0;
623 	sc_if->sk_cdata.sk_rx_cons = 0;
624 
625 	return(0);
626 }
627 
628 static void sk_init_tx_ring(sc_if)
629 	struct sk_if_softc	*sc_if;
630 {
631 	struct sk_chain_data	*cd;
632 	struct sk_ring_data	*rd;
633 	int			i;
634 
635 	cd = &sc_if->sk_cdata;
636 	rd = sc_if->sk_rdata;
637 
638 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
639 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
640 
641 	for (i = 0; i < SK_TX_RING_CNT; i++) {
642 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
643 		if (i == (SK_TX_RING_CNT - 1)) {
644 			cd->sk_tx_chain[i].sk_next =
645 			    &cd->sk_tx_chain[0];
646 			rd->sk_tx_ring[i].sk_next =
647 			    vtophys(&rd->sk_tx_ring[0]);
648 		} else {
649 			cd->sk_tx_chain[i].sk_next =
650 			    &cd->sk_tx_chain[i + 1];
651 			rd->sk_tx_ring[i].sk_next =
652 			    vtophys(&rd->sk_tx_ring[i + 1]);
653 		}
654 	}
655 
656 	sc_if->sk_cdata.sk_tx_prod = 0;
657 	sc_if->sk_cdata.sk_tx_cons = 0;
658 	sc_if->sk_cdata.sk_tx_cnt = 0;
659 
660 	return;
661 }
662 
663 static int sk_newbuf(sc_if, c, m)
664 	struct sk_if_softc	*sc_if;
665 	struct sk_chain		*c;
666 	struct mbuf		*m;
667 {
668 	struct mbuf		*m_new = NULL;
669 	struct sk_rx_desc	*r;
670 
671 	if (m == NULL) {
672 		caddr_t			*buf = NULL;
673 
674 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
675 		if (m_new == NULL) {
676 			printf("sk%d: no memory for rx list -- "
677 			    "packet dropped!\n", sc_if->sk_unit);
678 			return(ENOBUFS);
679 		}
680 
681 		/* Allocate the jumbo buffer */
682 		buf = sk_jalloc(sc_if);
683 		if (buf == NULL) {
684 			m_freem(m_new);
685 #ifdef SK_VERBOSE
686 			printf("sk%d: jumbo allocation failed "
687 			    "-- packet dropped!\n", sc_if->sk_unit);
688 #endif
689 			return(ENOBUFS);
690 		}
691 
692 		/* Attach the buffer to the mbuf */
693 		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
694 		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
695 		m_new->m_data = (void *)buf;
696 		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
697 	} else {
698 		/*
699 	 	 * We're re-using a previously allocated mbuf;
700 		 * be sure to re-init pointers and lengths to
701 		 * default values.
702 		 */
703 		m_new = m;
704 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
705 		m_new->m_data = m_new->m_ext.ext_buf;
706 	}
707 
708 	/*
709 	 * Adjust alignment so packet payload begins on a
710 	 * longword boundary. Mandatory for Alpha, useful on
711 	 * x86 too.
712 	 */
713 	m_adj(m_new, ETHER_ALIGN);
714 
715 	r = c->sk_desc;
716 	c->sk_mbuf = m_new;
717 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
718 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
719 
720 	return(0);
721 }
722 
723 /*
724  * Allocate jumbo buffer storage. The SysKonnect adapters support
725  * "jumbograms" (9K frames), although SysKonnect doesn't currently
726  * use them in their drivers. In order for us to use them, we need
727  * large 9K receive buffers, however standard mbuf clusters are only
728  * 2048 bytes in size. Consequently, we need to allocate and manage
729  * our own jumbo buffer pool. Fortunately, this does not require an
730  * excessive amount of additional code.
731  */
732 static int sk_alloc_jumbo_mem(sc_if)
733 	struct sk_if_softc	*sc_if;
734 {
735 	caddr_t			ptr;
736 	register int		i;
737 	struct sk_jpool_entry   *entry;
738 
739 	/* Grab a big chunk o' storage. */
740 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
741 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
742 
743 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
744 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
745 		return(ENOBUFS);
746 	}
747 
748 	SLIST_INIT(&sc_if->sk_jfree_listhead);
749 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
750 
751 	/*
752 	 * Now divide it up into 9K pieces and save the addresses
753 	 * in an array.
754 	 */
755 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
756 	for (i = 0; i < SK_JSLOTS; i++) {
757 		sc_if->sk_cdata.sk_jslots[i] = ptr;
758 		ptr += SK_JLEN;
759 		entry = malloc(sizeof(struct sk_jpool_entry),
760 		    M_DEVBUF, M_NOWAIT);
761 		if (entry == NULL) {
762 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
763 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
764 			printf("sk%d: no memory for jumbo "
765 			    "buffer queue!\n", sc_if->sk_unit);
766 			return(ENOBUFS);
767 		}
768 		entry->slot = i;
769 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
770 		    entry, jpool_entries);
771 	}
772 
773 	return(0);
774 }
775 
776 /*
777  * Allocate a jumbo buffer.
778  */
779 static void *sk_jalloc(sc_if)
780 	struct sk_if_softc	*sc_if;
781 {
782 	struct sk_jpool_entry   *entry;
783 
784 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
785 
786 	if (entry == NULL) {
787 #ifdef SK_VERBOSE
788 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
789 #endif
790 		return(NULL);
791 	}
792 
793 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
794 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
795 	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
796 }
797 
798 /*
799  * Release a jumbo buffer.
800  */
801 static void sk_jfree(buf, args)
802 	caddr_t			buf;
803 	void			*args;
804 {
805 	struct sk_if_softc	*sc_if;
806 	int		        i;
807 	struct sk_jpool_entry   *entry;
808 
809 	/* Extract the softc struct pointer. */
810 	sc_if = (struct sk_if_softc *)args;
811 
812 	if (sc_if == NULL)
813 		panic("sk_jfree: didn't get softc pointer!");
814 
815 	/* calculate the slot this buffer belongs to */
816 	i = ((vm_offset_t)buf
817 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
818 
819 	if ((i < 0) || (i >= SK_JSLOTS))
820 		panic("sk_jfree: asked to free buffer that we don't manage!");
821 
822 	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
823 	if (entry == NULL)
824 		panic("sk_jfree: buffer not in use!");
825 	entry->slot = i;
826 	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
827 	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
828 
829 	return;
830 }
831 
832 /*
833  * Set media options.
834  */
835 static int sk_ifmedia_upd(ifp)
836 	struct ifnet		*ifp;
837 {
838 	struct sk_if_softc	*sc_if;
839 	struct mii_data		*mii;
840 
841 	sc_if = ifp->if_softc;
842 	mii = device_get_softc(sc_if->sk_miibus);
843 	sk_init(sc_if);
844 	mii_mediachg(mii);
845 
846 	return(0);
847 }
848 
849 /*
850  * Report current media status.
851  */
852 static void sk_ifmedia_sts(ifp, ifmr)
853 	struct ifnet		*ifp;
854 	struct ifmediareq	*ifmr;
855 {
856 	struct sk_if_softc	*sc_if;
857 	struct mii_data		*mii;
858 
859 	sc_if = ifp->if_softc;
860 	mii = device_get_softc(sc_if->sk_miibus);
861 
862 	mii_pollstat(mii);
863 	ifmr->ifm_active = mii->mii_media_active;
864 	ifmr->ifm_status = mii->mii_media_status;
865 
866 	return;
867 }
868 
869 static int sk_ioctl(ifp, command, data)
870 	struct ifnet		*ifp;
871 	u_long			command;
872 	caddr_t			data;
873 {
874 	struct sk_if_softc	*sc_if = ifp->if_softc;
875 	struct ifreq		*ifr = (struct ifreq *) data;
876 	int			error = 0;
877 	struct mii_data		*mii;
878 
879 	SK_IF_LOCK(sc_if);
880 
881 	switch(command) {
882 	case SIOCSIFADDR:
883 	case SIOCGIFADDR:
884 		error = ether_ioctl(ifp, command, data);
885 		break;
886 	case SIOCSIFMTU:
887 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
888 			error = EINVAL;
889 		else {
890 			ifp->if_mtu = ifr->ifr_mtu;
891 			sk_init(sc_if);
892 		}
893 		break;
894 	case SIOCSIFFLAGS:
895 		if (ifp->if_flags & IFF_UP) {
896 			if (ifp->if_flags & IFF_RUNNING &&
897 			    ifp->if_flags & IFF_PROMISC &&
898 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
899 				SK_XM_SETBIT_4(sc_if, XM_MODE,
900 				    XM_MODE_RX_PROMISC);
901 				sk_setmulti(sc_if);
902 			} else if (ifp->if_flags & IFF_RUNNING &&
903 			    !(ifp->if_flags & IFF_PROMISC) &&
904 			    sc_if->sk_if_flags & IFF_PROMISC) {
905 				SK_XM_CLRBIT_4(sc_if, XM_MODE,
906 				    XM_MODE_RX_PROMISC);
907 				sk_setmulti(sc_if);
908 			} else
909 				sk_init(sc_if);
910 		} else {
911 			if (ifp->if_flags & IFF_RUNNING)
912 				sk_stop(sc_if);
913 		}
914 		sc_if->sk_if_flags = ifp->if_flags;
915 		error = 0;
916 		break;
917 	case SIOCADDMULTI:
918 	case SIOCDELMULTI:
919 		sk_setmulti(sc_if);
920 		error = 0;
921 		break;
922 	case SIOCGIFMEDIA:
923 	case SIOCSIFMEDIA:
924 		mii = device_get_softc(sc_if->sk_miibus);
925 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
926 		break;
927 	default:
928 		error = EINVAL;
929 		break;
930 	}
931 
932 	SK_IF_UNLOCK(sc_if);
933 
934 	return(error);
935 }
936 
937 /*
938  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
939  * IDs against our list and return a device name if we find a match.
940  */
941 static int sk_probe(dev)
942 	device_t		dev;
943 {
944 	struct sk_type		*t;
945 
946 	t = sk_devs;
947 
948 	while(t->sk_name != NULL) {
949 		if ((pci_get_vendor(dev) == t->sk_vid) &&
950 		    (pci_get_device(dev) == t->sk_did)) {
951 			device_set_desc(dev, t->sk_name);
952 			return(0);
953 		}
954 		t++;
955 	}
956 
957 	return(ENXIO);
958 }
959 
960 /*
961  * Force the GEnesis into reset, then bring it out of reset.
962  */
963 static void sk_reset(sc)
964 	struct sk_softc		*sc;
965 {
966 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
967 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
968 	DELAY(1000);
969 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
970 	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
971 
972 	/* Configure packet arbiter */
973 	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
974 	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
975 	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
976 	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
977 	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
978 
979 	/* Enable RAM interface */
980 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
981 
982 	/*
983          * Configure interrupt moderation. The moderation timer
984 	 * defers interrupts specified in the interrupt moderation
985 	 * timer mask based on the timeout specified in the interrupt
986 	 * moderation timer init register. Each bit in the timer
987 	 * register represents 18.825ns, so to specify a timeout in
988 	 * microseconds, we have to multiply by 54.
989 	 */
990         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
991         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
992 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
993         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
994 
995 	return;
996 }
997 
998 static int sk_probe_xmac(dev)
999 	device_t		dev;
1000 {
1001 	/*
1002 	 * Not much to do here. We always know there will be
1003 	 * at least one XMAC present, and if there are two,
1004 	 * sk_attach() will create a second device instance
1005 	 * for us.
1006 	 */
1007 	device_set_desc(dev, "XaQti Corp. XMAC II");
1008 
1009 	return(0);
1010 }
1011 
1012 /*
1013  * Each XMAC chip is attached as a separate logical IP interface.
1014  * Single port cards will have only one logical interface of course.
1015  */
1016 static int sk_attach_xmac(dev)
1017 	device_t		dev;
1018 {
1019 	struct sk_softc		*sc;
1020 	struct sk_if_softc	*sc_if;
1021 	struct ifnet		*ifp;
1022 	int			i, port;
1023 
1024 	if (dev == NULL)
1025 		return(EINVAL);
1026 
1027 	sc_if = device_get_softc(dev);
1028 	sc = device_get_softc(device_get_parent(dev));
1029 	SK_LOCK(sc);
1030 	port = *(int *)device_get_ivars(dev);
1031 	free(device_get_ivars(dev), M_DEVBUF);
1032 	device_set_ivars(dev, NULL);
1033 	sc_if->sk_dev = dev;
1034 
1035 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1036 
1037 	sc_if->sk_dev = dev;
1038 	sc_if->sk_unit = device_get_unit(dev);
1039 	sc_if->sk_port = port;
1040 	sc_if->sk_softc = sc;
1041 	sc->sk_if[port] = sc_if;
1042 	if (port == SK_PORT_A)
1043 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1044 	if (port == SK_PORT_B)
1045 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1046 
1047 	/*
1048 	 * Get station address for this interface. Note that
1049 	 * dual port cards actually come with three station
1050 	 * addresses: one for each port, plus an extra. The
1051 	 * extra one is used by the SysKonnect driver software
1052 	 * as a 'virtual' station address for when both ports
1053 	 * are operating in failover mode. Currently we don't
1054 	 * use this extra address.
1055 	 */
1056 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1057 		sc_if->arpcom.ac_enaddr[i] =
1058 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1059 
1060 	printf("sk%d: Ethernet address: %6D\n",
1061 	    sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
1062 
1063 	/*
1064 	 * Set up RAM buffer addresses. The NIC will have a certain
1065 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1066 	 * need to divide this up a) between the transmitter and
1067  	 * receiver and b) between the two XMACs, if this is a
1068 	 * dual port NIC. Our algotithm is to divide up the memory
1069 	 * evenly so that everyone gets a fair share.
1070 	 */
1071 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1072 		u_int32_t		chunk, val;
1073 
1074 		chunk = sc->sk_ramsize / 2;
1075 		val = sc->sk_rboff / sizeof(u_int64_t);
1076 		sc_if->sk_rx_ramstart = val;
1077 		val += (chunk / sizeof(u_int64_t));
1078 		sc_if->sk_rx_ramend = val - 1;
1079 		sc_if->sk_tx_ramstart = val;
1080 		val += (chunk / sizeof(u_int64_t));
1081 		sc_if->sk_tx_ramend = val - 1;
1082 	} else {
1083 		u_int32_t		chunk, val;
1084 
1085 		chunk = sc->sk_ramsize / 4;
1086 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1087 		    sizeof(u_int64_t);
1088 		sc_if->sk_rx_ramstart = val;
1089 		val += (chunk / sizeof(u_int64_t));
1090 		sc_if->sk_rx_ramend = val - 1;
1091 		sc_if->sk_tx_ramstart = val;
1092 		val += (chunk / sizeof(u_int64_t));
1093 		sc_if->sk_tx_ramend = val - 1;
1094 	}
1095 
1096 	/* Read and save PHY type and set PHY address */
1097 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1098 	switch(sc_if->sk_phytype) {
1099 	case SK_PHYTYPE_XMAC:
1100 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1101 		break;
1102 	case SK_PHYTYPE_BCOM:
1103 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1104 		break;
1105 	default:
1106 		printf("skc%d: unsupported PHY type: %d\n",
1107 		    sc->sk_unit, sc_if->sk_phytype);
1108 		SK_UNLOCK(sc);
1109 		return(ENODEV);
1110 	}
1111 
1112 	/* Allocate the descriptor queues. */
1113 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1114 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1115 
1116 	if (sc_if->sk_rdata == NULL) {
1117 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1118 		sc->sk_if[port] = NULL;
1119 		SK_UNLOCK(sc);
1120 		return(ENOMEM);
1121 	}
1122 
1123 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1124 
1125 	/* Try to allocate memory for jumbo buffers. */
1126 	if (sk_alloc_jumbo_mem(sc_if)) {
1127 		printf("sk%d: jumbo buffer allocation failed\n",
1128 		    sc_if->sk_unit);
1129 		contigfree(sc_if->sk_rdata,
1130 		    sizeof(struct sk_ring_data), M_DEVBUF);
1131 		sc->sk_if[port] = NULL;
1132 		SK_UNLOCK(sc);
1133 		return(ENOMEM);
1134 	}
1135 
1136 	ifp = &sc_if->arpcom.ac_if;
1137 	ifp->if_softc = sc_if;
1138 	ifp->if_unit = sc_if->sk_unit;
1139 	ifp->if_name = "sk";
1140 	ifp->if_mtu = ETHERMTU;
1141 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1142 	ifp->if_ioctl = sk_ioctl;
1143 	ifp->if_output = ether_output;
1144 	ifp->if_start = sk_start;
1145 	ifp->if_watchdog = sk_watchdog;
1146 	ifp->if_init = sk_init;
1147 	ifp->if_baudrate = 1000000000;
1148 	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1149 
1150 	/*
1151 	 * Call MI attach routine.
1152 	 */
1153 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1154 	callout_handle_init(&sc_if->sk_tick_ch);
1155 
1156 	/*
1157 	 * Do miibus setup.
1158 	 */
1159 	sk_init_xmac(sc_if);
1160 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1161 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1162 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1163 		contigfree(sc_if->sk_rdata,
1164 		    sizeof(struct sk_ring_data), M_DEVBUF);
1165 		ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1166 		SK_UNLOCK(sc);
1167 		return(ENXIO);
1168 	}
1169 
1170 	SK_UNLOCK(sc);
1171 
1172 	return(0);
1173 }
1174 
1175 /*
1176  * Attach the interface. Allocate softc structures, do ifmedia
1177  * setup and ethernet/BPF attach.
1178  */
1179 static int sk_attach(dev)
1180 	device_t		dev;
1181 {
1182 	u_int32_t		command;
1183 	struct sk_softc		*sc;
1184 	int			unit, error = 0, rid, *port;
1185 
1186 	sc = device_get_softc(dev);
1187 	unit = device_get_unit(dev);
1188 	bzero(sc, sizeof(struct sk_softc));
1189 
1190 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1191 	SK_LOCK(sc);
1192 
1193 	/*
1194 	 * Handle power management nonsense.
1195 	 */
1196 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1197 		u_int32_t		iobase, membase, irq;
1198 
1199 		/* Save important PCI config data. */
1200 		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1201 		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1202 		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1203 
1204 		/* Reset the power state. */
1205 		printf("skc%d: chip is in D%d power mode "
1206 		    "-- setting to D0\n", unit,
1207 		    pci_get_powerstate(dev));
1208 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1209 
1210 		/* Restore PCI config data. */
1211 		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1212 		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1213 		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1214 	}
1215 
1216 	/*
1217 	 * Map control/status registers.
1218 	 */
1219 	pci_enable_busmaster(dev);
1220 	pci_enable_io(dev, PCIM_CMD_PORTEN);
1221 	pci_enable_io(dev, PCIM_CMD_MEMEN);
1222 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1223 
1224 #ifdef SK_USEIOSPACE
1225 	if (!(command & PCIM_CMD_PORTEN)) {
1226 		printf("skc%d: failed to enable I/O ports!\n", unit);
1227 		error = ENXIO;
1228 		goto fail;
1229 	}
1230 #else
1231 	if (!(command & PCIM_CMD_MEMEN)) {
1232 		printf("skc%d: failed to enable memory mapping!\n", unit);
1233 		error = ENXIO;
1234 		goto fail;
1235 	}
1236 #endif
1237 
1238 	rid = SK_RID;
1239 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1240 	    0, ~0, 1, RF_ACTIVE);
1241 
1242 	if (sc->sk_res == NULL) {
1243 		printf("sk%d: couldn't map ports/memory\n", unit);
1244 		error = ENXIO;
1245 		goto fail;
1246 	}
1247 
1248 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1249 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1250 
1251 	/* Allocate interrupt */
1252 	rid = 0;
1253 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1254 	    RF_SHAREABLE | RF_ACTIVE);
1255 
1256 	if (sc->sk_irq == NULL) {
1257 		printf("skc%d: couldn't map interrupt\n", unit);
1258 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1259 		error = ENXIO;
1260 		goto fail;
1261 	}
1262 
1263 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1264 	    sk_intr, sc, &sc->sk_intrhand);
1265 
1266 	if (error) {
1267 		printf("skc%d: couldn't set up irq\n", unit);
1268 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1269 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1270 		goto fail;
1271 	}
1272 
1273 	/* Reset the adapter. */
1274 	sk_reset(sc);
1275 
1276 	sc->sk_unit = unit;
1277 
1278 	/* Read and save vital product data from EEPROM. */
1279 	sk_vpd_read(sc);
1280 
1281 	/* Read and save RAM size and RAMbuffer offset */
1282 	switch(sk_win_read_1(sc, SK_EPROM0)) {
1283 	case SK_RAMSIZE_512K_64:
1284 		sc->sk_ramsize = 0x80000;
1285 		sc->sk_rboff = SK_RBOFF_0;
1286 		break;
1287 	case SK_RAMSIZE_1024K_64:
1288 		sc->sk_ramsize = 0x100000;
1289 		sc->sk_rboff = SK_RBOFF_80000;
1290 		break;
1291 	case SK_RAMSIZE_1024K_128:
1292 		sc->sk_ramsize = 0x100000;
1293 		sc->sk_rboff = SK_RBOFF_0;
1294 		break;
1295 	case SK_RAMSIZE_2048K_128:
1296 		sc->sk_ramsize = 0x200000;
1297 		sc->sk_rboff = SK_RBOFF_0;
1298 		break;
1299 	default:
1300 		printf("skc%d: unknown ram size: %d\n",
1301 		    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1302 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1303 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1304 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1305 		error = ENXIO;
1306 		goto fail;
1307 		break;
1308 	}
1309 
1310 	/* Read and save physical media type */
1311 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1312 	case SK_PMD_1000BASESX:
1313 		sc->sk_pmd = IFM_1000_SX;
1314 		break;
1315 	case SK_PMD_1000BASELX:
1316 		sc->sk_pmd = IFM_1000_LX;
1317 		break;
1318 	case SK_PMD_1000BASECX:
1319 		sc->sk_pmd = IFM_1000_CX;
1320 		break;
1321 	case SK_PMD_1000BASETX:
1322 		sc->sk_pmd = IFM_1000_TX;
1323 		break;
1324 	default:
1325 		printf("skc%d: unknown media type: 0x%x\n",
1326 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1327 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1328 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1329 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1330 		error = ENXIO;
1331 		goto fail;
1332 	}
1333 
1334 	/* Announce the product name. */
1335 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1336 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1337 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1338 	*port = SK_PORT_A;
1339 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1340 
1341 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1342 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1343 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1344 		*port = SK_PORT_B;
1345 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1346 	}
1347 
1348 	/* Turn on the 'driver is loaded' LED. */
1349 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1350 
1351 	bus_generic_attach(dev);
1352 	SK_UNLOCK(sc);
1353 	return(0);
1354 
1355 fail:
1356 	SK_UNLOCK(sc);
1357 	mtx_destroy(&sc->sk_mtx);
1358 	return(error);
1359 }
1360 
1361 static int sk_detach_xmac(dev)
1362 	device_t		dev;
1363 {
1364 	struct sk_softc		*sc;
1365 	struct sk_if_softc	*sc_if;
1366 	struct ifnet		*ifp;
1367 
1368 	sc = device_get_softc(device_get_parent(dev));
1369 	sc_if = device_get_softc(dev);
1370 	SK_IF_LOCK(sc_if);
1371 
1372 	ifp = &sc_if->arpcom.ac_if;
1373 	sk_stop(sc_if);
1374 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1375 	bus_generic_detach(dev);
1376 	if (sc_if->sk_miibus != NULL)
1377 		device_delete_child(dev, sc_if->sk_miibus);
1378 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1379 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1380 	SK_IF_UNLOCK(sc_if);
1381 
1382 	return(0);
1383 }
1384 
1385 static int sk_detach(dev)
1386 	device_t		dev;
1387 {
1388 	struct sk_softc		*sc;
1389 
1390 	sc = device_get_softc(dev);
1391 	SK_LOCK(sc);
1392 
1393 	bus_generic_detach(dev);
1394 	if (sc->sk_devs[SK_PORT_A] != NULL)
1395 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1396 	if (sc->sk_devs[SK_PORT_B] != NULL)
1397 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1398 
1399 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1400 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1401 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1402 
1403 	SK_UNLOCK(sc);
1404 	mtx_destroy(&sc->sk_mtx);
1405 
1406 	return(0);
1407 }
1408 
1409 static int sk_encap(sc_if, m_head, txidx)
1410         struct sk_if_softc	*sc_if;
1411         struct mbuf		*m_head;
1412         u_int32_t		*txidx;
1413 {
1414 	struct sk_tx_desc	*f = NULL;
1415 	struct mbuf		*m;
1416 	u_int32_t		frag, cur, cnt = 0;
1417 
1418 	m = m_head;
1419 	cur = frag = *txidx;
1420 
1421 	/*
1422 	 * Start packing the mbufs in this chain into
1423 	 * the fragment pointers. Stop when we run out
1424 	 * of fragments or hit the end of the mbuf chain.
1425 	 */
1426 	for (m = m_head; m != NULL; m = m->m_next) {
1427 		if (m->m_len != 0) {
1428 			if ((SK_TX_RING_CNT -
1429 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1430 				return(ENOBUFS);
1431 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1432 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1433 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1434 			if (cnt == 0)
1435 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1436 			else
1437 				f->sk_ctl |= SK_TXCTL_OWN;
1438 			cur = frag;
1439 			SK_INC(frag, SK_TX_RING_CNT);
1440 			cnt++;
1441 		}
1442 	}
1443 
1444 	if (m != NULL)
1445 		return(ENOBUFS);
1446 
1447 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1448 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1449 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1450 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1451 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1452 
1453 	*txidx = frag;
1454 
1455 	return(0);
1456 }
1457 
1458 static void sk_start(ifp)
1459 	struct ifnet		*ifp;
1460 {
1461         struct sk_softc		*sc;
1462         struct sk_if_softc	*sc_if;
1463         struct mbuf		*m_head = NULL;
1464         u_int32_t		idx;
1465 
1466 	sc_if = ifp->if_softc;
1467 	sc = sc_if->sk_softc;
1468 
1469 	SK_IF_LOCK(sc_if);
1470 
1471 	idx = sc_if->sk_cdata.sk_tx_prod;
1472 
1473 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1474 		IF_DEQUEUE(&ifp->if_snd, m_head);
1475 		if (m_head == NULL)
1476 			break;
1477 
1478 		/*
1479 		 * Pack the data into the transmit ring. If we
1480 		 * don't have room, set the OACTIVE flag and wait
1481 		 * for the NIC to drain the ring.
1482 		 */
1483 		if (sk_encap(sc_if, m_head, &idx)) {
1484 			IF_PREPEND(&ifp->if_snd, m_head);
1485 			ifp->if_flags |= IFF_OACTIVE;
1486 			break;
1487 		}
1488 
1489 		/*
1490 		 * If there's a BPF listener, bounce a copy of this frame
1491 		 * to him.
1492 		 */
1493 		if (ifp->if_bpf)
1494 			bpf_mtap(ifp, m_head);
1495 	}
1496 
1497 	/* Transmit */
1498 	sc_if->sk_cdata.sk_tx_prod = idx;
1499 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1500 
1501 	/* Set a timeout in case the chip goes out to lunch. */
1502 	ifp->if_timer = 5;
1503 	SK_IF_UNLOCK(sc_if);
1504 
1505 	return;
1506 }
1507 
1508 
1509 static void sk_watchdog(ifp)
1510 	struct ifnet		*ifp;
1511 {
1512 	struct sk_if_softc	*sc_if;
1513 
1514 	sc_if = ifp->if_softc;
1515 
1516 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1517 	sk_init(sc_if);
1518 
1519 	return;
1520 }
1521 
1522 static void sk_shutdown(dev)
1523 	device_t		dev;
1524 {
1525 	struct sk_softc		*sc;
1526 
1527 	sc = device_get_softc(dev);
1528 	SK_LOCK(sc);
1529 
1530 	/* Turn off the 'driver is loaded' LED. */
1531 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1532 
1533 	/*
1534 	 * Reset the GEnesis controller. Doing this should also
1535 	 * assert the resets on the attached XMAC(s).
1536 	 */
1537 	sk_reset(sc);
1538 	SK_UNLOCK(sc);
1539 
1540 	return;
1541 }
1542 
1543 static void sk_rxeof(sc_if)
1544 	struct sk_if_softc	*sc_if;
1545 {
1546 	struct ether_header	*eh;
1547 	struct mbuf		*m;
1548 	struct ifnet		*ifp;
1549 	struct sk_chain		*cur_rx;
1550 	int			total_len = 0;
1551 	int			i;
1552 	u_int32_t		rxstat;
1553 
1554 	ifp = &sc_if->arpcom.ac_if;
1555 	i = sc_if->sk_cdata.sk_rx_prod;
1556 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1557 
1558 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1559 
1560 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1561 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1562 		m = cur_rx->sk_mbuf;
1563 		cur_rx->sk_mbuf = NULL;
1564 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1565 		SK_INC(i, SK_RX_RING_CNT);
1566 
1567 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1568 			ifp->if_ierrors++;
1569 			sk_newbuf(sc_if, cur_rx, m);
1570 			continue;
1571 		}
1572 
1573 		/*
1574 		 * Try to allocate a new jumbo buffer. If that
1575 		 * fails, copy the packet to mbufs and put the
1576 		 * jumbo buffer back in the ring so it can be
1577 		 * re-used. If allocating mbufs fails, then we
1578 		 * have to drop the packet.
1579 		 */
1580 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1581 			struct mbuf		*m0;
1582 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1583 			    ifp, NULL);
1584 			sk_newbuf(sc_if, cur_rx, m);
1585 			if (m0 == NULL) {
1586 				printf("sk%d: no receive buffers "
1587 				    "available -- packet dropped!\n",
1588 				    sc_if->sk_unit);
1589 				ifp->if_ierrors++;
1590 				continue;
1591 			}
1592 			m = m0;
1593 		} else {
1594 			m->m_pkthdr.rcvif = ifp;
1595 			m->m_pkthdr.len = m->m_len = total_len;
1596 		}
1597 
1598 		ifp->if_ipackets++;
1599 		eh = mtod(m, struct ether_header *);
1600 
1601 		/* Remove header from mbuf and pass it on. */
1602 		m_adj(m, sizeof(struct ether_header));
1603 		ether_input(ifp, eh, m);
1604 	}
1605 
1606 	sc_if->sk_cdata.sk_rx_prod = i;
1607 
1608 	return;
1609 }
1610 
1611 static void sk_txeof(sc_if)
1612 	struct sk_if_softc	*sc_if;
1613 {
1614 	struct sk_tx_desc	*cur_tx = NULL;
1615 	struct ifnet		*ifp;
1616 	u_int32_t		idx;
1617 
1618 	ifp = &sc_if->arpcom.ac_if;
1619 
1620 	/*
1621 	 * Go through our tx ring and free mbufs for those
1622 	 * frames that have been sent.
1623 	 */
1624 	idx = sc_if->sk_cdata.sk_tx_cons;
1625 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1626 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1627 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1628 			break;
1629 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1630 			ifp->if_opackets++;
1631 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1632 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1633 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1634 		}
1635 		sc_if->sk_cdata.sk_tx_cnt--;
1636 		SK_INC(idx, SK_TX_RING_CNT);
1637 		ifp->if_timer = 0;
1638 	}
1639 
1640 	sc_if->sk_cdata.sk_tx_cons = idx;
1641 
1642 	if (cur_tx != NULL)
1643 		ifp->if_flags &= ~IFF_OACTIVE;
1644 
1645 	return;
1646 }
1647 
1648 static void sk_tick(xsc_if)
1649 	void			*xsc_if;
1650 {
1651 	struct sk_if_softc	*sc_if;
1652 	struct mii_data		*mii;
1653 	struct ifnet		*ifp;
1654 	int			i;
1655 
1656 	sc_if = xsc_if;
1657 	SK_IF_LOCK(sc_if);
1658 	ifp = &sc_if->arpcom.ac_if;
1659 	mii = device_get_softc(sc_if->sk_miibus);
1660 
1661 	if (!(ifp->if_flags & IFF_UP)) {
1662 		SK_IF_UNLOCK(sc_if);
1663 		return;
1664 	}
1665 
1666 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1667 		sk_intr_bcom(sc_if);
1668 		SK_IF_UNLOCK(sc_if);
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * According to SysKonnect, the correct way to verify that
1674 	 * the link has come back up is to poll bit 0 of the GPIO
1675 	 * register three times. This pin has the signal from the
1676 	 * link_sync pin connected to it; if we read the same link
1677 	 * state 3 times in a row, we know the link is up.
1678 	 */
1679 	for (i = 0; i < 3; i++) {
1680 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1681 			break;
1682 	}
1683 
1684 	if (i != 3) {
1685 		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1686 		SK_IF_UNLOCK(sc_if);
1687 		return;
1688 	}
1689 
1690 	/* Turn the GP0 interrupt back on. */
1691 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1692 	SK_XM_READ_2(sc_if, XM_ISR);
1693 	mii_tick(mii);
1694 	mii_pollstat(mii);
1695 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
1696 
1697 	SK_IF_UNLOCK(sc_if);
1698 	return;
1699 }
1700 
1701 static void sk_intr_bcom(sc_if)
1702 	struct sk_if_softc	*sc_if;
1703 {
1704 	struct sk_softc		*sc;
1705 	struct mii_data		*mii;
1706 	struct ifnet		*ifp;
1707 	int			status;
1708 
1709 	sc = sc_if->sk_softc;
1710 	mii = device_get_softc(sc_if->sk_miibus);
1711 	ifp = &sc_if->arpcom.ac_if;
1712 
1713 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1714 
1715 	/*
1716 	 * Read the PHY interrupt register to make sure
1717 	 * we clear any pending interrupts.
1718 	 */
1719 	status = sk_miibus_readreg(sc_if->sk_dev,
1720 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1721 
1722 	if (!(ifp->if_flags & IFF_RUNNING)) {
1723 		sk_init_xmac(sc_if);
1724 		return;
1725 	}
1726 
1727 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1728 		int			lstat;
1729 		lstat = sk_miibus_readreg(sc_if->sk_dev,
1730 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1731 
1732 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1733 			mii_mediachg(mii);
1734 			/* Turn off the link LED. */
1735 			SK_IF_WRITE_1(sc_if, 0,
1736 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1737 			sc_if->sk_link = 0;
1738 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1739 			sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1740 	    		    BRGPHY_MII_IMR, 0xFF00);
1741 			mii_tick(mii);
1742 			sc_if->sk_link = 1;
1743 			/* Turn on the link LED. */
1744 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1745 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1746 			    SK_LINKLED_BLINK_OFF);
1747 			mii_pollstat(mii);
1748 		} else {
1749 			mii_tick(mii);
1750 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1751 		}
1752 	}
1753 
1754 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1755 
1756 	return;
1757 }
1758 
1759 static void sk_intr_xmac(sc_if)
1760 	struct sk_if_softc	*sc_if;
1761 {
1762 	struct sk_softc		*sc;
1763 	u_int16_t		status;
1764 	struct mii_data		*mii;
1765 
1766 	sc = sc_if->sk_softc;
1767 	mii = device_get_softc(sc_if->sk_miibus);
1768 	status = SK_XM_READ_2(sc_if, XM_ISR);
1769 
1770 	/*
1771 	 * Link has gone down. Start MII tick timeout to
1772 	 * watch for link resync.
1773 	 */
1774 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1775 		if (status & XM_ISR_GP0_SET) {
1776 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1777 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1778 		}
1779 
1780 		if (status & XM_ISR_AUTONEG_DONE) {
1781 			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
1782 		}
1783 	}
1784 
1785 	if (status & XM_IMR_TX_UNDERRUN)
1786 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1787 
1788 	if (status & XM_IMR_RX_OVERRUN)
1789 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1790 
1791 	status = SK_XM_READ_2(sc_if, XM_ISR);
1792 
1793 	return;
1794 }
1795 
1796 static void sk_intr(xsc)
1797 	void			*xsc;
1798 {
1799 	struct sk_softc		*sc = xsc;
1800 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1801 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1802 	u_int32_t		status;
1803 
1804 	SK_LOCK(sc);
1805 
1806 	sc_if0 = sc->sk_if[SK_PORT_A];
1807 	sc_if1 = sc->sk_if[SK_PORT_B];
1808 
1809 	if (sc_if0 != NULL)
1810 		ifp0 = &sc_if0->arpcom.ac_if;
1811 	if (sc_if1 != NULL)
1812 		ifp1 = &sc_if1->arpcom.ac_if;
1813 
1814 	for (;;) {
1815 		status = CSR_READ_4(sc, SK_ISSR);
1816 		if (!(status & sc->sk_intrmask))
1817 			break;
1818 
1819 		/* Handle receive interrupts first. */
1820 		if (status & SK_ISR_RX1_EOF) {
1821 			sk_rxeof(sc_if0);
1822 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1823 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1824 		}
1825 		if (status & SK_ISR_RX2_EOF) {
1826 			sk_rxeof(sc_if1);
1827 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1828 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1829 		}
1830 
1831 		/* Then transmit interrupts. */
1832 		if (status & SK_ISR_TX1_S_EOF) {
1833 			sk_txeof(sc_if0);
1834 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1835 			    SK_TXBMU_CLR_IRQ_EOF);
1836 		}
1837 		if (status & SK_ISR_TX2_S_EOF) {
1838 			sk_txeof(sc_if1);
1839 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1840 			    SK_TXBMU_CLR_IRQ_EOF);
1841 		}
1842 
1843 		/* Then MAC interrupts. */
1844 		if (status & SK_ISR_MAC1 &&
1845 		    ifp0->if_flags & IFF_RUNNING)
1846 			sk_intr_xmac(sc_if0);
1847 
1848 		if (status & SK_ISR_MAC2 &&
1849 		    ifp1->if_flags & IFF_RUNNING)
1850 			sk_intr_xmac(sc_if1);
1851 
1852 		if (status & SK_ISR_EXTERNAL_REG) {
1853 			if (ifp0 != NULL)
1854 				sk_intr_bcom(sc_if0);
1855 			if (ifp1 != NULL)
1856 				sk_intr_bcom(sc_if1);
1857 		}
1858 	}
1859 
1860 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1861 
1862 	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1863 		sk_start(ifp0);
1864 	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1865 		sk_start(ifp1);
1866 
1867 	SK_UNLOCK(sc);
1868 
1869 	return;
1870 }
1871 
1872 static void sk_init_xmac(sc_if)
1873 	struct sk_if_softc	*sc_if;
1874 {
1875 	struct sk_softc		*sc;
1876 	struct ifnet		*ifp;
1877 	struct sk_bcom_hack	bhack[] = {
1878 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1879 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1880 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1881 	{ 0, 0 } };
1882 
1883 	sc = sc_if->sk_softc;
1884 	ifp = &sc_if->arpcom.ac_if;
1885 
1886 	/* Unreset the XMAC. */
1887 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1888 	DELAY(1000);
1889 
1890 	/* Reset the XMAC's internal state. */
1891 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1892 
1893 	/* Save the XMAC II revision */
1894 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1895 
1896 	/*
1897 	 * Perform additional initialization for external PHYs,
1898 	 * namely for the 1000baseTX cards that use the XMAC's
1899 	 * GMII mode.
1900 	 */
1901 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1902 		int			i = 0;
1903 		u_int32_t		val;
1904 
1905 		/* Take PHY out of reset. */
1906 		val = sk_win_read_4(sc, SK_GPIO);
1907 		if (sc_if->sk_port == SK_PORT_A)
1908 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1909 		else
1910 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1911 		sk_win_write_4(sc, SK_GPIO, val);
1912 
1913 		/* Enable GMII mode on the XMAC. */
1914 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1915 
1916 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1917 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1918 		DELAY(10000);
1919 		sk_miibus_writereg(sc_if->sk_dev, SK_PHYADDR_BCOM,
1920 		    BRGPHY_MII_IMR, 0xFFF0);
1921 
1922 		/*
1923 		 * Early versions of the BCM5400 apparently have
1924 		 * a bug that requires them to have their reserved
1925 		 * registers initialized to some magic values. I don't
1926 		 * know what the numbers do, I'm just the messenger.
1927 		 */
1928 		if (sk_miibus_readreg(sc_if->sk_dev,
1929 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1930 			while(bhack[i].reg) {
1931 				sk_miibus_writereg(sc_if->sk_dev,
1932 				    SK_PHYADDR_BCOM, bhack[i].reg,
1933 				    bhack[i].val);
1934 				i++;
1935 			}
1936 		}
1937 	}
1938 
1939 	/* Set station address */
1940 	SK_XM_WRITE_2(sc_if, XM_PAR0,
1941 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1942 	SK_XM_WRITE_2(sc_if, XM_PAR1,
1943 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1944 	SK_XM_WRITE_2(sc_if, XM_PAR2,
1945 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1946 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1947 
1948 	if (ifp->if_flags & IFF_PROMISC) {
1949 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1950 	} else {
1951 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1952 	}
1953 
1954 	if (ifp->if_flags & IFF_BROADCAST) {
1955 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1956 	} else {
1957 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1958 	}
1959 
1960 	/* We don't need the FCS appended to the packet. */
1961 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
1962 
1963 	/* We want short frames padded to 60 bytes. */
1964 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
1965 
1966 	/*
1967 	 * Enable the reception of all error frames. This is is
1968 	 * a necessary evil due to the design of the XMAC. The
1969 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1970 	 * frames can be up to 9000 bytes in length. When bad
1971 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1972 	 * in 'store and forward' mode. For this to work, the
1973 	 * entire frame has to fit into the FIFO, but that means
1974 	 * that jumbo frames larger than 8192 bytes will be
1975 	 * truncated. Disabling all bad frame filtering causes
1976 	 * the RX FIFO to operate in streaming mode, in which
1977 	 * case the XMAC will start transfering frames out of the
1978 	 * RX FIFO as soon as the FIFO threshold is reached.
1979 	 */
1980 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
1981 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
1982 	    XM_MODE_RX_INRANGELEN);
1983 
1984 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1985 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1986 	else
1987 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1988 
1989 	/*
1990 	 * Bump up the transmit threshold. This helps hold off transmit
1991 	 * underruns when we're blasting traffic from both ports at once.
1992 	 */
1993 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
1994 
1995 	/* Set multicast filter */
1996 	sk_setmulti(sc_if);
1997 
1998 	/* Clear and enable interrupts */
1999 	SK_XM_READ_2(sc_if, XM_ISR);
2000 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2001 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2002 	else
2003 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2004 
2005 	/* Configure MAC arbiter */
2006 	switch(sc_if->sk_xmac_rev) {
2007 	case XM_XMAC_REV_B2:
2008 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2009 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2010 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2011 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2012 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2013 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2014 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2015 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2016 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2017 		break;
2018 	case XM_XMAC_REV_C1:
2019 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2020 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2021 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2022 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2023 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2024 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2025 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2026 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2027 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2028 		break;
2029 	default:
2030 		break;
2031 	}
2032 	sk_win_write_2(sc, SK_MACARB_CTL,
2033 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2034 
2035 	sc_if->sk_link = 1;
2036 
2037 	return;
2038 }
2039 
2040 /*
2041  * Note that to properly initialize any part of the GEnesis chip,
2042  * you first have to take it out of reset mode.
2043  */
2044 static void sk_init(xsc)
2045 	void			*xsc;
2046 {
2047 	struct sk_if_softc	*sc_if = xsc;
2048 	struct sk_softc		*sc;
2049 	struct ifnet		*ifp;
2050 	struct mii_data		*mii;
2051 
2052 	SK_IF_LOCK(sc_if);
2053 
2054 	ifp = &sc_if->arpcom.ac_if;
2055 	sc = sc_if->sk_softc;
2056 	mii = device_get_softc(sc_if->sk_miibus);
2057 
2058 	/* Cancel pending I/O and free all RX/TX buffers. */
2059 	sk_stop(sc_if);
2060 
2061 	/* Configure LINK_SYNC LED */
2062 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2063 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
2064 
2065 	/* Configure RX LED */
2066 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
2067 
2068 	/* Configure TX LED */
2069 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
2070 
2071 	/* Configure I2C registers */
2072 
2073 	/* Configure XMAC(s) */
2074 	sk_init_xmac(sc_if);
2075 	mii_mediachg(mii);
2076 
2077 	/* Configure MAC FIFOs */
2078 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2079 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2080 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2081 
2082 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2083 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2084 	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2085 
2086 	/* Configure transmit arbiter(s) */
2087 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2088 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2089 
2090 	/* Configure RAMbuffers */
2091 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2092 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2093 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2094 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2095 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2096 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2097 
2098 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2099 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2100 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2101 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2102 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2103 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2104 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2105 
2106 	/* Configure BMUs */
2107 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2108 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2109 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2110 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2111 
2112 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2113 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2114 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2115 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2116 
2117 	/* Init descriptors */
2118 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2119 		printf("sk%d: initialization failed: no "
2120 		    "memory for rx buffers\n", sc_if->sk_unit);
2121 		sk_stop(sc_if);
2122 		SK_IF_UNLOCK(sc_if);
2123 		return;
2124 	}
2125 	sk_init_tx_ring(sc_if);
2126 
2127 	/* Configure interrupt handling */
2128 	CSR_READ_4(sc, SK_ISSR);
2129 	if (sc_if->sk_port == SK_PORT_A)
2130 		sc->sk_intrmask |= SK_INTRS1;
2131 	else
2132 		sc->sk_intrmask |= SK_INTRS2;
2133 
2134 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2135 
2136 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2137 
2138 	/* Start BMUs. */
2139 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2140 
2141 	/* Enable XMACs TX and RX state machines */
2142 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2143 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2144 
2145 	ifp->if_flags |= IFF_RUNNING;
2146 	ifp->if_flags &= ~IFF_OACTIVE;
2147 
2148 	SK_IF_UNLOCK(sc_if);
2149 
2150 	return;
2151 }
2152 
2153 static void sk_stop(sc_if)
2154 	struct sk_if_softc	*sc_if;
2155 {
2156 	int			i;
2157 	struct sk_softc		*sc;
2158 	struct ifnet		*ifp;
2159 
2160 	SK_IF_LOCK(sc_if);
2161 	sc = sc_if->sk_softc;
2162 	ifp = &sc_if->arpcom.ac_if;
2163 
2164 	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2165 
2166 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2167 		u_int32_t		val;
2168 
2169 		/* Put PHY back into reset. */
2170 		val = sk_win_read_4(sc, SK_GPIO);
2171 		if (sc_if->sk_port == SK_PORT_A) {
2172 			val |= SK_GPIO_DIR0;
2173 			val &= ~SK_GPIO_DAT0;
2174 		} else {
2175 			val |= SK_GPIO_DIR2;
2176 			val &= ~SK_GPIO_DAT2;
2177 		}
2178 		sk_win_write_4(sc, SK_GPIO, val);
2179 	}
2180 
2181 	/* Turn off various components of this interface. */
2182 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2183 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2184 	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2185 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2186 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2187 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2188 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2189 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2190 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2191 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2192 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2193 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2194 
2195 	/* Disable interrupts */
2196 	if (sc_if->sk_port == SK_PORT_A)
2197 		sc->sk_intrmask &= ~SK_INTRS1;
2198 	else
2199 		sc->sk_intrmask &= ~SK_INTRS2;
2200 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2201 
2202 	SK_XM_READ_2(sc_if, XM_ISR);
2203 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2204 
2205 	/* Free RX and TX mbufs still in the queues. */
2206 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2207 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2208 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2209 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2210 		}
2211 	}
2212 
2213 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2214 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2215 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2216 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2217 		}
2218 	}
2219 
2220 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2221 	SK_IF_UNLOCK(sc_if);
2222 	return;
2223 }
2224